1.0.13.49: save source-locations for accessor methods defined via DEFCLASS
[sbcl/simd.git] / OPTIMIZATIONS
blob0308f8507c4e8955d713ea703e1744266bda8f25
1 #1
2 (defun mysl (s)
3     (declare (simple-string s))
4     (declare (optimize (speed 3) (safety 0) (debug 0)))
5     (let ((c 0))
6       (declare (fixnum c))
7       (dotimes (i (length s))
8         (when (eql (aref s i) #\1)
9           (incf c)))
10       c))
12 * On X86 I is represented as a tagged integer.
14 * Unnecessary move:
15   3: SLOT S!11[EDX] {SB-C::VECTOR-LENGTH 1 7} => t23[EAX]
16   4: MOVE t23[EAX] => t24[EBX]
18 --------------------------------------------------------------------------------
20 (defun quux (v)
21   (declare (optimize (speed 3) (safety 0) (space 2) (debug 0)))
22   (declare (type (simple-array double-float 1) v))
23   (let ((s 0d0))
24     (declare (type double-float s))
25     (dotimes (i (length v))
26       (setq s (+ s (aref v i))))
27     s))
29 * Python does not combine + with AREF, so generates extra move and
30   allocates a register.
32 * On X86 Python thinks that all FP registers are directly accessible
33   and emits costy MOVE ... => FR1.
35 --------------------------------------------------------------------------------
37 (defun bar (n)
38   (declare (optimize (speed 3) (safety 0) (space 2))
39            (type fixnum n))
40   (let ((v (make-list n)))
41     (setq v (make-array n))
42     (length v)))
44 * IR1 does not optimize away (MAKE-LIST N).
45 --------------------------------------------------------------------------------
47 (defun bar (v1 v2)
48   (declare (optimize (speed 3) (safety 0) (space 2))
49            (type (simple-array base-char 1) v1 v2))
50   (dotimes (i (length v1))
51     (setf (aref v2 i) (aref v1 i))))
53 VOP DATA-VECTOR-SET/SIMPLE-STRING V2!14[EDI] t32[EAX] t30[S2]>t33[CL]
54                                   => t34[S2]<t35[AL] 
55         MOV     #<TN t33[CL]>, #<TN t30[S2]>
56         MOV     BYTE PTR [EDI+EAX+1], #<TN t33[CL]>
57         MOV     #<TN t35[AL]>, #<TN t33[CL]>
58         MOV     #<TN t34[S2]>, #<TN t35[AL]>
60 * The value of DATA-VECTOR-SET is not used, so there is no need in the
61   last two moves.
63 * And why two moves?
64 --------------------------------------------------------------------------------
66 (defun foo (d)
67   (declare (optimize (speed 3) (safety 0) (debug 0)))
68   (declare (type (double-float 0d0 1d0) d))
69   (loop for i fixnum from 1 to 5
70         for x1 double-float = (sin d) ;;; !!!
71         do (loop for j fixnum from 1 to 4
72                  sum x1 double-float)))
74 Without the marked declaration Python will use boxed representation for X1.
76 This is equivalent to
78 (let ((x nil))
79   (setq x 0d0)
80   ;; use of X as DOUBLE-FLOAT
83 The initial binding is effectless, and without it X is of type
84 DOUBLE-FLOAT. Unhopefully, IR1 does not optimize away effectless
85 SETs/bindings, and IR2 does not perform type inference.
86 --------------------------------------------------------------------------------
87 #9 "Multi-path constant folding"
88 (defun foo (x)
89   (if (= (cond ((irgh x) 0)
90                ((buh x) 1)
91                (t 2))
92          0)
93       :yes
94       :no))
96 This code could be optimized to
98 (defun foo (x)
99   (cond ((irgh x) :yes)
100         ((buh x) :no)
101         (t :no)))
102 --------------------------------------------------------------------------------
104 (inverted variant of #9)
106 (lambda (x)
107   (let ((y (sap-alien x c-string)))
108     (list (alien-sap y)
109           (alien-sap y))))
111 It could be optimized to
113 (lambda (x) (list x x))
115 (if Y were used only once, the current compiler would optimize it)
116 --------------------------------------------------------------------------------
118 (typep (truly-the (simple-array * (*)) x) 'simple-vector)
120 tests lowtag.
121 --------------------------------------------------------------------------------
123 FAST-+/FIXNUM and similar should accept unboxed arguments in interests
124 of representation selection. Problem: inter-TN dependencies.
125 --------------------------------------------------------------------------------
127 The derived type of (/ (THE (DOUBLE-FLOAT (0D0)) X) (THE (DOUBLE-FLOAT
128 1D0) Y)) is (DOUBLE-FLOAT 0.0d0). While it might be reasonable, it is
129 better to derive (OR (MEMBER 0.0d0) (DOUBLE-FLOAT (0.0d0))).
130 --------------------------------------------------------------------------------
132 On the alpha, the system is reluctant to refer directly to a constant bignum,
133 preferring to load a large constant through a slow sequence of instructions,
134 then cons up a bignum for it:
136 (LAMBDA (A)
137   (DECLARE (OPTIMIZE (SAFETY 1) (SPEED 3) (DEBUG 1))
138            (TYPE (INTEGER -10000 10000) A)
139            (IGNORABLE A))
140   (CASE A
141     ((89 125 16) (ASH A (MIN 18 -706)))
142     (T (DPB -3 (BYTE 30 30) -1))))
143 --------------------------------------------------------------------------------
145 (do ((i 0 (1+ i)))
146     ((= i (the (integer 0 100) n)))
147   ...)
149 It is commonly expected for Python to derive (FIXNUMP I). (If ``='' is
150 replaced with ``>='', Python will do.)
151 --------------------------------------------------------------------------------
152 #17 
153 Type tests for (ARRAY BIT), (ARRAY T) and similar go through full
154 %TYPEP, even though it is relatively simple to establish the arrayness
155 of an object and also to obtain the element type of an array.  As of
156 sbcl-0.8.12.30, this affects at least DUMP-OBJECT through
157 COMPOUND-OBJECT-P, and (LABELS MAYBE-EMIT-MAKE-LOAD-FORMS GROVEL)
158 through TYPEP UNBOXED-ARRAY, within the compiler itself.
159 --------------------------------------------------------------------------------
161 (lambda (x) (declare (null x)) (sxhash x)) goes through SYMBOL-HASH
162 rather than either constant-folding or manipulating NIL-VALUE or
163 NULL-TN directly.
164 --------------------------------------------------------------------------------
166 (defun-with-dx foo (x)
167   (flet ((make (x)
168            (let ((l (list nil nil)))
169              (setf (first l) x)
170              (setf (second l) (1- x))
171              l)))
172     (let ((l (make x)))
173       (declare (dynamic-extent l))
174       (mapc #'print l))))
176 Result of MAKE is not stack allocated, which means that
177 stack-allocation of structures is impossible.
178 --------------------------------------------------------------------------------
180 IR2 does not perform unused code flushing.
181 --------------------------------------------------------------------------------
183 Python does not know that &REST lists are LISTs (and cannot derive it).
184 --------------------------------------------------------------------------------
186 a. Iterations on &REST lists, returning them as VALUES could be
187    rewritten with &MORE vectors.
188 b. Implement local unknown-values mv-call (useful for fast type checking).
189 --------------------------------------------------------------------------------
191 SBCL cannot derive upper bound for I and uses generic arithmetic here:
193 (defun foo (l)
194   (declare (vector l))
195   (dotimes (i (length l))
196     (if (block nil
197           (map-foo (lambda (x) (if x (return t)))
198                    l))
199         t
200         nil)))
202 (So the constraint propagator or a possible future SSA-convertor
203 should know the connection between an NLE and its CLEANUP.)
204 --------------------------------------------------------------------------------
206 Initialization of stack-allocated arrays is inefficient: we always
207 fill the vector with zeroes, even when it is not needed (as for
208 platforms with conservative GC or for arrays of unboxed objectes) and
209 is performed later explicitely.
211 (This is harder than it might look at first glance, as MAKE-ARRAY is smart
212 enough to eliminate something like ':initial-element 0'.  Such an optimization
213 is valid if the vector is being allocated in the heap, but not if it is being
214 allocated on the stack.  You could remove this optimization, but that makes
215 the heap-allocated case somewhat slower...)
216 --------------------------------------------------------------------------------
218 a. Accessing raw slots in structure instances is more inefficient than
219 it could be; if we placed raw slots before the header word, we would
220 not need to do arithmetic at runtime to access them.  (But beware:
221 this would complicate handling of the interior pointer).
223 b. (Also note that raw slots are currently disabled on HPPA)
224 --------------------------------------------------------------------------------
226 Python is overly zealous when converting high-level CL functions, such
227 as MIN/MAX, LOGBITP, and LOGTEST, to low-level CL functions.  Reducing
228 Python's aggressiveness would make it easier to effect changes such as
230 x86-64:
231 * direct MIN/MAX on {SINGLE,DOUBLE}-FLOATs ({MIN,MAX}S{S,D})
233 x86-64:
234 * direct LOGBITP on word-sized integers and fixnums (BT + JC)
236 x86{,-64}/PPC:
237 * branch-free MIN/MAX on word-sized integers and fixnums (floats could
238   be handled too, modulo safety considerations on the PPC)
240 x86-64:
241 * efficient LOGTESTs on word-sized integers and fixnums (TEST)
243 etc., etc.
245 (The framework for this has been implemented as of 0.9.9.18; see the
246 vm-support-routine COMBINATION-IMPLEMENTATION-STYLE and its use in
247 src/compiler/ir1opt.lisp, IR1-OPTIMIZE-COMBINATION.  The above
248 optimizations are left as an exercise for the reader.)
249 --------------------------------------------------------------------------------
251 (defun foo (x y)
252   (< x y))
254 FOO's IR1 representation is roughly:
256 (defun foo (x y)
257   (if (< x y)
258       T
259       NIL))
261 However, if a full call is generated for < (and similarly for other
262 predicate functions), then the IF is unnecessary, since the return value
263 of (< x y) is already T or NIL.
264 --------------------------------------------------------------------------------
266 The typecheck generated for a declaration like (integer 0 45) on x86 looks
267 like:
269 ;      12B:       F6C203           TEST DL, 3
270 ;      12E:       753B             JNE L1
271 ;      130:       8BC2             MOV EAX, EDX
272 ;      132:       83F800           CMP EAX, 0
273 ;      135:       7C34             JL L1
274 ;      137:       8BC2             MOV EAX, EDX
275 ;      139:       3DB4000000       CMP EAX, 180
276 ;      13E:       7F2B             JNLE L1
278 A better code sequence for this would be:
280   TEST DL, 3
281   JNE L1
282   MOV EAX, EDX
283   CMP EAX, 180
284   JBE L1
286 Doing an unsigned comparison means that, similarly to %CHECK-BOUND, we can
287 combine the <0 and >=bound tests.  This sort of test is generated often
288 in SBCL and any array-based code that's serious about type-checking its
289 indices.
290 --------------------------------------------------------------------------------
292 The code for a vector bounds check on x86 (similarly on x86-64) where
293 the vector is in EDX and the index in EAX looks like:
295 ;       49: L0:   8B5AFD           MOV EBX, [EDX-3]
296 ;       4C:       39C3             CMP EBX, EAX
297 ;       4E:       7632             JBE L2
299 because %CHECK-BOUND is used for bounds-checking any array dimension.
300 A more efficient specialization (%CHECK-BOUND/VECTOR) would produce:
302   CMP [EDX-3], EAX
303   JBE L2
305 Which is slightly shorter and avoids using a register.
306 --------------------------------------------------------------------------------
308 Reports from the Java camp indicate that using an SSE2-based
309 floating-point backend on x86 when possible is highly preferable to
310 using the x86 FP stack.  It would be nice if SBCL included an SSE2-based
311 floating point backend with a compile-time option to switch between the
312 two.
313 --------------------------------------------------------------------------------
315 Compiling
317 (defun foo (x y)
318   (declare (type (integer 0 45) x y))
319   (+ x y))
321 results in the following error trapping code for type-checking the
322 arguments:
324 ;      424: L0:   8B058CE31812     MOV EAX, [#x1218E38C]      ; '(MOD 46)
325 ;      42A:       0F0B0A           BREAK 10                   ; error trap
326 ;      42D:       05               BYTE #X05
327 ;      42E:       1F               BYTE #X1F                  ; OBJECT-NOT-TYPE-ERROR
328 ;      42F:       FECE01           BYTE #XFE, #XCE, #X01      ; EDI
329 ;      432:       0E               BYTE #X0E                  ; EAX
330 ;      433: L1:   8B0590E31812     MOV EAX, [#x1218E390]      ; '(MOD 46)
331 ;      439:       0F0B0A           BREAK 10                   ; error trap
332 ;      43C:       03               BYTE #X03
333 ;      43D:       1F               BYTE #X1F                  ; OBJECT-NOT-TYPE-ERROR
334 ;      43E:       8E               BYTE #X8E                  ; EDX
335 ;      43F:       0E               BYTE #X0E                  ; EAX
337 Notice that '(MOD 46) has two entries in the constant vector.  Having
338 one would be preferable.
339 --------------------------------------------------------------------------------
341 Compiling
343 (defun foo (a i)
344   (declare (type simple-vector a))
345   (aref a i))
347 results in the following x86 code:
349 ; 115886E9:       F7C703000000     TEST EDI, 3                ; no-arg-parsing entry point
350 ;      6EF:       7510             JNE L0
351 ;      6F1:       8BC7             MOV EAX, EDI
352 ;      6F3:       83F800           CMP EAX, 0
353 ;      6F6:       7C09             JL L0
354 ;      6F8:       8BC7             MOV EAX, EDI
355 ;      6FA:       3DF8FFFF7F       CMP EAX, 2147483640
356 ;      6FF:       7E0F             JLE L1
357 ;      701: L0:   8B057C865811     MOV EAX, [#x1158867C]      ; '(MOD
358                                                               ;   536870911)
359 ;      707:       0F0B0A           BREAK 10                   ; error trap
360 ;      70A:       05               BYTE #X05
361 ;      70B:       1F               BYTE #X1F                  ; OBJECT-NOT-TYPE-ERROR
362 ;      70C:       FECE01           BYTE #XFE, #XCE, #X01      ; EDI
363 ;      70F:       0E               BYTE #X0E                  ; EAX
364 ;      710: L1:   8B42FD           MOV EAX, [EDX-3]
365 ;      713:       8BCF             MOV ECX, EDI
366 ;      715:       39C8             CMP EAX, ECX
367 ;      717:       7620             JBE L2
368 ;      719:       8B540A01         MOV EDX, [EDX+ECX+1]
370 ... plus the standard return sequence and some error blocks.  The
371 `TEST EDI, 3' and associated comparisons are to ensure that `I' is a
372 positive fixnum.  The associated comparisons are unnecessary, as the
373 %CHECK-BOUND VOP only requires its tested index to be a fixnum and takes
374 care of the negative fixnum case itself.
376 {HAIRY-,}DATA-VECTOR-REF are DEFKNOWN'd with EXPLICIT-CHECK, which would
377 seem to take care of this, but EXPLICIT-CHECK only seems to be used when
378 compiling calls to unknown functions or similar.  Furthermore,
379 EXPLICIT-CHECK, as NJF understands it, doesn't have the right
380 semantics--it suppresses all type checking of arguments, whereas what we
381 really want is to ensure that the argument is a fixnum, but not check
382 its positiveness.
383 --------------------------------------------------------------------------------
386 In #35, the CMP EAX, $foo instructions are all preceded by a MOV.  They
387 appear to be unnecessary, but are necessary because in IR2, EDI is a
388 DESCRIPTOR-REG, whereas EAX is an ANY-REG--and the comparison VOPs only
389 accept ANY-REGs.  Therefore, the MOVs are "necessary" to ensure that the
390 comparison VOP receives an TN of the appropriate storage class.
392 Obviously, it would be better if a) we only performed one MOV prior to
393 all three comparisons or b) eliminated the necessity of the MOV(s)
394 altogether.  The former option is probably easier than the latter.
396 --------------------------------------------------------------------------------
399 (setf (subseq s1 start1 end1) (subseq s2 start2 end1))
401 could be transformed into
403 (let ((#:s2 s2)
404       (#:start2 start2)
405       (#:end2 end2))
406  (replace s1 #:s2 :start1 start1 :end1 end1 :start2 #:start2 :end2 #:end2))
408 when the return value is unused, avoiding the need to cons up the new sequence.
410 --------------------------------------------------------------------------------
413 (let ((*foo* 42)) ...)
415 currently compiles to code that ensures the TLS index at runtime, which
416 is both a decently large chunk of code and unnecessary, as we could ensure
417 the TLS index at load-time as well.