tccpp: fix issues, add tests
[tinycc.git] / x86_64-gen.c
blob2d69b75ceaae666a57eda79f8a6caa5eac28b4eb
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_ST0 0x0080 /* only for long double */
38 #define RC_R8 0x0100
39 #define RC_R9 0x0200
40 #define RC_R10 0x0400
41 #define RC_R11 0x0800
42 #define RC_XMM0 0x1000
43 #define RC_XMM1 0x2000
44 #define RC_XMM2 0x4000
45 #define RC_XMM3 0x8000
46 #define RC_XMM4 0x10000
47 #define RC_XMM5 0x20000
48 #define RC_XMM6 0x40000
49 #define RC_XMM7 0x80000
50 #define RC_IRET RC_RAX /* function return: integer register */
51 #define RC_LRET RC_RDX /* function return: second integer register */
52 #define RC_FRET RC_XMM0 /* function return: float register */
53 #define RC_QRET RC_XMM1 /* function return: second float register */
55 /* pretty names for the registers */
56 enum {
57 TREG_RAX = 0,
58 TREG_RCX = 1,
59 TREG_RDX = 2,
60 TREG_RSP = 4,
61 TREG_RSI = 6,
62 TREG_RDI = 7,
64 TREG_R8 = 8,
65 TREG_R9 = 9,
66 TREG_R10 = 10,
67 TREG_R11 = 11,
69 TREG_XMM0 = 16,
70 TREG_XMM1 = 17,
71 TREG_XMM2 = 18,
72 TREG_XMM3 = 19,
73 TREG_XMM4 = 20,
74 TREG_XMM5 = 21,
75 TREG_XMM6 = 22,
76 TREG_XMM7 = 23,
78 TREG_ST0 = 24,
80 TREG_MEM = 0x20,
83 #define REX_BASE(reg) (((reg) >> 3) & 1)
84 #define REG_VALUE(reg) ((reg) & 7)
86 /* return registers for function */
87 #define REG_IRET TREG_RAX /* single word int return register */
88 #define REG_LRET TREG_RDX /* second word return register (for long long) */
89 #define REG_FRET TREG_XMM0 /* float return register */
90 #define REG_QRET TREG_XMM1 /* second float return register */
92 /* defined if function parameters must be evaluated in reverse order */
93 #define INVERT_FUNC_PARAMS
95 /* pointer size, in bytes */
96 #define PTR_SIZE 8
98 /* long double size and alignment, in bytes */
99 #define LDOUBLE_SIZE 16
100 #define LDOUBLE_ALIGN 16
101 /* maximum alignment (for aligned attribute support) */
102 #define MAX_ALIGN 16
104 /******************************************************/
105 /* ELF defines */
107 #define EM_TCC_TARGET EM_X86_64
109 /* relocation type for 32 bit data relocation */
110 #define R_DATA_32 R_X86_64_32
111 #define R_DATA_PTR R_X86_64_64
112 #define R_JMP_SLOT R_X86_64_JUMP_SLOT
113 #define R_COPY R_X86_64_COPY
115 #define ELF_START_ADDR 0x400000
116 #define ELF_PAGE_SIZE 0x200000
118 /******************************************************/
119 #else /* ! TARGET_DEFS_ONLY */
120 /******************************************************/
121 #include "tcc.h"
122 #include <assert.h>
124 ST_DATA const int reg_classes[NB_REGS] = {
125 /* eax */ RC_INT | RC_RAX,
126 /* ecx */ RC_INT | RC_RCX,
127 /* edx */ RC_INT | RC_RDX,
133 RC_R8,
134 RC_R9,
135 RC_R10,
136 RC_R11,
141 /* xmm0 */ RC_FLOAT | RC_XMM0,
142 /* xmm1 */ RC_FLOAT | RC_XMM1,
143 /* xmm2 */ RC_FLOAT | RC_XMM2,
144 /* xmm3 */ RC_FLOAT | RC_XMM3,
145 /* xmm4 */ RC_FLOAT | RC_XMM4,
146 /* xmm5 */ RC_FLOAT | RC_XMM5,
147 /* xmm6 an xmm7 are included so gv() can be used on them,
148 but they are not tagged with RC_FLOAT because they are
149 callee saved on Windows */
150 RC_XMM6,
151 RC_XMM7,
152 /* st0 */ RC_ST0
155 static unsigned long func_sub_sp_offset;
156 static int func_ret_sub;
158 /* XXX: make it faster ? */
159 void g(int c)
161 int ind1;
162 ind1 = ind + 1;
163 if (ind1 > cur_text_section->data_allocated)
164 section_realloc(cur_text_section, ind1);
165 cur_text_section->data[ind] = c;
166 ind = ind1;
169 void o(unsigned int c)
171 while (c) {
172 g(c);
173 c = c >> 8;
177 void gen_le16(int v)
179 g(v);
180 g(v >> 8);
183 void gen_le32(int c)
185 g(c);
186 g(c >> 8);
187 g(c >> 16);
188 g(c >> 24);
191 void gen_le64(int64_t c)
193 g(c);
194 g(c >> 8);
195 g(c >> 16);
196 g(c >> 24);
197 g(c >> 32);
198 g(c >> 40);
199 g(c >> 48);
200 g(c >> 56);
203 void orex(int ll, int r, int r2, int b)
205 if ((r & VT_VALMASK) >= VT_CONST)
206 r = 0;
207 if ((r2 & VT_VALMASK) >= VT_CONST)
208 r2 = 0;
209 if (ll || REX_BASE(r) || REX_BASE(r2))
210 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
211 o(b);
214 /* output a symbol and patch all calls to it */
215 void gsym_addr(int t, int a)
217 int n, *ptr;
218 while (t) {
219 ptr = (int *)(cur_text_section->data + t);
220 n = *ptr; /* next value */
221 *ptr = a - t - 4;
222 t = n;
226 void gsym(int t)
228 gsym_addr(t, ind);
231 /* psym is used to put an instruction with a data field which is a
232 reference to a symbol. It is in fact the same as oad ! */
233 #define psym oad
235 static int is64_type(int t)
237 return ((t & VT_BTYPE) == VT_PTR ||
238 (t & VT_BTYPE) == VT_FUNC ||
239 (t & VT_BTYPE) == VT_LLONG);
242 /* instruction + 4 bytes data. Return the address of the data */
243 ST_FUNC int oad(int c, int s)
245 int ind1;
247 o(c);
248 ind1 = ind + 4;
249 if (ind1 > cur_text_section->data_allocated)
250 section_realloc(cur_text_section, ind1);
251 *(int *)(cur_text_section->data + ind) = s;
252 s = ind;
253 ind = ind1;
254 return s;
257 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
259 if (r & VT_SYM)
260 greloc(cur_text_section, sym, ind, R_X86_64_32);
261 gen_le32(c);
264 /* output constant with relocation if 'r & VT_SYM' is true */
265 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
267 if (r & VT_SYM)
268 greloc(cur_text_section, sym, ind, R_X86_64_64);
269 gen_le64(c);
272 /* output constant with relocation if 'r & VT_SYM' is true */
273 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
275 if (r & VT_SYM)
276 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
277 gen_le32(c-4);
280 /* output got address with relocation */
281 static void gen_gotpcrel(int r, Sym *sym, int c)
283 #ifndef TCC_TARGET_PE
284 Section *sr;
285 ElfW(Rela) *rel;
286 greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
287 sr = cur_text_section->reloc;
288 rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
289 rel->r_addend = -4;
290 #else
291 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
292 get_tok_str(sym->v, NULL), c, r,
293 cur_text_section->data[ind-3],
294 cur_text_section->data[ind-2],
295 cur_text_section->data[ind-1]
297 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
298 #endif
299 gen_le32(0);
300 if (c) {
301 /* we use add c, %xxx for displacement */
302 orex(1, r, 0, 0x81);
303 o(0xc0 + REG_VALUE(r));
304 gen_le32(c);
308 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
310 op_reg = REG_VALUE(op_reg) << 3;
311 if ((r & VT_VALMASK) == VT_CONST) {
312 /* constant memory reference */
313 o(0x05 | op_reg);
314 if (is_got) {
315 gen_gotpcrel(r, sym, c);
316 } else {
317 gen_addrpc32(r, sym, c);
319 } else if ((r & VT_VALMASK) == VT_LOCAL) {
320 /* currently, we use only ebp as base */
321 if (c == (char)c) {
322 /* short reference */
323 o(0x45 | op_reg);
324 g(c);
325 } else {
326 oad(0x85 | op_reg, c);
328 } else if ((r & VT_VALMASK) >= TREG_MEM) {
329 if (c) {
330 g(0x80 | op_reg | REG_VALUE(r));
331 gen_le32(c);
332 } else {
333 g(0x00 | op_reg | REG_VALUE(r));
335 } else {
336 g(0x00 | op_reg | REG_VALUE(r));
340 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
341 opcode bits */
342 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
344 gen_modrm_impl(op_reg, r, sym, c, 0);
347 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
348 opcode bits */
349 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
351 int is_got;
352 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
353 orex(1, r, op_reg, opcode);
354 gen_modrm_impl(op_reg, r, sym, c, is_got);
358 /* load 'r' from value 'sv' */
359 void load(int r, SValue *sv)
361 int v, t, ft, fc, fr;
362 SValue v1;
364 #ifdef TCC_TARGET_PE
365 SValue v2;
366 sv = pe_getimport(sv, &v2);
367 #endif
369 fr = sv->r;
370 ft = sv->type.t & ~VT_DEFSIGN;
371 fc = sv->c.ul;
373 #ifndef TCC_TARGET_PE
374 /* we use indirect access via got */
375 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
376 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
377 /* use the result register as a temporal register */
378 int tr = r | TREG_MEM;
379 if (is_float(ft)) {
380 /* we cannot use float registers as a temporal register */
381 tr = get_reg(RC_INT) | TREG_MEM;
383 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
385 /* load from the temporal register */
386 fr = tr | VT_LVAL;
388 #endif
390 v = fr & VT_VALMASK;
391 if (fr & VT_LVAL) {
392 int b, ll;
393 if (v == VT_LLOCAL) {
394 v1.type.t = VT_PTR;
395 v1.r = VT_LOCAL | VT_LVAL;
396 v1.c.ul = fc;
397 fr = r;
398 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
399 fr = get_reg(RC_INT);
400 load(fr, &v1);
402 ll = 0;
403 if ((ft & VT_BTYPE) == VT_FLOAT) {
404 b = 0x6e0f66;
405 r = REG_VALUE(r); /* movd */
406 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
407 b = 0x7e0ff3; /* movq */
408 r = REG_VALUE(r);
409 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
410 b = 0xdb, r = 5; /* fldt */
411 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
412 b = 0xbe0f; /* movsbl */
413 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
414 b = 0xb60f; /* movzbl */
415 } else if ((ft & VT_TYPE) == VT_SHORT) {
416 b = 0xbf0f; /* movswl */
417 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
418 b = 0xb70f; /* movzwl */
419 } else {
420 assert(((ft & VT_BTYPE) == VT_INT) || ((ft & VT_BTYPE) == VT_LLONG)
421 || ((ft & VT_BTYPE) == VT_PTR) || ((ft & VT_BTYPE) == VT_ENUM)
422 || ((ft & VT_BTYPE) == VT_FUNC));
423 ll = is64_type(ft);
424 b = 0x8b;
426 if (ll) {
427 gen_modrm64(b, r, fr, sv->sym, fc);
428 } else {
429 orex(ll, fr, r, b);
430 gen_modrm(r, fr, sv->sym, fc);
432 } else {
433 if (v == VT_CONST) {
434 if (fr & VT_SYM) {
435 #ifdef TCC_TARGET_PE
436 orex(1,0,r,0x8d);
437 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
438 gen_addrpc32(fr, sv->sym, fc);
439 #else
440 if (sv->sym->type.t & VT_STATIC) {
441 orex(1,0,r,0x8d);
442 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
443 gen_addrpc32(fr, sv->sym, fc);
444 } else {
445 orex(1,0,r,0x8b);
446 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
447 gen_gotpcrel(r, sv->sym, fc);
449 #endif
450 } else if (is64_type(ft)) {
451 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
452 gen_le64(sv->c.ull);
453 } else {
454 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
455 gen_le32(fc);
457 } else if (v == VT_LOCAL) {
458 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
459 gen_modrm(r, VT_LOCAL, sv->sym, fc);
460 } else if (v == VT_CMP) {
461 orex(0,r,0,0);
462 if ((fc & ~0x100) != TOK_NE)
463 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
464 else
465 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
466 if (fc & 0x100)
468 /* This was a float compare. If the parity bit is
469 set the result was unordered, meaning false for everything
470 except TOK_NE, and true for TOK_NE. */
471 fc &= ~0x100;
472 o(0x037a + (REX_BASE(r) << 8));
474 orex(0,r,0, 0x0f); /* setxx %br */
475 o(fc);
476 o(0xc0 + REG_VALUE(r));
477 } else if (v == VT_JMP || v == VT_JMPI) {
478 t = v & 1;
479 orex(0,r,0,0);
480 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
481 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
482 gsym(fc);
483 orex(0,r,0,0);
484 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
485 } else if (v != r) {
486 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
487 if (v == TREG_ST0) {
488 /* gen_cvt_ftof(VT_DOUBLE); */
489 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
490 /* movsd -0x10(%rsp),%xmmN */
491 o(0x100ff2);
492 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
493 o(0xf024);
494 } else {
495 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
496 if ((ft & VT_BTYPE) == VT_FLOAT) {
497 o(0x100ff3);
498 } else {
499 assert((ft & VT_BTYPE) == VT_DOUBLE);
500 o(0x100ff2);
502 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
504 } else if (r == TREG_ST0) {
505 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
506 /* gen_cvt_ftof(VT_LDOUBLE); */
507 /* movsd %xmmN,-0x10(%rsp) */
508 o(0x110ff2);
509 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
510 o(0xf024);
511 o(0xf02444dd); /* fldl -0x10(%rsp) */
512 } else {
513 orex(1,r,v, 0x89);
514 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
520 /* store register 'r' in lvalue 'v' */
521 void store(int r, SValue *v)
523 int fr, bt, ft, fc;
524 int op64 = 0;
525 /* store the REX prefix in this variable when PIC is enabled */
526 int pic = 0;
528 #ifdef TCC_TARGET_PE
529 SValue v2;
530 v = pe_getimport(v, &v2);
531 #endif
533 ft = v->type.t;
534 fc = v->c.ul;
535 fr = v->r & VT_VALMASK;
536 bt = ft & VT_BTYPE;
538 #ifndef TCC_TARGET_PE
539 /* we need to access the variable via got */
540 if (fr == VT_CONST && (v->r & VT_SYM)) {
541 /* mov xx(%rip), %r11 */
542 o(0x1d8b4c);
543 gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
544 pic = is64_type(bt) ? 0x49 : 0x41;
546 #endif
548 /* XXX: incorrect if float reg to reg */
549 if (bt == VT_FLOAT) {
550 o(0x66);
551 o(pic);
552 o(0x7e0f); /* movd */
553 r = REG_VALUE(r);
554 } else if (bt == VT_DOUBLE) {
555 o(0x66);
556 o(pic);
557 o(0xd60f); /* movq */
558 r = REG_VALUE(r);
559 } else if (bt == VT_LDOUBLE) {
560 o(0xc0d9); /* fld %st(0) */
561 o(pic);
562 o(0xdb); /* fstpt */
563 r = 7;
564 } else {
565 if (bt == VT_SHORT)
566 o(0x66);
567 o(pic);
568 if (bt == VT_BYTE || bt == VT_BOOL)
569 orex(0, 0, r, 0x88);
570 else if (is64_type(bt))
571 op64 = 0x89;
572 else
573 orex(0, 0, r, 0x89);
575 if (pic) {
576 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
577 if (op64)
578 o(op64);
579 o(3 + (r << 3));
580 } else if (op64) {
581 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
582 gen_modrm64(op64, r, v->r, v->sym, fc);
583 } else if (fr != r) {
584 /* XXX: don't we really come here? */
585 abort();
586 o(0xc0 + fr + r * 8); /* mov r, fr */
588 } else {
589 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
590 gen_modrm(r, v->r, v->sym, fc);
591 } else if (fr != r) {
592 /* XXX: don't we really come here? */
593 abort();
594 o(0xc0 + fr + r * 8); /* mov r, fr */
599 /* 'is_jmp' is '1' if it is a jump */
600 static void gcall_or_jmp(int is_jmp)
602 int r;
603 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
604 ((vtop->r & VT_SYM) || (vtop->c.ll-4) == (int)(vtop->c.ll-4))) {
605 /* constant case */
606 if (vtop->r & VT_SYM) {
607 /* relocation case */
608 #ifdef TCC_TARGET_PE
609 greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32);
610 #else
611 greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32);
612 #endif
613 } else {
614 /* put an empty PC32 relocation */
615 put_elf_reloc(symtab_section, cur_text_section,
616 ind + 1, R_X86_64_PC32, 0);
618 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
619 } else {
620 /* otherwise, indirect call */
621 r = TREG_R11;
622 load(r, vtop);
623 o(0x41); /* REX */
624 o(0xff); /* call/jmp *r */
625 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
629 #if defined(CONFIG_TCC_BCHECK)
630 #ifndef TCC_TARGET_PE
631 static addr_t func_bound_offset;
632 static unsigned long func_bound_ind;
633 #endif
635 static void gen_static_call(int v)
637 Sym *sym = external_global_sym(v, &func_old_type, 0);
638 oad(0xe8, -4);
639 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
642 /* generate a bounded pointer addition */
643 ST_FUNC void gen_bounded_ptr_add(void)
645 /* save all temporary registers */
646 save_regs(0);
648 /* prepare fast x86_64 function call */
649 gv(RC_RAX);
650 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
651 vtop--;
653 gv(RC_RAX);
654 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
655 vtop--;
657 /* do a fast function call */
658 gen_static_call(TOK___bound_ptr_add);
660 /* returned pointer is in rax */
661 vtop++;
662 vtop->r = TREG_RAX | VT_BOUNDED;
665 /* relocation offset of the bounding function call point */
666 vtop->c.ull = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
669 /* patch pointer addition in vtop so that pointer dereferencing is
670 also tested */
671 ST_FUNC void gen_bounded_ptr_deref(void)
673 addr_t func;
674 int size, align;
675 ElfW(Rela) *rel;
676 Sym *sym;
678 size = 0;
679 /* XXX: put that code in generic part of tcc */
680 if (!is_float(vtop->type.t)) {
681 if (vtop->r & VT_LVAL_BYTE)
682 size = 1;
683 else if (vtop->r & VT_LVAL_SHORT)
684 size = 2;
686 if (!size)
687 size = type_size(&vtop->type, &align);
688 switch(size) {
689 case 1: func = TOK___bound_ptr_indir1; break;
690 case 2: func = TOK___bound_ptr_indir2; break;
691 case 4: func = TOK___bound_ptr_indir4; break;
692 case 8: func = TOK___bound_ptr_indir8; break;
693 case 12: func = TOK___bound_ptr_indir12; break;
694 case 16: func = TOK___bound_ptr_indir16; break;
695 default:
696 tcc_error("unhandled size when dereferencing bounded pointer");
697 func = 0;
698 break;
701 sym = external_global_sym(func, &func_old_type, 0);
702 if (!sym->c)
703 put_extern_sym(sym, NULL, 0, 0);
705 /* patch relocation */
706 /* XXX: find a better solution ? */
708 rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.ull);
709 rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
711 #endif
713 #ifdef TCC_TARGET_PE
715 #define REGN 4
716 static const uint8_t arg_regs[REGN] = {
717 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
720 /* Prepare arguments in R10 and R11 rather than RCX and RDX
721 because gv() will not ever use these */
722 static int arg_prepare_reg(int idx) {
723 if (idx == 0 || idx == 1)
724 /* idx=0: r10, idx=1: r11 */
725 return idx + 10;
726 else
727 return arg_regs[idx];
730 static int func_scratch;
732 /* Generate function call. The function address is pushed first, then
733 all the parameters in call order. This functions pops all the
734 parameters and the function address. */
736 void gen_offs_sp(int b, int r, int d)
738 orex(1,0,r & 0x100 ? 0 : r, b);
739 if (d == (char)d) {
740 o(0x2444 | (REG_VALUE(r) << 3));
741 g(d);
742 } else {
743 o(0x2484 | (REG_VALUE(r) << 3));
744 gen_le32(d);
748 /* Return the number of registers needed to return the struct, or 0 if
749 returning via struct pointer. */
750 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
752 int size, align;
753 *regsize = 8;
754 *ret_align = 1; // Never have to re-align return values for x86-64
755 size = type_size(vt, &align);
756 ret->ref = NULL;
757 if (size > 8) {
758 return 0;
759 } else if (size > 4) {
760 ret->t = VT_LLONG;
761 return 1;
762 } else if (size > 2) {
763 ret->t = VT_INT;
764 return 1;
765 } else if (size > 1) {
766 ret->t = VT_SHORT;
767 return 1;
768 } else {
769 ret->t = VT_BYTE;
770 return 1;
774 static int is_sse_float(int t) {
775 int bt;
776 bt = t & VT_BTYPE;
777 return bt == VT_DOUBLE || bt == VT_FLOAT;
780 int gfunc_arg_size(CType *type) {
781 int align;
782 if (type->t & (VT_ARRAY|VT_BITFIELD))
783 return 8;
784 return type_size(type, &align);
787 void gfunc_call(int nb_args)
789 int size, r, args_size, i, d, bt, struct_size;
790 int arg;
792 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
793 arg = nb_args;
795 /* for struct arguments, we need to call memcpy and the function
796 call breaks register passing arguments we are preparing.
797 So, we process arguments which will be passed by stack first. */
798 struct_size = args_size;
799 for(i = 0; i < nb_args; i++) {
800 SValue *sv;
802 --arg;
803 sv = &vtop[-i];
804 bt = (sv->type.t & VT_BTYPE);
805 size = gfunc_arg_size(&sv->type);
807 if (size <= 8)
808 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
810 if (bt == VT_STRUCT) {
811 /* align to stack align size */
812 size = (size + 15) & ~15;
813 /* generate structure store */
814 r = get_reg(RC_INT);
815 gen_offs_sp(0x8d, r, struct_size);
816 struct_size += size;
818 /* generate memcpy call */
819 vset(&sv->type, r | VT_LVAL, 0);
820 vpushv(sv);
821 vstore();
822 --vtop;
823 } else if (bt == VT_LDOUBLE) {
824 gv(RC_ST0);
825 gen_offs_sp(0xdb, 0x107, struct_size);
826 struct_size += 16;
830 if (func_scratch < struct_size)
831 func_scratch = struct_size;
833 arg = nb_args;
834 struct_size = args_size;
836 for(i = 0; i < nb_args; i++) {
837 --arg;
838 bt = (vtop->type.t & VT_BTYPE);
840 size = gfunc_arg_size(&vtop->type);
841 if (size > 8) {
842 /* align to stack align size */
843 size = (size + 15) & ~15;
844 if (arg >= REGN) {
845 d = get_reg(RC_INT);
846 gen_offs_sp(0x8d, d, struct_size);
847 gen_offs_sp(0x89, d, arg*8);
848 } else {
849 d = arg_prepare_reg(arg);
850 gen_offs_sp(0x8d, d, struct_size);
852 struct_size += size;
853 } else {
854 if (is_sse_float(vtop->type.t)) {
855 gv(RC_XMM0); /* only use one float register */
856 if (arg >= REGN) {
857 /* movq %xmm0, j*8(%rsp) */
858 gen_offs_sp(0xd60f66, 0x100, arg*8);
859 } else {
860 /* movaps %xmm0, %xmmN */
861 o(0x280f);
862 o(0xc0 + (arg << 3));
863 d = arg_prepare_reg(arg);
864 /* mov %xmm0, %rxx */
865 o(0x66);
866 orex(1,d,0, 0x7e0f);
867 o(0xc0 + REG_VALUE(d));
869 } else {
870 if (bt == VT_STRUCT) {
871 vtop->type.ref = NULL;
872 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
873 : size > 1 ? VT_SHORT : VT_BYTE;
876 r = gv(RC_INT);
877 if (arg >= REGN) {
878 gen_offs_sp(0x89, r, arg*8);
879 } else {
880 d = arg_prepare_reg(arg);
881 orex(1,d,r,0x89); /* mov */
882 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
886 vtop--;
888 save_regs(0);
890 /* Copy R10 and R11 into RCX and RDX, respectively */
891 if (nb_args > 0) {
892 o(0xd1894c); /* mov %r10, %rcx */
893 if (nb_args > 1) {
894 o(0xda894c); /* mov %r11, %rdx */
898 gcall_or_jmp(0);
899 vtop--;
903 #define FUNC_PROLOG_SIZE 11
905 /* generate function prolog of type 't' */
906 void gfunc_prolog(CType *func_type)
908 int addr, reg_param_index, bt, size;
909 Sym *sym;
910 CType *type;
912 func_ret_sub = 0;
913 func_scratch = 0;
914 loc = 0;
916 addr = PTR_SIZE * 2;
917 ind += FUNC_PROLOG_SIZE;
918 func_sub_sp_offset = ind;
919 reg_param_index = 0;
921 sym = func_type->ref;
923 /* if the function returns a structure, then add an
924 implicit pointer parameter */
925 func_vt = sym->type;
926 func_var = (sym->c == FUNC_ELLIPSIS);
927 size = gfunc_arg_size(&func_vt);
928 if (size > 8) {
929 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
930 func_vc = addr;
931 reg_param_index++;
932 addr += 8;
935 /* define parameters */
936 while ((sym = sym->next) != NULL) {
937 type = &sym->type;
938 bt = type->t & VT_BTYPE;
939 size = gfunc_arg_size(type);
940 if (size > 8) {
941 if (reg_param_index < REGN) {
942 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
944 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL | VT_REF, addr);
945 } else {
946 if (reg_param_index < REGN) {
947 /* save arguments passed by register */
948 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
949 o(0xd60f66); /* movq */
950 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
951 } else {
952 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
955 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
957 addr += 8;
958 reg_param_index++;
961 while (reg_param_index < REGN) {
962 if (func_type->ref->c == FUNC_ELLIPSIS) {
963 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
964 addr += 8;
966 reg_param_index++;
970 /* generate function epilog */
971 void gfunc_epilog(void)
973 int v, saved_ind;
975 o(0xc9); /* leave */
976 if (func_ret_sub == 0) {
977 o(0xc3); /* ret */
978 } else {
979 o(0xc2); /* ret n */
980 g(func_ret_sub);
981 g(func_ret_sub >> 8);
984 saved_ind = ind;
985 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
986 /* align local size to word & save local variables */
987 v = (func_scratch + -loc + 15) & -16;
989 if (v >= 4096) {
990 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
991 oad(0xb8, v); /* mov stacksize, %eax */
992 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
993 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
994 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
995 } else {
996 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
997 o(0xec8148); /* sub rsp, stacksize */
998 gen_le32(v);
1001 cur_text_section->data_offset = saved_ind;
1002 pe_add_unwind_data(ind, saved_ind, v);
1003 ind = cur_text_section->data_offset;
1006 #else
1008 static void gadd_sp(int val)
1010 if (val == (char)val) {
1011 o(0xc48348);
1012 g(val);
1013 } else {
1014 oad(0xc48148, val); /* add $xxx, %rsp */
1018 typedef enum X86_64_Mode {
1019 x86_64_mode_none,
1020 x86_64_mode_memory,
1021 x86_64_mode_integer,
1022 x86_64_mode_sse,
1023 x86_64_mode_x87
1024 } X86_64_Mode;
1026 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1028 if (a == b)
1029 return a;
1030 else if (a == x86_64_mode_none)
1031 return b;
1032 else if (b == x86_64_mode_none)
1033 return a;
1034 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1035 return x86_64_mode_memory;
1036 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1037 return x86_64_mode_integer;
1038 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1039 return x86_64_mode_memory;
1040 else
1041 return x86_64_mode_sse;
1044 static X86_64_Mode classify_x86_64_inner(CType *ty)
1046 X86_64_Mode mode;
1047 Sym *f;
1049 switch (ty->t & VT_BTYPE) {
1050 case VT_VOID: return x86_64_mode_none;
1052 case VT_INT:
1053 case VT_BYTE:
1054 case VT_SHORT:
1055 case VT_LLONG:
1056 case VT_BOOL:
1057 case VT_PTR:
1058 case VT_FUNC:
1059 case VT_ENUM: return x86_64_mode_integer;
1061 case VT_FLOAT:
1062 case VT_DOUBLE: return x86_64_mode_sse;
1064 case VT_LDOUBLE: return x86_64_mode_x87;
1066 case VT_STRUCT:
1067 f = ty->ref;
1069 mode = x86_64_mode_none;
1070 for (f = f->next; f; f = f->next)
1071 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1073 return mode;
1076 assert(0);
1079 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1081 X86_64_Mode mode;
1082 int size, align, ret_t = 0;
1084 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1085 *psize = 8;
1086 *palign = 8;
1087 *reg_count = 1;
1088 ret_t = ty->t;
1089 mode = x86_64_mode_integer;
1090 } else {
1091 size = type_size(ty, &align);
1092 *psize = (size + 7) & ~7;
1093 *palign = (align + 7) & ~7;
1095 if (size > 16) {
1096 mode = x86_64_mode_memory;
1097 } else {
1098 mode = classify_x86_64_inner(ty);
1099 switch (mode) {
1100 case x86_64_mode_integer:
1101 if (size > 8) {
1102 *reg_count = 2;
1103 ret_t = VT_QLONG;
1104 } else {
1105 *reg_count = 1;
1106 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1108 break;
1110 case x86_64_mode_x87:
1111 *reg_count = 1;
1112 ret_t = VT_LDOUBLE;
1113 break;
1115 case x86_64_mode_sse:
1116 if (size > 8) {
1117 *reg_count = 2;
1118 ret_t = VT_QFLOAT;
1119 } else {
1120 *reg_count = 1;
1121 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1123 break;
1124 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1129 if (ret) {
1130 ret->ref = NULL;
1131 ret->t = ret_t;
1134 return mode;
1137 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1139 /* This definition must be synced with stdarg.h */
1140 enum __va_arg_type {
1141 __va_gen_reg, __va_float_reg, __va_stack
1143 int size, align, reg_count;
1144 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1145 switch (mode) {
1146 default: return __va_stack;
1147 case x86_64_mode_integer: return __va_gen_reg;
1148 case x86_64_mode_sse: return __va_float_reg;
1152 /* Return the number of registers needed to return the struct, or 0 if
1153 returning via struct pointer. */
1154 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1156 int size, align, reg_count;
1157 *ret_align = 1; // Never have to re-align return values for x86-64
1158 *regsize = 8;
1159 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1162 #define REGN 6
1163 static const uint8_t arg_regs[REGN] = {
1164 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1167 static int arg_prepare_reg(int idx) {
1168 if (idx == 2 || idx == 3)
1169 /* idx=2: r10, idx=3: r11 */
1170 return idx + 8;
1171 else
1172 return arg_regs[idx];
1175 /* Generate function call. The function address is pushed first, then
1176 all the parameters in call order. This functions pops all the
1177 parameters and the function address. */
1178 void gfunc_call(int nb_args)
1180 X86_64_Mode mode;
1181 CType type;
1182 int size, align, r, args_size, stack_adjust, run_start, run_end, i, reg_count;
1183 int nb_reg_args = 0;
1184 int nb_sse_args = 0;
1185 int sse_reg, gen_reg;
1187 /* calculate the number of integer/float register arguments */
1188 for(i = 0; i < nb_args; i++) {
1189 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1190 if (mode == x86_64_mode_sse)
1191 nb_sse_args += reg_count;
1192 else if (mode == x86_64_mode_integer)
1193 nb_reg_args += reg_count;
1196 /* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
1197 and ended by a 16-byte aligned argument. This is because, from the point of view of
1198 the callee, argument alignment is computed from the bottom up. */
1199 /* for struct arguments, we need to call memcpy and the function
1200 call breaks register passing arguments we are preparing.
1201 So, we process arguments which will be passed by stack first. */
1202 gen_reg = nb_reg_args;
1203 sse_reg = nb_sse_args;
1204 run_start = 0;
1205 args_size = 0;
1206 while (run_start != nb_args) {
1207 int run_gen_reg = gen_reg, run_sse_reg = sse_reg;
1209 run_end = nb_args;
1210 stack_adjust = 0;
1211 for(i = run_start; (i < nb_args) && (run_end == nb_args); i++) {
1212 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1213 switch (mode) {
1214 case x86_64_mode_memory:
1215 case x86_64_mode_x87:
1216 stack_arg:
1217 if (align == 16)
1218 run_end = i;
1219 else
1220 stack_adjust += size;
1221 break;
1223 case x86_64_mode_sse:
1224 sse_reg -= reg_count;
1225 if (sse_reg + reg_count > 8) goto stack_arg;
1226 break;
1228 case x86_64_mode_integer:
1229 gen_reg -= reg_count;
1230 if (gen_reg + reg_count > REGN) goto stack_arg;
1231 break;
1232 default: break; /* nothing to be done for x86_64_mode_none */
1236 gen_reg = run_gen_reg;
1237 sse_reg = run_sse_reg;
1239 /* adjust stack to align SSE boundary */
1240 if (stack_adjust &= 15) {
1241 /* fetch cpu flag before the following sub will change the value */
1242 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1243 gv(RC_INT);
1245 stack_adjust = 16 - stack_adjust;
1246 o(0x48);
1247 oad(0xec81, stack_adjust); /* sub $xxx, %rsp */
1248 args_size += stack_adjust;
1251 for(i = run_start; i < run_end;) {
1252 /* Swap argument to top, it will possibly be changed here,
1253 and might use more temps. At the end of the loop we keep
1254 in on the stack and swap it back to its original position
1255 if it is a register. */
1256 SValue tmp = vtop[0];
1257 int arg_stored = 1;
1259 vtop[0] = vtop[-i];
1260 vtop[-i] = tmp;
1261 mode = classify_x86_64_arg(&vtop->type, NULL, &size, &align, &reg_count);
1263 switch (vtop->type.t & VT_BTYPE) {
1264 case VT_STRUCT:
1265 if (mode == x86_64_mode_sse) {
1266 if (sse_reg > 8)
1267 sse_reg -= reg_count;
1268 else
1269 arg_stored = 0;
1270 } else if (mode == x86_64_mode_integer) {
1271 if (gen_reg > REGN)
1272 gen_reg -= reg_count;
1273 else
1274 arg_stored = 0;
1277 if (arg_stored) {
1278 /* allocate the necessary size on stack */
1279 o(0x48);
1280 oad(0xec81, size); /* sub $xxx, %rsp */
1281 /* generate structure store */
1282 r = get_reg(RC_INT);
1283 orex(1, r, 0, 0x89); /* mov %rsp, r */
1284 o(0xe0 + REG_VALUE(r));
1285 vset(&vtop->type, r | VT_LVAL, 0);
1286 vswap();
1287 vstore();
1288 args_size += size;
1290 break;
1292 case VT_LDOUBLE:
1293 assert(0);
1294 break;
1296 case VT_FLOAT:
1297 case VT_DOUBLE:
1298 assert(mode == x86_64_mode_sse);
1299 if (sse_reg > 8) {
1300 --sse_reg;
1301 r = gv(RC_FLOAT);
1302 o(0x50); /* push $rax */
1303 /* movq %xmmN, (%rsp) */
1304 o(0xd60f66);
1305 o(0x04 + REG_VALUE(r)*8);
1306 o(0x24);
1307 args_size += size;
1308 } else {
1309 arg_stored = 0;
1311 break;
1313 default:
1314 assert(mode == x86_64_mode_integer);
1315 /* simple type */
1316 /* XXX: implicit cast ? */
1317 if (gen_reg > REGN) {
1318 --gen_reg;
1319 r = gv(RC_INT);
1320 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1321 args_size += size;
1322 } else {
1323 arg_stored = 0;
1325 break;
1328 /* And swap the argument back to it's original position. */
1329 tmp = vtop[0];
1330 vtop[0] = vtop[-i];
1331 vtop[-i] = tmp;
1333 if (arg_stored) {
1334 vrotb(i+1);
1335 assert((vtop->type.t == tmp.type.t) && (vtop->r == tmp.r));
1336 vpop();
1337 --nb_args;
1338 --run_end;
1339 } else {
1340 ++i;
1344 /* handle 16 byte aligned arguments at end of run */
1345 run_start = i = run_end;
1346 while (i < nb_args) {
1347 /* Rotate argument to top since it will always be popped */
1348 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1349 if (align != 16)
1350 break;
1352 vrotb(i+1);
1354 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1355 gv(RC_ST0);
1356 oad(0xec8148, size); /* sub $xxx, %rsp */
1357 o(0x7cdb); /* fstpt 0(%rsp) */
1358 g(0x24);
1359 g(0x00);
1360 args_size += size;
1361 } else {
1362 assert(mode == x86_64_mode_memory);
1364 /* allocate the necessary size on stack */
1365 o(0x48);
1366 oad(0xec81, size); /* sub $xxx, %rsp */
1367 /* generate structure store */
1368 r = get_reg(RC_INT);
1369 orex(1, r, 0, 0x89); /* mov %rsp, r */
1370 o(0xe0 + REG_VALUE(r));
1371 vset(&vtop->type, r | VT_LVAL, 0);
1372 vswap();
1373 vstore();
1374 args_size += size;
1377 vpop();
1378 --nb_args;
1382 /* XXX This should be superfluous. */
1383 save_regs(0); /* save used temporary registers */
1385 /* then, we prepare register passing arguments.
1386 Note that we cannot set RDX and RCX in this loop because gv()
1387 may break these temporary registers. Let's use R10 and R11
1388 instead of them */
1389 assert(gen_reg <= REGN);
1390 assert(sse_reg <= 8);
1391 for(i = 0; i < nb_args; i++) {
1392 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1393 /* Alter stack entry type so that gv() knows how to treat it */
1394 vtop->type = type;
1395 if (mode == x86_64_mode_sse) {
1396 if (reg_count == 2) {
1397 sse_reg -= 2;
1398 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1399 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1400 /* movaps %xmm0, %xmmN */
1401 o(0x280f);
1402 o(0xc0 + (sse_reg << 3));
1403 /* movaps %xmm1, %xmmN */
1404 o(0x280f);
1405 o(0xc1 + ((sse_reg+1) << 3));
1407 } else {
1408 assert(reg_count == 1);
1409 --sse_reg;
1410 /* Load directly to register */
1411 gv(RC_XMM0 << sse_reg);
1413 } else if (mode == x86_64_mode_integer) {
1414 /* simple type */
1415 /* XXX: implicit cast ? */
1416 int d;
1417 gen_reg -= reg_count;
1418 r = gv(RC_INT);
1419 d = arg_prepare_reg(gen_reg);
1420 orex(1,d,r,0x89); /* mov */
1421 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1422 if (reg_count == 2) {
1423 d = arg_prepare_reg(gen_reg+1);
1424 orex(1,d,vtop->r2,0x89); /* mov */
1425 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1428 vtop--;
1430 assert(gen_reg == 0);
1431 assert(sse_reg == 0);
1433 /* We shouldn't have many operands on the stack anymore, but the
1434 call address itself is still there, and it might be in %eax
1435 (or edx/ecx) currently, which the below writes would clobber.
1436 So evict all remaining operands here. */
1437 save_regs(0);
1439 /* Copy R10 and R11 into RDX and RCX, respectively */
1440 if (nb_reg_args > 2) {
1441 o(0xd2894c); /* mov %r10, %rdx */
1442 if (nb_reg_args > 3) {
1443 o(0xd9894c); /* mov %r11, %rcx */
1447 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1448 gcall_or_jmp(0);
1449 if (args_size)
1450 gadd_sp(args_size);
1451 vtop--;
1455 #define FUNC_PROLOG_SIZE 11
1457 static void push_arg_reg(int i) {
1458 loc -= 8;
1459 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1462 /* generate function prolog of type 't' */
1463 void gfunc_prolog(CType *func_type)
1465 X86_64_Mode mode;
1466 int i, addr, align, size, reg_count;
1467 int param_addr = 0, reg_param_index, sse_param_index;
1468 Sym *sym;
1469 CType *type;
1471 sym = func_type->ref;
1472 addr = PTR_SIZE * 2;
1473 loc = 0;
1474 ind += FUNC_PROLOG_SIZE;
1475 func_sub_sp_offset = ind;
1476 func_ret_sub = 0;
1478 if (func_type->ref->c == FUNC_ELLIPSIS) {
1479 int seen_reg_num, seen_sse_num, seen_stack_size;
1480 seen_reg_num = seen_sse_num = 0;
1481 /* frame pointer and return address */
1482 seen_stack_size = PTR_SIZE * 2;
1483 /* count the number of seen parameters */
1484 sym = func_type->ref;
1485 while ((sym = sym->next) != NULL) {
1486 type = &sym->type;
1487 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1488 switch (mode) {
1489 default:
1490 stack_arg:
1491 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1492 break;
1494 case x86_64_mode_integer:
1495 if (seen_reg_num + reg_count <= 8) {
1496 seen_reg_num += reg_count;
1497 } else {
1498 seen_reg_num = 8;
1499 goto stack_arg;
1501 break;
1503 case x86_64_mode_sse:
1504 if (seen_sse_num + reg_count <= 8) {
1505 seen_sse_num += reg_count;
1506 } else {
1507 seen_sse_num = 8;
1508 goto stack_arg;
1510 break;
1514 loc -= 16;
1515 /* movl $0x????????, -0x10(%rbp) */
1516 o(0xf045c7);
1517 gen_le32(seen_reg_num * 8);
1518 /* movl $0x????????, -0xc(%rbp) */
1519 o(0xf445c7);
1520 gen_le32(seen_sse_num * 16 + 48);
1521 /* movl $0x????????, -0x8(%rbp) */
1522 o(0xf845c7);
1523 gen_le32(seen_stack_size);
1525 /* save all register passing arguments */
1526 for (i = 0; i < 8; i++) {
1527 loc -= 16;
1528 o(0xd60f66); /* movq */
1529 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1530 /* movq $0, loc+8(%rbp) */
1531 o(0x85c748);
1532 gen_le32(loc + 8);
1533 gen_le32(0);
1535 for (i = 0; i < REGN; i++) {
1536 push_arg_reg(REGN-1-i);
1540 sym = func_type->ref;
1541 reg_param_index = 0;
1542 sse_param_index = 0;
1544 /* if the function returns a structure, then add an
1545 implicit pointer parameter */
1546 func_vt = sym->type;
1547 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1548 if (mode == x86_64_mode_memory) {
1549 push_arg_reg(reg_param_index);
1550 func_vc = loc;
1551 reg_param_index++;
1553 /* define parameters */
1554 while ((sym = sym->next) != NULL) {
1555 type = &sym->type;
1556 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1557 switch (mode) {
1558 case x86_64_mode_sse:
1559 if (sse_param_index + reg_count <= 8) {
1560 /* save arguments passed by register */
1561 loc -= reg_count * 8;
1562 param_addr = loc;
1563 for (i = 0; i < reg_count; ++i) {
1564 o(0xd60f66); /* movq */
1565 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1566 ++sse_param_index;
1568 } else {
1569 addr = (addr + align - 1) & -align;
1570 param_addr = addr;
1571 addr += size;
1573 break;
1575 case x86_64_mode_memory:
1576 case x86_64_mode_x87:
1577 addr = (addr + align - 1) & -align;
1578 param_addr = addr;
1579 addr += size;
1580 break;
1582 case x86_64_mode_integer: {
1583 if (reg_param_index + reg_count <= REGN) {
1584 /* save arguments passed by register */
1585 loc -= reg_count * 8;
1586 param_addr = loc;
1587 for (i = 0; i < reg_count; ++i) {
1588 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1589 ++reg_param_index;
1591 } else {
1592 addr = (addr + align - 1) & -align;
1593 param_addr = addr;
1594 addr += size;
1596 break;
1598 default: break; /* nothing to be done for x86_64_mode_none */
1600 sym_push(sym->v & ~SYM_FIELD, type,
1601 VT_LOCAL | VT_LVAL, param_addr);
1604 #ifdef CONFIG_TCC_BCHECK
1605 /* leave some room for bound checking code */
1606 if (tcc_state->do_bounds_check) {
1607 func_bound_offset = lbounds_section->data_offset;
1608 func_bound_ind = ind;
1609 oad(0xb8, 0); /* lbound section pointer */
1610 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1611 oad(0xb8, 0); /* call to function */
1613 #endif
1616 /* generate function epilog */
1617 void gfunc_epilog(void)
1619 int v, saved_ind;
1621 #ifdef CONFIG_TCC_BCHECK
1622 if (tcc_state->do_bounds_check
1623 && func_bound_offset != lbounds_section->data_offset)
1625 addr_t saved_ind;
1626 addr_t *bounds_ptr;
1627 Sym *sym_data;
1629 /* add end of table info */
1630 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
1631 *bounds_ptr = 0;
1633 /* generate bound local allocation */
1634 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
1635 func_bound_offset, lbounds_section->data_offset);
1636 saved_ind = ind;
1637 ind = func_bound_ind;
1638 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1639 ind = ind + 5 + 3;
1640 gen_static_call(TOK___bound_local_new);
1641 ind = saved_ind;
1643 /* generate bound check local freeing */
1644 o(0x5250); /* save returned value, if any */
1645 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1646 oad(0xb8, 0); /* mov xxx, %rax */
1647 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1648 gen_static_call(TOK___bound_local_delete);
1649 o(0x585a); /* restore returned value, if any */
1651 #endif
1652 o(0xc9); /* leave */
1653 if (func_ret_sub == 0) {
1654 o(0xc3); /* ret */
1655 } else {
1656 o(0xc2); /* ret n */
1657 g(func_ret_sub);
1658 g(func_ret_sub >> 8);
1660 /* align local size to word & save local variables */
1661 v = (-loc + 15) & -16;
1662 saved_ind = ind;
1663 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1664 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1665 o(0xec8148); /* sub rsp, stacksize */
1666 gen_le32(v);
1667 ind = saved_ind;
1670 #endif /* not PE */
1672 /* generate a jump to a label */
1673 int gjmp(int t)
1675 return psym(0xe9, t);
1678 /* generate a jump to a fixed address */
1679 void gjmp_addr(int a)
1681 int r;
1682 r = a - ind - 2;
1683 if (r == (char)r) {
1684 g(0xeb);
1685 g(r);
1686 } else {
1687 oad(0xe9, a - ind - 5);
1691 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1692 int gtst(int inv, int t)
1694 int v, *p;
1696 v = vtop->r & VT_VALMASK;
1697 if (v == VT_CMP) {
1698 /* fast case : can jump directly since flags are set */
1699 if (vtop->c.i & 0x100)
1701 /* This was a float compare. If the parity flag is set
1702 the result was unordered. For anything except != this
1703 means false and we don't jump (anding both conditions).
1704 For != this means true (oring both).
1705 Take care about inverting the test. We need to jump
1706 to our target if the result was unordered and test wasn't NE,
1707 otherwise if unordered we don't want to jump. */
1708 vtop->c.i &= ~0x100;
1709 if (!inv == (vtop->c.i != TOK_NE))
1710 o(0x067a); /* jp +6 */
1711 else
1713 g(0x0f);
1714 t = psym(0x8a, t); /* jp t */
1717 g(0x0f);
1718 t = psym((vtop->c.i - 16) ^ inv, t);
1719 } else if (v == VT_JMP || v == VT_JMPI) {
1720 /* && or || optimization */
1721 if ((v & 1) == inv) {
1722 /* insert vtop->c jump list in t */
1723 p = &vtop->c.i;
1724 while (*p != 0)
1725 p = (int *)(cur_text_section->data + *p);
1726 *p = t;
1727 t = vtop->c.i;
1728 } else {
1729 t = gjmp(t);
1730 gsym(vtop->c.i);
1733 vtop--;
1734 return t;
1737 /* generate an integer binary operation */
1738 void gen_opi(int op)
1740 int r, fr, opc, c;
1741 int ll, uu, cc;
1743 ll = is64_type(vtop[-1].type.t);
1744 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1745 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1747 switch(op) {
1748 case '+':
1749 case TOK_ADDC1: /* add with carry generation */
1750 opc = 0;
1751 gen_op8:
1752 if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) {
1753 /* constant case */
1754 vswap();
1755 r = gv(RC_INT);
1756 vswap();
1757 c = vtop->c.i;
1758 if (c == (char)c) {
1759 /* XXX: generate inc and dec for smaller code ? */
1760 orex(ll, r, 0, 0x83);
1761 o(0xc0 | (opc << 3) | REG_VALUE(r));
1762 g(c);
1763 } else {
1764 orex(ll, r, 0, 0x81);
1765 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1767 } else {
1768 gv2(RC_INT, RC_INT);
1769 r = vtop[-1].r;
1770 fr = vtop[0].r;
1771 orex(ll, r, fr, (opc << 3) | 0x01);
1772 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1774 vtop--;
1775 if (op >= TOK_ULT && op <= TOK_GT) {
1776 vtop->r = VT_CMP;
1777 vtop->c.i = op;
1779 break;
1780 case '-':
1781 case TOK_SUBC1: /* sub with carry generation */
1782 opc = 5;
1783 goto gen_op8;
1784 case TOK_ADDC2: /* add with carry use */
1785 opc = 2;
1786 goto gen_op8;
1787 case TOK_SUBC2: /* sub with carry use */
1788 opc = 3;
1789 goto gen_op8;
1790 case '&':
1791 opc = 4;
1792 goto gen_op8;
1793 case '^':
1794 opc = 6;
1795 goto gen_op8;
1796 case '|':
1797 opc = 1;
1798 goto gen_op8;
1799 case '*':
1800 gv2(RC_INT, RC_INT);
1801 r = vtop[-1].r;
1802 fr = vtop[0].r;
1803 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1804 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1805 vtop--;
1806 break;
1807 case TOK_SHL:
1808 opc = 4;
1809 goto gen_shift;
1810 case TOK_SHR:
1811 opc = 5;
1812 goto gen_shift;
1813 case TOK_SAR:
1814 opc = 7;
1815 gen_shift:
1816 opc = 0xc0 | (opc << 3);
1817 if (cc) {
1818 /* constant case */
1819 vswap();
1820 r = gv(RC_INT);
1821 vswap();
1822 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1823 o(opc | REG_VALUE(r));
1824 g(vtop->c.i & (ll ? 63 : 31));
1825 } else {
1826 /* we generate the shift in ecx */
1827 gv2(RC_INT, RC_RCX);
1828 r = vtop[-1].r;
1829 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1830 o(opc | REG_VALUE(r));
1832 vtop--;
1833 break;
1834 case TOK_UDIV:
1835 case TOK_UMOD:
1836 uu = 1;
1837 goto divmod;
1838 case '/':
1839 case '%':
1840 case TOK_PDIV:
1841 uu = 0;
1842 divmod:
1843 /* first operand must be in eax */
1844 /* XXX: need better constraint for second operand */
1845 gv2(RC_RAX, RC_RCX);
1846 r = vtop[-1].r;
1847 fr = vtop[0].r;
1848 vtop--;
1849 save_reg(TREG_RDX);
1850 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1851 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1852 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1853 if (op == '%' || op == TOK_UMOD)
1854 r = TREG_RDX;
1855 else
1856 r = TREG_RAX;
1857 vtop->r = r;
1858 break;
1859 default:
1860 opc = 7;
1861 goto gen_op8;
1865 void gen_opl(int op)
1867 gen_opi(op);
1870 /* generate a floating point operation 'v = t1 op t2' instruction. The
1871 two operands are guaranted to have the same floating point type */
1872 /* XXX: need to use ST1 too */
1873 void gen_opf(int op)
1875 int a, ft, fc, swapped, r;
1876 int float_type =
1877 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1879 /* convert constants to memory references */
1880 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1881 vswap();
1882 gv(float_type);
1883 vswap();
1885 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1886 gv(float_type);
1888 /* must put at least one value in the floating point register */
1889 if ((vtop[-1].r & VT_LVAL) &&
1890 (vtop[0].r & VT_LVAL)) {
1891 vswap();
1892 gv(float_type);
1893 vswap();
1895 swapped = 0;
1896 /* swap the stack if needed so that t1 is the register and t2 is
1897 the memory reference */
1898 if (vtop[-1].r & VT_LVAL) {
1899 vswap();
1900 swapped = 1;
1902 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1903 if (op >= TOK_ULT && op <= TOK_GT) {
1904 /* load on stack second operand */
1905 load(TREG_ST0, vtop);
1906 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1907 if (op == TOK_GE || op == TOK_GT)
1908 swapped = !swapped;
1909 else if (op == TOK_EQ || op == TOK_NE)
1910 swapped = 0;
1911 if (swapped)
1912 o(0xc9d9); /* fxch %st(1) */
1913 if (op == TOK_EQ || op == TOK_NE)
1914 o(0xe9da); /* fucompp */
1915 else
1916 o(0xd9de); /* fcompp */
1917 o(0xe0df); /* fnstsw %ax */
1918 if (op == TOK_EQ) {
1919 o(0x45e480); /* and $0x45, %ah */
1920 o(0x40fC80); /* cmp $0x40, %ah */
1921 } else if (op == TOK_NE) {
1922 o(0x45e480); /* and $0x45, %ah */
1923 o(0x40f480); /* xor $0x40, %ah */
1924 op = TOK_NE;
1925 } else if (op == TOK_GE || op == TOK_LE) {
1926 o(0x05c4f6); /* test $0x05, %ah */
1927 op = TOK_EQ;
1928 } else {
1929 o(0x45c4f6); /* test $0x45, %ah */
1930 op = TOK_EQ;
1932 vtop--;
1933 vtop->r = VT_CMP;
1934 vtop->c.i = op;
1935 } else {
1936 /* no memory reference possible for long double operations */
1937 load(TREG_ST0, vtop);
1938 swapped = !swapped;
1940 switch(op) {
1941 default:
1942 case '+':
1943 a = 0;
1944 break;
1945 case '-':
1946 a = 4;
1947 if (swapped)
1948 a++;
1949 break;
1950 case '*':
1951 a = 1;
1952 break;
1953 case '/':
1954 a = 6;
1955 if (swapped)
1956 a++;
1957 break;
1959 ft = vtop->type.t;
1960 fc = vtop->c.ul;
1961 o(0xde); /* fxxxp %st, %st(1) */
1962 o(0xc1 + (a << 3));
1963 vtop--;
1965 } else {
1966 if (op >= TOK_ULT && op <= TOK_GT) {
1967 /* if saved lvalue, then we must reload it */
1968 r = vtop->r;
1969 fc = vtop->c.ul;
1970 if ((r & VT_VALMASK) == VT_LLOCAL) {
1971 SValue v1;
1972 r = get_reg(RC_INT);
1973 v1.type.t = VT_PTR;
1974 v1.r = VT_LOCAL | VT_LVAL;
1975 v1.c.ul = fc;
1976 load(r, &v1);
1977 fc = 0;
1980 if (op == TOK_EQ || op == TOK_NE) {
1981 swapped = 0;
1982 } else {
1983 if (op == TOK_LE || op == TOK_LT)
1984 swapped = !swapped;
1985 if (op == TOK_LE || op == TOK_GE) {
1986 op = 0x93; /* setae */
1987 } else {
1988 op = 0x97; /* seta */
1992 if (swapped) {
1993 gv(RC_FLOAT);
1994 vswap();
1996 assert(!(vtop[-1].r & VT_LVAL));
1998 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
1999 o(0x66);
2000 if (op == TOK_EQ || op == TOK_NE)
2001 o(0x2e0f); /* ucomisd */
2002 else
2003 o(0x2f0f); /* comisd */
2005 if (vtop->r & VT_LVAL) {
2006 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2007 } else {
2008 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2011 vtop--;
2012 vtop->r = VT_CMP;
2013 vtop->c.i = op | 0x100;
2014 } else {
2015 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2016 switch(op) {
2017 default:
2018 case '+':
2019 a = 0;
2020 break;
2021 case '-':
2022 a = 4;
2023 break;
2024 case '*':
2025 a = 1;
2026 break;
2027 case '/':
2028 a = 6;
2029 break;
2031 ft = vtop->type.t;
2032 fc = vtop->c.ul;
2033 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2035 r = vtop->r;
2036 /* if saved lvalue, then we must reload it */
2037 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2038 SValue v1;
2039 r = get_reg(RC_INT);
2040 v1.type.t = VT_PTR;
2041 v1.r = VT_LOCAL | VT_LVAL;
2042 v1.c.ul = fc;
2043 load(r, &v1);
2044 fc = 0;
2047 assert(!(vtop[-1].r & VT_LVAL));
2048 if (swapped) {
2049 assert(vtop->r & VT_LVAL);
2050 gv(RC_FLOAT);
2051 vswap();
2054 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2055 o(0xf2);
2056 } else {
2057 o(0xf3);
2059 o(0x0f);
2060 o(0x58 + a);
2062 if (vtop->r & VT_LVAL) {
2063 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2064 } else {
2065 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2068 vtop--;
2073 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2074 and 'long long' cases. */
2075 void gen_cvt_itof(int t)
2077 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2078 save_reg(TREG_ST0);
2079 gv(RC_INT);
2080 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2081 /* signed long long to float/double/long double (unsigned case
2082 is handled generically) */
2083 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2084 o(0x242cdf); /* fildll (%rsp) */
2085 o(0x08c48348); /* add $8, %rsp */
2086 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2087 (VT_INT | VT_UNSIGNED)) {
2088 /* unsigned int to float/double/long double */
2089 o(0x6a); /* push $0 */
2090 g(0x00);
2091 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2092 o(0x242cdf); /* fildll (%rsp) */
2093 o(0x10c48348); /* add $16, %rsp */
2094 } else {
2095 /* int to float/double/long double */
2096 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2097 o(0x2404db); /* fildl (%rsp) */
2098 o(0x08c48348); /* add $8, %rsp */
2100 vtop->r = TREG_ST0;
2101 } else {
2102 int r = get_reg(RC_FLOAT);
2103 gv(RC_INT);
2104 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2105 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2106 (VT_INT | VT_UNSIGNED) ||
2107 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2108 o(0x48); /* REX */
2110 o(0x2a0f);
2111 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2112 vtop->r = r;
2116 /* convert from one floating point type to another */
2117 void gen_cvt_ftof(int t)
2119 int ft, bt, tbt;
2121 ft = vtop->type.t;
2122 bt = ft & VT_BTYPE;
2123 tbt = t & VT_BTYPE;
2125 if (bt == VT_FLOAT) {
2126 gv(RC_FLOAT);
2127 if (tbt == VT_DOUBLE) {
2128 o(0x140f); /* unpcklps */
2129 o(0xc0 + REG_VALUE(vtop->r)*9);
2130 o(0x5a0f); /* cvtps2pd */
2131 o(0xc0 + REG_VALUE(vtop->r)*9);
2132 } else if (tbt == VT_LDOUBLE) {
2133 save_reg(RC_ST0);
2134 /* movss %xmm0,-0x10(%rsp) */
2135 o(0x110ff3);
2136 o(0x44 + REG_VALUE(vtop->r)*8);
2137 o(0xf024);
2138 o(0xf02444d9); /* flds -0x10(%rsp) */
2139 vtop->r = TREG_ST0;
2141 } else if (bt == VT_DOUBLE) {
2142 gv(RC_FLOAT);
2143 if (tbt == VT_FLOAT) {
2144 o(0x140f66); /* unpcklpd */
2145 o(0xc0 + REG_VALUE(vtop->r)*9);
2146 o(0x5a0f66); /* cvtpd2ps */
2147 o(0xc0 + REG_VALUE(vtop->r)*9);
2148 } else if (tbt == VT_LDOUBLE) {
2149 save_reg(RC_ST0);
2150 /* movsd %xmm0,-0x10(%rsp) */
2151 o(0x110ff2);
2152 o(0x44 + REG_VALUE(vtop->r)*8);
2153 o(0xf024);
2154 o(0xf02444dd); /* fldl -0x10(%rsp) */
2155 vtop->r = TREG_ST0;
2157 } else {
2158 int r;
2159 gv(RC_ST0);
2160 r = get_reg(RC_FLOAT);
2161 if (tbt == VT_DOUBLE) {
2162 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2163 /* movsd -0x10(%rsp),%xmm0 */
2164 o(0x100ff2);
2165 o(0x44 + REG_VALUE(r)*8);
2166 o(0xf024);
2167 vtop->r = r;
2168 } else if (tbt == VT_FLOAT) {
2169 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2170 /* movss -0x10(%rsp),%xmm0 */
2171 o(0x100ff3);
2172 o(0x44 + REG_VALUE(r)*8);
2173 o(0xf024);
2174 vtop->r = r;
2179 /* convert fp to int 't' type */
2180 void gen_cvt_ftoi(int t)
2182 int ft, bt, size, r;
2183 ft = vtop->type.t;
2184 bt = ft & VT_BTYPE;
2185 if (bt == VT_LDOUBLE) {
2186 gen_cvt_ftof(VT_DOUBLE);
2187 bt = VT_DOUBLE;
2190 gv(RC_FLOAT);
2191 if (t != VT_INT)
2192 size = 8;
2193 else
2194 size = 4;
2196 r = get_reg(RC_INT);
2197 if (bt == VT_FLOAT) {
2198 o(0xf3);
2199 } else if (bt == VT_DOUBLE) {
2200 o(0xf2);
2201 } else {
2202 assert(0);
2204 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2205 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2206 vtop->r = r;
2209 /* computed goto support */
2210 void ggoto(void)
2212 gcall_or_jmp(1);
2213 vtop--;
2216 /* Save the stack pointer onto the stack and return the location of its address */
2217 ST_FUNC void gen_vla_sp_save(int addr) {
2218 /* mov %rsp,addr(%rbp)*/
2219 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2222 /* Restore the SP from a location on the stack */
2223 ST_FUNC void gen_vla_sp_restore(int addr) {
2224 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2227 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2228 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2229 #ifdef TCC_TARGET_PE
2230 /* alloca does more than just adjust %rsp on Windows */
2231 vpush_global_sym(&func_old_type, TOK_alloca);
2232 vswap(); /* Move alloca ref past allocation size */
2233 gfunc_call(1);
2234 vset(type, REG_IRET, 0);
2235 #else
2236 int r;
2237 r = gv(RC_INT); /* allocation size */
2238 /* sub r,%rsp */
2239 o(0x2b48);
2240 o(0xe0 | REG_VALUE(r));
2241 /* We align to 16 bytes rather than align */
2242 /* and ~15, %rsp */
2243 o(0xf0e48348);
2244 vpop();
2245 #endif
2249 /* end of x86-64 code generator */
2250 /*************************************************************/
2251 #endif /* ! TARGET_DEFS_ONLY */
2252 /******************************************************/