Refactor and simplify gfunc_call() on arm
[tinycc.git] / arm-gen.c
blob7f870a2f44cf2cda42d84b5f358eb84e17f67ece
1 /*
2 * ARMv4 code generator for TCC
4 * Copyright (c) 2003 Daniel Glöckner
5 * Copyright (c) 2012 Thomas Preud'homme
7 * Based on i386-gen.c by Fabrice Bellard
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef TARGET_DEFS_ONLY
26 #ifdef TCC_ARM_EABI
27 #ifndef TCC_ARM_VFP /* Avoid useless warning */
28 #define TCC_ARM_VFP
29 #endif
30 #endif
32 /* number of available registers */
33 #ifdef TCC_ARM_VFP
34 #define NB_REGS 13
35 #else
36 #define NB_REGS 9
37 #endif
39 #ifndef TCC_ARM_VERSION
40 # define TCC_ARM_VERSION 5
41 #endif
43 /* a register can belong to several classes. The classes must be
44 sorted from more general to more precise (see gv2() code which does
45 assumptions on it). */
46 #define RC_INT 0x0001 /* generic integer register */
47 #define RC_FLOAT 0x0002 /* generic float register */
48 #define RC_R0 0x0004
49 #define RC_R1 0x0008
50 #define RC_R2 0x0010
51 #define RC_R3 0x0020
52 #define RC_R12 0x0040
53 #define RC_F0 0x0080
54 #define RC_F1 0x0100
55 #define RC_F2 0x0200
56 #define RC_F3 0x0400
57 #ifdef TCC_ARM_VFP
58 #define RC_F4 0x0800
59 #define RC_F5 0x1000
60 #define RC_F6 0x2000
61 #define RC_F7 0x4000
62 #endif
63 #define RC_IRET RC_R0 /* function return: integer register */
64 #define RC_LRET RC_R1 /* function return: second integer register */
65 #define RC_FRET RC_F0 /* function return: float register */
67 /* pretty names for the registers */
68 enum {
69 TREG_R0 = 0,
70 TREG_R1,
71 TREG_R2,
72 TREG_R3,
73 TREG_R12,
74 TREG_F0,
75 TREG_F1,
76 TREG_F2,
77 TREG_F3,
78 #ifdef TCC_ARM_VFP
79 TREG_F4,
80 TREG_F5,
81 TREG_F6,
82 TREG_F7,
83 #endif
86 #ifdef TCC_ARM_VFP
87 #define T2CPR(t) (((t) & VT_BTYPE) != VT_FLOAT ? 0x100 : 0)
88 #endif
90 /* return registers for function */
91 #define REG_IRET TREG_R0 /* single word int return register */
92 #define REG_LRET TREG_R1 /* second word return register (for long long) */
93 #define REG_FRET TREG_F0 /* float return register */
95 #ifdef TCC_ARM_EABI
96 #define TOK___divdi3 TOK___aeabi_ldivmod
97 #define TOK___moddi3 TOK___aeabi_ldivmod
98 #define TOK___udivdi3 TOK___aeabi_uldivmod
99 #define TOK___umoddi3 TOK___aeabi_uldivmod
100 #endif
102 /* defined if function parameters must be evaluated in reverse order */
103 #define INVERT_FUNC_PARAMS
105 /* defined if structures are passed as pointers. Otherwise structures
106 are directly pushed on stack. */
107 /* #define FUNC_STRUCT_PARAM_AS_PTR */
109 /* pointer size, in bytes */
110 #define PTR_SIZE 4
112 /* long double size and alignment, in bytes */
113 #ifdef TCC_ARM_VFP
114 #define LDOUBLE_SIZE 8
115 #endif
117 #ifndef LDOUBLE_SIZE
118 #define LDOUBLE_SIZE 8
119 #endif
121 #ifdef TCC_ARM_EABI
122 #define LDOUBLE_ALIGN 8
123 #else
124 #define LDOUBLE_ALIGN 4
125 #endif
127 /* maximum alignment (for aligned attribute support) */
128 #define MAX_ALIGN 8
130 #define CHAR_IS_UNSIGNED
132 /******************************************************/
133 /* ELF defines */
135 #define EM_TCC_TARGET EM_ARM
137 /* relocation type for 32 bit data relocation */
138 #define R_DATA_32 R_ARM_ABS32
139 #define R_DATA_PTR R_ARM_ABS32
140 #define R_JMP_SLOT R_ARM_JUMP_SLOT
141 #define R_COPY R_ARM_COPY
143 #define ELF_START_ADDR 0x00008000
144 #define ELF_PAGE_SIZE 0x1000
146 /******************************************************/
147 #else /* ! TARGET_DEFS_ONLY */
148 /******************************************************/
149 #include "tcc.h"
151 ST_DATA const int reg_classes[NB_REGS] = {
152 /* r0 */ RC_INT | RC_R0,
153 /* r1 */ RC_INT | RC_R1,
154 /* r2 */ RC_INT | RC_R2,
155 /* r3 */ RC_INT | RC_R3,
156 /* r12 */ RC_INT | RC_R12,
157 /* f0 */ RC_FLOAT | RC_F0,
158 /* f1 */ RC_FLOAT | RC_F1,
159 /* f2 */ RC_FLOAT | RC_F2,
160 /* f3 */ RC_FLOAT | RC_F3,
161 #ifdef TCC_ARM_VFP
162 /* d4/s8 */ RC_FLOAT | RC_F4,
163 /* d5/s10 */ RC_FLOAT | RC_F5,
164 /* d6/s12 */ RC_FLOAT | RC_F6,
165 /* d7/s14 */ RC_FLOAT | RC_F7,
166 #endif
169 static int func_sub_sp_offset, last_itod_magic;
170 static int leaffunc;
172 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
173 static CType float_type, double_type, func_float_type, func_double_type;
174 ST_FUNC void arm_init_types(void)
176 float_type.t = VT_FLOAT;
177 double_type.t = VT_DOUBLE;
178 func_float_type.t = VT_FUNC;
179 func_float_type.ref = sym_push(SYM_FIELD, &float_type, FUNC_CDECL, FUNC_OLD);
180 func_double_type.t = VT_FUNC;
181 func_double_type.ref = sym_push(SYM_FIELD, &double_type, FUNC_CDECL, FUNC_OLD);
183 #else
184 #define func_float_type func_old_type
185 #define func_double_type func_old_type
186 #define func_ldouble_type func_old_type
187 ST_FUNC void arm_init_types(void) {}
188 #endif
190 static int two2mask(int a,int b) {
191 return (reg_classes[a]|reg_classes[b])&~(RC_INT|RC_FLOAT);
194 static int regmask(int r) {
195 return reg_classes[r]&~(RC_INT|RC_FLOAT);
198 /******************************************************/
200 void o(uint32_t i)
202 /* this is a good place to start adding big-endian support*/
203 int ind1;
205 ind1 = ind + 4;
206 if (!cur_text_section)
207 tcc_error("compiler error! This happens f.ex. if the compiler\n"
208 "can't evaluate constant expressions outside of a function.");
209 if (ind1 > cur_text_section->data_allocated)
210 section_realloc(cur_text_section, ind1);
211 cur_text_section->data[ind++] = i&255;
212 i>>=8;
213 cur_text_section->data[ind++] = i&255;
214 i>>=8;
215 cur_text_section->data[ind++] = i&255;
216 i>>=8;
217 cur_text_section->data[ind++] = i;
220 static uint32_t stuff_const(uint32_t op, uint32_t c)
222 int try_neg=0;
223 uint32_t nc = 0, negop = 0;
225 switch(op&0x1F00000)
227 case 0x800000: //add
228 case 0x400000: //sub
229 try_neg=1;
230 negop=op^0xC00000;
231 nc=-c;
232 break;
233 case 0x1A00000: //mov
234 case 0x1E00000: //mvn
235 try_neg=1;
236 negop=op^0x400000;
237 nc=~c;
238 break;
239 case 0x200000: //xor
240 if(c==~0)
241 return (op&0xF010F000)|((op>>16)&0xF)|0x1E00000;
242 break;
243 case 0x0: //and
244 if(c==~0)
245 return (op&0xF010F000)|((op>>16)&0xF)|0x1A00000;
246 case 0x1C00000: //bic
247 try_neg=1;
248 negop=op^0x1C00000;
249 nc=~c;
250 break;
251 case 0x1800000: //orr
252 if(c==~0)
253 return (op&0xFFF0FFFF)|0x1E00000;
254 break;
256 do {
257 uint32_t m;
258 int i;
259 if(c<256) /* catch undefined <<32 */
260 return op|c;
261 for(i=2;i<32;i+=2) {
262 m=(0xff>>i)|(0xff<<(32-i));
263 if(!(c&~m))
264 return op|(i<<7)|(c<<i)|(c>>(32-i));
266 op=negop;
267 c=nc;
268 } while(try_neg--);
269 return 0;
273 //only add,sub
274 void stuff_const_harder(uint32_t op, uint32_t v) {
275 uint32_t x;
276 x=stuff_const(op,v);
277 if(x)
278 o(x);
279 else {
280 uint32_t a[16], nv, no, o2, n2;
281 int i,j,k;
282 a[0]=0xff;
283 o2=(op&0xfff0ffff)|((op&0xf000)<<4);;
284 for(i=1;i<16;i++)
285 a[i]=(a[i-1]>>2)|(a[i-1]<<30);
286 for(i=0;i<12;i++)
287 for(j=i<4?i+12:15;j>=i+4;j--)
288 if((v&(a[i]|a[j]))==v) {
289 o(stuff_const(op,v&a[i]));
290 o(stuff_const(o2,v&a[j]));
291 return;
293 no=op^0xC00000;
294 n2=o2^0xC00000;
295 nv=-v;
296 for(i=0;i<12;i++)
297 for(j=i<4?i+12:15;j>=i+4;j--)
298 if((nv&(a[i]|a[j]))==nv) {
299 o(stuff_const(no,nv&a[i]));
300 o(stuff_const(n2,nv&a[j]));
301 return;
303 for(i=0;i<8;i++)
304 for(j=i+4;j<12;j++)
305 for(k=i<4?i+12:15;k>=j+4;k--)
306 if((v&(a[i]|a[j]|a[k]))==v) {
307 o(stuff_const(op,v&a[i]));
308 o(stuff_const(o2,v&a[j]));
309 o(stuff_const(o2,v&a[k]));
310 return;
312 no=op^0xC00000;
313 nv=-v;
314 for(i=0;i<8;i++)
315 for(j=i+4;j<12;j++)
316 for(k=i<4?i+12:15;k>=j+4;k--)
317 if((nv&(a[i]|a[j]|a[k]))==nv) {
318 o(stuff_const(no,nv&a[i]));
319 o(stuff_const(n2,nv&a[j]));
320 o(stuff_const(n2,nv&a[k]));
321 return;
323 o(stuff_const(op,v&a[0]));
324 o(stuff_const(o2,v&a[4]));
325 o(stuff_const(o2,v&a[8]));
326 o(stuff_const(o2,v&a[12]));
330 ST_FUNC uint32_t encbranch(int pos, int addr, int fail)
332 addr-=pos+8;
333 addr/=4;
334 if(addr>=0x1000000 || addr<-0x1000000) {
335 if(fail)
336 tcc_error("FIXME: function bigger than 32MB");
337 return 0;
339 return 0x0A000000|(addr&0xffffff);
342 int decbranch(int pos)
344 int x;
345 x=*(uint32_t *)(cur_text_section->data + pos);
346 x&=0x00ffffff;
347 if(x&0x800000)
348 x-=0x1000000;
349 return x*4+pos+8;
352 /* output a symbol and patch all calls to it */
353 void gsym_addr(int t, int a)
355 uint32_t *x;
356 int lt;
357 while(t) {
358 x=(uint32_t *)(cur_text_section->data + t);
359 t=decbranch(lt=t);
360 if(a==lt+4)
361 *x=0xE1A00000; // nop
362 else {
363 *x &= 0xff000000;
364 *x |= encbranch(lt,a,1);
369 void gsym(int t)
371 gsym_addr(t, ind);
374 #ifdef TCC_ARM_VFP
375 static uint32_t vfpr(int r)
377 if(r<TREG_F0 || r>TREG_F7)
378 tcc_error("compiler error! register %i is no vfp register",r);
379 return r-5;
381 #else
382 static uint32_t fpr(int r)
384 if(r<TREG_F0 || r>TREG_F3)
385 tcc_error("compiler error! register %i is no fpa register",r);
386 return r-5;
388 #endif
390 static uint32_t intr(int r)
392 if(r==4)
393 return 12;
394 if((r<0 || r>4) && r!=14)
395 tcc_error("compiler error! register %i is no int register",r);
396 return r;
399 static void calcaddr(uint32_t *base, int *off, int *sgn, int maxoff, unsigned shift)
401 if(*off>maxoff || *off&((1<<shift)-1)) {
402 uint32_t x, y;
403 x=0xE280E000;
404 if(*sgn)
405 x=0xE240E000;
406 x|=(*base)<<16;
407 *base=14; // lr
408 y=stuff_const(x,*off&~maxoff);
409 if(y) {
410 o(y);
411 *off&=maxoff;
412 return;
414 y=stuff_const(x,(*off+maxoff)&~maxoff);
415 if(y) {
416 o(y);
417 *sgn=!*sgn;
418 *off=((*off+maxoff)&~maxoff)-*off;
419 return;
421 stuff_const_harder(x,*off&~maxoff);
422 *off&=maxoff;
426 static uint32_t mapcc(int cc)
428 switch(cc)
430 case TOK_ULT:
431 return 0x30000000; /* CC/LO */
432 case TOK_UGE:
433 return 0x20000000; /* CS/HS */
434 case TOK_EQ:
435 return 0x00000000; /* EQ */
436 case TOK_NE:
437 return 0x10000000; /* NE */
438 case TOK_ULE:
439 return 0x90000000; /* LS */
440 case TOK_UGT:
441 return 0x80000000; /* HI */
442 case TOK_Nset:
443 return 0x40000000; /* MI */
444 case TOK_Nclear:
445 return 0x50000000; /* PL */
446 case TOK_LT:
447 return 0xB0000000; /* LT */
448 case TOK_GE:
449 return 0xA0000000; /* GE */
450 case TOK_LE:
451 return 0xD0000000; /* LE */
452 case TOK_GT:
453 return 0xC0000000; /* GT */
455 tcc_error("unexpected condition code");
456 return 0xE0000000; /* AL */
459 static int negcc(int cc)
461 switch(cc)
463 case TOK_ULT:
464 return TOK_UGE;
465 case TOK_UGE:
466 return TOK_ULT;
467 case TOK_EQ:
468 return TOK_NE;
469 case TOK_NE:
470 return TOK_EQ;
471 case TOK_ULE:
472 return TOK_UGT;
473 case TOK_UGT:
474 return TOK_ULE;
475 case TOK_Nset:
476 return TOK_Nclear;
477 case TOK_Nclear:
478 return TOK_Nset;
479 case TOK_LT:
480 return TOK_GE;
481 case TOK_GE:
482 return TOK_LT;
483 case TOK_LE:
484 return TOK_GT;
485 case TOK_GT:
486 return TOK_LE;
488 tcc_error("unexpected condition code");
489 return TOK_NE;
492 /* load 'r' from value 'sv' */
493 void load(int r, SValue *sv)
495 int v, ft, fc, fr, sign;
496 uint32_t op;
497 SValue v1;
499 fr = sv->r;
500 ft = sv->type.t;
501 fc = sv->c.ul;
503 if(fc>=0)
504 sign=0;
505 else {
506 sign=1;
507 fc=-fc;
510 v = fr & VT_VALMASK;
511 if (fr & VT_LVAL) {
512 uint32_t base = 0xB; // fp
513 if(v == VT_LLOCAL) {
514 v1.type.t = VT_PTR;
515 v1.r = VT_LOCAL | VT_LVAL;
516 v1.c.ul = sv->c.ul;
517 load(base=14 /* lr */, &v1);
518 fc=sign=0;
519 v=VT_LOCAL;
520 } else if(v == VT_CONST) {
521 v1.type.t = VT_PTR;
522 v1.r = fr&~VT_LVAL;
523 v1.c.ul = sv->c.ul;
524 v1.sym=sv->sym;
525 load(base=14, &v1);
526 fc=sign=0;
527 v=VT_LOCAL;
528 } else if(v < VT_CONST) {
529 base=intr(v);
530 fc=sign=0;
531 v=VT_LOCAL;
533 if(v == VT_LOCAL) {
534 if(is_float(ft)) {
535 calcaddr(&base,&fc,&sign,1020,2);
536 #ifdef TCC_ARM_VFP
537 op=0xED100A00; /* flds */
538 if(!sign)
539 op|=0x800000;
540 if ((ft & VT_BTYPE) != VT_FLOAT)
541 op|=0x100; /* flds -> fldd */
542 o(op|(vfpr(r)<<12)|(fc>>2)|(base<<16));
543 #else
544 op=0xED100100;
545 if(!sign)
546 op|=0x800000;
547 #if LDOUBLE_SIZE == 8
548 if ((ft & VT_BTYPE) != VT_FLOAT)
549 op|=0x8000;
550 #else
551 if ((ft & VT_BTYPE) == VT_DOUBLE)
552 op|=0x8000;
553 else if ((ft & VT_BTYPE) == VT_LDOUBLE)
554 op|=0x400000;
555 #endif
556 o(op|(fpr(r)<<12)|(fc>>2)|(base<<16));
557 #endif
558 } else if((ft & (VT_BTYPE|VT_UNSIGNED)) == VT_BYTE
559 || (ft & VT_BTYPE) == VT_SHORT) {
560 calcaddr(&base,&fc,&sign,255,0);
561 op=0xE1500090;
562 if ((ft & VT_BTYPE) == VT_SHORT)
563 op|=0x20;
564 if ((ft & VT_UNSIGNED) == 0)
565 op|=0x40;
566 if(!sign)
567 op|=0x800000;
568 o(op|(intr(r)<<12)|(base<<16)|((fc&0xf0)<<4)|(fc&0xf));
569 } else {
570 calcaddr(&base,&fc,&sign,4095,0);
571 op=0xE5100000;
572 if(!sign)
573 op|=0x800000;
574 if ((ft & VT_BTYPE) == VT_BYTE || (ft & VT_BTYPE) == VT_BOOL)
575 op|=0x400000;
576 o(op|(intr(r)<<12)|fc|(base<<16));
578 return;
580 } else {
581 if (v == VT_CONST) {
582 op=stuff_const(0xE3A00000|(intr(r)<<12),sv->c.ul);
583 if (fr & VT_SYM || !op) {
584 o(0xE59F0000|(intr(r)<<12));
585 o(0xEA000000);
586 if(fr & VT_SYM)
587 greloc(cur_text_section, sv->sym, ind, R_ARM_ABS32);
588 o(sv->c.ul);
589 } else
590 o(op);
591 return;
592 } else if (v == VT_LOCAL) {
593 op=stuff_const(0xE28B0000|(intr(r)<<12),sv->c.ul);
594 if (fr & VT_SYM || !op) {
595 o(0xE59F0000|(intr(r)<<12));
596 o(0xEA000000);
597 if(fr & VT_SYM) // needed ?
598 greloc(cur_text_section, sv->sym, ind, R_ARM_ABS32);
599 o(sv->c.ul);
600 o(0xE08B0000|(intr(r)<<12)|intr(r));
601 } else
602 o(op);
603 return;
604 } else if(v == VT_CMP) {
605 o(mapcc(sv->c.ul)|0x3A00001|(intr(r)<<12));
606 o(mapcc(negcc(sv->c.ul))|0x3A00000|(intr(r)<<12));
607 return;
608 } else if (v == VT_JMP || v == VT_JMPI) {
609 int t;
610 t = v & 1;
611 o(0xE3A00000|(intr(r)<<12)|t);
612 o(0xEA000000);
613 gsym(sv->c.ul);
614 o(0xE3A00000|(intr(r)<<12)|(t^1));
615 return;
616 } else if (v < VT_CONST) {
617 if(is_float(ft))
618 #ifdef TCC_ARM_VFP
619 o(0xEEB00A40|(vfpr(r)<<12)|vfpr(v)|T2CPR(ft)); /* fcpyX */
620 #else
621 o(0xEE008180|(fpr(r)<<12)|fpr(v));
622 #endif
623 else
624 o(0xE1A00000|(intr(r)<<12)|intr(v));
625 return;
628 tcc_error("load unimplemented!");
631 /* store register 'r' in lvalue 'v' */
632 void store(int r, SValue *sv)
634 SValue v1;
635 int v, ft, fc, fr, sign;
636 uint32_t op;
638 fr = sv->r;
639 ft = sv->type.t;
640 fc = sv->c.ul;
642 if(fc>=0)
643 sign=0;
644 else {
645 sign=1;
646 fc=-fc;
649 v = fr & VT_VALMASK;
650 if (fr & VT_LVAL || fr == VT_LOCAL) {
651 uint32_t base = 0xb;
652 if(v < VT_CONST) {
653 base=intr(v);
654 v=VT_LOCAL;
655 fc=sign=0;
656 } else if(v == VT_CONST) {
657 v1.type.t = ft;
658 v1.r = fr&~VT_LVAL;
659 v1.c.ul = sv->c.ul;
660 v1.sym=sv->sym;
661 load(base=14, &v1);
662 fc=sign=0;
663 v=VT_LOCAL;
665 if(v == VT_LOCAL) {
666 if(is_float(ft)) {
667 calcaddr(&base,&fc,&sign,1020,2);
668 #ifdef TCC_ARM_VFP
669 op=0xED000A00; /* fsts */
670 if(!sign)
671 op|=0x800000;
672 if ((ft & VT_BTYPE) != VT_FLOAT)
673 op|=0x100; /* fsts -> fstd */
674 o(op|(vfpr(r)<<12)|(fc>>2)|(base<<16));
675 #else
676 op=0xED000100;
677 if(!sign)
678 op|=0x800000;
679 #if LDOUBLE_SIZE == 8
680 if ((ft & VT_BTYPE) != VT_FLOAT)
681 op|=0x8000;
682 #else
683 if ((ft & VT_BTYPE) == VT_DOUBLE)
684 op|=0x8000;
685 if ((ft & VT_BTYPE) == VT_LDOUBLE)
686 op|=0x400000;
687 #endif
688 o(op|(fpr(r)<<12)|(fc>>2)|(base<<16));
689 #endif
690 return;
691 } else if((ft & VT_BTYPE) == VT_SHORT) {
692 calcaddr(&base,&fc,&sign,255,0);
693 op=0xE14000B0;
694 if(!sign)
695 op|=0x800000;
696 o(op|(intr(r)<<12)|(base<<16)|((fc&0xf0)<<4)|(fc&0xf));
697 } else {
698 calcaddr(&base,&fc,&sign,4095,0);
699 op=0xE5000000;
700 if(!sign)
701 op|=0x800000;
702 if ((ft & VT_BTYPE) == VT_BYTE || (ft & VT_BTYPE) == VT_BOOL)
703 op|=0x400000;
704 o(op|(intr(r)<<12)|fc|(base<<16));
706 return;
709 tcc_error("store unimplemented");
712 static void gadd_sp(int val)
714 stuff_const_harder(0xE28DD000,val);
717 /* 'is_jmp' is '1' if it is a jump */
718 static void gcall_or_jmp(int is_jmp)
720 int r;
721 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
722 uint32_t x;
723 /* constant case */
724 x=encbranch(ind,ind+vtop->c.ul,0);
725 if(x) {
726 if (vtop->r & VT_SYM) {
727 /* relocation case */
728 greloc(cur_text_section, vtop->sym, ind, R_ARM_PC24);
729 } else
730 put_elf_reloc(symtab_section, cur_text_section, ind, R_ARM_PC24, 0);
731 o(x|(is_jmp?0xE0000000:0xE1000000));
732 } else {
733 if(!is_jmp)
734 o(0xE28FE004); // add lr,pc,#4
735 o(0xE51FF004); // ldr pc,[pc,#-4]
736 if (vtop->r & VT_SYM)
737 greloc(cur_text_section, vtop->sym, ind, R_ARM_ABS32);
738 o(vtop->c.ul);
740 } else {
741 /* otherwise, indirect call */
742 r = gv(RC_INT);
743 if(!is_jmp)
744 o(0xE1A0E00F); // mov lr,pc
745 o(0xE1A0F000|intr(r)); // mov pc,r
749 /* Return 1 if this function returns via an sret pointer, 0 otherwise */
750 ST_FUNC int gfunc_sret(CType *vt, CType *ret, int *ret_align) {
751 #ifdef TCC_ARM_EABI
752 int size, align;
753 size = type_size(vt, &align);
754 if (size > 4) {
755 return 1;
756 } else {
757 *ret_align = 4;
758 ret->ref = NULL;
759 ret->t = VT_INT;
760 return 0;
762 #else
763 return 1;
764 #endif
767 #ifdef TCC_ARM_HARDFLOAT
768 /* Return whether a structure is an homogeneous float aggregate or not.
769 The answer is true if all the elements of the structure are of the same
770 primitive float type and there is less than 4 elements.
772 type: the type corresponding to the structure to be tested */
773 static int is_hgen_float_aggr(CType *type)
775 if ((type->t & VT_BTYPE) == VT_STRUCT) {
776 struct Sym *ref;
777 int btype, nb_fields = 0;
779 ref = type->ref;
780 btype = ref->type.t & VT_BTYPE;
781 if (btype == VT_FLOAT || btype == VT_DOUBLE) {
782 for(; ref && btype == (ref->type.t & VT_BTYPE); ref = ref->next, nb_fields++);
783 return !ref && nb_fields <= 4;
786 return 0;
789 struct avail_regs {
790 signed char avail[3]; /* 3 holes max with only float and double alignments */
791 int first_hole; /* first available hole */
792 int last_hole; /* last available hole (none if equal to first_hole) */
793 int first_free_reg; /* next free register in the sequence, hole excluded */
796 #define AVAIL_REGS_INITIALIZER (struct avail_regs) { { 0, 0, 0}, 0, 0, 0 }
798 /* Find suitable registers for a VFP Co-Processor Register Candidate (VFP CPRC
799 param) according to the rules described in the procedure call standard for
800 the ARM architecture (AAPCS). If found, the registers are assigned to this
801 VFP CPRC parameter. Registers are allocated in sequence unless a hole exists
802 and the parameter is a single float.
804 avregs: opaque structure to keep track of available VFP co-processor regs
805 align: alignment contraints for the param, as returned by type_size()
806 size: size of the parameter, as returned by type_size() */
807 int assign_vfpreg(struct avail_regs *avregs, int align, int size)
809 int first_reg = 0;
811 if (avregs->first_free_reg == -1)
812 return -1;
813 if (align >> 3) { /* double alignment */
814 first_reg = avregs->first_free_reg;
815 /* alignment contraint not respected so use next reg and record hole */
816 if (first_reg & 1)
817 avregs->avail[avregs->last_hole++] = first_reg++;
818 } else { /* no special alignment (float or array of float) */
819 /* if single float and a hole is available, assign the param to it */
820 if (size == 4 && avregs->first_hole != avregs->last_hole)
821 return avregs->avail[avregs->first_hole++];
822 else
823 first_reg = avregs->first_free_reg;
825 if (first_reg + size / 4 <= 16) {
826 avregs->first_free_reg = first_reg + size / 4;
827 return first_reg;
829 avregs->first_free_reg = -1;
830 return -1;
832 #endif
834 /* Parameters are classified according to how they are copied to their final
835 destination for the function call. Because the copying is performed class
836 after class according to the order in the union below, it is important that
837 some constraints about the order of the members of this union are respected:
838 - CORE_STRUCT_CLASS must come after STACK_CLASS;
839 - CORE_CLASS must come after STACK_CLASS, CORE_STRUCT_CLASS and
840 VFP_STRUCT_CLASS;
841 - VFP_STRUCT_CLASS must come after VFP_CLASS.
842 See the comment for the main loop in copy_params() for the reason. */
843 enum reg_class {
844 STACK_CLASS = 0,
845 CORE_STRUCT_CLASS,
846 VFP_CLASS,
847 VFP_STRUCT_CLASS,
848 CORE_CLASS,
849 NB_CLASSES
852 struct param_plan {
853 int start; /* first reg or addr used depending on the class */
854 int end; /* last reg used or next free addr depending on the class */
855 SValue *sval; /* pointer to SValue on the value stack */
856 struct param_plan *prev; /* previous element in this class */
859 struct plan {
860 struct param_plan *pplans; /* array of all the param plans */
861 struct param_plan *clsplans[NB_CLASSES]; /* per class lists of param plans */
864 #define add_param_plan(plan,pplan,class) \
865 do { \
866 pplan.prev = plan->clsplans[class]; \
867 plan->pplans[plan ## _nb] = pplan; \
868 plan->clsplans[class] = &plan->pplans[plan ## _nb++]; \
869 } while(0)
871 /* Assign parameters to registers and stack with alignment according to the
872 rules in the procedure call standard for the ARM architecture (AAPCS).
873 The overall assignment is recorded in an array of per parameter structures
874 called parameter plans. The parameter plans are also further organized in a
875 number of linked lists, one per class of parameter (see the comment for the
876 definition of union reg_class).
878 nb_args: number of parameters of the function for which a call is generated
879 variadic: whether the function is a variadic function or not
880 plan: the structure where the overall assignment is recorded
881 todo: a bitmap that record which core registers hold a parameter
883 Returns the amount of stack space needed for parameter passing
885 Note: this function allocated an array in plan->pplans with tcc_malloc. It
886 is the responsability of the caller to free this array once used (ie not
887 before copy_params). */
888 static int assign_regs(int nb_args, int variadic, struct plan *plan, int *todo)
890 int i, size, align;
891 int ncrn /* next core register number */, nsaa /* next stacked argument address*/;
892 int plan_nb = 0;
893 struct param_plan pplan;
894 #ifdef TCC_ARM_HARDFLOAT
895 struct avail_regs avregs = AVAIL_REGS_INITIALIZER;
896 #endif
898 ncrn = nsaa = 0;
899 *todo = 0;
900 plan->pplans = tcc_malloc(nb_args * sizeof(*plan->pplans));
901 memset(plan->clsplans, 0, sizeof(plan->clsplans));
902 for(i = nb_args; i-- ;) {
903 int j, start_vfpreg = 0;
904 size = type_size(&vtop[-i].type, &align);
905 switch(vtop[-i].type.t & VT_BTYPE) {
906 case VT_STRUCT:
907 case VT_FLOAT:
908 case VT_DOUBLE:
909 case VT_LDOUBLE:
910 #ifdef TCC_ARM_HARDFLOAT
911 if (!variadic) {
912 int is_hfa = 0; /* Homogeneous float aggregate */
914 if (is_float(vtop[-i].type.t)
915 || (is_hfa = is_hgen_float_aggr(&vtop[-i].type))) {
916 int end_vfpreg;
918 start_vfpreg = assign_vfpreg(&avregs, align, size);
919 end_vfpreg = start_vfpreg + ((size - 1) >> 2);
920 if (start_vfpreg >= 0) {
921 pplan = (struct param_plan) {start_vfpreg, end_vfpreg, &vtop[-i]};
922 if (is_hfa)
923 add_param_plan(plan, pplan, VFP_STRUCT_CLASS);
924 else
925 add_param_plan(plan, pplan, VFP_CLASS);
926 continue;
927 } else
928 break;
931 #endif
932 ncrn = (ncrn + (align-1)/4) & -(align/4);
933 size = (size + 3) & -4;
934 if (ncrn + size/4 <= 4 || (ncrn < 4 && start_vfpreg != -1)) {
935 /* The parameter is allocated both in core register and on stack. As
936 * such, it can be of either class: it would either be the last of
937 * CORE_STRUCT_CLASS or the first of STACK_CLASS. */
938 for (j = ncrn; j < 4 && j < ncrn + size / 4; j++)
939 *todo|=(1<<j);
940 pplan = (struct param_plan) {ncrn, j, &vtop[-i]};
941 add_param_plan(plan, pplan, CORE_STRUCT_CLASS);
942 ncrn += size/4;
943 if (ncrn > 4)
944 nsaa = (ncrn - 4) * 4;
945 } else {
946 ncrn = 4;
947 break;
949 continue;
950 default:
951 if (ncrn < 4) {
952 int is_long = (vtop[-i].type.t & VT_BTYPE) == VT_LLONG;
954 if (is_long) {
955 ncrn = (ncrn + 1) & -2;
956 if (ncrn == 4)
957 break;
959 pplan = (struct param_plan) {ncrn, ncrn, &vtop[-i]};
960 ncrn++;
961 if (is_long)
962 pplan.end = ncrn++;
963 add_param_plan(plan, pplan, CORE_CLASS);
964 continue;
967 nsaa = (nsaa + (align - 1)) & ~(align - 1);
968 pplan = (struct param_plan) {nsaa, nsaa + size, &vtop[-i]};
969 add_param_plan(plan, pplan, STACK_CLASS);
970 nsaa += size; /* size already rounded up before */
972 return nsaa;
975 #undef add_param_plan
977 /* Copy parameters to their final destination (core reg, VFP reg or stack) for
978 function call.
980 nb_args: number of parameters the function take
981 plan: the overall assignment plan for parameters
982 todo: a bitmap indicating what core reg will hold a parameter */
983 static void copy_params(int nb_args, struct plan *plan, int todo)
985 int size, align, r, i;
986 struct param_plan *pplan;
988 /* Put argument on stack (structure are put on stack no matter how they are
989 * passed via register or the stack). */
990 #ifdef TCC_ARM_EABI
991 if ((pplan = plan->clsplans[STACK_CLASS]) && pplan->end & 7)
992 o(0xE24DD004); /* sub sp, sp, #4 */
993 #endif
994 /* Several constraints require parameters to be copied in a specific order:
995 - structures are copied to the stack before being loaded in a reg;
996 - floats loaded to an odd numbered VFP reg are first copied to the
997 preceding even numbered VFP reg and then moved to the next VFP reg.
999 It is thus important that:
1000 - structures assigned to core regs must be copied after parameters
1001 assigned to the stack but before structures assigned to VFP regs because
1002 a structure can lie partly in core registers and partly on the stack;
1003 - parameters assigned to the stack and all structures be copied before
1004 parameters assigned to a core reg since copying a parameter to the stack
1005 require using a core reg;
1006 - parameters assigned to VFP regs be copied before structures assigned to
1007 VFP regs as the copy might use an even numbered VFP reg that already
1008 holds part of a structure. */
1009 for(i = 0; i < NB_CLASSES; i++) {
1010 for(pplan = plan->clsplans[i]; pplan; pplan = pplan->prev) {
1011 vpushv(pplan->sval);
1012 pplan->sval->r = pplan->sval->r2 = VT_CONST; /* disable entry */
1013 switch(i) {
1014 case STACK_CLASS:
1015 case CORE_STRUCT_CLASS:
1016 case VFP_STRUCT_CLASS:
1017 if ((pplan->sval->type.t & VT_BTYPE) == VT_STRUCT) {
1018 size = type_size(&pplan->sval->type, &align);
1019 /* align to stack align size */
1020 size = (size + 3) & ~3;
1021 if (i == STACK_CLASS && pplan->prev)
1022 size += pplan->start - pplan->prev->end; /* Add padding if any */
1023 /* allocate the necessary size on stack */
1024 gadd_sp(-size);
1025 /* generate structure store */
1026 r = get_reg(RC_INT);
1027 o(0xE1A0000D|(intr(r)<<12)); /* mov r, sp */
1028 vset(&vtop->type, r | VT_LVAL, 0);
1029 vswap();
1030 vstore(); /* memcpy to current sp */
1031 /* Homogeneous float aggregate are loaded to VFP registers
1032 immediately since there is no way of loading data in multiple
1033 non consecutive VFP registers as what is done for other
1034 structures (see the use of todo). */
1035 if (i == VFP_STRUCT_CLASS) {
1036 int first = pplan->start, nb = pplan->end - first + 1;
1037 /* vpop.32 {pplan->start, ..., pplan->end} */
1038 o(0xECBD0A00|(first&1)<<22|(first>>1)<<12|nb);
1039 /* No need to write the register used to a SValue since VFP regs
1040 cannot be used for gcall_or_jmp */
1042 } else {
1043 if (is_float(pplan->sval->type.t)) {
1044 #ifdef TCC_ARM_VFP
1045 r = vfpr(gv(RC_FLOAT)) << 12;
1046 if ((pplan->sval->type.t & VT_BTYPE) == VT_FLOAT)
1047 size = 4;
1048 else {
1049 size = 8;
1050 r |= 0x101; /* vpush.32 -> vpush.64 */
1052 o(0xED2D0A01 + r); /* vpush */
1053 #else
1054 r = fpr(gv(RC_FLOAT)) << 12;
1055 if ((pplan->sval->type.t & VT_BTYPE) == VT_FLOAT)
1056 size = 4;
1057 else if ((pplan->sval->type.t & VT_BTYPE) == VT_DOUBLE)
1058 size = 8;
1059 else
1060 size = LDOUBLE_SIZE;
1062 if (size == 12)
1063 r |= 0x400000;
1064 else if(size == 8)
1065 r|=0x8000;
1067 o(0xED2D0100|r|(size>>2)); /* some kind of vpush for FPA */
1068 #endif
1069 } else {
1070 /* simple type (currently always same size) */
1071 /* XXX: implicit cast ? */
1072 size=4;
1073 if ((pplan->sval->type.t & VT_BTYPE) == VT_LLONG) {
1074 lexpand_nr();
1075 size = 8;
1076 r = gv(RC_INT);
1077 o(0xE52D0004|(intr(r)<<12)); /* push r */
1078 vtop--;
1080 r = gv(RC_INT);
1081 o(0xE52D0004|(intr(r)<<12)); /* push r */
1083 if (i == STACK_CLASS && pplan->prev)
1084 gadd_sp(pplan->prev->end - pplan->start); /* Add padding if any */
1086 break;
1088 case VFP_CLASS:
1089 gv(regmask(TREG_F0 + (pplan->start >> 1)));
1090 if (pplan->start & 1) { /* Must be in upper part of double register */
1091 o(0xEEF00A40|((pplan->start>>1)<<12)|(pplan->start>>1)); /* vmov.f32 s(n+1), sn */
1092 vtop->r = VT_CONST; /* avoid being saved on stack by gv for next float */
1094 break;
1096 case CORE_CLASS:
1097 if ((pplan->sval->type.t & VT_BTYPE) == VT_LLONG) {
1098 lexpand_nr();
1099 gv(regmask(pplan->end));
1100 pplan->sval->r2 = vtop->r;
1101 vtop--;
1103 gv(regmask(pplan->start));
1104 /* Mark register as used so that gcall_or_jmp use another one
1105 (regs >=4 are free as never used to pass parameters) */
1106 pplan->sval->r = vtop->r;
1107 break;
1109 vtop--;
1113 /* Manually free remaining registers since next parameters are loaded
1114 * manually, without the help of gv(int). */
1115 save_regs(nb_args);
1117 if(todo) {
1118 o(0xE8BD0000|todo); /* pop {todo} */
1119 for(pplan = plan->clsplans[CORE_STRUCT_CLASS]; pplan; pplan = pplan->prev) {
1120 pplan->sval->r = pplan->start;
1121 if ((pplan->sval->type.t & VT_BTYPE) == VT_LLONG)
1122 pplan->sval->r2 = pplan->end;
1127 /* Generate function call. The function address is pushed first, then
1128 all the parameters in call order. This functions pops all the
1129 parameters and the function address. */
1130 void gfunc_call(int nb_args)
1132 int align, r, args_size;
1133 int variadic;
1134 int todo;
1135 struct plan plan;
1137 variadic = (vtop[-nb_args].type.ref->c == FUNC_ELLIPSIS);
1138 /* cannot let cpu flags if other instruction are generated. Also avoid leaving
1139 VT_JMP anywhere except on the top of the stack because it would complicate
1140 the code generator. */
1141 r = vtop->r & VT_VALMASK;
1142 if (r == VT_CMP || (r & ~1) == VT_JMP)
1143 gv(RC_INT);
1144 #ifdef TCC_ARM_EABI
1145 /* return type is a struct so caller of gfunc_call (unary(void) in tccgen.c)
1146 assumed it had to be passed by a pointer. Since it's less than 4 bytes, we
1147 can actually pass it directly in a register. */
1148 if((vtop[-nb_args].type.ref->type.t & VT_BTYPE) == VT_STRUCT
1149 && type_size(&vtop[-nb_args].type.ref->type, &align) <= 4) {
1150 SValue tmp;
1151 tmp=vtop[-nb_args];
1152 vtop[-nb_args]=vtop[-nb_args+1];
1153 vtop[-nb_args+1]=tmp;
1154 --nb_args;
1156 #endif
1158 args_size = assign_regs(nb_args, variadic, &plan, &todo);
1159 copy_params(nb_args, &plan, todo);
1160 tcc_free(plan.pplans);
1162 /* Move fct SValue on top as required by gcall_or_jmp */
1163 vrotb(nb_args + 1);
1164 gcall_or_jmp(0);
1165 if (args_size)
1166 gadd_sp(args_size); /* pop all parameters passed on the stack */
1167 #ifdef TCC_ARM_EABI
1168 if((vtop->type.ref->type.t & VT_BTYPE) == VT_STRUCT
1169 && type_size(&vtop->type.ref->type, &align) <= 4) {
1170 store(REG_IRET,vtop-nb_args-1);
1171 nb_args++;
1173 #ifdef TCC_ARM_VFP
1174 #ifdef TCC_ARM_HARDFLOAT
1175 else if(variadic && is_float(vtop->type.ref->type.t)) {
1176 #else
1177 else if(is_float(vtop->type.ref->type.t)) {
1178 #endif
1179 if((vtop->type.ref->type.t & VT_BTYPE) == VT_FLOAT) {
1180 o(0xEE000A10); /*vmov s0, r0 */
1181 } else {
1182 o(0xEE000B10); /* vmov.32 d0[0], r0 */
1183 o(0xEE201B10); /* vmov.32 d0[1], r1 */
1186 #endif
1187 #endif
1188 vtop -= nb_args + 1; /* Pop all params and fct address from value stack */
1189 leaffunc = 0; /* we are calling a function, so we aren't in a leaf function */
1192 /* generate function prolog of type 't' */
1193 void gfunc_prolog(CType *func_type)
1195 Sym *sym,*sym2;
1196 int n,nf,size,align, variadic, struct_ret = 0;
1197 #ifdef TCC_ARM_HARDFLOAT
1198 struct avail_regs avregs = AVAIL_REGS_INITIALIZER;
1199 #endif
1201 sym = func_type->ref;
1202 func_vt = sym->type;
1204 n = nf = 0;
1205 variadic = (func_type->ref->c == FUNC_ELLIPSIS);
1206 if((func_vt.t & VT_BTYPE) == VT_STRUCT
1207 && type_size(&func_vt,&align) > 4)
1209 n++;
1210 struct_ret = 1;
1211 func_vc = 12; /* Offset from fp of the place to store the result */
1213 for(sym2=sym->next;sym2 && (n<4 || nf<16);sym2=sym2->next) {
1214 size = type_size(&sym2->type, &align);
1215 #ifdef TCC_ARM_HARDFLOAT
1216 if (!variadic && (is_float(sym2->type.t)
1217 || is_hgen_float_aggr(&sym2->type))) {
1218 int tmpnf = assign_vfpreg(&avregs, align, size) + 1;
1219 nf = (tmpnf > nf) ? tmpnf : nf;
1220 } else
1221 #endif
1222 if (n < 4)
1223 n += (size + 3) / 4;
1225 o(0xE1A0C00D); /* mov ip,sp */
1226 if(variadic)
1227 n=4;
1228 if(n) {
1229 if(n>4)
1230 n=4;
1231 #ifdef TCC_ARM_EABI
1232 n=(n+1)&-2;
1233 #endif
1234 o(0xE92D0000|((1<<n)-1)); /* save r0-r4 on stack if needed */
1236 if (nf) {
1237 if (nf>16)
1238 nf=16;
1239 nf=(nf+1)&-2; /* nf => HARDFLOAT => EABI */
1240 o(0xED2D0A00|nf); /* save s0-s15 on stack if needed */
1242 o(0xE92D5800); /* save fp, ip, lr */
1243 o(0xE1A0B00D); /* mov fp, sp */
1244 func_sub_sp_offset = ind;
1245 o(0xE1A00000); /* nop, leave space for stack adjustment in epilogue */
1247 int addr, pn = struct_ret, sn = 0; /* pn=core, sn=stack */
1249 #ifdef TCC_ARM_HARDFLOAT
1250 func_vc += nf * 4;
1251 avregs = AVAIL_REGS_INITIALIZER;
1252 #endif
1253 while ((sym = sym->next)) {
1254 CType *type;
1255 type = &sym->type;
1256 size = type_size(type, &align);
1257 size = (size + 3) >> 2;
1258 align = (align + 3) & ~3;
1259 #ifdef TCC_ARM_HARDFLOAT
1260 if (!variadic && (is_float(sym->type.t)
1261 || is_hgen_float_aggr(&sym->type))) {
1262 int fpn = assign_vfpreg(&avregs, align, size << 2);
1263 if (fpn >= 0) {
1264 addr = fpn * 4;
1265 } else
1266 goto from_stack;
1267 } else
1268 #endif
1269 if (pn < 4) {
1270 #ifdef TCC_ARM_EABI
1271 pn = (pn + (align-1)/4) & -(align/4);
1272 #endif
1273 addr = (nf + pn) * 4;
1274 pn += size;
1275 if (!sn && pn > 4)
1276 sn = (pn - 4);
1277 } else {
1278 #ifdef TCC_ARM_HARDFLOAT
1279 from_stack:
1280 #endif
1281 #ifdef TCC_ARM_EABI
1282 sn = (sn + (align-1)/4) & -(align/4);
1283 #endif
1284 addr = (n + nf + sn) * 4;
1285 sn += size;
1287 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | lvalue_type(type->t), addr+12);
1290 last_itod_magic=0;
1291 leaffunc = 1;
1292 loc = 0;
1295 /* generate function epilog */
1296 void gfunc_epilog(void)
1298 uint32_t x;
1299 int diff;
1300 #ifdef TCC_ARM_EABI
1301 /* Useless but harmless copy of the float result into main register(s) in case
1302 of variadic function in the hardfloat variant */
1303 if(is_float(func_vt.t)) {
1304 if((func_vt.t & VT_BTYPE) == VT_FLOAT)
1305 o(0xEE100A10); /* fmrs r0, s0 */
1306 else {
1307 o(0xEE100B10); /* fmrdl r0, d0 */
1308 o(0xEE301B10); /* fmrdh r1, d0 */
1311 #endif
1312 o(0xE89BA800); /* restore fp, sp, pc */
1313 diff = (-loc + 3) & -4;
1314 #ifdef TCC_ARM_EABI
1315 if(!leaffunc)
1316 diff = ((diff + 11) & -8) - 4;
1317 #endif
1318 if(diff > 0) {
1319 x=stuff_const(0xE24BD000, diff); /* sub sp,fp,# */
1320 if(x)
1321 *(uint32_t *)(cur_text_section->data + func_sub_sp_offset) = x;
1322 else {
1323 int addr;
1324 addr=ind;
1325 o(0xE59FC004); /* ldr ip,[pc+4] */
1326 o(0xE04BD00C); /* sub sp,fp,ip */
1327 o(0xE1A0F00E); /* mov pc,lr */
1328 o(diff);
1329 *(uint32_t *)(cur_text_section->data + func_sub_sp_offset) = 0xE1000000|encbranch(func_sub_sp_offset,addr,1);
1334 /* generate a jump to a label */
1335 int gjmp(int t)
1337 int r;
1338 r=ind;
1339 o(0xE0000000|encbranch(r,t,1));
1340 return r;
1343 /* generate a jump to a fixed address */
1344 void gjmp_addr(int a)
1346 gjmp(a);
1349 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1350 int gtst(int inv, int t)
1352 int v, r;
1353 uint32_t op;
1354 v = vtop->r & VT_VALMASK;
1355 r=ind;
1356 if (v == VT_CMP) {
1357 op=mapcc(inv?negcc(vtop->c.i):vtop->c.i);
1358 op|=encbranch(r,t,1);
1359 o(op);
1360 t=r;
1361 } else if (v == VT_JMP || v == VT_JMPI) {
1362 if ((v & 1) == inv) {
1363 if(!vtop->c.i)
1364 vtop->c.i=t;
1365 else {
1366 uint32_t *x;
1367 int p,lp;
1368 if(t) {
1369 p = vtop->c.i;
1370 do {
1371 p = decbranch(lp=p);
1372 } while(p);
1373 x = (uint32_t *)(cur_text_section->data + lp);
1374 *x &= 0xff000000;
1375 *x |= encbranch(lp,t,1);
1377 t = vtop->c.i;
1379 } else {
1380 t = gjmp(t);
1381 gsym(vtop->c.i);
1383 } else {
1384 if (is_float(vtop->type.t)) {
1385 r=gv(RC_FLOAT);
1386 #ifdef TCC_ARM_VFP
1387 o(0xEEB50A40|(vfpr(r)<<12)|T2CPR(vtop->type.t)); /* fcmpzX */
1388 o(0xEEF1FA10); /* fmstat */
1389 #else
1390 o(0xEE90F118|(fpr(r)<<16));
1391 #endif
1392 vtop->r = VT_CMP;
1393 vtop->c.i = TOK_NE;
1394 return gtst(inv, t);
1395 } else if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1396 /* constant jmp optimization */
1397 if ((vtop->c.i != 0) != inv)
1398 t = gjmp(t);
1399 } else {
1400 v = gv(RC_INT);
1401 o(0xE3300000|(intr(v)<<16));
1402 vtop->r = VT_CMP;
1403 vtop->c.i = TOK_NE;
1404 return gtst(inv, t);
1407 vtop--;
1408 return t;
1411 /* generate an integer binary operation */
1412 void gen_opi(int op)
1414 int c, func = 0;
1415 uint32_t opc = 0, r, fr;
1416 unsigned short retreg = REG_IRET;
1418 c=0;
1419 switch(op) {
1420 case '+':
1421 opc = 0x8;
1422 c=1;
1423 break;
1424 case TOK_ADDC1: /* add with carry generation */
1425 opc = 0x9;
1426 c=1;
1427 break;
1428 case '-':
1429 opc = 0x4;
1430 c=1;
1431 break;
1432 case TOK_SUBC1: /* sub with carry generation */
1433 opc = 0x5;
1434 c=1;
1435 break;
1436 case TOK_ADDC2: /* add with carry use */
1437 opc = 0xA;
1438 c=1;
1439 break;
1440 case TOK_SUBC2: /* sub with carry use */
1441 opc = 0xC;
1442 c=1;
1443 break;
1444 case '&':
1445 opc = 0x0;
1446 c=1;
1447 break;
1448 case '^':
1449 opc = 0x2;
1450 c=1;
1451 break;
1452 case '|':
1453 opc = 0x18;
1454 c=1;
1455 break;
1456 case '*':
1457 gv2(RC_INT, RC_INT);
1458 r = vtop[-1].r;
1459 fr = vtop[0].r;
1460 vtop--;
1461 o(0xE0000090|(intr(r)<<16)|(intr(r)<<8)|intr(fr));
1462 return;
1463 case TOK_SHL:
1464 opc = 0;
1465 c=2;
1466 break;
1467 case TOK_SHR:
1468 opc = 1;
1469 c=2;
1470 break;
1471 case TOK_SAR:
1472 opc = 2;
1473 c=2;
1474 break;
1475 case '/':
1476 case TOK_PDIV:
1477 func=TOK___divsi3;
1478 c=3;
1479 break;
1480 case TOK_UDIV:
1481 func=TOK___udivsi3;
1482 c=3;
1483 break;
1484 case '%':
1485 #ifdef TCC_ARM_EABI
1486 func=TOK___aeabi_idivmod;
1487 retreg=REG_LRET;
1488 #else
1489 func=TOK___modsi3;
1490 #endif
1491 c=3;
1492 break;
1493 case TOK_UMOD:
1494 #ifdef TCC_ARM_EABI
1495 func=TOK___aeabi_uidivmod;
1496 retreg=REG_LRET;
1497 #else
1498 func=TOK___umodsi3;
1499 #endif
1500 c=3;
1501 break;
1502 case TOK_UMULL:
1503 gv2(RC_INT, RC_INT);
1504 r=intr(vtop[-1].r2=get_reg(RC_INT));
1505 c=vtop[-1].r;
1506 vtop[-1].r=get_reg_ex(RC_INT,regmask(c));
1507 vtop--;
1508 o(0xE0800090|(r<<16)|(intr(vtop->r)<<12)|(intr(c)<<8)|intr(vtop[1].r));
1509 return;
1510 default:
1511 opc = 0x15;
1512 c=1;
1513 break;
1515 switch(c) {
1516 case 1:
1517 if((vtop[-1].r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1518 if(opc == 4 || opc == 5 || opc == 0xc) {
1519 vswap();
1520 opc|=2; // sub -> rsb
1523 if ((vtop->r & VT_VALMASK) == VT_CMP ||
1524 (vtop->r & (VT_VALMASK & ~1)) == VT_JMP)
1525 gv(RC_INT);
1526 vswap();
1527 c=intr(gv(RC_INT));
1528 vswap();
1529 opc=0xE0000000|(opc<<20)|(c<<16);
1530 if((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1531 uint32_t x;
1532 x=stuff_const(opc|0x2000000,vtop->c.i);
1533 if(x) {
1534 r=intr(vtop[-1].r=get_reg_ex(RC_INT,regmask(vtop[-1].r)));
1535 o(x|(r<<12));
1536 goto done;
1539 fr=intr(gv(RC_INT));
1540 r=intr(vtop[-1].r=get_reg_ex(RC_INT,two2mask(vtop->r,vtop[-1].r)));
1541 o(opc|(r<<12)|fr);
1542 done:
1543 vtop--;
1544 if (op >= TOK_ULT && op <= TOK_GT) {
1545 vtop->r = VT_CMP;
1546 vtop->c.i = op;
1548 break;
1549 case 2:
1550 opc=0xE1A00000|(opc<<5);
1551 if ((vtop->r & VT_VALMASK) == VT_CMP ||
1552 (vtop->r & (VT_VALMASK & ~1)) == VT_JMP)
1553 gv(RC_INT);
1554 vswap();
1555 r=intr(gv(RC_INT));
1556 vswap();
1557 opc|=r;
1558 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1559 fr=intr(vtop[-1].r=get_reg_ex(RC_INT,regmask(vtop[-1].r)));
1560 c = vtop->c.i & 0x1f;
1561 o(opc|(c<<7)|(fr<<12));
1562 } else {
1563 fr=intr(gv(RC_INT));
1564 c=intr(vtop[-1].r=get_reg_ex(RC_INT,two2mask(vtop->r,vtop[-1].r)));
1565 o(opc|(c<<12)|(fr<<8)|0x10);
1567 vtop--;
1568 break;
1569 case 3:
1570 vpush_global_sym(&func_old_type, func);
1571 vrott(3);
1572 gfunc_call(2);
1573 vpushi(0);
1574 vtop->r = retreg;
1575 break;
1576 default:
1577 tcc_error("gen_opi %i unimplemented!",op);
1581 #ifdef TCC_ARM_VFP
1582 static int is_zero(int i)
1584 if((vtop[i].r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST)
1585 return 0;
1586 if (vtop[i].type.t == VT_FLOAT)
1587 return (vtop[i].c.f == 0.f);
1588 else if (vtop[i].type.t == VT_DOUBLE)
1589 return (vtop[i].c.d == 0.0);
1590 return (vtop[i].c.ld == 0.l);
1593 /* generate a floating point operation 'v = t1 op t2' instruction. The
1594 * two operands are guaranted to have the same floating point type */
1595 void gen_opf(int op)
1597 uint32_t x;
1598 int fneg=0,r;
1599 x=0xEE000A00|T2CPR(vtop->type.t);
1600 switch(op) {
1601 case '+':
1602 if(is_zero(-1))
1603 vswap();
1604 if(is_zero(0)) {
1605 vtop--;
1606 return;
1608 x|=0x300000;
1609 break;
1610 case '-':
1611 x|=0x300040;
1612 if(is_zero(0)) {
1613 vtop--;
1614 return;
1616 if(is_zero(-1)) {
1617 x|=0x810000; /* fsubX -> fnegX */
1618 vswap();
1619 vtop--;
1620 fneg=1;
1622 break;
1623 case '*':
1624 x|=0x200000;
1625 break;
1626 case '/':
1627 x|=0x800000;
1628 break;
1629 default:
1630 if(op < TOK_ULT || op > TOK_GT) {
1631 tcc_error("unknown fp op %x!",op);
1632 return;
1634 if(is_zero(-1)) {
1635 vswap();
1636 switch(op) {
1637 case TOK_LT: op=TOK_GT; break;
1638 case TOK_GE: op=TOK_ULE; break;
1639 case TOK_LE: op=TOK_GE; break;
1640 case TOK_GT: op=TOK_ULT; break;
1643 x|=0xB40040; /* fcmpX */
1644 if(op!=TOK_EQ && op!=TOK_NE)
1645 x|=0x80; /* fcmpX -> fcmpeX */
1646 if(is_zero(0)) {
1647 vtop--;
1648 o(x|0x10000|(vfpr(gv(RC_FLOAT))<<12)); /* fcmp(e)X -> fcmp(e)zX */
1649 } else {
1650 x|=vfpr(gv(RC_FLOAT));
1651 vswap();
1652 o(x|(vfpr(gv(RC_FLOAT))<<12));
1653 vtop--;
1655 o(0xEEF1FA10); /* fmstat */
1657 switch(op) {
1658 case TOK_LE: op=TOK_ULE; break;
1659 case TOK_LT: op=TOK_ULT; break;
1660 case TOK_UGE: op=TOK_GE; break;
1661 case TOK_UGT: op=TOK_GT; break;
1664 vtop->r = VT_CMP;
1665 vtop->c.i = op;
1666 return;
1668 r=gv(RC_FLOAT);
1669 x|=vfpr(r);
1670 r=regmask(r);
1671 if(!fneg) {
1672 int r2;
1673 vswap();
1674 r2=gv(RC_FLOAT);
1675 x|=vfpr(r2)<<16;
1676 r|=regmask(r2);
1678 vtop->r=get_reg_ex(RC_FLOAT,r);
1679 if(!fneg)
1680 vtop--;
1681 o(x|(vfpr(vtop->r)<<12));
1684 #else
1685 static uint32_t is_fconst()
1687 long double f;
1688 uint32_t r;
1689 if((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST)
1690 return 0;
1691 if (vtop->type.t == VT_FLOAT)
1692 f = vtop->c.f;
1693 else if (vtop->type.t == VT_DOUBLE)
1694 f = vtop->c.d;
1695 else
1696 f = vtop->c.ld;
1697 if(!ieee_finite(f))
1698 return 0;
1699 r=0x8;
1700 if(f<0.0) {
1701 r=0x18;
1702 f=-f;
1704 if(f==0.0)
1705 return r;
1706 if(f==1.0)
1707 return r|1;
1708 if(f==2.0)
1709 return r|2;
1710 if(f==3.0)
1711 return r|3;
1712 if(f==4.0)
1713 return r|4;
1714 if(f==5.0)
1715 return r|5;
1716 if(f==0.5)
1717 return r|6;
1718 if(f==10.0)
1719 return r|7;
1720 return 0;
1723 /* generate a floating point operation 'v = t1 op t2' instruction. The
1724 two operands are guaranted to have the same floating point type */
1725 void gen_opf(int op)
1727 uint32_t x, r, r2, c1, c2;
1728 //fputs("gen_opf\n",stderr);
1729 vswap();
1730 c1 = is_fconst();
1731 vswap();
1732 c2 = is_fconst();
1733 x=0xEE000100;
1734 #if LDOUBLE_SIZE == 8
1735 if ((vtop->type.t & VT_BTYPE) != VT_FLOAT)
1736 x|=0x80;
1737 #else
1738 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
1739 x|=0x80;
1740 else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE)
1741 x|=0x80000;
1742 #endif
1743 switch(op)
1745 case '+':
1746 if(!c2) {
1747 vswap();
1748 c2=c1;
1750 vswap();
1751 r=fpr(gv(RC_FLOAT));
1752 vswap();
1753 if(c2) {
1754 if(c2>0xf)
1755 x|=0x200000; // suf
1756 r2=c2&0xf;
1757 } else {
1758 r2=fpr(gv(RC_FLOAT));
1760 break;
1761 case '-':
1762 if(c2) {
1763 if(c2<=0xf)
1764 x|=0x200000; // suf
1765 r2=c2&0xf;
1766 vswap();
1767 r=fpr(gv(RC_FLOAT));
1768 vswap();
1769 } else if(c1 && c1<=0xf) {
1770 x|=0x300000; // rsf
1771 r2=c1;
1772 r=fpr(gv(RC_FLOAT));
1773 vswap();
1774 } else {
1775 x|=0x200000; // suf
1776 vswap();
1777 r=fpr(gv(RC_FLOAT));
1778 vswap();
1779 r2=fpr(gv(RC_FLOAT));
1781 break;
1782 case '*':
1783 if(!c2 || c2>0xf) {
1784 vswap();
1785 c2=c1;
1787 vswap();
1788 r=fpr(gv(RC_FLOAT));
1789 vswap();
1790 if(c2 && c2<=0xf)
1791 r2=c2;
1792 else
1793 r2=fpr(gv(RC_FLOAT));
1794 x|=0x100000; // muf
1795 break;
1796 case '/':
1797 if(c2 && c2<=0xf) {
1798 x|=0x400000; // dvf
1799 r2=c2;
1800 vswap();
1801 r=fpr(gv(RC_FLOAT));
1802 vswap();
1803 } else if(c1 && c1<=0xf) {
1804 x|=0x500000; // rdf
1805 r2=c1;
1806 r=fpr(gv(RC_FLOAT));
1807 vswap();
1808 } else {
1809 x|=0x400000; // dvf
1810 vswap();
1811 r=fpr(gv(RC_FLOAT));
1812 vswap();
1813 r2=fpr(gv(RC_FLOAT));
1815 break;
1816 default:
1817 if(op >= TOK_ULT && op <= TOK_GT) {
1818 x|=0xd0f110; // cmfe
1819 /* bug (intention?) in Linux FPU emulator
1820 doesn't set carry if equal */
1821 switch(op) {
1822 case TOK_ULT:
1823 case TOK_UGE:
1824 case TOK_ULE:
1825 case TOK_UGT:
1826 tcc_error("unsigned comparision on floats?");
1827 break;
1828 case TOK_LT:
1829 op=TOK_Nset;
1830 break;
1831 case TOK_LE:
1832 op=TOK_ULE; /* correct in unordered case only if AC bit in FPSR set */
1833 break;
1834 case TOK_EQ:
1835 case TOK_NE:
1836 x&=~0x400000; // cmfe -> cmf
1837 break;
1839 if(c1 && !c2) {
1840 c2=c1;
1841 vswap();
1842 switch(op) {
1843 case TOK_Nset:
1844 op=TOK_GT;
1845 break;
1846 case TOK_GE:
1847 op=TOK_ULE;
1848 break;
1849 case TOK_ULE:
1850 op=TOK_GE;
1851 break;
1852 case TOK_GT:
1853 op=TOK_Nset;
1854 break;
1857 vswap();
1858 r=fpr(gv(RC_FLOAT));
1859 vswap();
1860 if(c2) {
1861 if(c2>0xf)
1862 x|=0x200000;
1863 r2=c2&0xf;
1864 } else {
1865 r2=fpr(gv(RC_FLOAT));
1867 vtop[-1].r = VT_CMP;
1868 vtop[-1].c.i = op;
1869 } else {
1870 tcc_error("unknown fp op %x!",op);
1871 return;
1874 if(vtop[-1].r == VT_CMP)
1875 c1=15;
1876 else {
1877 c1=vtop->r;
1878 if(r2&0x8)
1879 c1=vtop[-1].r;
1880 vtop[-1].r=get_reg_ex(RC_FLOAT,two2mask(vtop[-1].r,c1));
1881 c1=fpr(vtop[-1].r);
1883 vtop--;
1884 o(x|(r<<16)|(c1<<12)|r2);
1886 #endif
1888 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
1889 and 'long long' cases. */
1890 ST_FUNC void gen_cvt_itof1(int t)
1892 uint32_t r, r2;
1893 int bt;
1894 bt=vtop->type.t & VT_BTYPE;
1895 if(bt == VT_INT || bt == VT_SHORT || bt == VT_BYTE) {
1896 #ifndef TCC_ARM_VFP
1897 uint32_t dsize = 0;
1898 #endif
1899 r=intr(gv(RC_INT));
1900 #ifdef TCC_ARM_VFP
1901 r2=vfpr(vtop->r=get_reg(RC_FLOAT));
1902 o(0xEE000A10|(r<<12)|(r2<<16)); /* fmsr */
1903 r2|=r2<<12;
1904 if(!(vtop->type.t & VT_UNSIGNED))
1905 r2|=0x80; /* fuitoX -> fsituX */
1906 o(0xEEB80A40|r2|T2CPR(t)); /* fYitoX*/
1907 #else
1908 r2=fpr(vtop->r=get_reg(RC_FLOAT));
1909 if((t & VT_BTYPE) != VT_FLOAT)
1910 dsize=0x80; /* flts -> fltd */
1911 o(0xEE000110|dsize|(r2<<16)|(r<<12)); /* flts */
1912 if((vtop->type.t & (VT_UNSIGNED|VT_BTYPE)) == (VT_UNSIGNED|VT_INT)) {
1913 uint32_t off = 0;
1914 o(0xE3500000|(r<<12)); /* cmp */
1915 r=fpr(get_reg(RC_FLOAT));
1916 if(last_itod_magic) {
1917 off=ind+8-last_itod_magic;
1918 off/=4;
1919 if(off>255)
1920 off=0;
1922 o(0xBD1F0100|(r<<12)|off); /* ldflts */
1923 if(!off) {
1924 o(0xEA000000); /* b */
1925 last_itod_magic=ind;
1926 o(0x4F800000); /* 4294967296.0f */
1928 o(0xBE000100|dsize|(r2<<16)|(r2<<12)|r); /* adflt */
1930 #endif
1931 return;
1932 } else if(bt == VT_LLONG) {
1933 int func;
1934 CType *func_type = 0;
1935 if((t & VT_BTYPE) == VT_FLOAT) {
1936 func_type = &func_float_type;
1937 if(vtop->type.t & VT_UNSIGNED)
1938 func=TOK___floatundisf;
1939 else
1940 func=TOK___floatdisf;
1941 #if LDOUBLE_SIZE != 8
1942 } else if((t & VT_BTYPE) == VT_LDOUBLE) {
1943 func_type = &func_ldouble_type;
1944 if(vtop->type.t & VT_UNSIGNED)
1945 func=TOK___floatundixf;
1946 else
1947 func=TOK___floatdixf;
1948 } else if((t & VT_BTYPE) == VT_DOUBLE) {
1949 #else
1950 } else if((t & VT_BTYPE) == VT_DOUBLE || (t & VT_BTYPE) == VT_LDOUBLE) {
1951 #endif
1952 func_type = &func_double_type;
1953 if(vtop->type.t & VT_UNSIGNED)
1954 func=TOK___floatundidf;
1955 else
1956 func=TOK___floatdidf;
1958 if(func_type) {
1959 vpush_global_sym(func_type, func);
1960 vswap();
1961 gfunc_call(1);
1962 vpushi(0);
1963 vtop->r=TREG_F0;
1964 return;
1967 tcc_error("unimplemented gen_cvt_itof %x!",vtop->type.t);
1970 /* convert fp to int 't' type */
1971 void gen_cvt_ftoi(int t)
1973 uint32_t r, r2;
1974 int u, func = 0;
1975 u=t&VT_UNSIGNED;
1976 t&=VT_BTYPE;
1977 r2=vtop->type.t & VT_BTYPE;
1978 if(t==VT_INT) {
1979 #ifdef TCC_ARM_VFP
1980 r=vfpr(gv(RC_FLOAT));
1981 u=u?0:0x10000;
1982 o(0xEEBC0AC0|(r<<12)|r|T2CPR(r2)|u); /* ftoXizY */
1983 r2=intr(vtop->r=get_reg(RC_INT));
1984 o(0xEE100A10|(r<<16)|(r2<<12));
1985 return;
1986 #else
1987 if(u) {
1988 if(r2 == VT_FLOAT)
1989 func=TOK___fixunssfsi;
1990 #if LDOUBLE_SIZE != 8
1991 else if(r2 == VT_LDOUBLE)
1992 func=TOK___fixunsxfsi;
1993 else if(r2 == VT_DOUBLE)
1994 #else
1995 else if(r2 == VT_LDOUBLE || r2 == VT_DOUBLE)
1996 #endif
1997 func=TOK___fixunsdfsi;
1998 } else {
1999 r=fpr(gv(RC_FLOAT));
2000 r2=intr(vtop->r=get_reg(RC_INT));
2001 o(0xEE100170|(r2<<12)|r);
2002 return;
2004 #endif
2005 } else if(t == VT_LLONG) { // unsigned handled in gen_cvt_ftoi1
2006 if(r2 == VT_FLOAT)
2007 func=TOK___fixsfdi;
2008 #if LDOUBLE_SIZE != 8
2009 else if(r2 == VT_LDOUBLE)
2010 func=TOK___fixxfdi;
2011 else if(r2 == VT_DOUBLE)
2012 #else
2013 else if(r2 == VT_LDOUBLE || r2 == VT_DOUBLE)
2014 #endif
2015 func=TOK___fixdfdi;
2017 if(func) {
2018 vpush_global_sym(&func_old_type, func);
2019 vswap();
2020 gfunc_call(1);
2021 vpushi(0);
2022 if(t == VT_LLONG)
2023 vtop->r2 = REG_LRET;
2024 vtop->r = REG_IRET;
2025 return;
2027 tcc_error("unimplemented gen_cvt_ftoi!");
2030 /* convert from one floating point type to another */
2031 void gen_cvt_ftof(int t)
2033 #ifdef TCC_ARM_VFP
2034 if(((vtop->type.t & VT_BTYPE) == VT_FLOAT) != ((t & VT_BTYPE) == VT_FLOAT)) {
2035 uint32_t r = vfpr(gv(RC_FLOAT));
2036 o(0xEEB70AC0|(r<<12)|r|T2CPR(vtop->type.t));
2038 #else
2039 /* all we have to do on i386 and FPA ARM is to put the float in a register */
2040 gv(RC_FLOAT);
2041 #endif
2044 /* computed goto support */
2045 void ggoto(void)
2047 gcall_or_jmp(1);
2048 vtop--;
2051 /* Save the stack pointer onto the stack and return the location of its address */
2052 ST_FUNC void gen_vla_sp_save(int addr) {
2053 tcc_error("variable length arrays unsupported for this target");
2056 /* Restore the SP from a location on the stack */
2057 ST_FUNC void gen_vla_sp_restore(int addr) {
2058 tcc_error("variable length arrays unsupported for this target");
2061 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2062 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2063 tcc_error("variable length arrays unsupported for this target");
2066 /* end of ARM code generator */
2067 /*************************************************************/
2068 #endif
2069 /*************************************************************/