28ac79498435ba1265c5a68bc541139f24da9841
[sbcl/pkhuong.git] / src / compiler / x86-64 / insts.lisp
blob28ac79498435ba1265c5a68bc541139f24da9841
1 ;;;; that part of the description of the x86-64 instruction set
2 ;;;; which can live on the cross-compilation host
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!VM")
14 ;;; FIXME: SB!DISASSEM: prefixes are used so widely in this file that
15 ;;; I wonder whether the separation of the disassembler from the
16 ;;; virtual machine is valid or adds value.
18 ;;; Note: In CMU CL, this used to be a call to SET-DISASSEM-PARAMS.
19 (setf sb!disassem:*disassem-inst-alignment-bytes* 1)
21 ;;; This type is used mostly in disassembly and represents legacy
22 ;;; registers only. R8-R15 are handled separately.
23 (deftype reg () '(unsigned-byte 3))
25 ;;; This includes legacy registers and R8-R15.
26 (deftype full-reg () '(unsigned-byte 4))
28 ;;; The XMM registers XMM0 - XMM15.
29 (deftype xmmreg () '(unsigned-byte 4))
31 ;;; Default word size for the chip: if the operand size /= :dword
32 ;;; we need to output #x66 (or REX) prefix
33 (def!constant +default-operand-size+ :dword)
35 ;;; The default address size for the chip. It could be overwritten
36 ;;; to :dword with a #x67 prefix, but this is never needed by SBCL
37 ;;; and thus not supported by this assembler/disassembler.
38 (def!constant +default-address-size+ :qword)
40 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
42 (defun offset-next (value dstate)
43 (declare (type integer value)
44 (type sb!disassem:disassem-state dstate))
45 (+ (sb!disassem:dstate-next-addr dstate) value))
47 (defparameter *byte-reg-names*
48 #(al cl dl bl spl bpl sil dil r8b r9b r10b r11b r12b r13b r14b r15b))
49 (defparameter *high-byte-reg-names*
50 #(ah ch dh bh))
51 (defparameter *word-reg-names*
52 #(ax cx dx bx sp bp si di r8w r9w r10w r11w r12w r13w r14w r15w))
53 (defparameter *dword-reg-names*
54 #(eax ecx edx ebx esp ebp esi edi r8d r9d r10d r11d r12d r13d r14d r15d))
55 (defparameter *qword-reg-names*
56 #(rax rcx rdx rbx rsp rbp rsi rdi r8 r9 r10 r11 r12 r13 r14 r15))
58 ;;; The printers for registers, memory references and immediates need to
59 ;;; take into account the width bit in the instruction, whether a #x66
60 ;;; or a REX prefix was issued, and the contents of the REX prefix.
61 ;;; This is implemented using prefilters to put flags into the slot
62 ;;; INST-PROPERTIES of the DSTATE. These flags are the following
63 ;;; symbols:
64 ;;;
65 ;;; OPERAND-SIZE-8 The width bit was zero
66 ;;; OPERAND-SIZE-16 The "operand size override" prefix (#x66) was found
67 ;;; REX A REX prefix was found
68 ;;; REX-W A REX prefix with the "operand width" bit set was
69 ;;; found
70 ;;; REX-R A REX prefix with the "register" bit set was found
71 ;;; REX-X A REX prefix with the "index" bit set was found
72 ;;; REX-B A REX prefix with the "base" bit set was found
74 ;;; Return the operand size depending on the prefixes and width bit as
75 ;;; stored in DSTATE.
76 (defun inst-operand-size (dstate)
77 (declare (type sb!disassem:disassem-state dstate))
78 (cond ((sb!disassem:dstate-get-inst-prop dstate 'operand-size-8)
79 :byte)
80 ((sb!disassem:dstate-get-inst-prop dstate 'rex-w)
81 :qword)
82 ((sb!disassem:dstate-get-inst-prop dstate 'operand-size-16)
83 :word)
85 +default-operand-size+)))
87 ;;; The same as INST-OPERAND-SIZE, but for those instructions (e.g.
88 ;;; PUSH, JMP) that have a default operand size of :qword. It can only
89 ;;; be overwritten to :word.
90 (defun inst-operand-size-default-qword (dstate)
91 (declare (type sb!disassem:disassem-state dstate))
92 (if (sb!disassem:dstate-get-inst-prop dstate 'operand-size-16)
93 :word
94 :qword))
96 ;;; Print to STREAM the name of the general-purpose register encoded by
97 ;;; VALUE and of size WIDTH. For robustness, the high byte registers
98 ;;; (AH, BH, CH, DH) are correctly detected, too, although the compiler
99 ;;; does not use them.
100 (defun print-reg-with-width (value width stream dstate)
101 (declare (type full-reg value)
102 (type stream stream)
103 (type sb!disassem:disassem-state dstate))
104 (princ (if (and (eq width :byte)
105 (<= 4 value 7)
106 (not (sb!disassem:dstate-get-inst-prop dstate 'rex)))
107 (aref *high-byte-reg-names* (- value 4))
108 (aref (ecase width
109 (:byte *byte-reg-names*)
110 (:word *word-reg-names*)
111 (:dword *dword-reg-names*)
112 (:qword *qword-reg-names*))
113 value))
114 stream)
115 ;; XXX plus should do some source-var notes
118 (defun print-reg (value stream dstate)
119 (declare (type full-reg value)
120 (type stream stream)
121 (type sb!disassem:disassem-state dstate))
122 (print-reg-with-width value
123 (inst-operand-size dstate)
124 stream
125 dstate))
127 (defun print-reg-default-qword (value stream dstate)
128 (declare (type full-reg value)
129 (type stream stream)
130 (type sb!disassem:disassem-state dstate))
131 (print-reg-with-width value
132 (inst-operand-size-default-qword dstate)
133 stream
134 dstate))
136 (defun print-byte-reg (value stream dstate)
137 (declare (type full-reg value)
138 (type stream stream)
139 (type sb!disassem:disassem-state dstate))
140 (print-reg-with-width value :byte stream dstate))
142 (defun print-addr-reg (value stream dstate)
143 (declare (type full-reg value)
144 (type stream stream)
145 (type sb!disassem:disassem-state dstate))
146 (print-reg-with-width value +default-address-size+ stream dstate))
148 ;;; Print a register or a memory reference of the given WIDTH.
149 ;;; If SIZED-P is true, add an explicit size indicator for memory
150 ;;; references.
151 (defun print-reg/mem-with-width (value width sized-p stream dstate)
152 (declare (type (or list full-reg) value)
153 (type (member :byte :word :dword :qword) width)
154 (type boolean sized-p)
155 (type stream stream)
156 (type sb!disassem:disassem-state dstate))
157 (if (typep value 'full-reg)
158 (print-reg-with-width value width stream dstate)
159 (print-mem-access value (and sized-p width) stream dstate)))
161 ;;; Print a register or a memory reference. The width is determined by
162 ;;; calling INST-OPERAND-SIZE.
163 (defun print-reg/mem (value stream dstate)
164 (declare (type (or list full-reg) value)
165 (type stream stream)
166 (type sb!disassem:disassem-state dstate))
167 (print-reg/mem-with-width
168 value (inst-operand-size dstate) nil stream dstate))
170 ;; Same as print-reg/mem, but prints an explicit size indicator for
171 ;; memory references.
172 (defun print-sized-reg/mem (value stream dstate)
173 (declare (type (or list full-reg) value)
174 (type stream stream)
175 (type sb!disassem:disassem-state dstate))
176 (print-reg/mem-with-width
177 value (inst-operand-size dstate) t stream dstate))
179 ;;; Same as print-sized-reg/mem, but with a default operand size of
180 ;;; :qword.
181 (defun print-sized-reg/mem-default-qword (value stream dstate)
182 (declare (type (or list full-reg) value)
183 (type stream stream)
184 (type sb!disassem:disassem-state dstate))
185 (print-reg/mem-with-width
186 value (inst-operand-size-default-qword dstate) t stream dstate))
188 (defun print-sized-byte-reg/mem (value stream dstate)
189 (declare (type (or list full-reg) value)
190 (type stream stream)
191 (type sb!disassem:disassem-state dstate))
192 (print-reg/mem-with-width value :byte t stream dstate))
194 (defun print-sized-word-reg/mem (value stream dstate)
195 (declare (type (or list full-reg) value)
196 (type stream stream)
197 (type sb!disassem:disassem-state dstate))
198 (print-reg/mem-with-width value :word t stream dstate))
200 (defun print-sized-dword-reg/mem (value stream dstate)
201 (declare (type (or list full-reg) value)
202 (type stream stream)
203 (type sb!disassem:disassem-state dstate))
204 (print-reg/mem-with-width value :dword t stream dstate))
206 (defun print-label (value stream dstate)
207 (declare (ignore dstate))
208 (sb!disassem:princ16 value stream))
210 (defun print-xmmreg (value stream dstate)
211 (declare (type xmmreg value)
212 (type stream stream)
213 (ignore dstate))
214 (format stream "XMM~d" value))
216 (defun print-xmmreg/mem (value stream dstate)
217 (declare (type (or list xmmreg) value)
218 (type stream stream)
219 (type sb!disassem:disassem-state dstate))
220 (if (typep value 'xmmreg)
221 (print-xmmreg value stream dstate)
222 (print-mem-access value nil stream dstate)))
224 ;; Same as print-xmmreg/mem, but prints an explicit size indicator for
225 ;; memory references.
226 (defun print-sized-xmmreg/mem (value stream dstate)
227 (declare (type (or list xmmreg) value)
228 (type stream stream)
229 (type sb!disassem:disassem-state dstate))
230 (if (typep value 'xmmreg)
231 (print-xmmreg value stream dstate)
232 (print-mem-access value (inst-operand-size dstate) stream dstate)))
234 ;;; This prefilter is used solely for its side effects, namely to put
235 ;;; the bits found in the REX prefix into the DSTATE for use by other
236 ;;; prefilters and by printers.
237 (defun prefilter-wrxb (value dstate)
238 (declare (type (unsigned-byte 4) value)
239 (type sb!disassem:disassem-state dstate))
240 (sb!disassem:dstate-put-inst-prop dstate 'rex)
241 (when (plusp (logand value #b1000))
242 (sb!disassem:dstate-put-inst-prop dstate 'rex-w))
243 (when (plusp (logand value #b0100))
244 (sb!disassem:dstate-put-inst-prop dstate 'rex-r))
245 (when (plusp (logand value #b0010))
246 (sb!disassem:dstate-put-inst-prop dstate 'rex-x))
247 (when (plusp (logand value #b0001))
248 (sb!disassem:dstate-put-inst-prop dstate 'rex-b))
249 value)
251 ;;; This prefilter is used solely for its side effect, namely to put
252 ;;; the property OPERAND-SIZE-8 into the DSTATE if VALUE is 0.
253 (defun prefilter-width (value dstate)
254 (declare (type bit value)
255 (type sb!disassem:disassem-state dstate))
256 (when (zerop value)
257 (sb!disassem:dstate-put-inst-prop dstate 'operand-size-8))
258 value)
260 ;;; This prefilter is used solely for its side effect, namely to put
261 ;;; the property OPERAND-SIZE-16 into the DSTATE.
262 (defun prefilter-x66 (value dstate)
263 (declare (type (eql #x66) value)
264 (ignore value)
265 (type sb!disassem:disassem-state dstate))
266 (sb!disassem:dstate-put-inst-prop dstate 'operand-size-16))
268 ;;; A register field that can be extended by REX.R.
269 (defun prefilter-reg-r (value dstate)
270 (declare (type reg value)
271 (type sb!disassem:disassem-state dstate))
272 (if (sb!disassem::dstate-get-inst-prop dstate 'rex-r)
273 (+ value 8)
274 value))
276 ;;; A register field that can be extended by REX.B.
277 (defun prefilter-reg-b (value dstate)
278 (declare (type reg value)
279 (type sb!disassem:disassem-state dstate))
280 (if (sb!disassem::dstate-get-inst-prop dstate 'rex-b)
281 (+ value 8)
282 value))
284 ;;; Returns either an integer, meaning a register, or a list of
285 ;;; (BASE-REG OFFSET INDEX-REG INDEX-SCALE), where any component
286 ;;; may be missing or nil to indicate that it's not used or has the
287 ;;; obvious default value (e.g., 1 for the index-scale). VALUE is a list
288 ;;; of the mod and r/m field of the ModRM byte of the instruction.
289 ;;; Depending on VALUE a SIB byte and/or an offset may be read. The
290 ;;; REX.B bit from DSTATE is used to extend the sole register or the
291 ;;; BASE-REG to a full register, the REX.X bit does the same for the
292 ;;; INDEX-REG.
293 (defun prefilter-reg/mem (value dstate)
294 (declare (type list value)
295 (type sb!disassem:disassem-state dstate))
296 (let ((mod (first value))
297 (r/m (second value)))
298 (declare (type (unsigned-byte 2) mod)
299 (type (unsigned-byte 3) r/m))
300 (let ((full-reg (if (sb!disassem:dstate-get-inst-prop dstate 'rex-b)
301 (+ r/m 8)
302 r/m)))
303 (declare (type full-reg full-reg))
304 (cond ((= mod #b11)
305 ;; registers
306 full-reg)
307 ((= r/m #b100)
308 ;; sib byte
309 (let ((sib (sb!disassem:read-suffix 8 dstate)))
310 (declare (type (unsigned-byte 8) sib))
311 (let ((base-reg (ldb (byte 3 0) sib))
312 (index-reg (ldb (byte 3 3) sib))
313 (index-scale (ldb (byte 2 6) sib)))
314 (declare (type (unsigned-byte 3) base-reg index-reg)
315 (type (unsigned-byte 2) index-scale))
316 (let* ((offset
317 (case mod
318 (#b00
319 (if (= base-reg #b101)
320 (sb!disassem:read-signed-suffix 32 dstate)
321 nil))
322 (#b01
323 (sb!disassem:read-signed-suffix 8 dstate))
324 (#b10
325 (sb!disassem:read-signed-suffix 32 dstate)))))
326 (list (unless (and (= mod #b00) (= base-reg #b101))
327 (if (sb!disassem:dstate-get-inst-prop dstate 'rex-b)
328 (+ base-reg 8)
329 base-reg))
330 offset
331 (unless (= index-reg #b100)
332 (if (sb!disassem:dstate-get-inst-prop dstate 'rex-x)
333 (+ index-reg 8)
334 index-reg))
335 (ash 1 index-scale))))))
336 ((and (= mod #b00) (= r/m #b101))
337 (list 'rip (sb!disassem:read-signed-suffix 32 dstate)))
338 ((= mod #b00)
339 (list full-reg))
340 ((= mod #b01)
341 (list full-reg (sb!disassem:read-signed-suffix 8 dstate)))
342 (t ; (= mod #b10)
343 (list full-reg (sb!disassem:read-signed-suffix 32 dstate)))))))
345 (defun read-address (value dstate)
346 (declare (ignore value)) ; always nil anyway
347 (sb!disassem:read-suffix (width-bits (inst-operand-size dstate)) dstate))
349 (defun width-bits (width)
350 (ecase width
351 (:byte 8)
352 (:word 16)
353 (:dword 32)
354 (:qword 64)))
356 ) ; EVAL-WHEN
358 ;;;; disassembler argument types
360 ;;; Used to capture the lower four bits of the REX prefix.
361 (sb!disassem:define-arg-type wrxb
362 :prefilter #'prefilter-wrxb)
364 (sb!disassem:define-arg-type width
365 :prefilter #'prefilter-width
366 :printer (lambda (value stream dstate)
367 (declare (ignore value))
368 (princ (schar (symbol-name (inst-operand-size dstate)) 0)
369 stream)))
371 ;;; Used to capture the effect of the #x66 operand size override prefix.
372 (sb!disassem:define-arg-type x66
373 :prefilter #'prefilter-x66)
375 (sb!disassem:define-arg-type displacement
376 :sign-extend t
377 :use-label #'offset-next
378 :printer (lambda (value stream dstate)
379 (sb!disassem:maybe-note-assembler-routine value nil dstate)
380 (print-label value stream dstate)))
382 (sb!disassem:define-arg-type accum
383 :printer (lambda (value stream dstate)
384 (declare (ignore value)
385 (type stream stream)
386 (type sb!disassem:disassem-state dstate))
387 (print-reg 0 stream dstate)))
389 (sb!disassem:define-arg-type reg
390 :prefilter #'prefilter-reg-r
391 :printer #'print-reg)
393 (sb!disassem:define-arg-type reg-b
394 :prefilter #'prefilter-reg-b
395 :printer #'print-reg)
397 (sb!disassem:define-arg-type reg-b-default-qword
398 :prefilter #'prefilter-reg-b
399 :printer #'print-reg-default-qword)
401 (sb!disassem:define-arg-type imm-addr
402 :prefilter #'read-address
403 :printer #'print-label)
405 ;;; Normally, immediate values for an operand size of :qword are of size
406 ;;; :dword and are sign-extended to 64 bits. For an exception, see the
407 ;;; argument type definition following this one.
408 (sb!disassem:define-arg-type signed-imm-data
409 :prefilter (lambda (value dstate)
410 (declare (ignore value)) ; always nil anyway
411 (let ((width (width-bits (inst-operand-size dstate))))
412 (when (= width 64)
413 (setf width 32))
414 (sb!disassem:read-signed-suffix width dstate))))
416 ;;; Used by the variant of the MOV instruction with opcode B8 which can
417 ;;; move immediates of all sizes (i.e. including :qword) into a
418 ;;; register.
419 (sb!disassem:define-arg-type signed-imm-data-upto-qword
420 :prefilter (lambda (value dstate)
421 (declare (ignore value)) ; always nil anyway
422 (sb!disassem:read-signed-suffix
423 (width-bits (inst-operand-size dstate))
424 dstate)))
426 ;;; Used by those instructions that have a default operand size of
427 ;;; :qword. Nevertheless the immediate is at most of size :dword.
428 ;;; The only instruction of this kind having a variant with an immediate
429 ;;; argument is PUSH.
430 (sb!disassem:define-arg-type signed-imm-data-default-qword
431 :prefilter (lambda (value dstate)
432 (declare (ignore value)) ; always nil anyway
433 (let ((width (width-bits
434 (inst-operand-size-default-qword dstate))))
435 (when (= width 64)
436 (setf width 32))
437 (sb!disassem:read-signed-suffix width dstate))))
439 (sb!disassem:define-arg-type signed-imm-byte
440 :prefilter (lambda (value dstate)
441 (declare (ignore value)) ; always nil anyway
442 (sb!disassem:read-signed-suffix 8 dstate)))
444 (sb!disassem:define-arg-type imm-byte
445 :prefilter (lambda (value dstate)
446 (declare (ignore value)) ; always nil anyway
447 (sb!disassem:read-suffix 8 dstate)))
449 ;;; needed for the ret imm16 instruction
450 (sb!disassem:define-arg-type imm-word-16
451 :prefilter (lambda (value dstate)
452 (declare (ignore value)) ; always nil anyway
453 (sb!disassem:read-suffix 16 dstate)))
455 (sb!disassem:define-arg-type reg/mem
456 :prefilter #'prefilter-reg/mem
457 :printer #'print-reg/mem)
458 (sb!disassem:define-arg-type sized-reg/mem
459 ;; Same as reg/mem, but prints an explicit size indicator for
460 ;; memory references.
461 :prefilter #'prefilter-reg/mem
462 :printer #'print-sized-reg/mem)
464 ;;; Arguments of type reg/mem with a fixed size.
465 (sb!disassem:define-arg-type sized-byte-reg/mem
466 :prefilter #'prefilter-reg/mem
467 :printer #'print-sized-byte-reg/mem)
468 (sb!disassem:define-arg-type sized-word-reg/mem
469 :prefilter #'prefilter-reg/mem
470 :printer #'print-sized-word-reg/mem)
471 (sb!disassem:define-arg-type sized-dword-reg/mem
472 :prefilter #'prefilter-reg/mem
473 :printer #'print-sized-dword-reg/mem)
475 ;;; Same as sized-reg/mem, but with a default operand size of :qword.
476 (sb!disassem:define-arg-type sized-reg/mem-default-qword
477 :prefilter #'prefilter-reg/mem
478 :printer #'print-sized-reg/mem-default-qword)
480 ;;; XMM registers
481 (sb!disassem:define-arg-type xmmreg
482 :prefilter #'prefilter-reg-r
483 :printer #'print-xmmreg)
485 (sb!disassem:define-arg-type xmmreg-b
486 :prefilter #'prefilter-reg-b
487 :printer #'print-xmmreg)
489 (sb!disassem:define-arg-type xmmreg/mem
490 :prefilter #'prefilter-reg/mem
491 :printer #'print-xmmreg/mem)
493 (sb!disassem:define-arg-type sized-xmmreg/mem
494 :prefilter #'prefilter-reg/mem
495 :printer #'print-sized-xmmreg/mem)
498 (eval-when (:compile-toplevel :load-toplevel :execute)
499 (defparameter *conditions*
500 '((:o . 0)
501 (:no . 1)
502 (:b . 2) (:nae . 2) (:c . 2)
503 (:nb . 3) (:ae . 3) (:nc . 3)
504 (:eq . 4) (:e . 4) (:z . 4)
505 (:ne . 5) (:nz . 5)
506 (:be . 6) (:na . 6)
507 (:nbe . 7) (:a . 7)
508 (:s . 8)
509 (:ns . 9)
510 (:p . 10) (:pe . 10)
511 (:np . 11) (:po . 11)
512 (:l . 12) (:nge . 12)
513 (:nl . 13) (:ge . 13)
514 (:le . 14) (:ng . 14)
515 (:nle . 15) (:g . 15)))
516 (defparameter *condition-name-vec*
517 (let ((vec (make-array 16 :initial-element nil)))
518 (dolist (cond *conditions*)
519 (when (null (aref vec (cdr cond)))
520 (setf (aref vec (cdr cond)) (car cond))))
521 vec))
522 ) ; EVAL-WHEN
524 ;;; Set assembler parameters. (In CMU CL, this was done with
525 ;;; a call to a macro DEF-ASSEMBLER-PARAMS.)
526 (eval-when (:compile-toplevel :load-toplevel :execute)
527 (setf sb!assem:*assem-scheduler-p* nil))
529 (sb!disassem:define-arg-type condition-code
530 :printer *condition-name-vec*)
532 (defun conditional-opcode (condition)
533 (cdr (assoc condition *conditions* :test #'eq)))
535 ;;;; disassembler instruction formats
537 (eval-when (:compile-toplevel :execute)
538 (defun swap-if (direction field1 separator field2)
539 `(:if (,direction :constant 0)
540 (,field1 ,separator ,field2)
541 (,field2 ,separator ,field1))))
543 (sb!disassem:define-instruction-format (byte 8 :default-printer '(:name))
544 (op :field (byte 8 0))
545 ;; optional fields
546 (accum :type 'accum)
547 (imm))
549 (sb!disassem:define-instruction-format (two-bytes 16
550 :default-printer '(:name))
551 (op :fields (list (byte 8 0) (byte 8 8))))
553 (sb!disassem:define-instruction-format (three-bytes 24
554 :default-printer '(:name))
555 (op :fields (list (byte 8 0) (byte 8 8) (byte 8 16))))
557 ;;; A one-byte instruction with a #x66 prefix, used to indicate an
558 ;;; operand size of :word.
559 (sb!disassem:define-instruction-format (x66-byte 16
560 :default-printer '(:name))
561 (x66 :field (byte 8 0) :value #x66)
562 (op :field (byte 8 8)))
564 ;;; A one-byte instruction with a REX prefix, used to indicate an
565 ;;; operand size of :qword. REX.W must be 1, the other three bits are
566 ;;; ignored.
567 (sb!disassem:define-instruction-format (rex-byte 16
568 :default-printer '(:name))
569 (rex :field (byte 5 3) :value #b01001)
570 (op :field (byte 8 8)))
572 (sb!disassem:define-instruction-format (simple 8)
573 (op :field (byte 7 1))
574 (width :field (byte 1 0) :type 'width)
575 ;; optional fields
576 (accum :type 'accum)
577 (imm))
579 (sb!disassem:define-instruction-format (rex-simple 16)
580 (rex :field (byte 4 4) :value #b0100)
581 (wrxb :field (byte 4 0) :type 'wrxb)
582 (op :field (byte 7 9))
583 (width :field (byte 1 8) :type 'width)
584 ;; optional fields
585 (accum :type 'accum)
586 (imm))
588 ;;; Same as simple, but with direction bit
589 (sb!disassem:define-instruction-format (simple-dir 8 :include 'simple)
590 (op :field (byte 6 2))
591 (dir :field (byte 1 1)))
593 ;;; Same as simple, but with the immediate value occurring by default,
594 ;;; and with an appropiate printer.
595 (sb!disassem:define-instruction-format (accum-imm 8
596 :include 'simple
597 :default-printer '(:name
598 :tab accum ", " imm))
599 (imm :type 'signed-imm-data))
601 (sb!disassem:define-instruction-format (rex-accum-imm 16
602 :include 'rex-simple
603 :default-printer '(:name
604 :tab accum ", " imm))
605 (imm :type 'signed-imm-data))
607 (sb!disassem:define-instruction-format (reg-no-width 8
608 :default-printer '(:name :tab reg))
609 (op :field (byte 5 3))
610 (reg :field (byte 3 0) :type 'reg-b)
611 ;; optional fields
612 (accum :type 'accum)
613 (imm))
615 (sb!disassem:define-instruction-format (rex-reg-no-width 16
616 :default-printer '(:name :tab reg))
617 (rex :field (byte 4 4) :value #b0100)
618 (wrxb :field (byte 4 0) :type 'wrxb)
619 (op :field (byte 5 11))
620 (reg :field (byte 3 8) :type 'reg-b)
621 ;; optional fields
622 (accum :type 'accum)
623 (imm))
625 ;;; Same as reg-no-width, but with a default operand size of :qword.
626 (sb!disassem:define-instruction-format (reg-no-width-default-qword 8
627 :include 'reg-no-width
628 :default-printer '(:name :tab reg))
629 (reg :type 'reg-b-default-qword))
631 ;;; Same as rex-reg-no-width, but with a default operand size of :qword.
632 (sb!disassem:define-instruction-format (rex-reg-no-width-default-qword 16
633 :include 'rex-reg-no-width
634 :default-printer '(:name :tab reg))
635 (reg :type 'reg-b-default-qword))
637 ;;; Adds a width field to reg-no-width. Note that we can't use
638 ;;; :INCLUDE 'REG-NO-WIDTH here to save typing because that would put
639 ;;; the WIDTH field last, but the prefilter for WIDTH must run before
640 ;;; the one for IMM to be able to determine the correct size of IMM.
641 (sb!disassem:define-instruction-format (reg 8
642 :default-printer '(:name :tab reg))
643 (op :field (byte 4 4))
644 (width :field (byte 1 3) :type 'width)
645 (reg :field (byte 3 0) :type 'reg-b)
646 ;; optional fields
647 (accum :type 'accum)
648 (imm))
650 (sb!disassem:define-instruction-format (rex-reg 16
651 :default-printer '(:name :tab reg))
652 (rex :field (byte 4 4) :value #b0100)
653 (wrxb :field (byte 4 0) :type 'wrxb)
654 (width :field (byte 1 11) :type 'width)
655 (op :field (byte 4 12))
656 (reg :field (byte 3 8) :type 'reg-b)
657 ;; optional fields
658 (accum :type 'accum)
659 (imm))
661 (sb!disassem:define-instruction-format (two-bytes 16
662 :default-printer '(:name))
663 (op :fields (list (byte 8 0) (byte 8 8))))
665 (sb!disassem:define-instruction-format (reg-reg/mem 16
666 :default-printer
667 `(:name :tab reg ", " reg/mem))
668 (op :field (byte 7 1))
669 (width :field (byte 1 0) :type 'width)
670 (reg/mem :fields (list (byte 2 14) (byte 3 8))
671 :type 'reg/mem)
672 (reg :field (byte 3 11) :type 'reg)
673 ;; optional fields
674 (imm))
676 (sb!disassem:define-instruction-format (rex-reg-reg/mem 24
677 :default-printer
678 `(:name :tab reg ", " reg/mem))
679 (rex :field (byte 4 4) :value #b0100)
680 (wrxb :field (byte 4 0) :type 'wrxb)
681 (width :field (byte 1 8) :type 'width)
682 (op :field (byte 7 9))
683 (reg/mem :fields (list (byte 2 22) (byte 3 16))
684 :type 'reg/mem)
685 (reg :field (byte 3 19) :type 'reg)
686 ;; optional fields
687 (imm))
689 ;;; same as reg-reg/mem, but with direction bit
690 (sb!disassem:define-instruction-format (reg-reg/mem-dir 16
691 :include 'reg-reg/mem
692 :default-printer
693 `(:name
694 :tab
695 ,(swap-if 'dir 'reg/mem ", " 'reg)))
696 (op :field (byte 6 2))
697 (dir :field (byte 1 1)))
699 (sb!disassem:define-instruction-format (rex-reg-reg/mem-dir 24
700 :include 'rex-reg-reg/mem
701 :default-printer
702 `(:name
703 :tab
704 ,(swap-if 'dir 'reg/mem ", " 'reg)))
705 (op :field (byte 6 10))
706 (dir :field (byte 1 9)))
708 (sb!disassem:define-instruction-format (x66-reg-reg/mem-dir 24
709 :default-printer
710 `(:name
711 :tab
712 ,(swap-if 'dir 'reg/mem ", " 'reg)))
713 (x66 :field (byte 8 0) :type 'x66 :value #x66)
714 (op :field (byte 6 10))
715 (dir :field (byte 1 9))
716 (width :field (byte 1 8) :type 'width)
717 (reg/mem :fields (list (byte 2 22) (byte 3 16))
718 :type 'reg/mem)
719 (reg :field (byte 3 19) :type 'reg))
721 (sb!disassem:define-instruction-format (x66-rex-reg-reg/mem-dir 32
722 :default-printer
723 `(:name
724 :tab
725 ,(swap-if 'dir 'reg/mem ", " 'reg)))
726 (x66 :field (byte 8 0) :type 'x66 :value #x66)
727 (rex :field (byte 4 12) :value #b0100)
728 (wrxb :field (byte 4 8) :type 'wrxb)
729 (op :field (byte 6 18))
730 (dir :field (byte 1 17))
731 (width :field (byte 1 16) :type 'width)
732 (reg/mem :fields (list (byte 2 30) (byte 3 24))
733 :type 'reg/mem)
734 (reg :field (byte 3 27) :type 'reg))
736 ;;; Same as reg-reg/mem, but uses the reg field as a second op code.
737 (sb!disassem:define-instruction-format (reg/mem 16
738 :default-printer '(:name :tab reg/mem))
739 (op :fields (list (byte 7 1) (byte 3 11)))
740 (width :field (byte 1 0) :type 'width)
741 (reg/mem :fields (list (byte 2 14) (byte 3 8))
742 :type 'sized-reg/mem)
743 ;; optional fields
744 (imm))
746 (sb!disassem:define-instruction-format (rex-reg/mem 24
747 :default-printer '(:name :tab reg/mem))
748 (rex :field (byte 4 4) :value #b0100)
749 (wrxb :field (byte 4 0) :type 'wrxb)
750 (op :fields (list (byte 7 9) (byte 3 19)))
751 (width :field (byte 1 8) :type 'width)
752 (reg/mem :fields (list (byte 2 22) (byte 3 16))
753 :type 'sized-reg/mem)
754 ;; optional fields
755 (imm))
757 ;;; Same as reg/mem, but without a width field and with a default
758 ;;; operand size of :qword.
759 (sb!disassem:define-instruction-format (reg/mem-default-qword 16
760 :default-printer '(:name :tab reg/mem))
761 (op :fields (list (byte 8 0) (byte 3 11)))
762 (reg/mem :fields (list (byte 2 14) (byte 3 8))
763 :type 'sized-reg/mem-default-qword))
765 (sb!disassem:define-instruction-format (rex-reg/mem-default-qword 24
766 :default-printer '(:name :tab reg/mem))
767 (rex :field (byte 4 4) :value #b0100)
768 (wrxb :field (byte 4 0) :type 'wrxb)
769 (op :fields (list (byte 8 8) (byte 3 19)))
770 (reg/mem :fields (list (byte 2 22) (byte 3 16))
771 :type 'sized-reg/mem-default-qword))
773 ;;; Same as reg/mem, but with the immediate value occurring by default,
774 ;;; and with an appropiate printer.
775 (sb!disassem:define-instruction-format (reg/mem-imm 16
776 :include 'reg/mem
777 :default-printer
778 '(:name :tab reg/mem ", " imm))
779 (reg/mem :type 'sized-reg/mem)
780 (imm :type 'signed-imm-data))
782 (sb!disassem:define-instruction-format (rex-reg/mem-imm 24
783 :include 'rex-reg/mem
784 :default-printer
785 '(:name :tab reg/mem ", " imm))
786 (reg/mem :type 'sized-reg/mem)
787 (imm :type 'signed-imm-data))
789 ;;; Same as reg/mem, but with using the accumulator in the default printer
790 (sb!disassem:define-instruction-format
791 (accum-reg/mem 16
792 :include 'reg/mem :default-printer '(:name :tab accum ", " reg/mem))
793 (reg/mem :type 'reg/mem) ; don't need a size
794 (accum :type 'accum))
796 (sb!disassem:define-instruction-format (rex-accum-reg/mem 24
797 :include 'rex-reg/mem
798 :default-printer
799 '(:name :tab accum ", " reg/mem))
800 (reg/mem :type 'reg/mem) ; don't need a size
801 (accum :type 'accum))
803 ;;; Same as reg-reg/mem, but with a prefix of #b00001111
804 (sb!disassem:define-instruction-format (ext-reg-reg/mem 24
805 :default-printer
806 `(:name :tab reg ", " reg/mem))
807 (prefix :field (byte 8 0) :value #b00001111)
808 (op :field (byte 7 9))
809 (width :field (byte 1 8) :type 'width)
810 (reg/mem :fields (list (byte 2 22) (byte 3 16))
811 :type 'reg/mem)
812 (reg :field (byte 3 19) :type 'reg)
813 ;; optional fields
814 (imm))
816 (sb!disassem:define-instruction-format (ext-reg-reg/mem-no-width 24
817 :default-printer
818 `(:name :tab reg ", " reg/mem))
819 (prefix :field (byte 8 0) :value #b00001111)
820 (op :field (byte 8 8))
821 (reg/mem :fields (list (byte 2 22) (byte 3 16))
822 :type 'reg/mem)
823 (reg :field (byte 3 19) :type 'reg))
825 (sb!disassem:define-instruction-format (rex-ext-reg-reg/mem-no-width 32
826 :default-printer
827 `(:name :tab reg ", " reg/mem))
828 (rex :field (byte 4 4) :value #b0100)
829 (wrxb :field (byte 4 0) :type 'wrxb)
830 (prefix :field (byte 8 8) :value #b00001111)
831 (op :field (byte 8 16))
832 (reg/mem :fields (list (byte 2 30) (byte 3 24))
833 :type 'reg/mem)
834 (reg :field (byte 3 27) :type 'reg))
836 (sb!disassem:define-instruction-format (ext-reg/mem-no-width 24
837 :default-printer
838 `(:name :tab reg/mem))
839 (prefix :field (byte 8 0) :value #b00001111)
840 (op :fields (list (byte 8 8) (byte 3 19)))
841 (reg/mem :fields (list (byte 2 22) (byte 3 16))
842 :type 'reg/mem))
844 (sb!disassem:define-instruction-format (rex-ext-reg/mem-no-width 32
845 :default-printer
846 `(:name :tab reg/mem))
847 (rex :field (byte 4 4) :value #b0100)
848 (wrxb :field (byte 4 0) :type 'wrxb)
849 (prefix :field (byte 8 8) :value #b00001111)
850 (op :fields (list (byte 8 16) (byte 3 27)))
851 (reg/mem :fields (list (byte 2 30) (byte 3 24))
852 :type 'reg/mem))
854 ;;; reg-no-width with #x0f prefix
855 (sb!disassem:define-instruction-format (ext-reg-no-width 16
856 :default-printer '(:name :tab reg))
857 (prefix :field (byte 8 0) :value #b00001111)
858 (op :field (byte 5 11))
859 (reg :field (byte 3 8) :type 'reg-b))
861 ;;; Same as reg/mem, but with a prefix of #b00001111
862 (sb!disassem:define-instruction-format (ext-reg/mem 24
863 :default-printer '(:name :tab reg/mem))
864 (prefix :field (byte 8 0) :value #b00001111)
865 (op :fields (list (byte 7 9) (byte 3 19)))
866 (width :field (byte 1 8) :type 'width)
867 (reg/mem :fields (list (byte 2 22) (byte 3 16))
868 :type 'sized-reg/mem)
869 ;; optional fields
870 (imm))
872 (sb!disassem:define-instruction-format (ext-reg/mem-imm 24
873 :include 'ext-reg/mem
874 :default-printer
875 '(:name :tab reg/mem ", " imm))
876 (imm :type 'signed-imm-data))
878 ;;;; XMM instructions
880 ;;; All XMM instructions use an extended opcode (#x0F as the first
881 ;;; opcode byte). Therefore in the following "EXT" in the name of the
882 ;;; instruction formats refers to the formats that have an additional
883 ;;; prefix (#x66, #xF2 or #xF3).
885 ;;; Instructions having an XMM register as the destination operand
886 ;;; and an XMM register or a memory location as the source operand.
887 ;;; The size of the operands is implicitly given by the instruction.
888 (sb!disassem:define-instruction-format (xmm-xmm/mem 24
889 :default-printer
890 '(:name :tab reg ", " reg/mem))
891 (x0f :field (byte 8 0) :value #x0f)
892 (op :field (byte 8 8))
893 (reg/mem :fields (list (byte 2 22) (byte 3 16))
894 :type 'xmmreg/mem)
895 (reg :field (byte 3 19) :type 'xmmreg))
897 (sb!disassem:define-instruction-format (rex-xmm-xmm/mem 32
898 :default-printer
899 '(:name :tab reg ", " reg/mem))
900 (rex :field (byte 4 4) :value #b0100)
901 (wrxb :field (byte 4 0) :type 'wrxb)
902 (x0f :field (byte 8 8) :value #x0f)
903 (op :field (byte 8 16))
904 (reg/mem :fields (list (byte 2 30) (byte 3 24))
905 :type 'xmmreg/mem)
906 (reg :field (byte 3 27) :type 'xmmreg))
908 (sb!disassem:define-instruction-format (ext-xmm-xmm/mem 32
909 :default-printer
910 '(:name :tab reg ", " reg/mem))
911 (prefix :field (byte 8 0))
912 (x0f :field (byte 8 8) :value #x0f)
913 (op :field (byte 8 16))
914 (reg/mem :fields (list (byte 2 30) (byte 3 24))
915 :type 'xmmreg/mem)
916 (reg :field (byte 3 27) :type 'xmmreg))
918 (sb!disassem:define-instruction-format (ext-rex-xmm-xmm/mem 40
919 :default-printer
920 '(:name :tab reg ", " reg/mem))
921 (prefix :field (byte 8 0))
922 (rex :field (byte 4 12) :value #b0100)
923 (wrxb :field (byte 4 8) :type 'wrxb)
924 (x0f :field (byte 8 16) :value #x0f)
925 (op :field (byte 8 24))
926 (reg/mem :fields (list (byte 2 38) (byte 3 32))
927 :type 'xmmreg/mem)
928 (reg :field (byte 3 35) :type 'xmmreg))
930 ;;; Same as xmm-xmm/mem etc., but with direction bit.
932 (sb!disassem:define-instruction-format (ext-xmm-xmm/mem-dir 32
933 :include 'ext-xmm-xmm/mem
934 :default-printer
935 `(:name
936 :tab
937 ,(swap-if 'dir 'reg ", " 'reg/mem)))
938 (op :field (byte 7 17))
939 (dir :field (byte 1 16)))
941 (sb!disassem:define-instruction-format (ext-rex-xmm-xmm/mem-dir 40
942 :include 'ext-rex-xmm-xmm/mem
943 :default-printer
944 `(:name
945 :tab
946 ,(swap-if 'dir 'reg ", " 'reg/mem)))
947 (op :field (byte 7 25))
948 (dir :field (byte 1 24)))
950 ;;; Instructions having an XMM register as one operand
951 ;;; and a constant (unsigned) byte as the other.
953 (sb!disassem:define-instruction-format (ext-xmm-imm 32
954 :default-printer
955 '(:name :tab reg/mem ", " imm))
956 (prefix :field (byte 8 0))
957 (x0f :field (byte 8 8) :value #x0f)
958 (op :field (byte 8 16))
959 (/i :field (byte 3 27))
960 (b11 :field (byte 2 30) :value #b11)
961 (reg/mem :field (byte 3 24)
962 :type 'xmmreg-b)
963 (imm :type 'imm-byte))
965 (sb!disassem:define-instruction-format (ext-rex-xmm-imm 40
966 :default-printer
967 '(:name :tab reg/mem ", " imm))
968 (prefix :field (byte 8 0))
969 (rex :field (byte 4 12) :value #b0100)
970 (wrxb :field (byte 4 8) :type 'wrxb)
971 (x0f :field (byte 8 16) :value #x0f)
972 (op :field (byte 8 24))
973 (/i :field (byte 3 35))
974 (b11 :field (byte 2 38) :value #b11)
975 (reg/mem :field (byte 3 32)
976 :type 'xmmreg-b)
977 (imm :type 'imm-byte))
979 ;;; Instructions having an XMM register as one operand and a general-
980 ;;; -purpose register or a memory location as the other operand.
982 (sb!disassem:define-instruction-format (xmm-reg/mem 24
983 :default-printer
984 '(:name :tab reg ", " reg/mem))
985 (x0f :field (byte 8 0) :value #x0f)
986 (op :field (byte 8 8))
987 (reg/mem :fields (list (byte 2 22) (byte 3 16))
988 :type 'sized-reg/mem)
989 (reg :field (byte 3 19) :type 'xmmreg))
991 (sb!disassem:define-instruction-format (rex-xmm-reg/mem 32
992 :default-printer
993 '(:name :tab reg ", " reg/mem))
994 (rex :field (byte 4 4) :value #b0100)
995 (wrxb :field (byte 4 0) :type 'wrxb)
996 (x0f :field (byte 8 8) :value #x0f)
997 (op :field (byte 8 16))
998 (reg/mem :fields (list (byte 2 30) (byte 3 24))
999 :type 'sized-reg/mem)
1000 (reg :field (byte 3 27) :type 'xmmreg))
1002 (sb!disassem:define-instruction-format (ext-xmm-reg/mem 32
1003 :default-printer
1004 '(:name :tab reg ", " reg/mem))
1005 (prefix :field (byte 8 0))
1006 (x0f :field (byte 8 8) :value #x0f)
1007 (op :field (byte 8 16))
1008 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1009 :type 'sized-reg/mem)
1010 (reg :field (byte 3 27) :type 'xmmreg))
1012 (sb!disassem:define-instruction-format (ext-rex-xmm-reg/mem 40
1013 :default-printer
1014 '(:name :tab reg ", " reg/mem))
1015 (prefix :field (byte 8 0))
1016 (rex :field (byte 4 12) :value #b0100)
1017 (wrxb :field (byte 4 8) :type 'wrxb)
1018 (x0f :field (byte 8 16) :value #x0f)
1019 (op :field (byte 8 24))
1020 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1021 :type 'sized-reg/mem)
1022 (reg :field (byte 3 35) :type 'xmmreg))
1024 ;;; Instructions having a general-purpose register as one operand and an
1025 ;;; XMM register or a memory location as the other operand.
1027 (sb!disassem:define-instruction-format (reg-xmm/mem 24
1028 :default-printer
1029 '(:name :tab reg ", " reg/mem))
1030 (x0f :field (byte 8 0) :value #x0f)
1031 (op :field (byte 8 8))
1032 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1033 :type 'sized-xmmreg/mem)
1034 (reg :field (byte 3 19) :type 'reg))
1036 (sb!disassem:define-instruction-format (rex-reg-xmm/mem 32
1037 :default-printer
1038 '(:name :tab reg ", " reg/mem))
1039 (rex :field (byte 4 4) :value #b0100)
1040 (wrxb :field (byte 4 0) :type 'wrxb)
1041 (x0f :field (byte 8 8) :value #x0f)
1042 (op :field (byte 8 16))
1043 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1044 :type 'sized-xmmreg/mem)
1045 (reg :field (byte 3 27) :type 'reg))
1047 (sb!disassem:define-instruction-format (ext-reg-xmm/mem 32
1048 :default-printer
1049 '(:name :tab reg ", " reg/mem))
1050 (prefix :field (byte 8 0))
1051 (x0f :field (byte 8 8) :value #x0f)
1052 (op :field (byte 8 16))
1053 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1054 :type 'sized-xmmreg/mem)
1055 (reg :field (byte 3 27) :type 'reg))
1057 (sb!disassem:define-instruction-format (ext-rex-reg-xmm/mem 40
1058 :default-printer
1059 '(:name :tab reg ", " reg/mem))
1060 (prefix :field (byte 8 0))
1061 (rex :field (byte 4 12) :value #b0100)
1062 (wrxb :field (byte 4 8) :type 'wrxb)
1063 (x0f :field (byte 8 16) :value #x0f)
1064 (op :field (byte 8 24))
1065 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1066 :type 'sized-xmmreg/mem)
1067 (reg :field (byte 3 35) :type 'reg))
1069 ;; XMM comparison instruction
1071 (eval-when (:compile-toplevel :load-toplevel :execute)
1072 (defparameter *sse-conditions* #(:eq :lt :le :unord :neq :nlt :nle :ord)))
1074 (sb!disassem:define-arg-type sse-condition-code
1075 :printer *sse-conditions*)
1077 (sb!disassem:define-instruction-format (xmm-xmm/mem-cmp 32
1078 :default-printer
1079 '(:name " " cc :tab reg ", " reg/mem))
1080 (x0f :field (byte 8 0) :value #x0f)
1081 (op :field (byte 8 8))
1082 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1083 :type 'xmmreg/mem)
1084 (reg :field (byte 3 19) :type 'xmmreg)
1085 (cc :field (byte 8 24) :type 'sse-condition-code))
1087 (sb!disassem:define-instruction-format (rex-xmm-xmm/mem-cmp 40
1088 :default-printer
1089 '(:name " " cc :tab reg ", " reg/mem))
1090 (rex :field (byte 4 4) :value #b0100)
1091 (wrxb :field (byte 4 0) :type 'wrxb)
1092 (x0f :field (byte 8 8) :value #x0f)
1093 (op :field (byte 8 16))
1094 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1095 :type 'xmmreg/mem)
1096 (reg :field (byte 3 27) :type 'xmmreg)
1097 (cc :field (byte 8 32) :type 'sse-condition-code))
1099 (sb!disassem:define-instruction-format (ext-xmm-xmm/mem-cmp 40
1100 :default-printer
1101 '(:name " " cc :tab reg ", " reg/mem))
1102 (prefix :field (byte 8 0))
1103 (x0f :field (byte 8 8) :value #x0f)
1104 (op :field (byte 8 16))
1105 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1106 :type 'xmmreg/mem)
1107 (reg :field (byte 3 27) :type 'xmmreg)
1108 (cc :field (byte 8 32) :type 'sse-condition-code))
1110 (sb!disassem:define-instruction-format (ext-rex-xmm-xmm/mem-cmp 48
1111 :default-printer
1112 '(:name " " cc :tab reg ", " reg/mem))
1113 (prefix :field (byte 8 0))
1114 (rex :field (byte 4 12) :value #b0100)
1115 (wrxb :field (byte 4 8) :type 'wrxb)
1116 (x0f :field (byte 8 16) :value #x0f)
1117 (op :field (byte 8 24))
1118 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1119 :type 'xmmreg/mem)
1120 (reg :field (byte 3 35) :type 'xmmreg)
1121 (cc :field (byte 8 40) :type 'sse-condition-code))
1123 ;;; XMM instructions with 8 bit immediate data
1125 (sb!disassem:define-instruction-format (xmm-xmm/mem-imm 24
1126 :default-printer
1127 '(:name :tab reg ", " reg/mem " " imm))
1128 (x0f :field (byte 8 0) :value #x0f)
1129 (op :field (byte 8 8))
1130 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1131 :type 'xmmreg/mem)
1132 (reg :field (byte 3 19) :type 'xmmreg)
1133 (imm :type 'imm-byte))
1135 (sb!disassem:define-instruction-format (rex-xmm-xmm/mem-imm 32
1136 :default-printer
1137 '(:name :tab reg ", " reg/mem " " imm))
1138 (rex :field (byte 4 4) :value #b0100)
1139 (wrxb :field (byte 4 0) :type 'wrxb)
1140 (x0f :field (byte 8 8) :value #x0f)
1141 (op :field (byte 8 16))
1142 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1143 :type 'xmmreg/mem)
1144 (reg :field (byte 3 27) :type 'xmmreg)
1145 (imm :type 'imm-byte))
1147 (sb!disassem:define-instruction-format (ext-xmm-xmm/mem-imm 32
1148 :default-printer
1149 '(:name :tab reg ", " reg/mem " " imm))
1150 (prefix :field (byte 8 0))
1151 (x0f :field (byte 8 8) :value #x0f)
1152 (op :field (byte 8 16))
1153 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1154 :type 'xmmreg/mem)
1155 (reg :field (byte 3 27) :type 'xmmreg)
1156 (imm :type 'imm-byte))
1158 (sb!disassem:define-instruction-format (ext-rex-xmm-xmm/mem-imm 40
1159 :default-printer
1160 '(:name :tab reg ", " reg/mem " " imm))
1161 (prefix :field (byte 8 0))
1162 (rex :field (byte 4 12) :value #b0100)
1163 (wrxb :field (byte 4 8) :type 'wrxb)
1164 (x0f :field (byte 8 16) :value #x0f)
1165 (op :field (byte 8 24))
1166 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1167 :type 'xmmreg/mem)
1168 (reg :field (byte 3 35) :type 'xmmreg)
1169 (imm :type 'imm-byte))
1171 (sb!disassem:define-instruction-format (string-op 8
1172 :include 'simple
1173 :default-printer '(:name width)))
1175 (sb!disassem:define-instruction-format (rex-string-op 16
1176 :include 'rex-simple
1177 :default-printer '(:name width)))
1179 (sb!disassem:define-instruction-format (short-cond-jump 16)
1180 (op :field (byte 4 4))
1181 (cc :field (byte 4 0) :type 'condition-code)
1182 (label :field (byte 8 8) :type 'displacement))
1184 (sb!disassem:define-instruction-format (short-jump 16
1185 :default-printer '(:name :tab label))
1186 (const :field (byte 4 4) :value #b1110)
1187 (op :field (byte 4 0))
1188 (label :field (byte 8 8) :type 'displacement))
1190 (sb!disassem:define-instruction-format (near-cond-jump 16)
1191 (op :fields (list (byte 8 0) (byte 4 12)) :value '(#b00001111 #b1000))
1192 (cc :field (byte 4 8) :type 'condition-code)
1193 ;; The disassembler currently doesn't let you have an instruction > 32 bits
1194 ;; long, so we fake it by using a prefilter to read the offset.
1195 (label :type 'displacement
1196 :prefilter (lambda (value dstate)
1197 (declare (ignore value)) ; always nil anyway
1198 (sb!disassem:read-signed-suffix 32 dstate))))
1200 (sb!disassem:define-instruction-format (near-jump 8
1201 :default-printer '(:name :tab label))
1202 (op :field (byte 8 0))
1203 ;; The disassembler currently doesn't let you have an instruction > 32 bits
1204 ;; long, so we fake it by using a prefilter to read the address.
1205 (label :type 'displacement
1206 :prefilter (lambda (value dstate)
1207 (declare (ignore value)) ; always nil anyway
1208 (sb!disassem:read-signed-suffix 32 dstate))))
1211 (sb!disassem:define-instruction-format (cond-set 24
1212 :default-printer '('set cc :tab reg/mem))
1213 (prefix :field (byte 8 0) :value #b00001111)
1214 (op :field (byte 4 12) :value #b1001)
1215 (cc :field (byte 4 8) :type 'condition-code)
1216 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1217 :type 'sized-byte-reg/mem)
1218 (reg :field (byte 3 19) :value #b000))
1220 (sb!disassem:define-instruction-format (cond-move 24
1221 :default-printer
1222 '('cmov cc :tab reg ", " reg/mem))
1223 (prefix :field (byte 8 0) :value #b00001111)
1224 (op :field (byte 4 12) :value #b0100)
1225 (cc :field (byte 4 8) :type 'condition-code)
1226 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1227 :type 'reg/mem)
1228 (reg :field (byte 3 19) :type 'reg))
1230 (sb!disassem:define-instruction-format (rex-cond-move 32
1231 :default-printer
1232 '('cmov cc :tab reg ", " reg/mem))
1233 (rex :field (byte 4 4) :value #b0100)
1234 (wrxb :field (byte 4 0) :type 'wrxb)
1235 (prefix :field (byte 8 8) :value #b00001111)
1236 (op :field (byte 4 20) :value #b0100)
1237 (cc :field (byte 4 16) :type 'condition-code)
1238 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1239 :type 'reg/mem)
1240 (reg :field (byte 3 27) :type 'reg))
1242 (sb!disassem:define-instruction-format (enter-format 32
1243 :default-printer '(:name
1244 :tab disp
1245 (:unless (:constant 0)
1246 ", " level)))
1247 (op :field (byte 8 0))
1248 (disp :field (byte 16 8))
1249 (level :field (byte 8 24)))
1251 ;;; Single byte instruction with an immediate byte argument.
1252 (sb!disassem:define-instruction-format (byte-imm 16
1253 :default-printer '(:name :tab code))
1254 (op :field (byte 8 0))
1255 (code :field (byte 8 8)))
1257 ;;; Two byte instruction with an immediate byte argument.
1259 (sb!disassem:define-instruction-format (word-imm 24
1260 :default-printer '(:name :tab code))
1261 (op :field (byte 16 0))
1262 (code :field (byte 8 16)))
1265 ;;;; primitive emitters
1267 (define-bitfield-emitter emit-word 16
1268 (byte 16 0))
1270 (define-bitfield-emitter emit-dword 32
1271 (byte 32 0))
1273 ;;; Most uses of dwords are as displacements or as immediate values in
1274 ;;; 64-bit operations. In these cases they are sign-extended to 64 bits.
1275 ;;; EMIT-DWORD is unsuitable there because it accepts values of type
1276 ;;; (OR (SIGNED-BYTE 32) (UNSIGNED-BYTE 32)), so we provide a more
1277 ;;; restricted emitter here.
1278 (defun emit-signed-dword (segment value)
1279 (declare (type segment segment)
1280 (type (signed-byte 32) value))
1281 (declare (inline emit-dword))
1282 (emit-dword segment value))
1284 (define-bitfield-emitter emit-qword 64
1285 (byte 64 0))
1287 (define-bitfield-emitter emit-byte-with-reg 8
1288 (byte 5 3) (byte 3 0))
1290 (define-bitfield-emitter emit-mod-reg-r/m-byte 8
1291 (byte 2 6) (byte 3 3) (byte 3 0))
1293 (define-bitfield-emitter emit-sib-byte 8
1294 (byte 2 6) (byte 3 3) (byte 3 0))
1296 (define-bitfield-emitter emit-rex-byte 8
1297 (byte 4 4) (byte 1 3) (byte 1 2) (byte 1 1) (byte 1 0))
1301 ;;;; fixup emitters
1303 (defun emit-absolute-fixup (segment fixup &optional quad-p)
1304 (note-fixup segment (if quad-p :absolute64 :absolute) fixup)
1305 (let ((offset (fixup-offset fixup)))
1306 (if (label-p offset)
1307 (emit-back-patch segment
1308 (if quad-p 8 4)
1309 (lambda (segment posn)
1310 (declare (ignore posn))
1311 (let ((val (- (+ (component-header-length)
1312 (or (label-position offset)
1314 other-pointer-lowtag)))
1315 (if quad-p
1316 (emit-qword segment val)
1317 (emit-signed-dword segment val)))))
1318 (if quad-p
1319 (emit-qword segment (or offset 0))
1320 (emit-signed-dword segment (or offset 0))))))
1322 (defun emit-relative-fixup (segment fixup)
1323 (note-fixup segment :relative fixup)
1324 (emit-signed-dword segment (or (fixup-offset fixup) 0)))
1327 ;;;; the effective-address (ea) structure
1329 (defun reg-tn-encoding (tn)
1330 (declare (type tn tn))
1331 ;; ea only has space for three bits of register number: regs r8
1332 ;; and up are selected by a REX prefix byte which caller is responsible
1333 ;; for having emitted where necessary already
1334 (ecase (sb-name (sc-sb (tn-sc tn)))
1335 (registers
1336 (let ((offset (mod (tn-offset tn) 16)))
1337 (logior (ash (logand offset 1) 2)
1338 (ash offset -1))))
1339 (float-registers
1340 (mod (tn-offset tn) 8))))
1342 (defstruct (ea (:constructor make-ea (size &key base index scale disp))
1343 (:copier nil))
1344 ;; note that we can represent an EA with a QWORD size, but EMIT-EA
1345 ;; can't actually emit it on its own: caller also needs to emit REX
1346 ;; prefix
1347 (size nil :type (member :byte :word :dword :qword))
1348 (base nil :type (or tn null))
1349 (index nil :type (or tn null))
1350 (scale 1 :type (member 1 2 4 8))
1351 (disp 0 :type (or (unsigned-byte 32) (signed-byte 32) fixup)))
1352 (def!method print-object ((ea ea) stream)
1353 (cond ((or *print-escape* *print-readably*)
1354 (print-unreadable-object (ea stream :type t)
1355 (format stream
1356 "~S~@[ base=~S~]~@[ index=~S~]~@[ scale=~S~]~@[ disp=~S~]"
1357 (ea-size ea)
1358 (ea-base ea)
1359 (ea-index ea)
1360 (let ((scale (ea-scale ea)))
1361 (if (= scale 1) nil scale))
1362 (ea-disp ea))))
1364 (format stream "~A PTR [" (symbol-name (ea-size ea)))
1365 (when (ea-base ea)
1366 (write-string (sb!c::location-print-name (ea-base ea)) stream)
1367 (when (ea-index ea)
1368 (write-string "+" stream)))
1369 (when (ea-index ea)
1370 (write-string (sb!c::location-print-name (ea-index ea)) stream))
1371 (unless (= (ea-scale ea) 1)
1372 (format stream "*~A" (ea-scale ea)))
1373 (typecase (ea-disp ea)
1374 (null)
1375 (integer
1376 (format stream "~@D" (ea-disp ea)))
1378 (format stream "+~A" (ea-disp ea))))
1379 (write-char #\] stream))))
1381 (defun emit-constant-tn-rip (segment constant-tn reg)
1382 ;; AMD64 doesn't currently have a code object register to use as a
1383 ;; base register for constant access. Instead we use RIP-relative
1384 ;; addressing. The offset from the SIMPLE-FUN-HEADER to the instruction
1385 ;; is passed to the backpatch callback. In addition we need the offset
1386 ;; from the start of the function header to the slot in the CODE-HEADER
1387 ;; that stores the constant. Since we don't know where the code header
1388 ;; starts, instead count backwards from the function header.
1389 (let* ((2comp (component-info *component-being-compiled*))
1390 (constants (ir2-component-constants 2comp))
1391 (len (length constants))
1392 ;; Both CODE-HEADER and SIMPLE-FUN-HEADER are 16-byte aligned.
1393 ;; If there are an even amount of constants, there will be
1394 ;; an extra qword of padding before the function header, which
1395 ;; needs to be adjusted for. XXX: This will break if new slots
1396 ;; are added to the code header.
1397 (offset (* (- (+ len (if (evenp len)
1400 (tn-offset constant-tn))
1401 n-word-bytes)))
1402 ;; RIP-relative addressing
1403 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
1404 (emit-back-patch segment
1406 (lambda (segment posn)
1407 ;; The addressing is relative to end of instruction,
1408 ;; i.e. the end of this dword. Hence the + 4.
1409 (emit-signed-dword segment
1410 (+ 4 (- (+ offset posn)))))))
1411 (values))
1413 (defun emit-label-rip (segment fixup reg)
1414 (let ((label (fixup-offset fixup)))
1415 ;; RIP-relative addressing
1416 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
1417 (emit-back-patch segment
1419 (lambda (segment posn)
1420 (emit-signed-dword segment (- (label-position label)
1421 (+ posn 4))))))
1422 (values))
1424 (defun emit-ea (segment thing reg &optional allow-constants)
1425 (etypecase thing
1427 ;; this would be eleganter if we had a function that would create
1428 ;; an ea given a tn
1429 (ecase (sb-name (sc-sb (tn-sc thing)))
1430 ((registers float-registers)
1431 (emit-mod-reg-r/m-byte segment #b11 reg (reg-tn-encoding thing)))
1432 (stack
1433 ;; Convert stack tns into an index off RBP.
1434 (let ((disp (frame-byte-offset (tn-offset thing))))
1435 (cond ((<= -128 disp 127)
1436 (emit-mod-reg-r/m-byte segment #b01 reg #b101)
1437 (emit-byte segment disp))
1439 (emit-mod-reg-r/m-byte segment #b10 reg #b101)
1440 (emit-signed-dword segment disp)))))
1441 (constant
1442 (unless allow-constants
1443 ;; Why?
1444 (error
1445 "Constant TNs can only be directly used in MOV, PUSH, and CMP."))
1446 (emit-constant-tn-rip segment thing reg))))
1448 (let* ((base (ea-base thing))
1449 (index (ea-index thing))
1450 (scale (ea-scale thing))
1451 (disp (ea-disp thing))
1452 (mod (cond ((or (null base)
1453 (and (eql disp 0)
1454 (not (= (reg-tn-encoding base) #b101))))
1455 #b00)
1456 ((and (fixnump disp) (<= -128 disp 127))
1457 #b01)
1459 #b10)))
1460 (r/m (cond (index #b100)
1461 ((null base) #b101)
1462 (t (reg-tn-encoding base)))))
1463 (when (and (fixup-p disp)
1464 (label-p (fixup-offset disp)))
1465 (aver (null base))
1466 (aver (null index))
1467 (return-from emit-ea (emit-ea segment disp reg allow-constants)))
1468 (when (and (= mod 0) (= r/m #b101))
1469 ;; this is rip-relative in amd64, so we'll use a sib instead
1470 (setf r/m #b100 scale 1))
1471 (emit-mod-reg-r/m-byte segment mod reg r/m)
1472 (when (= r/m #b100)
1473 (let ((ss (1- (integer-length scale)))
1474 (index (if (null index)
1475 #b100
1476 (let ((index (reg-tn-encoding index)))
1477 (if (= index #b100)
1478 (error "can't index off of ESP")
1479 index))))
1480 (base (if (null base)
1481 #b101
1482 (reg-tn-encoding base))))
1483 (emit-sib-byte segment ss index base)))
1484 (cond ((= mod #b01)
1485 (emit-byte segment disp))
1486 ((or (= mod #b10) (null base))
1487 (if (fixup-p disp)
1488 (emit-absolute-fixup segment disp)
1489 (emit-signed-dword segment disp))))))
1490 (fixup
1491 (typecase (fixup-offset thing)
1492 (label
1493 (emit-label-rip segment thing reg))
1495 (emit-mod-reg-r/m-byte segment #b00 reg #b100)
1496 (emit-sib-byte segment 0 #b100 #b101)
1497 (emit-absolute-fixup segment thing))))))
1499 (defun byte-reg-p (thing)
1500 (and (tn-p thing)
1501 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1502 (member (sc-name (tn-sc thing)) *byte-sc-names*)
1505 (defun byte-ea-p (thing)
1506 (typecase thing
1507 (ea (eq (ea-size thing) :byte))
1509 (and (member (sc-name (tn-sc thing)) *byte-sc-names*) t))
1510 (t nil)))
1512 (defun word-reg-p (thing)
1513 (and (tn-p thing)
1514 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1515 (member (sc-name (tn-sc thing)) *word-sc-names*)
1518 (defun word-ea-p (thing)
1519 (typecase thing
1520 (ea (eq (ea-size thing) :word))
1521 (tn (and (member (sc-name (tn-sc thing)) *word-sc-names*) t))
1522 (t nil)))
1524 (defun dword-reg-p (thing)
1525 (and (tn-p thing)
1526 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1527 (member (sc-name (tn-sc thing)) *dword-sc-names*)
1530 (defun dword-ea-p (thing)
1531 (typecase thing
1532 (ea (eq (ea-size thing) :dword))
1534 (and (member (sc-name (tn-sc thing)) *dword-sc-names*) t))
1535 (t nil)))
1537 (defun qword-reg-p (thing)
1538 (and (tn-p thing)
1539 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1540 (member (sc-name (tn-sc thing)) *qword-sc-names*)
1543 (defun qword-ea-p (thing)
1544 (typecase thing
1545 (ea (eq (ea-size thing) :qword))
1547 (and (member (sc-name (tn-sc thing)) *qword-sc-names*) t))
1548 (t nil)))
1550 ;;; Return true if THING is a general-purpose register TN.
1551 (defun register-p (thing)
1552 (and (tn-p thing)
1553 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)))
1555 (defun accumulator-p (thing)
1556 (and (register-p thing)
1557 (= (tn-offset thing) 0)))
1559 ;;; Return true if THING is an XMM register TN.
1560 (defun xmm-register-p (thing)
1561 (and (tn-p thing)
1562 (eq (sb-name (sc-sb (tn-sc thing))) 'float-registers)))
1565 ;;;; utilities
1567 (def!constant +operand-size-prefix-byte+ #b01100110)
1569 (defun maybe-emit-operand-size-prefix (segment size)
1570 (unless (or (eq size :byte)
1571 (eq size :qword) ; REX prefix handles this
1572 (eq size +default-operand-size+))
1573 (emit-byte segment +operand-size-prefix-byte+)))
1575 ;;; A REX prefix must be emitted if at least one of the following
1576 ;;; conditions is true:
1577 ;; 1. The operand size is :QWORD and the default operand size of the
1578 ;; instruction is not :QWORD.
1579 ;;; 2. The instruction references an extended register.
1580 ;;; 3. The instruction references one of the byte registers SIL, DIL,
1581 ;;; SPL or BPL.
1583 ;;; Emit a REX prefix if necessary. OPERAND-SIZE is used to determine
1584 ;;; whether to set REX.W. Callers pass it explicitly as :DO-NOT-SET if
1585 ;;; this should not happen, for example because the instruction's
1586 ;;; default operand size is qword. R, X and B are NIL or TNs specifying
1587 ;;; registers the encodings of which are extended with the REX.R, REX.X
1588 ;;; and REX.B bit, respectively. To determine whether one of the byte
1589 ;;; registers is used that can only be accessed using a REX prefix, we
1590 ;;; need only to test R and B, because X is only used for the index
1591 ;;; register of an effective address and therefore never byte-sized.
1592 ;;; For R we can avoid to calculate the size of the TN because it is
1593 ;;; always OPERAND-SIZE. The size of B must be calculated here because
1594 ;;; B can be address-sized (if it is the base register of an effective
1595 ;;; address), of OPERAND-SIZE (if the instruction operates on two
1596 ;;; registers) or of some different size (in the instructions that
1597 ;;; combine arguments of different sizes: MOVZX, MOVSX, MOVSXD and
1598 ;;; several SSE instructions, e.g. CVTSD2SI). We don't distinguish
1599 ;;; between general-purpose and floating point registers for this cause
1600 ;;; because only general-purpose registers can be byte-sized at all.
1601 (defun maybe-emit-rex-prefix (segment operand-size r x b)
1602 (declare (type (member nil :byte :word :dword :qword :do-not-set)
1603 operand-size)
1604 (type (or null tn) r x b))
1605 (labels ((if-hi (r)
1606 (if (and r (> (tn-offset r)
1607 ;; offset of r8 is 16, offset of xmm8 is 8
1608 (if (eq (sb-name (sc-sb (tn-sc r)))
1609 'float-registers)
1611 15)))
1614 (reg-4-7-p (r)
1615 ;; Assuming R is a TN describing a general-purpose
1616 ;; register, return true if it references register
1617 ;; 4 upto 7.
1618 (<= 8 (tn-offset r) 15)))
1619 (let ((rex-w (if (eq operand-size :qword) 1 0))
1620 (rex-r (if-hi r))
1621 (rex-x (if-hi x))
1622 (rex-b (if-hi b)))
1623 (when (or (not (zerop (logior rex-w rex-r rex-x rex-b)))
1624 (and r
1625 (eq operand-size :byte)
1626 (reg-4-7-p r))
1627 (and b
1628 (eq (operand-size b) :byte)
1629 (reg-4-7-p b)))
1630 (emit-rex-byte segment #b0100 rex-w rex-r rex-x rex-b)))))
1632 ;;; Emit a REX prefix if necessary. The operand size is determined from
1633 ;;; THING or can be overwritten by OPERAND-SIZE. This and REG are always
1634 ;;; passed to MAYBE-EMIT-REX-PREFIX. Additionally, if THING is an EA we
1635 ;;; pass its index and base registers, if it is a register TN, we pass
1636 ;;; only itself.
1637 ;;; In contrast to EMIT-EA above, neither stack TNs nor fixups need to
1638 ;;; be treated specially here: If THING is a stack TN, neither it nor
1639 ;;; any of its components are passed to MAYBE-EMIT-REX-PREFIX which
1640 ;;; works correctly because stack references always use RBP as the base
1641 ;;; register and never use an index register so no extended registers
1642 ;;; need to be accessed. Fixups are assembled using an addressing mode
1643 ;;; of displacement-only or RIP-plus-displacement (see EMIT-EA), so may
1644 ;;; not reference an extended register. The displacement-only addressing
1645 ;;; mode requires that REX.X is 0, which is ensured here.
1646 (defun maybe-emit-rex-for-ea (segment thing reg &key operand-size)
1647 (declare (type (or ea tn fixup) thing)
1648 (type (or null tn) reg)
1649 (type (member nil :byte :word :dword :qword :do-not-set)
1650 operand-size))
1651 (let ((ea-p (ea-p thing)))
1652 (maybe-emit-rex-prefix segment
1653 (or operand-size (operand-size thing))
1655 (and ea-p (ea-index thing))
1656 (cond (ea-p (ea-base thing))
1657 ((and (tn-p thing)
1658 (member (sb-name (sc-sb (tn-sc thing)))
1659 '(float-registers registers)))
1660 thing)
1661 (t nil)))))
1663 (defun operand-size (thing)
1664 (typecase thing
1666 ;; FIXME: might as well be COND instead of having to use #. readmacro
1667 ;; to hack up the code
1668 (case (sc-name (tn-sc thing))
1669 (#.*qword-sc-names*
1670 :qword)
1671 (#.*dword-sc-names*
1672 :dword)
1673 (#.*word-sc-names*
1674 :word)
1675 (#.*byte-sc-names*
1676 :byte)
1677 ;; added by jrd: float-registers is a separate size (?)
1678 ;; The only place in the code where we are called with THING
1679 ;; being a float-register is in MAYBE-EMIT-REX-PREFIX when it
1680 ;; checks whether THING is a byte register. Thus our result in
1681 ;; these cases could as well be :dword and :qword. I leave it as
1682 ;; :float and :double which is more likely to trigger an aver
1683 ;; instead of silently doing the wrong thing in case this
1684 ;; situation should change. Lutz Euler, 2005-10-23.
1685 (#.*float-sc-names*
1686 :float)
1687 (#.*double-sc-names*
1688 :double)
1689 (#.*complex-sc-names*
1690 :complex)
1692 (error "can't tell the size of ~S ~S" thing (sc-name (tn-sc thing))))))
1694 (ea-size thing))
1695 (fixup
1696 ;; GNA. Guess who spelt "flavor" correctly first time round?
1697 ;; There's a strong argument in my mind to change all uses of
1698 ;; "flavor" to "kind": and similarly with some misguided uses of
1699 ;; "type" here and there. -- CSR, 2005-01-06.
1700 (case (fixup-flavor thing)
1701 ((:foreign-dataref) :qword)))
1703 nil)))
1705 (defun matching-operand-size (dst src)
1706 (let ((dst-size (operand-size dst))
1707 (src-size (operand-size src)))
1708 (if dst-size
1709 (if src-size
1710 (if (eq dst-size src-size)
1711 dst-size
1712 (error "size mismatch: ~S is a ~S and ~S is a ~S."
1713 dst dst-size src src-size))
1714 dst-size)
1715 (if src-size
1716 src-size
1717 (error "can't tell the size of either ~S or ~S" dst src)))))
1719 ;;; Except in a very few cases (MOV instructions A1, A3 and B8 - BF)
1720 ;;; we expect dword data bytes even when 64 bit work is being done.
1721 ;;; But A1 and A3 are currently unused and B8 - BF use EMIT-QWORD
1722 ;;; directly, so we emit all quad constants as dwords, additionally
1723 ;;; making sure that they survive the sign-extension to 64 bits
1724 ;;; unchanged.
1725 (defun emit-sized-immediate (segment size value)
1726 (ecase size
1727 (:byte
1728 (emit-byte segment value))
1729 (:word
1730 (emit-word segment value))
1731 (:dword
1732 (emit-dword segment value))
1733 (:qword
1734 (emit-signed-dword segment value))))
1736 ;;;; general data transfer
1738 ;;; This is the part of the MOV instruction emitter that does moving
1739 ;;; of an immediate value into a qword register. We go to some length
1740 ;;; to achieve the shortest possible encoding.
1741 (defun emit-immediate-move-to-qword-register (segment dst src)
1742 (declare (type integer src))
1743 (cond ((typep src '(unsigned-byte 32))
1744 ;; We use the B8 - BF encoding with an operand size of 32 bits
1745 ;; here and let the implicit zero-extension fill the upper half
1746 ;; of the 64-bit destination register. Instruction size: five
1747 ;; or six bytes. (A REX prefix will be emitted only if the
1748 ;; destination is an extended register.)
1749 (maybe-emit-rex-prefix segment :dword nil nil dst)
1750 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1751 (emit-dword segment src))
1753 (maybe-emit-rex-prefix segment :qword nil nil dst)
1754 (cond ((typep src '(signed-byte 32))
1755 ;; Use the C7 encoding that takes a 32-bit immediate and
1756 ;; sign-extends it to 64 bits. Instruction size: seven
1757 ;; bytes.
1758 (emit-byte segment #b11000111)
1759 (emit-mod-reg-r/m-byte segment #b11 #b000
1760 (reg-tn-encoding dst))
1761 (emit-signed-dword segment src))
1762 ((<= (- (expt 2 64) (expt 2 31))
1764 (1- (expt 2 64)))
1765 ;; This triggers on positive integers of 64 bits length
1766 ;; with the most significant 33 bits being 1. We use the
1767 ;; same encoding as in the previous clause.
1768 (emit-byte segment #b11000111)
1769 (emit-mod-reg-r/m-byte segment #b11 #b000
1770 (reg-tn-encoding dst))
1771 (emit-signed-dword segment (- src (expt 2 64))))
1773 ;; We need a full 64-bit immediate. Instruction size:
1774 ;; ten bytes.
1775 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1776 (emit-qword segment src))))))
1778 (define-instruction mov (segment dst src)
1779 ;; immediate to register
1780 (:printer reg ((op #b1011) (imm nil :type 'signed-imm-data))
1781 '(:name :tab reg ", " imm))
1782 (:printer rex-reg ((op #b1011) (imm nil :type 'signed-imm-data-upto-qword))
1783 '(:name :tab reg ", " imm))
1784 ;; absolute mem to/from accumulator
1785 (:printer simple-dir ((op #b101000) (imm nil :type 'imm-addr))
1786 `(:name :tab ,(swap-if 'dir 'accum ", " '("[" imm "]"))))
1787 ;; register to/from register/memory
1788 (:printer reg-reg/mem-dir ((op #b100010)))
1789 (:printer rex-reg-reg/mem-dir ((op #b100010)))
1790 (:printer x66-reg-reg/mem-dir ((op #b100010)))
1791 (:printer x66-rex-reg-reg/mem-dir ((op #b100010)))
1792 ;; immediate to register/memory
1793 (:printer reg/mem-imm ((op '(#b1100011 #b000))))
1794 (:printer rex-reg/mem-imm ((op '(#b1100011 #b000))))
1796 (:emitter
1797 (let ((size (matching-operand-size dst src)))
1798 (maybe-emit-operand-size-prefix segment size)
1799 (cond ((register-p dst)
1800 (cond ((integerp src)
1801 (cond ((eq size :qword)
1802 (emit-immediate-move-to-qword-register segment
1803 dst src))
1805 (maybe-emit-rex-prefix segment size nil nil dst)
1806 (emit-byte-with-reg segment
1807 (if (eq size :byte)
1808 #b10110
1809 #b10111)
1810 (reg-tn-encoding dst))
1811 (emit-sized-immediate segment size src))))
1813 (maybe-emit-rex-for-ea segment src dst)
1814 (emit-byte segment
1815 (if (eq size :byte)
1816 #b10001010
1817 #b10001011))
1818 (emit-ea segment src (reg-tn-encoding dst) t))))
1819 ((integerp src)
1820 ;; C7 only deals with 32 bit immediates even if the
1821 ;; destination is a 64-bit location. The value is
1822 ;; sign-extended in this case.
1823 (maybe-emit-rex-for-ea segment dst nil)
1824 (emit-byte segment (if (eq size :byte) #b11000110 #b11000111))
1825 (emit-ea segment dst #b000)
1826 (emit-sized-immediate segment size src))
1827 ((register-p src)
1828 (maybe-emit-rex-for-ea segment dst src)
1829 (emit-byte segment (if (eq size :byte) #b10001000 #b10001001))
1830 (emit-ea segment dst (reg-tn-encoding src)))
1831 ((fixup-p src)
1832 ;; Generally we can't MOV a fixupped value into an EA, since
1833 ;; MOV on non-registers can only take a 32-bit immediate arg.
1834 ;; Make an exception for :FOREIGN fixups (pretty much just
1835 ;; the runtime asm, since other foreign calls go through the
1836 ;; the linkage table) and for linkage table references, since
1837 ;; these should always end up in low memory.
1838 (aver (or (eq (fixup-flavor src) :foreign)
1839 (eq (fixup-flavor src) :foreign-dataref)
1840 (eq (ea-size dst) :dword)))
1841 (maybe-emit-rex-for-ea segment dst nil)
1842 (emit-byte segment #b11000111)
1843 (emit-ea segment dst #b000)
1844 (emit-absolute-fixup segment src))
1846 (error "bogus arguments to MOV: ~S ~S" dst src))))))
1848 (defun emit-move-with-extension (segment dst src signed-p)
1849 (aver (register-p dst))
1850 (let ((dst-size (operand-size dst))
1851 (src-size (operand-size src))
1852 (opcode (if signed-p #b10111110 #b10110110)))
1853 (ecase dst-size
1854 (:word
1855 (aver (eq src-size :byte))
1856 (maybe-emit-operand-size-prefix segment :word)
1857 ;; REX prefix is needed if SRC is SIL, DIL, SPL or BPL.
1858 (maybe-emit-rex-for-ea segment src dst :operand-size :word)
1859 (emit-byte segment #b00001111)
1860 (emit-byte segment opcode)
1861 (emit-ea segment src (reg-tn-encoding dst)))
1862 ((:dword :qword)
1863 (ecase src-size
1864 (:byte
1865 (maybe-emit-rex-for-ea segment src dst :operand-size dst-size)
1866 (emit-byte segment #b00001111)
1867 (emit-byte segment opcode)
1868 (emit-ea segment src (reg-tn-encoding dst)))
1869 (:word
1870 (maybe-emit-rex-for-ea segment src dst :operand-size dst-size)
1871 (emit-byte segment #b00001111)
1872 (emit-byte segment (logior opcode 1))
1873 (emit-ea segment src (reg-tn-encoding dst)))
1874 (:dword
1875 (aver (eq dst-size :qword))
1876 ;; dst is in reg, src is in modrm
1877 (let ((ea-p (ea-p src)))
1878 (maybe-emit-rex-prefix segment (if signed-p :qword :dword) dst
1879 (and ea-p (ea-index src))
1880 (cond (ea-p (ea-base src))
1881 ((tn-p src) src)
1882 (t nil)))
1883 (emit-byte segment #x63) ;movsxd
1884 ;;(emit-byte segment opcode)
1885 (emit-ea segment src (reg-tn-encoding dst)))))))))
1887 (define-instruction movsx (segment dst src)
1888 (:printer ext-reg-reg/mem-no-width
1889 ((op #b10111110) (reg/mem nil :type 'sized-byte-reg/mem)))
1890 (:printer rex-ext-reg-reg/mem-no-width
1891 ((op #b10111110) (reg/mem nil :type 'sized-byte-reg/mem)))
1892 (:printer ext-reg-reg/mem-no-width
1893 ((op #b10111111) (reg/mem nil :type 'sized-word-reg/mem)))
1894 (:printer rex-ext-reg-reg/mem-no-width
1895 ((op #b10111111) (reg/mem nil :type 'sized-word-reg/mem)))
1896 (:emitter (emit-move-with-extension segment dst src :signed)))
1898 (define-instruction movzx (segment dst src)
1899 (:printer ext-reg-reg/mem-no-width
1900 ((op #b10110110) (reg/mem nil :type 'sized-byte-reg/mem)))
1901 (:printer rex-ext-reg-reg/mem-no-width
1902 ((op #b10110110) (reg/mem nil :type 'sized-byte-reg/mem)))
1903 (:printer ext-reg-reg/mem-no-width
1904 ((op #b10110111) (reg/mem nil :type 'sized-word-reg/mem)))
1905 (:printer rex-ext-reg-reg/mem-no-width
1906 ((op #b10110111) (reg/mem nil :type 'sized-word-reg/mem)))
1907 (:emitter (emit-move-with-extension segment dst src nil)))
1909 ;;; The regular use of MOVSXD is with an operand size of :qword. This
1910 ;;; sign-extends the dword source into the qword destination register.
1911 ;;; If the operand size is :dword the instruction zero-extends the dword
1912 ;;; source into the qword destination register, i.e. it does the same as
1913 ;;; a dword MOV into a register.
1914 (define-instruction movsxd (segment dst src)
1915 (:printer reg-reg/mem ((op #b0110001) (width 1)
1916 (reg/mem nil :type 'sized-dword-reg/mem)))
1917 (:printer rex-reg-reg/mem ((op #b0110001) (width 1)
1918 (reg/mem nil :type 'sized-dword-reg/mem)))
1919 (:emitter (emit-move-with-extension segment dst src :signed)))
1921 ;;; this is not a real amd64 instruction, of course
1922 (define-instruction movzxd (segment dst src)
1923 ; (:printer reg-reg/mem ((op #x63) (reg nil :type 'reg)))
1924 (:emitter (emit-move-with-extension segment dst src nil)))
1926 (define-instruction push (segment src)
1927 ;; register
1928 (:printer reg-no-width-default-qword ((op #b01010)))
1929 (:printer rex-reg-no-width-default-qword ((op #b01010)))
1930 ;; register/memory
1931 (:printer reg/mem-default-qword ((op '(#b11111111 #b110))))
1932 (:printer rex-reg/mem-default-qword ((op '(#b11111111 #b110))))
1933 ;; immediate
1934 (:printer byte ((op #b01101010) (imm nil :type 'signed-imm-byte))
1935 '(:name :tab imm))
1936 (:printer byte ((op #b01101000)
1937 (imm nil :type 'signed-imm-data-default-qword))
1938 '(:name :tab imm))
1939 ;; ### segment registers?
1941 (:emitter
1942 (cond ((integerp src)
1943 (cond ((<= -128 src 127)
1944 (emit-byte segment #b01101010)
1945 (emit-byte segment src))
1947 ;; A REX-prefix is not needed because the operand size
1948 ;; defaults to 64 bits. The size of the immediate is 32
1949 ;; bits and it is sign-extended.
1950 (emit-byte segment #b01101000)
1951 (emit-signed-dword segment src))))
1953 (let ((size (operand-size src)))
1954 (aver (or (eq size :qword) (eq size :word)))
1955 (maybe-emit-operand-size-prefix segment size)
1956 (maybe-emit-rex-for-ea segment src nil :operand-size :do-not-set)
1957 (cond ((register-p src)
1958 (emit-byte-with-reg segment #b01010 (reg-tn-encoding src)))
1960 (emit-byte segment #b11111111)
1961 (emit-ea segment src #b110 t))))))))
1963 (define-instruction pop (segment dst)
1964 (:printer reg-no-width-default-qword ((op #b01011)))
1965 (:printer rex-reg-no-width-default-qword ((op #b01011)))
1966 (:printer reg/mem-default-qword ((op '(#b10001111 #b000))))
1967 (:printer rex-reg/mem-default-qword ((op '(#b10001111 #b000))))
1968 (:emitter
1969 (let ((size (operand-size dst)))
1970 (aver (or (eq size :qword) (eq size :word)))
1971 (maybe-emit-operand-size-prefix segment size)
1972 (maybe-emit-rex-for-ea segment dst nil :operand-size :do-not-set)
1973 (cond ((register-p dst)
1974 (emit-byte-with-reg segment #b01011 (reg-tn-encoding dst)))
1976 (emit-byte segment #b10001111)
1977 (emit-ea segment dst #b000))))))
1979 (define-instruction xchg (segment operand1 operand2)
1980 ;; Register with accumulator.
1981 (:printer reg-no-width ((op #b10010)) '(:name :tab accum ", " reg))
1982 ;; Register/Memory with Register.
1983 (:printer reg-reg/mem ((op #b1000011)))
1984 (:printer rex-reg-reg/mem ((op #b1000011)))
1985 (:emitter
1986 (let ((size (matching-operand-size operand1 operand2)))
1987 (maybe-emit-operand-size-prefix segment size)
1988 (labels ((xchg-acc-with-something (acc something)
1989 (if (and (not (eq size :byte)) (register-p something))
1990 (progn
1991 (maybe-emit-rex-for-ea segment acc something)
1992 (emit-byte-with-reg segment
1993 #b10010
1994 (reg-tn-encoding something)))
1995 (xchg-reg-with-something acc something)))
1996 (xchg-reg-with-something (reg something)
1997 (maybe-emit-rex-for-ea segment something reg)
1998 (emit-byte segment (if (eq size :byte) #b10000110 #b10000111))
1999 (emit-ea segment something (reg-tn-encoding reg))))
2000 (cond ((accumulator-p operand1)
2001 (xchg-acc-with-something operand1 operand2))
2002 ((accumulator-p operand2)
2003 (xchg-acc-with-something operand2 operand1))
2004 ((register-p operand1)
2005 (xchg-reg-with-something operand1 operand2))
2006 ((register-p operand2)
2007 (xchg-reg-with-something operand2 operand1))
2009 (error "bogus args to XCHG: ~S ~S" operand1 operand2)))))))
2011 (define-instruction lea (segment dst src)
2012 (:printer rex-reg-reg/mem ((op #b1000110)))
2013 (:printer reg-reg/mem ((op #b1000110) (width 1)))
2014 (:emitter
2015 (aver (or (dword-reg-p dst) (qword-reg-p dst)))
2016 (maybe-emit-rex-for-ea segment src dst
2017 :operand-size :qword)
2018 (emit-byte segment #b10001101)
2019 (emit-ea segment src (reg-tn-encoding dst))))
2021 (define-instruction cmpxchg (segment dst src &optional prefix)
2022 ;; Register/Memory with Register.
2023 (:printer ext-reg-reg/mem ((op #b1011000)) '(:name :tab reg/mem ", " reg))
2024 (:emitter
2025 (aver (register-p src))
2026 (emit-prefix segment prefix)
2027 (let ((size (matching-operand-size src dst)))
2028 (maybe-emit-operand-size-prefix segment size)
2029 (maybe-emit-rex-for-ea segment dst src)
2030 (emit-byte segment #b00001111)
2031 (emit-byte segment (if (eq size :byte) #b10110000 #b10110001))
2032 (emit-ea segment dst (reg-tn-encoding src)))))
2035 ;;;; flag control instructions
2037 ;;; CLC -- Clear Carry Flag.
2038 (define-instruction clc (segment)
2039 (:printer byte ((op #b11111000)))
2040 (:emitter
2041 (emit-byte segment #b11111000)))
2043 ;;; CLD -- Clear Direction Flag.
2044 (define-instruction cld (segment)
2045 (:printer byte ((op #b11111100)))
2046 (:emitter
2047 (emit-byte segment #b11111100)))
2049 ;;; CLI -- Clear Iterrupt Enable Flag.
2050 (define-instruction cli (segment)
2051 (:printer byte ((op #b11111010)))
2052 (:emitter
2053 (emit-byte segment #b11111010)))
2055 ;;; CMC -- Complement Carry Flag.
2056 (define-instruction cmc (segment)
2057 (:printer byte ((op #b11110101)))
2058 (:emitter
2059 (emit-byte segment #b11110101)))
2061 ;;; LAHF -- Load AH into flags.
2062 (define-instruction lahf (segment)
2063 (:printer byte ((op #b10011111)))
2064 (:emitter
2065 (emit-byte segment #b10011111)))
2067 ;;; POPF -- Pop flags.
2068 (define-instruction popf (segment)
2069 (:printer byte ((op #b10011101)))
2070 (:emitter
2071 (emit-byte segment #b10011101)))
2073 ;;; PUSHF -- push flags.
2074 (define-instruction pushf (segment)
2075 (:printer byte ((op #b10011100)))
2076 (:emitter
2077 (emit-byte segment #b10011100)))
2079 ;;; SAHF -- Store AH into flags.
2080 (define-instruction sahf (segment)
2081 (:printer byte ((op #b10011110)))
2082 (:emitter
2083 (emit-byte segment #b10011110)))
2085 ;;; STC -- Set Carry Flag.
2086 (define-instruction stc (segment)
2087 (:printer byte ((op #b11111001)))
2088 (:emitter
2089 (emit-byte segment #b11111001)))
2091 ;;; STD -- Set Direction Flag.
2092 (define-instruction std (segment)
2093 (:printer byte ((op #b11111101)))
2094 (:emitter
2095 (emit-byte segment #b11111101)))
2097 ;;; STI -- Set Interrupt Enable Flag.
2098 (define-instruction sti (segment)
2099 (:printer byte ((op #b11111011)))
2100 (:emitter
2101 (emit-byte segment #b11111011)))
2103 ;;;; arithmetic
2105 (defun emit-random-arith-inst (name segment dst src opcode
2106 &optional allow-constants)
2107 (let ((size (matching-operand-size dst src)))
2108 (maybe-emit-operand-size-prefix segment size)
2109 (cond
2110 ((integerp src)
2111 (cond ((and (not (eq size :byte)) (<= -128 src 127))
2112 (maybe-emit-rex-for-ea segment dst nil)
2113 (emit-byte segment #b10000011)
2114 (emit-ea segment dst opcode allow-constants)
2115 (emit-byte segment src))
2116 ((accumulator-p dst)
2117 (maybe-emit-rex-for-ea segment dst nil)
2118 (emit-byte segment
2119 (dpb opcode
2120 (byte 3 3)
2121 (if (eq size :byte)
2122 #b00000100
2123 #b00000101)))
2124 (emit-sized-immediate segment size src))
2126 (maybe-emit-rex-for-ea segment dst nil)
2127 (emit-byte segment (if (eq size :byte) #b10000000 #b10000001))
2128 (emit-ea segment dst opcode allow-constants)
2129 (emit-sized-immediate segment size src))))
2130 ((register-p src)
2131 (maybe-emit-rex-for-ea segment dst src)
2132 (emit-byte segment
2133 (dpb opcode
2134 (byte 3 3)
2135 (if (eq size :byte) #b00000000 #b00000001)))
2136 (emit-ea segment dst (reg-tn-encoding src) allow-constants))
2137 ((register-p dst)
2138 (maybe-emit-rex-for-ea segment src dst)
2139 (emit-byte segment
2140 (dpb opcode
2141 (byte 3 3)
2142 (if (eq size :byte) #b00000010 #b00000011)))
2143 (emit-ea segment src (reg-tn-encoding dst) allow-constants))
2145 (error "bogus operands to ~A" name)))))
2147 (eval-when (:compile-toplevel :execute)
2148 (defun arith-inst-printer-list (subop)
2149 `((accum-imm ((op ,(dpb subop (byte 3 2) #b0000010))))
2150 (rex-accum-imm ((op ,(dpb subop (byte 3 2) #b0000010))))
2151 (reg/mem-imm ((op (#b1000000 ,subop))))
2152 (rex-reg/mem-imm ((op (#b1000000 ,subop))))
2153 ;; The redundant encoding #x82 is invalid in 64-bit mode,
2154 ;; therefore we force WIDTH to 1.
2155 (reg/mem-imm ((op (#b1000001 ,subop)) (width 1)
2156 (imm nil :type signed-imm-byte)))
2157 (rex-reg/mem-imm ((op (#b1000001 ,subop)) (width 1)
2158 (imm nil :type signed-imm-byte)))
2159 (reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))
2160 (rex-reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))))
2163 (define-instruction add (segment dst src &optional prefix)
2164 (:printer-list (arith-inst-printer-list #b000))
2165 (:emitter
2166 (emit-prefix segment prefix)
2167 (emit-random-arith-inst "ADD" segment dst src #b000)))
2169 (define-instruction adc (segment dst src)
2170 (:printer-list (arith-inst-printer-list #b010))
2171 (:emitter (emit-random-arith-inst "ADC" segment dst src #b010)))
2173 (define-instruction sub (segment dst src)
2174 (:printer-list (arith-inst-printer-list #b101))
2175 (:emitter (emit-random-arith-inst "SUB" segment dst src #b101)))
2177 (define-instruction sbb (segment dst src)
2178 (:printer-list (arith-inst-printer-list #b011))
2179 (:emitter (emit-random-arith-inst "SBB" segment dst src #b011)))
2181 (define-instruction cmp (segment dst src)
2182 (:printer-list (arith-inst-printer-list #b111))
2183 (:emitter (emit-random-arith-inst "CMP" segment dst src #b111 t)))
2185 ;;; The one-byte encodings for INC and DEC are used as REX prefixes
2186 ;;; in 64-bit mode so we always use the two-byte form.
2187 (define-instruction inc (segment dst)
2188 (:printer reg/mem ((op '(#b1111111 #b000))))
2189 (:printer rex-reg/mem ((op '(#b1111111 #b000))))
2190 (:emitter
2191 (let ((size (operand-size dst)))
2192 (maybe-emit-operand-size-prefix segment size)
2193 (maybe-emit-rex-for-ea segment dst nil)
2194 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
2195 (emit-ea segment dst #b000))))
2197 (define-instruction dec (segment dst)
2198 (:printer reg/mem ((op '(#b1111111 #b001))))
2199 (:printer rex-reg/mem ((op '(#b1111111 #b001))))
2200 (:emitter
2201 (let ((size (operand-size dst)))
2202 (maybe-emit-operand-size-prefix segment size)
2203 (maybe-emit-rex-for-ea segment dst nil)
2204 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
2205 (emit-ea segment dst #b001))))
2207 (define-instruction neg (segment dst)
2208 (:printer reg/mem ((op '(#b1111011 #b011))))
2209 (:printer rex-reg/mem ((op '(#b1111011 #b011))))
2210 (:emitter
2211 (let ((size (operand-size dst)))
2212 (maybe-emit-operand-size-prefix segment size)
2213 (maybe-emit-rex-for-ea segment dst nil)
2214 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2215 (emit-ea segment dst #b011))))
2217 (define-instruction mul (segment dst src)
2218 (:printer accum-reg/mem ((op '(#b1111011 #b100))))
2219 (:printer rex-accum-reg/mem ((op '(#b1111011 #b100))))
2220 (:emitter
2221 (let ((size (matching-operand-size dst src)))
2222 (aver (accumulator-p dst))
2223 (maybe-emit-operand-size-prefix segment size)
2224 (maybe-emit-rex-for-ea segment src nil)
2225 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2226 (emit-ea segment src #b100))))
2228 (define-instruction imul (segment dst &optional src1 src2)
2229 (:printer accum-reg/mem ((op '(#b1111011 #b101))))
2230 (:printer rex-accum-reg/mem ((op '(#b1111011 #b101))))
2231 (:printer ext-reg-reg/mem-no-width ((op #b10101111)))
2232 (:printer rex-ext-reg-reg/mem-no-width ((op #b10101111)))
2233 (:printer reg-reg/mem ((op #b0110100) (width 1)
2234 (imm nil :type 'signed-imm-data))
2235 '(:name :tab reg ", " reg/mem ", " imm))
2236 (:printer rex-reg-reg/mem ((op #b0110100) (width 1)
2237 (imm nil :type 'signed-imm-data))
2238 '(:name :tab reg ", " reg/mem ", " imm))
2239 (:printer reg-reg/mem ((op #b0110101) (width 1)
2240 (imm nil :type 'signed-imm-byte))
2241 '(:name :tab reg ", " reg/mem ", " imm))
2242 (:printer rex-reg-reg/mem ((op #b0110101) (width 1)
2243 (imm nil :type 'signed-imm-byte))
2244 '(:name :tab reg ", " reg/mem ", " imm))
2245 (:emitter
2246 (flet ((r/m-with-immed-to-reg (reg r/m immed)
2247 (let* ((size (matching-operand-size reg r/m))
2248 (sx (and (not (eq size :byte)) (<= -128 immed 127))))
2249 (maybe-emit-operand-size-prefix segment size)
2250 (maybe-emit-rex-for-ea segment r/m reg)
2251 (emit-byte segment (if sx #b01101011 #b01101001))
2252 (emit-ea segment r/m (reg-tn-encoding reg))
2253 (if sx
2254 (emit-byte segment immed)
2255 (emit-sized-immediate segment size immed)))))
2256 (cond (src2
2257 (r/m-with-immed-to-reg dst src1 src2))
2258 (src1
2259 (if (integerp src1)
2260 (r/m-with-immed-to-reg dst dst src1)
2261 (let ((size (matching-operand-size dst src1)))
2262 (maybe-emit-operand-size-prefix segment size)
2263 (maybe-emit-rex-for-ea segment src1 dst)
2264 (emit-byte segment #b00001111)
2265 (emit-byte segment #b10101111)
2266 (emit-ea segment src1 (reg-tn-encoding dst)))))
2268 (let ((size (operand-size dst)))
2269 (maybe-emit-operand-size-prefix segment size)
2270 (maybe-emit-rex-for-ea segment dst nil)
2271 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2272 (emit-ea segment dst #b101)))))))
2274 (define-instruction div (segment dst src)
2275 (:printer accum-reg/mem ((op '(#b1111011 #b110))))
2276 (:printer rex-accum-reg/mem ((op '(#b1111011 #b110))))
2277 (:emitter
2278 (let ((size (matching-operand-size dst src)))
2279 (aver (accumulator-p dst))
2280 (maybe-emit-operand-size-prefix segment size)
2281 (maybe-emit-rex-for-ea segment src nil)
2282 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2283 (emit-ea segment src #b110))))
2285 (define-instruction idiv (segment dst src)
2286 (:printer accum-reg/mem ((op '(#b1111011 #b111))))
2287 (:printer rex-accum-reg/mem ((op '(#b1111011 #b111))))
2288 (:emitter
2289 (let ((size (matching-operand-size dst src)))
2290 (aver (accumulator-p dst))
2291 (maybe-emit-operand-size-prefix segment size)
2292 (maybe-emit-rex-for-ea segment src nil)
2293 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2294 (emit-ea segment src #b111))))
2296 (define-instruction bswap (segment dst)
2297 (:printer ext-reg-no-width ((op #b11001)))
2298 (:emitter
2299 (let ((size (operand-size dst)))
2300 (maybe-emit-rex-prefix segment size nil nil dst)
2301 (emit-byte segment #x0f)
2302 (emit-byte-with-reg segment #b11001 (reg-tn-encoding dst)))))
2304 ;;; CBW -- Convert Byte to Word. AX <- sign_xtnd(AL)
2305 (define-instruction cbw (segment)
2306 (:printer x66-byte ((op #b10011000)))
2307 (:emitter
2308 (maybe-emit-operand-size-prefix segment :word)
2309 (emit-byte segment #b10011000)))
2311 ;;; CWDE -- Convert Word To Double Word Extended. EAX <- sign_xtnd(AX)
2312 (define-instruction cwde (segment)
2313 (:printer byte ((op #b10011000)))
2314 (:emitter
2315 (maybe-emit-operand-size-prefix segment :dword)
2316 (emit-byte segment #b10011000)))
2318 ;;; CDQE -- Convert Double Word To Quad Word Extended. RAX <- sign_xtnd(EAX)
2319 (define-instruction cdqe (segment)
2320 (:printer rex-byte ((op #b10011000)))
2321 (:emitter
2322 (maybe-emit-rex-prefix segment :qword nil nil nil)
2323 (emit-byte segment #b10011000)))
2325 ;;; CWD -- Convert Word to Double Word. DX:AX <- sign_xtnd(AX)
2326 (define-instruction cwd (segment)
2327 (:printer x66-byte ((op #b10011001)))
2328 (:emitter
2329 (maybe-emit-operand-size-prefix segment :word)
2330 (emit-byte segment #b10011001)))
2332 ;;; CDQ -- Convert Double Word to Quad Word. EDX:EAX <- sign_xtnd(EAX)
2333 (define-instruction cdq (segment)
2334 (:printer byte ((op #b10011001)))
2335 (:emitter
2336 (maybe-emit-operand-size-prefix segment :dword)
2337 (emit-byte segment #b10011001)))
2339 ;;; CQO -- Convert Quad Word to Octaword. RDX:RAX <- sign_xtnd(RAX)
2340 (define-instruction cqo (segment)
2341 (:printer rex-byte ((op #b10011001)))
2342 (:emitter
2343 (maybe-emit-rex-prefix segment :qword nil nil nil)
2344 (emit-byte segment #b10011001)))
2346 (define-instruction xadd (segment dst src &optional prefix)
2347 ;; Register/Memory with Register.
2348 (:printer ext-reg-reg/mem ((op #b1100000)) '(:name :tab reg/mem ", " reg))
2349 (:emitter
2350 (aver (register-p src))
2351 (emit-prefix segment prefix)
2352 (let ((size (matching-operand-size src dst)))
2353 (maybe-emit-operand-size-prefix segment size)
2354 (maybe-emit-rex-for-ea segment dst src)
2355 (emit-byte segment #b00001111)
2356 (emit-byte segment (if (eq size :byte) #b11000000 #b11000001))
2357 (emit-ea segment dst (reg-tn-encoding src)))))
2360 ;;;; logic
2362 (defun emit-shift-inst (segment dst amount opcode)
2363 (let ((size (operand-size dst)))
2364 (maybe-emit-operand-size-prefix segment size)
2365 (multiple-value-bind (major-opcode immed)
2366 (case amount
2367 (:cl (values #b11010010 nil))
2368 (1 (values #b11010000 nil))
2369 (t (values #b11000000 t)))
2370 (maybe-emit-rex-for-ea segment dst nil)
2371 (emit-byte segment
2372 (if (eq size :byte) major-opcode (logior major-opcode 1)))
2373 (emit-ea segment dst opcode)
2374 (when immed
2375 (emit-byte segment amount)))))
2377 (eval-when (:compile-toplevel :execute)
2378 (defun shift-inst-printer-list (subop)
2379 `((reg/mem ((op (#b1101000 ,subop)))
2380 (:name :tab reg/mem ", 1"))
2381 (rex-reg/mem ((op (#b1101000 ,subop)))
2382 (:name :tab reg/mem ", 1"))
2383 (reg/mem ((op (#b1101001 ,subop)))
2384 (:name :tab reg/mem ", " 'cl))
2385 (rex-reg/mem ((op (#b1101001 ,subop)))
2386 (:name :tab reg/mem ", " 'cl))
2387 (reg/mem-imm ((op (#b1100000 ,subop))
2388 (imm nil :type imm-byte)))
2389 (rex-reg/mem-imm ((op (#b1100000 ,subop))
2390 (imm nil :type imm-byte))))))
2392 (define-instruction rol (segment dst amount)
2393 (:printer-list
2394 (shift-inst-printer-list #b000))
2395 (:emitter
2396 (emit-shift-inst segment dst amount #b000)))
2398 (define-instruction ror (segment dst amount)
2399 (:printer-list
2400 (shift-inst-printer-list #b001))
2401 (:emitter
2402 (emit-shift-inst segment dst amount #b001)))
2404 (define-instruction rcl (segment dst amount)
2405 (:printer-list
2406 (shift-inst-printer-list #b010))
2407 (:emitter
2408 (emit-shift-inst segment dst amount #b010)))
2410 (define-instruction rcr (segment dst amount)
2411 (:printer-list
2412 (shift-inst-printer-list #b011))
2413 (:emitter
2414 (emit-shift-inst segment dst amount #b011)))
2416 (define-instruction shl (segment dst amount)
2417 (:printer-list
2418 (shift-inst-printer-list #b100))
2419 (:emitter
2420 (emit-shift-inst segment dst amount #b100)))
2422 (define-instruction shr (segment dst amount)
2423 (:printer-list
2424 (shift-inst-printer-list #b101))
2425 (:emitter
2426 (emit-shift-inst segment dst amount #b101)))
2428 (define-instruction sar (segment dst amount)
2429 (:printer-list
2430 (shift-inst-printer-list #b111))
2431 (:emitter
2432 (emit-shift-inst segment dst amount #b111)))
2434 (defun emit-double-shift (segment opcode dst src amt)
2435 (let ((size (matching-operand-size dst src)))
2436 (when (eq size :byte)
2437 (error "Double shifts can only be used with words."))
2438 (maybe-emit-operand-size-prefix segment size)
2439 (maybe-emit-rex-for-ea segment dst src)
2440 (emit-byte segment #b00001111)
2441 (emit-byte segment (dpb opcode (byte 1 3)
2442 (if (eq amt :cl) #b10100101 #b10100100)))
2443 (emit-ea segment dst (reg-tn-encoding src))
2444 (unless (eq amt :cl)
2445 (emit-byte segment amt))))
2447 (eval-when (:compile-toplevel :execute)
2448 (defun double-shift-inst-printer-list (op)
2449 `(#+nil
2450 (ext-reg-reg/mem-imm ((op ,(logior op #b100))
2451 (imm nil :type signed-imm-byte)))
2452 (ext-reg-reg/mem ((op ,(logior op #b101)))
2453 (:name :tab reg/mem ", " 'cl)))))
2455 (define-instruction shld (segment dst src amt)
2456 (:declare (type (or (member :cl) (mod 32)) amt))
2457 (:printer-list (double-shift-inst-printer-list #b10100000))
2458 (:emitter
2459 (emit-double-shift segment #b0 dst src amt)))
2461 (define-instruction shrd (segment dst src amt)
2462 (:declare (type (or (member :cl) (mod 32)) amt))
2463 (:printer-list (double-shift-inst-printer-list #b10101000))
2464 (:emitter
2465 (emit-double-shift segment #b1 dst src amt)))
2467 (define-instruction and (segment dst src)
2468 (:printer-list
2469 (arith-inst-printer-list #b100))
2470 (:emitter
2471 (emit-random-arith-inst "AND" segment dst src #b100)))
2473 (define-instruction test (segment this that)
2474 (:printer accum-imm ((op #b1010100)))
2475 (:printer rex-accum-imm ((op #b1010100)))
2476 (:printer reg/mem-imm ((op '(#b1111011 #b000))))
2477 (:printer rex-reg/mem-imm ((op '(#b1111011 #b000))))
2478 (:printer reg-reg/mem ((op #b1000010)))
2479 (:printer rex-reg-reg/mem ((op #b1000010)))
2480 (:emitter
2481 (let ((size (matching-operand-size this that)))
2482 (maybe-emit-operand-size-prefix segment size)
2483 (flet ((test-immed-and-something (immed something)
2484 (cond ((accumulator-p something)
2485 (maybe-emit-rex-for-ea segment something nil)
2486 (emit-byte segment
2487 (if (eq size :byte) #b10101000 #b10101001))
2488 (emit-sized-immediate segment size immed))
2490 (maybe-emit-rex-for-ea segment something nil)
2491 (emit-byte segment
2492 (if (eq size :byte) #b11110110 #b11110111))
2493 (emit-ea segment something #b000)
2494 (emit-sized-immediate segment size immed))))
2495 (test-reg-and-something (reg something)
2496 (maybe-emit-rex-for-ea segment something reg)
2497 (emit-byte segment (if (eq size :byte) #b10000100 #b10000101))
2498 (emit-ea segment something (reg-tn-encoding reg))))
2499 (cond ((integerp that)
2500 (test-immed-and-something that this))
2501 ((integerp this)
2502 (test-immed-and-something this that))
2503 ((register-p this)
2504 (test-reg-and-something this that))
2505 ((register-p that)
2506 (test-reg-and-something that this))
2508 (error "bogus operands for TEST: ~S and ~S" this that)))))))
2510 (define-instruction or (segment dst src)
2511 (:printer-list
2512 (arith-inst-printer-list #b001))
2513 (:emitter
2514 (emit-random-arith-inst "OR" segment dst src #b001)))
2516 (define-instruction xor (segment dst src)
2517 (:printer-list
2518 (arith-inst-printer-list #b110))
2519 (:emitter
2520 (emit-random-arith-inst "XOR" segment dst src #b110)))
2522 (define-instruction not (segment dst)
2523 (:printer reg/mem ((op '(#b1111011 #b010))))
2524 (:printer rex-reg/mem ((op '(#b1111011 #b010))))
2525 (:emitter
2526 (let ((size (operand-size dst)))
2527 (maybe-emit-operand-size-prefix segment size)
2528 (maybe-emit-rex-for-ea segment dst nil)
2529 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2530 (emit-ea segment dst #b010))))
2532 ;;;; string manipulation
2534 (define-instruction cmps (segment size)
2535 (:printer string-op ((op #b1010011)))
2536 (:printer rex-string-op ((op #b1010011)))
2537 (:emitter
2538 (maybe-emit-operand-size-prefix segment size)
2539 (maybe-emit-rex-prefix segment size nil nil nil)
2540 (emit-byte segment (if (eq size :byte) #b10100110 #b10100111))))
2542 (define-instruction ins (segment acc)
2543 (:printer string-op ((op #b0110110)))
2544 (:printer rex-string-op ((op #b0110110)))
2545 (:emitter
2546 (let ((size (operand-size acc)))
2547 (aver (accumulator-p acc))
2548 (maybe-emit-operand-size-prefix segment size)
2549 (maybe-emit-rex-prefix segment size nil nil nil)
2550 (emit-byte segment (if (eq size :byte) #b01101100 #b01101101)))))
2552 (define-instruction lods (segment acc)
2553 (:printer string-op ((op #b1010110)))
2554 (:printer rex-string-op ((op #b1010110)))
2555 (:emitter
2556 (let ((size (operand-size acc)))
2557 (aver (accumulator-p acc))
2558 (maybe-emit-operand-size-prefix segment size)
2559 (maybe-emit-rex-prefix segment size nil nil nil)
2560 (emit-byte segment (if (eq size :byte) #b10101100 #b10101101)))))
2562 (define-instruction movs (segment size)
2563 (:printer string-op ((op #b1010010)))
2564 (:printer rex-string-op ((op #b1010010)))
2565 (:emitter
2566 (maybe-emit-operand-size-prefix segment size)
2567 (maybe-emit-rex-prefix segment size nil nil nil)
2568 (emit-byte segment (if (eq size :byte) #b10100100 #b10100101))))
2570 (define-instruction outs (segment acc)
2571 (:printer string-op ((op #b0110111)))
2572 (:printer rex-string-op ((op #b0110111)))
2573 (:emitter
2574 (let ((size (operand-size acc)))
2575 (aver (accumulator-p acc))
2576 (maybe-emit-operand-size-prefix segment size)
2577 (maybe-emit-rex-prefix segment size nil nil nil)
2578 (emit-byte segment (if (eq size :byte) #b01101110 #b01101111)))))
2580 (define-instruction scas (segment acc)
2581 (:printer string-op ((op #b1010111)))
2582 (:printer rex-string-op ((op #b1010111)))
2583 (:emitter
2584 (let ((size (operand-size acc)))
2585 (aver (accumulator-p acc))
2586 (maybe-emit-operand-size-prefix segment size)
2587 (maybe-emit-rex-prefix segment size nil nil nil)
2588 (emit-byte segment (if (eq size :byte) #b10101110 #b10101111)))))
2590 (define-instruction stos (segment acc)
2591 (:printer string-op ((op #b1010101)))
2592 (:printer rex-string-op ((op #b1010101)))
2593 (:emitter
2594 (let ((size (operand-size acc)))
2595 (aver (accumulator-p acc))
2596 (maybe-emit-operand-size-prefix segment size)
2597 (maybe-emit-rex-prefix segment size nil nil nil)
2598 (emit-byte segment (if (eq size :byte) #b10101010 #b10101011)))))
2600 (define-instruction xlat (segment)
2601 (:printer byte ((op #b11010111)))
2602 (:emitter
2603 (emit-byte segment #b11010111)))
2605 (define-instruction rep (segment)
2606 (:emitter
2607 (emit-byte segment #b11110011)))
2609 (define-instruction repe (segment)
2610 (:printer byte ((op #b11110011)))
2611 (:emitter
2612 (emit-byte segment #b11110011)))
2614 (define-instruction repne (segment)
2615 (:printer byte ((op #b11110010)))
2616 (:emitter
2617 (emit-byte segment #b11110010)))
2620 ;;;; bit manipulation
2622 (define-instruction bsf (segment dst src)
2623 (:printer ext-reg-reg/mem-no-width ((op #b10111100)))
2624 (:printer rex-ext-reg-reg/mem-no-width ((op #b10111100)))
2625 (:emitter
2626 (let ((size (matching-operand-size dst src)))
2627 (when (eq size :byte)
2628 (error "can't scan bytes: ~S" src))
2629 (maybe-emit-operand-size-prefix segment size)
2630 (maybe-emit-rex-for-ea segment src dst)
2631 (emit-byte segment #b00001111)
2632 (emit-byte segment #b10111100)
2633 (emit-ea segment src (reg-tn-encoding dst)))))
2635 (define-instruction bsr (segment dst src)
2636 (:printer ext-reg-reg/mem-no-width ((op #b10111101)))
2637 (:printer rex-ext-reg-reg/mem-no-width ((op #b10111101)))
2638 (:emitter
2639 (let ((size (matching-operand-size dst src)))
2640 (when (eq size :byte)
2641 (error "can't scan bytes: ~S" src))
2642 (maybe-emit-operand-size-prefix segment size)
2643 (maybe-emit-rex-for-ea segment src dst)
2644 (emit-byte segment #b00001111)
2645 (emit-byte segment #b10111101)
2646 (emit-ea segment src (reg-tn-encoding dst)))))
2648 (defun emit-bit-test-and-mumble (segment src index opcode)
2649 (let ((size (operand-size src)))
2650 (when (eq size :byte)
2651 (error "can't scan bytes: ~S" src))
2652 (maybe-emit-operand-size-prefix segment size)
2653 (cond ((integerp index)
2654 (maybe-emit-rex-for-ea segment src nil)
2655 (emit-byte segment #b00001111)
2656 (emit-byte segment #b10111010)
2657 (emit-ea segment src opcode)
2658 (emit-byte segment index))
2660 (maybe-emit-rex-for-ea segment src index)
2661 (emit-byte segment #b00001111)
2662 (emit-byte segment (dpb opcode (byte 3 3) #b10000011))
2663 (emit-ea segment src (reg-tn-encoding index))))))
2665 (eval-when (:compile-toplevel :execute)
2666 (defun bit-test-inst-printer-list (subop)
2667 `((ext-reg/mem-imm ((op (#b1011101 ,subop))
2668 (reg/mem nil :type reg/mem)
2669 (imm nil :type imm-byte)
2670 (width 0)))
2671 (ext-reg-reg/mem ((op ,(dpb subop (byte 3 2) #b1000001))
2672 (width 1))
2673 (:name :tab reg/mem ", " reg)))))
2675 (define-instruction bt (segment src index)
2676 (:printer-list (bit-test-inst-printer-list #b100))
2677 (:emitter
2678 (emit-bit-test-and-mumble segment src index #b100)))
2680 (define-instruction btc (segment src index)
2681 (:printer-list (bit-test-inst-printer-list #b111))
2682 (:emitter
2683 (emit-bit-test-and-mumble segment src index #b111)))
2685 (define-instruction btr (segment src index)
2686 (:printer-list (bit-test-inst-printer-list #b110))
2687 (:emitter
2688 (emit-bit-test-and-mumble segment src index #b110)))
2690 (define-instruction bts (segment src index)
2691 (:printer-list (bit-test-inst-printer-list #b101))
2692 (:emitter
2693 (emit-bit-test-and-mumble segment src index #b101)))
2696 ;;;; control transfer
2698 (define-instruction call (segment where)
2699 (:printer near-jump ((op #b11101000)))
2700 (:printer reg/mem-default-qword ((op '(#b11111111 #b010))))
2701 (:printer rex-reg/mem-default-qword ((op '(#b11111111 #b010))))
2702 (:emitter
2703 (typecase where
2704 (label
2705 (emit-byte segment #b11101000) ; 32 bit relative
2706 (emit-back-patch segment
2708 (lambda (segment posn)
2709 (emit-signed-dword segment
2710 (- (label-position where)
2711 (+ posn 4))))))
2712 (fixup
2713 ;; There is no CALL rel64...
2714 (error "Cannot CALL a fixup: ~S" where))
2716 (maybe-emit-rex-for-ea segment where nil :operand-size :do-not-set)
2717 (emit-byte segment #b11111111)
2718 (emit-ea segment where #b010)))))
2720 (defun emit-byte-displacement-backpatch (segment target)
2721 (emit-back-patch segment
2723 (lambda (segment posn)
2724 (let ((disp (- (label-position target) (1+ posn))))
2725 (aver (<= -128 disp 127))
2726 (emit-byte segment disp)))))
2728 (define-instruction jmp (segment cond &optional where)
2729 ;; conditional jumps
2730 (:printer short-cond-jump ((op #b0111)) '('j cc :tab label))
2731 (:printer near-cond-jump () '('j cc :tab label))
2732 ;; unconditional jumps
2733 (:printer short-jump ((op #b1011)))
2734 (:printer near-jump ((op #b11101001)))
2735 (:printer reg/mem-default-qword ((op '(#b11111111 #b100))))
2736 (:printer rex-reg/mem-default-qword ((op '(#b11111111 #b100))))
2737 (:emitter
2738 (cond (where
2739 (emit-chooser
2740 segment 6 2
2741 (lambda (segment posn delta-if-after)
2742 (let ((disp (- (label-position where posn delta-if-after)
2743 (+ posn 2))))
2744 (when (<= -128 disp 127)
2745 (emit-byte segment
2746 (dpb (conditional-opcode cond)
2747 (byte 4 0)
2748 #b01110000))
2749 (emit-byte-displacement-backpatch segment where)
2750 t)))
2751 (lambda (segment posn)
2752 (let ((disp (- (label-position where) (+ posn 6))))
2753 (emit-byte segment #b00001111)
2754 (emit-byte segment
2755 (dpb (conditional-opcode cond)
2756 (byte 4 0)
2757 #b10000000))
2758 (emit-signed-dword segment disp)))))
2759 ((label-p (setq where cond))
2760 (emit-chooser
2761 segment 5 0
2762 (lambda (segment posn delta-if-after)
2763 (let ((disp (- (label-position where posn delta-if-after)
2764 (+ posn 2))))
2765 (when (<= -128 disp 127)
2766 (emit-byte segment #b11101011)
2767 (emit-byte-displacement-backpatch segment where)
2768 t)))
2769 (lambda (segment posn)
2770 (let ((disp (- (label-position where) (+ posn 5))))
2771 (emit-byte segment #b11101001)
2772 (emit-signed-dword segment disp)))))
2773 ((fixup-p where)
2774 (emit-byte segment #b11101001)
2775 (emit-relative-fixup segment where))
2777 (unless (or (ea-p where) (tn-p where))
2778 (error "don't know what to do with ~A" where))
2779 ;; near jump defaults to 64 bit
2780 ;; w-bit in rex prefix is unnecessary
2781 (maybe-emit-rex-for-ea segment where nil :operand-size :do-not-set)
2782 (emit-byte segment #b11111111)
2783 (emit-ea segment where #b100)))))
2785 (define-instruction ret (segment &optional stack-delta)
2786 (:printer byte ((op #b11000011)))
2787 (:printer byte ((op #b11000010) (imm nil :type 'imm-word-16))
2788 '(:name :tab imm))
2789 (:emitter
2790 (cond ((and stack-delta (not (zerop stack-delta)))
2791 (emit-byte segment #b11000010)
2792 (emit-word segment stack-delta))
2794 (emit-byte segment #b11000011)))))
2796 (define-instruction jrcxz (segment target)
2797 (:printer short-jump ((op #b0011)))
2798 (:emitter
2799 (emit-byte segment #b11100011)
2800 (emit-byte-displacement-backpatch segment target)))
2802 (define-instruction loop (segment target)
2803 (:printer short-jump ((op #b0010)))
2804 (:emitter
2805 (emit-byte segment #b11100010) ; pfw this was 11100011, or jecxz!!!!
2806 (emit-byte-displacement-backpatch segment target)))
2808 (define-instruction loopz (segment target)
2809 (:printer short-jump ((op #b0001)))
2810 (:emitter
2811 (emit-byte segment #b11100001)
2812 (emit-byte-displacement-backpatch segment target)))
2814 (define-instruction loopnz (segment target)
2815 (:printer short-jump ((op #b0000)))
2816 (:emitter
2817 (emit-byte segment #b11100000)
2818 (emit-byte-displacement-backpatch segment target)))
2820 ;;;; conditional move
2821 (define-instruction cmov (segment cond dst src)
2822 (:printer cond-move ())
2823 (:printer rex-cond-move ())
2824 (:emitter
2825 (aver (register-p dst))
2826 (let ((size (matching-operand-size dst src)))
2827 (aver (or (eq size :word) (eq size :dword) (eq size :qword)))
2828 (maybe-emit-operand-size-prefix segment size))
2829 (maybe-emit-rex-for-ea segment src dst)
2830 (emit-byte segment #b00001111)
2831 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b01000000))
2832 (emit-ea segment src (reg-tn-encoding dst))))
2834 ;;;; conditional byte set
2836 (define-instruction set (segment dst cond)
2837 (:printer cond-set ())
2838 (:emitter
2839 (maybe-emit-rex-for-ea segment dst nil)
2840 (emit-byte segment #b00001111)
2841 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b10010000))
2842 (emit-ea segment dst #b000)))
2844 ;;;; enter/leave
2846 (define-instruction enter (segment disp &optional (level 0))
2847 (:declare (type (unsigned-byte 16) disp)
2848 (type (unsigned-byte 8) level))
2849 (:printer enter-format ((op #b11001000)))
2850 (:emitter
2851 (emit-byte segment #b11001000)
2852 (emit-word segment disp)
2853 (emit-byte segment level)))
2855 (define-instruction leave (segment)
2856 (:printer byte ((op #b11001001)))
2857 (:emitter
2858 (emit-byte segment #b11001001)))
2860 ;;;; interrupt instructions
2862 (defun snarf-error-junk (sap offset &optional length-only)
2863 (let* ((length (sb!sys:sap-ref-8 sap offset))
2864 (vector (make-array length :element-type '(unsigned-byte 8))))
2865 (declare (type sb!sys:system-area-pointer sap)
2866 (type (unsigned-byte 8) length)
2867 (type (simple-array (unsigned-byte 8) (*)) vector))
2868 (cond (length-only
2869 (values 0 (1+ length) nil nil))
2871 (sb!kernel:copy-ub8-from-system-area sap (1+ offset)
2872 vector 0 length)
2873 (collect ((sc-offsets)
2874 (lengths))
2875 (lengths 1) ; the length byte
2876 (let* ((index 0)
2877 (error-number (sb!c:read-var-integer vector index)))
2878 (lengths index)
2879 (loop
2880 (when (>= index length)
2881 (return))
2882 (let ((old-index index))
2883 (sc-offsets (sb!c:read-var-integer vector index))
2884 (lengths (- index old-index))))
2885 (values error-number
2886 (1+ length)
2887 (sc-offsets)
2888 (lengths))))))))
2891 (defmacro break-cases (breaknum &body cases)
2892 (let ((bn-temp (gensym)))
2893 (collect ((clauses))
2894 (dolist (case cases)
2895 (clauses `((= ,bn-temp ,(car case)) ,@(cdr case))))
2896 `(let ((,bn-temp ,breaknum))
2897 (cond ,@(clauses))))))
2900 (defun break-control (chunk inst stream dstate)
2901 (declare (ignore inst))
2902 (flet ((nt (x) (if stream (sb!disassem:note x dstate))))
2903 ;; FIXME: Make sure that BYTE-IMM-CODE is defined. The genesis
2904 ;; map has it undefined; and it should be easier to look in the target
2905 ;; Lisp (with (DESCRIBE 'BYTE-IMM-CODE)) than to definitively deduce
2906 ;; from first principles whether it's defined in some way that genesis
2907 ;; can't grok.
2908 (case #!-darwin (byte-imm-code chunk dstate)
2909 #!+darwin (word-imm-code chunk dstate)
2910 (#.error-trap
2911 (nt "error trap")
2912 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
2913 (#.cerror-trap
2914 (nt "cerror trap")
2915 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
2916 (#.breakpoint-trap
2917 (nt "breakpoint trap"))
2918 (#.pending-interrupt-trap
2919 (nt "pending interrupt trap"))
2920 (#.halt-trap
2921 (nt "halt trap"))
2922 (#.fun-end-breakpoint-trap
2923 (nt "function end breakpoint trap"))
2924 (#.single-step-around-trap
2925 (nt "single-step trap (around)"))
2926 (#.single-step-before-trap
2927 (nt "single-step trap (before)")))))
2929 (define-instruction break (segment code)
2930 (:declare (type (unsigned-byte 8) code))
2931 #!-darwin (:printer byte-imm ((op #b11001100)) '(:name :tab code)
2932 :control #'break-control)
2933 #!+darwin (:printer word-imm ((op #b0000101100001111)) '(:name :tab code)
2934 :control #'break-control)
2935 (:emitter
2936 #!-darwin (emit-byte segment #b11001100)
2937 ;; On darwin, trap handling via SIGTRAP is unreliable, therefore we
2938 ;; throw a sigill with 0x0b0f instead and check for this in the
2939 ;; SIGILL handler and pass it on to the sigtrap handler if
2940 ;; appropriate
2941 #!+darwin (emit-word segment #b0000101100001111)
2942 (emit-byte segment code)))
2944 (define-instruction int (segment number)
2945 (:declare (type (unsigned-byte 8) number))
2946 (:printer byte-imm ((op #b11001101)))
2947 (:emitter
2948 (etypecase number
2949 ((member 3)
2950 (emit-byte segment #b11001100))
2951 ((unsigned-byte 8)
2952 (emit-byte segment #b11001101)
2953 (emit-byte segment number)))))
2955 (define-instruction iret (segment)
2956 (:printer byte ((op #b11001111)))
2957 (:emitter
2958 (emit-byte segment #b11001111)))
2960 ;;;; processor control
2962 (define-instruction hlt (segment)
2963 (:printer byte ((op #b11110100)))
2964 (:emitter
2965 (emit-byte segment #b11110100)))
2967 (define-instruction nop (segment)
2968 (:printer byte ((op #b10010000)))
2969 (:emitter
2970 (emit-byte segment #b10010000)))
2972 (define-instruction wait (segment)
2973 (:printer byte ((op #b10011011)))
2974 (:emitter
2975 (emit-byte segment #b10011011)))
2977 (defun emit-prefix (segment name)
2978 (declare (ignorable segment))
2979 (ecase name
2980 ((nil))
2981 (:lock
2982 #!+sb-thread
2983 (emit-byte segment #xf0))))
2985 ;;; FIXME: It would be better to make the disassembler understand the prefix as part
2986 ;;; of the instructions...
2987 (define-instruction lock (segment)
2988 (:printer byte ((op #b11110000)))
2989 (:emitter
2990 (bug "LOCK prefix used as a standalone instruction")))
2992 ;;;; miscellaneous hackery
2994 (define-instruction byte (segment byte)
2995 (:emitter
2996 (emit-byte segment byte)))
2998 (define-instruction word (segment word)
2999 (:emitter
3000 (emit-word segment word)))
3002 (define-instruction dword (segment dword)
3003 (:emitter
3004 (emit-dword segment dword)))
3006 (defun emit-header-data (segment type)
3007 (emit-back-patch segment
3008 n-word-bytes
3009 (lambda (segment posn)
3010 (emit-qword segment
3011 (logior type
3012 (ash (+ posn
3013 (component-header-length))
3014 (- n-widetag-bits
3015 word-shift)))))))
3017 (define-instruction simple-fun-header-word (segment)
3018 (:emitter
3019 (emit-header-data segment simple-fun-header-widetag)))
3021 (define-instruction lra-header-word (segment)
3022 (:emitter
3023 (emit-header-data segment return-pc-header-widetag)))
3025 ;;;; Instructions required to do floating point operations using SSE
3027 (defun emit-sse-inst (segment dst src prefix opcode &key operand-size)
3028 (when prefix
3029 (emit-byte segment prefix))
3030 (if operand-size
3031 (maybe-emit-rex-for-ea segment src dst :operand-size operand-size)
3032 (maybe-emit-rex-for-ea segment src dst))
3033 (emit-byte segment #x0f)
3034 (emit-byte segment opcode)
3035 (emit-ea segment src (reg-tn-encoding dst)))
3037 ;; 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg:imm8
3039 (defun emit-sse-inst-with-imm (segment dst/src imm
3040 prefix opcode /i
3041 &key operand-size)
3042 (aver (<= 0 /i 7))
3043 (when prefix
3044 (emit-byte segment prefix))
3045 (maybe-emit-rex-prefix segment operand-size dst/src nil nil)
3046 (emit-byte segment #x0F)
3047 (emit-byte segment opcode)
3048 (emit-byte segment (logior (ash (logior #b11000 /i) 3)
3049 (reg-tn-encoding dst/src)))
3050 (emit-byte segment imm))
3052 (macrolet
3053 ((define-imm-sse-instruction (name opcode /i)
3054 `(define-instruction ,name (segment dst/src imm)
3055 (:printer ext-rex-xmm-imm ((prefix #x66) (op ,opcode) (/i ,/i)))
3056 (:printer ext-xmm-imm ((prefix #x66) (op ,opcode) (/i ,/i)))
3057 (:emitter
3058 (emit-sse-inst-with-imm segment dst/src imm
3059 #x66 ,opcode ,/i
3060 :operand-size :do-not-set)))))
3061 (define-imm-sse-instruction pslldq #x73 7)
3062 (define-imm-sse-instruction psllw #x71 6)
3063 (define-imm-sse-instruction pslld #x72 6)
3064 (define-imm-sse-instruction psllq #x73 6)
3066 (define-imm-sse-instruction psraw-imm #x71 4)
3067 (define-imm-sse-instruction psrad-imm #x72 4)
3069 (define-imm-sse-instruction psrldq #x73 3)
3070 (define-imm-sse-instruction psrlw #x71 2)
3071 (define-imm-sse-instruction psrld #x72 2)
3072 (define-imm-sse-instruction psrlq #x73 2))
3074 ;;; Emit an SSE instruction that has an XMM register as the destination
3075 ;;; operand and for which the size of the operands is implicitly given
3076 ;;; by the instruction.
3077 (defun emit-regular-sse-inst (segment dst src prefix opcode)
3078 (aver (xmm-register-p dst))
3079 (emit-sse-inst segment dst src prefix opcode
3080 :operand-size :do-not-set))
3082 ;;; Instructions having an XMM register as the destination operand
3083 ;;; and an XMM register or a memory location as the source operand.
3084 ;;; The operand size is implicitly given by the instruction.
3086 (macrolet ((define-regular-sse-inst (name prefix opcode)
3087 `(define-instruction ,name (segment dst src)
3088 ,@(if prefix
3089 `((:printer ext-xmm-xmm/mem
3090 ((prefix ,prefix) (op ,opcode)))
3091 (:printer ext-rex-xmm-xmm/mem
3092 ((prefix ,prefix) (op ,opcode))))
3093 `((:printer xmm-xmm/mem ((op ,opcode)))
3094 (:printer rex-xmm-xmm/mem ((op ,opcode)))))
3095 (:emitter
3096 (emit-regular-sse-inst segment dst src ,prefix ,opcode)))))
3097 ;; logical
3098 (define-regular-sse-inst andpd #x66 #x54)
3099 (define-regular-sse-inst andps nil #x54)
3100 (define-regular-sse-inst andnpd #x66 #x55)
3101 (define-regular-sse-inst andnps nil #x55)
3102 (define-regular-sse-inst orpd #x66 #x56)
3103 (define-regular-sse-inst orps nil #x56)
3104 (define-regular-sse-inst pand #x66 #xdb)
3105 (define-regular-sse-inst pandn #x66 #xdf)
3106 (define-regular-sse-inst por #x66 #xeb)
3107 (define-regular-sse-inst pxor #x66 #xef)
3108 (define-regular-sse-inst xorpd #x66 #x57)
3109 (define-regular-sse-inst xorps nil #x57)
3110 ;; comparison
3111 (define-regular-sse-inst comisd #x66 #x2f)
3112 (define-regular-sse-inst comiss nil #x2f)
3113 (define-regular-sse-inst ucomisd #x66 #x2e)
3114 (define-regular-sse-inst ucomiss nil #x2e)
3115 ;; integer comparison
3116 (define-regular-sse-inst pcmpeqb #x66 #x74)
3117 (define-regular-sse-inst pcmpeqw #x66 #x75)
3118 (define-regular-sse-inst pcmpeqd #x66 #x76)
3119 (define-regular-sse-inst pcmpgtb #x66 #x64)
3120 (define-regular-sse-inst pcmpgtw #x66 #x65)
3121 (define-regular-sse-inst pcmpgtd #x66 #x66)
3122 ;; max/min
3123 (define-regular-sse-inst maxpd #x66 #x5f)
3124 (define-regular-sse-inst maxps nil #x5f)
3125 (define-regular-sse-inst maxsd #xf2 #x5f)
3126 (define-regular-sse-inst maxss #xf3 #x5f)
3127 (define-regular-sse-inst minpd #x66 #x5d)
3128 (define-regular-sse-inst minps nil #x5d)
3129 (define-regular-sse-inst minsd #xf2 #x5d)
3130 (define-regular-sse-inst minss #xf3 #x5d)
3131 ;; integer max/min
3132 (define-regular-sse-inst pmaxsw #x66 #xee)
3133 (define-regular-sse-inst pmaxub #x66 #xde)
3134 (define-regular-sse-inst pminsw #x66 #xea)
3135 (define-regular-sse-inst pminub #x66 #xda)
3136 ;; arithmetic
3137 (define-regular-sse-inst addpd #x66 #x58)
3138 (define-regular-sse-inst addps nil #x58)
3139 (define-regular-sse-inst addsd #xf2 #x58)
3140 (define-regular-sse-inst addss #xf3 #x58)
3141 (define-regular-sse-inst divpd #x66 #x5e)
3142 (define-regular-sse-inst divps nil #x5e)
3143 (define-regular-sse-inst divsd #xf2 #x5e)
3144 (define-regular-sse-inst divss #xf3 #x5e)
3145 (define-regular-sse-inst mulpd #x66 #x59)
3146 (define-regular-sse-inst mulps nil #x59)
3147 (define-regular-sse-inst mulsd #xf2 #x59)
3148 (define-regular-sse-inst mulss #xf3 #x59)
3149 (define-regular-sse-inst rccps nil #x53)
3150 (define-regular-sse-inst rcpss #xf3 #x53)
3151 (define-regular-sse-inst rsqrtps nil #x52)
3152 (define-regular-sse-inst rsqrtss #xf3 #x52)
3153 (define-regular-sse-inst sqrtps nil #x51)
3154 (define-regular-sse-inst sqrtsd #xf2 #x51)
3155 (define-regular-sse-inst sqrtss #xf3 #x51)
3156 (define-regular-sse-inst subpd #x66 #x5c)
3157 (define-regular-sse-inst subps nil #x5c)
3158 (define-regular-sse-inst subsd #xf2 #x5c)
3159 (define-regular-sse-inst subss #xf3 #x5c)
3160 (define-regular-sse-inst unpckhpd #x66 #x15)
3161 (define-regular-sse-inst unpckhps nil #x15)
3162 (define-regular-sse-inst unpcklpd #x66 #x14)
3163 (define-regular-sse-inst unpcklps nil #x14)
3164 ;; integer arithmetic
3165 (define-regular-sse-inst paddb #x66 #xfc)
3166 (define-regular-sse-inst paddw #x66 #xfd)
3167 (define-regular-sse-inst paddd #x66 #xfe)
3168 (define-regular-sse-inst paddq #x66 #xd4)
3169 (define-regular-sse-inst paddsb #x66 #xec)
3170 (define-regular-sse-inst paddsw #x66 #xed)
3171 (define-regular-sse-inst paddusb #x66 #xdc)
3172 (define-regular-sse-inst padduwb #x66 #xdd)
3173 (define-regular-sse-inst pavgb #x66 #xe0)
3174 (define-regular-sse-inst pavgw #x66 #xe3)
3175 (define-regular-sse-inst pmaddwd #x66 #xf5)
3176 (define-regular-sse-inst pmulhuw #x66 #xe4)
3177 (define-regular-sse-inst pmulhw #x66 #xe5)
3178 (define-regular-sse-inst pmullw #x66 #xd5)
3179 (define-regular-sse-inst pmuludq #x66 #xf4)
3180 (define-regular-sse-inst psadbw #x66 #xf6)
3181 (define-regular-sse-inst psraw #x66 #xe1)
3182 (define-regular-sse-inst psrad #x66 #xe2)
3183 (define-regular-sse-inst psubb #x66 #xf8)
3184 (define-regular-sse-inst psubw #x66 #xf9)
3185 (define-regular-sse-inst psubd #x66 #xfa)
3186 (define-regular-sse-inst psubq #x66 #xfb)
3187 (define-regular-sse-inst psubsb #x66 #xd8)
3188 (define-regular-sse-inst psubsw #x66 #xd9)
3189 ;; conversion
3190 (define-regular-sse-inst cvtdq2pd #xf3 #xe6)
3191 (define-regular-sse-inst cvtdq2ps nil #x5b)
3192 (define-regular-sse-inst cvtpd2dq #xf2 #xe6)
3193 (define-regular-sse-inst cvtpd2ps #x66 #x5a)
3194 (define-regular-sse-inst cvtps2dq #x66 #x5b)
3195 (define-regular-sse-inst cvtps2pd nil #x5a)
3196 (define-regular-sse-inst cvtsd2ss #xf2 #x5a)
3197 (define-regular-sse-inst cvtss2sd #xf3 #x5a)
3198 (define-regular-sse-inst cvttpd2dq #x66 #xe6)
3199 (define-regular-sse-inst cvttps2dq #xf3 #x5b)
3200 ;; moves
3201 (define-regular-sse-inst movntdq #x66 #xe7)
3202 (define-regular-sse-inst movntpd #x66 #x2b)
3203 (define-regular-sse-inst movntps nil #x2b)
3204 ;; integer
3205 (define-regular-sse-inst packsswb #x66 #x63)
3206 (define-regular-sse-inst packssdw #x66 #x6b)
3207 (define-regular-sse-inst punpckhbw #x66 #x68)
3208 (define-regular-sse-inst punpckhwd #x66 #x69)
3209 (define-regular-sse-inst punpckhdq #x66 #x6a)
3210 (define-regular-sse-inst punpckhqdq #x66 #x6d)
3211 (define-regular-sse-inst punpcklbw #x66 #x60)
3212 (define-regular-sse-inst punpcklwd #x66 #x61)
3213 (define-regular-sse-inst punpckldq #x66 #x62)
3214 (define-regular-sse-inst punpcklqdq #x66 #x6c))
3216 (macrolet ((define-xmm-shuffle-sse-inst (name prefix opcode)
3217 `(define-instruction ,name (segment dst src pattern)
3218 ,@(if prefix
3219 `((:printer ext-xmm-xmm/mem-imm ; suboptimal
3220 ((prefix ,prefix) (op ,opcode)))
3221 (:printer ext-rex-xmm-xmm/mem-imm
3222 ((prefix ,prefix) (op ,opcode))))
3223 `((:printer xmm-xmm/mem-imm ((op ,opcode)))
3224 (:printer rex-xmm-xmm/mem-imm ((op ,opcode)))))
3225 (:emitter
3226 (aver (typep pattern '(unsigned-byte 8)))
3227 (emit-regular-sse-inst segment dst src ,prefix ,opcode)
3228 (emit-byte segment pattern)))))
3229 (define-xmm-shuffle-sse-inst pshufd #x66 #x70)
3230 (define-xmm-shuffle-sse-inst pshufhw #xf3 #x70)
3231 (define-xmm-shuffle-sse-inst pshuflw #xf2 #x70)
3232 (define-xmm-shuffle-sse-inst shufpd #x66 #xc6)
3233 (define-xmm-shuffle-sse-inst shufps nil #xc6))
3235 ;; MASKMOVDQU (dst is DS:RDI)
3236 (define-instruction maskmovdqu (segment src mask)
3237 (:printer ext-xmm-xmm/mem
3238 ((prefix #x66) (op #xf7)))
3239 (:printer ext-rex-xmm-xmm/mem
3240 ((prefix #x66) (op #xf7)))
3241 (:emitter
3242 (aver (xmm-register-p src))
3243 (aver (xmm-register-p mask))
3244 (emit-regular-sse-inst segment src mask #x66 #xf7)))
3246 (macrolet ((define-xmm-comparison-sse-inst (name prefix opcode &optional name-prefix name-suffix)
3247 (let ((printer (when name-prefix
3248 `'(,name-prefix cc ,name-suffix :tab reg ", " reg/mem))))
3249 `(define-instruction ,name (segment op x y)
3250 ,@(if prefix
3251 `((:printer ext-xmm-xmm/mem-cmp
3252 ((prefix ,prefix) (op ,opcode))
3253 ,@(and printer `(,printer)))
3254 (:printer ext-rex-xmm-xmm/mem-cmp
3255 ((prefix ,prefix) (op ,opcode))
3256 ,@(and printer `(,printer))))
3257 `((:printer xmm-xmm/mem-cmp ((op ,opcode))
3258 ,@(and printer `(,printer)))
3259 (:printer rex-xmm-xmm/mem-cmp ((op ,opcode))
3260 ,@(and printer `(,printer)))))
3261 (:emitter
3262 (let ((code (position op *sse-conditions*)))
3263 (aver code)
3264 (emit-regular-sse-inst segment x y ,prefix ,opcode)
3265 (emit-byte segment code)))))))
3266 (define-xmm-comparison-sse-inst cmppd #x66 #xc2 "CMP" "PD")
3267 (define-xmm-comparison-sse-inst cmpps nil #xc2 "CMP" "PS")
3268 (define-xmm-comparison-sse-inst cmpsd #xf2 #xc2 "CMP" "SD")
3269 (define-xmm-comparison-sse-inst cmpss #xf3 #xc2 "CMP" "SS"))
3271 ;;; MOVSD, MOVSS
3272 (macrolet ((define-movsd/ss-sse-inst (name prefix)
3273 `(define-instruction ,name (segment dst src)
3274 (:printer ext-xmm-xmm/mem-dir ((prefix ,prefix)
3275 (op #b0001000)))
3276 (:printer ext-rex-xmm-xmm/mem-dir ((prefix ,prefix)
3277 (op #b0001000)))
3278 (:emitter
3279 (cond ((xmm-register-p dst)
3280 (emit-sse-inst segment dst src ,prefix #x10
3281 :operand-size :do-not-set))
3283 (aver (xmm-register-p src))
3284 (emit-sse-inst segment src dst ,prefix #x11
3285 :operand-size :do-not-set)))))))
3286 (define-movsd/ss-sse-inst movsd #xf2)
3287 (define-movsd/ss-sse-inst movss #xf3))
3289 ;;; Packed MOVs
3290 (macrolet ((define-mov-sse-inst (name prefix opcode-from opcode-to
3291 &key force-to-mem reg-reg-name)
3292 `(progn
3293 ,(when reg-reg-name
3294 `(define-instruction ,reg-reg-name (segment dst src)
3295 (:emitter
3296 (aver (xmm-register-p dst))
3297 (aver (xmm-register-p src))
3298 (emit-regular-sse-inst segment dst src ,prefix ,opcode-from))))
3299 (define-instruction ,name (segment dst src)
3300 ,@(if prefix
3301 `((:printer ext-xmm-xmm/mem
3302 ((prefix ,prefix) (op ,opcode-from)))
3303 (:printer ext-rex-xmm-xmm/mem
3304 ((prefix ,prefix) (op ,opcode-from)))
3305 (:printer ext-xmm-xmm/mem
3306 ((prefix ,prefix) (op ,opcode-to))
3307 '(:name :tab reg/mem ", " reg))
3308 (:printer ext-rex-xmm-xmm/mem
3309 ((prefix ,prefix) (op ,opcode-to))
3310 '(:name :tab reg/mem ", " reg)))
3311 `((:printer xmm-xmm/mem
3312 ((op ,opcode-from)))
3313 (:printer rex-xmm-xmm/mem
3314 ((op ,opcode-from)))
3315 (:printer xmm-xmm/mem
3316 ((op ,opcode-to))
3317 '(:name :tab reg/mem ", " reg))
3318 (:printer rex-xmm-xmm/mem
3319 ((op ,opcode-to))
3320 '(:name :tab reg/mem ", " reg))))
3321 (:emitter
3322 (cond ((xmm-register-p dst)
3323 ,(when force-to-mem
3324 `(aver (not (or (register-p src)
3325 (xmm-register-p src)))))
3326 (emit-regular-sse-inst segment dst src ,prefix ,opcode-from))
3328 (aver (xmm-register-p src))
3329 ,(when force-to-mem
3330 `(aver (not (or (register-p dst)
3331 (xmm-register-p dst)))))
3332 (emit-regular-sse-inst segment src dst ,prefix ,opcode-to))))))))
3333 ;; direction bit?
3334 (define-mov-sse-inst movapd #x66 #x28 #x29)
3335 (define-mov-sse-inst movaps nil #x28 #x29)
3336 (define-mov-sse-inst movdqa #x66 #x6f #x7f)
3337 (define-mov-sse-inst movdqu #xf3 #x6f #x7f)
3339 ;; use movhps for movlhps and movlps for movhlps
3340 (define-mov-sse-inst movhpd #x66 #x16 #x17 :force-to-mem t)
3341 (define-mov-sse-inst movhps nil #x16 #x17 :reg-reg-name movlhps)
3342 (define-mov-sse-inst movlpd #x66 #x12 #x13 :force-to-mem t)
3343 (define-mov-sse-inst movlps nil #x12 #x13 :reg-reg-name movhlps)
3344 (define-mov-sse-inst movupd #x66 #x10 #x11)
3345 (define-mov-sse-inst movups nil #x10 #x11))
3347 ;;; MOVQ
3348 (define-instruction movq (segment dst src)
3349 (:printer ext-xmm-xmm/mem ((prefix #xf3) (op #x7e)))
3350 (:printer ext-rex-xmm-xmm/mem ((prefix #xf3) (op #x7e)))
3351 (:printer ext-xmm-xmm/mem ((prefix #x66) (op #xd6))
3352 '(:name :tab reg/mem ", " reg))
3353 (:printer ext-rex-xmm-xmm/mem ((prefix #x66) (op #xd6))
3354 '(:name :tab reg/mem ", " reg))
3355 (:emitter
3356 (cond ((xmm-register-p dst)
3357 (emit-sse-inst segment dst src #xf3 #x7e
3358 :operand-size :do-not-set))
3360 (aver (xmm-register-p src))
3361 (emit-sse-inst segment src dst #x66 #xd6
3362 :operand-size :do-not-set)))))
3364 ;;; Instructions having an XMM register as the destination operand
3365 ;;; and a general-purpose register or a memory location as the source
3366 ;;; operand. The operand size is calculated from the source operand.
3368 ;;; MOVD - Move a 32- or 64-bit value from a general-purpose register or
3369 ;;; a memory location to the low order 32 or 64 bits of an XMM register
3370 ;;; with zero extension or vice versa.
3371 ;;; We do not support the MMX version of this instruction.
3372 (define-instruction movd (segment dst src)
3373 (:printer ext-xmm-reg/mem ((prefix #x66) (op #x6e)))
3374 (:printer ext-rex-xmm-reg/mem ((prefix #x66) (op #x6e)))
3375 (:printer ext-xmm-reg/mem ((prefix #x66) (op #x7e))
3376 '(:name :tab reg/mem ", " reg))
3377 (:printer ext-rex-xmm-reg/mem ((prefix #x66) (op #x7e))
3378 '(:name :tab reg/mem ", " reg))
3379 (:emitter
3380 (cond ((xmm-register-p dst)
3381 (emit-sse-inst segment dst src #x66 #x6e))
3383 (aver (xmm-register-p src))
3384 (emit-sse-inst segment src dst #x66 #x7e)))))
3386 (macrolet ((define-integer-source-sse-inst (name prefix opcode &key mem-only)
3387 `(define-instruction ,name (segment dst src)
3388 ,@(if prefix
3389 `((:printer ext-xmm-reg/mem ((prefix ,prefix) (op ,opcode)))
3390 (:printer ext-rex-xmm-reg/mem ((prefix ,prefix) (op ,opcode))))
3391 `((:printer xmm-reg/mem ((op ,opcode)))
3392 (:printer rex-xmm-reg/mem ((op ,opcode)))))
3394 (:emitter
3395 (aver (xmm-register-p dst))
3396 ,(when mem-only
3397 `(aver (not (or (register-p src)
3398 (xmm-register-p src)))))
3399 (let ((src-size (operand-size src)))
3400 (aver (or (eq src-size :qword) (eq src-size :dword))))
3401 (emit-sse-inst segment dst src ,prefix ,opcode)))))
3402 (define-integer-source-sse-inst cvtsi2sd #xf2 #x2a)
3403 (define-integer-source-sse-inst cvtsi2ss #xf3 #x2a)
3404 ;; FIXME: memory operand is always a QWORD
3405 (define-integer-source-sse-inst cvtpi2pd #x66 #x2a :mem-only t)
3406 (define-integer-source-sse-inst cvtpi2ps nil #x2a :mem-only t))
3408 ;;; Instructions having a general-purpose register as the destination
3409 ;;; operand and an XMM register or a memory location as the source
3410 ;;; operand. The operand size is calculated from the destination
3411 ;;; operand.
3413 (macrolet ((define-gpr-destination-sse-inst (name prefix opcode &key reg-only)
3414 `(define-instruction ,name (segment dst src)
3415 ,@(if prefix
3416 `((:printer ext-reg-xmm/mem ((prefix ,prefix) (op ,opcode)))
3417 (:printer ext-rex-reg-xmm/mem ((prefix ,prefix) (op ,opcode))))
3418 `((:printer reg-xmm/mem ((op ,opcode)))
3419 (:printer rex-reg-xmm/mem ((op ,opcode)))))
3420 (:emitter
3421 (aver (register-p dst))
3422 ,(when reg-only
3423 `(aver (xmm-register-p src)))
3424 (let ((dst-size (operand-size dst)))
3425 (aver (or (eq dst-size :qword) (eq dst-size :dword)))
3426 (emit-sse-inst segment dst src ,prefix ,opcode
3427 :operand-size dst-size))))))
3428 (define-gpr-destination-sse-inst cvtsd2si #xf2 #x2d)
3429 (define-gpr-destination-sse-inst cvtss2si #xf3 #x2d)
3430 (define-gpr-destination-sse-inst cvttsd2si #xf2 #x2c)
3431 (define-gpr-destination-sse-inst cvttss2si #xf3 #x2c)
3432 (define-gpr-destination-sse-inst movmskpd #x66 #x50 :reg-only t)
3433 (define-gpr-destination-sse-inst movmskps nil #x50 :reg-only t)
3434 (define-gpr-destination-sse-inst pmovmskb #x66 #xd7 :reg-only t))
3436 ;;; Other SSE instructions
3438 ;; FIXME: is that right!?
3439 (define-instruction movnti (segment dst src)
3440 (:printer ext-reg-reg/mem-no-width ((op #xc3)))
3441 (:printer rex-ext-reg-reg/mem-no-width ((op #xc3)))
3442 (:emitter
3443 (aver (not (or (register-p dst)
3444 (xmm-register-p dst))))
3445 (aver (register-p src))
3446 (maybe-emit-rex-for-ea segment src dst)
3447 (emit-byte segment #x0f)
3448 (emit-byte segment #xc3)
3449 (emit-ea segment dst (reg-tn-encoding src))))
3451 (define-instruction prefetch (segment type src)
3452 (:printer ext-reg/mem-no-width ((op '(#x18 0)))
3453 '("PREFETCHNTA" :tab reg/mem))
3454 (:printer ext-reg/mem-no-width ((op '(#x18 1)))
3455 '("PREFETCHT0" :tab reg/mem))
3456 (:printer ext-reg/mem-no-width ((op '(#x18 2)))
3457 '("PREFETCHT1" :tab reg/mem))
3458 (:printer ext-reg/mem-no-width ((op '(#x18 3)))
3459 '("PREFETCHT2" :tab reg/mem))
3460 (:printer rex-ext-reg/mem-no-width ((op '(#x18 0)))
3461 '("PREFETCHNTA" :tab reg/mem))
3462 (:printer rex-ext-reg/mem-no-width ((op '(#x18 1)))
3463 '("PREFETCHT0" :tab reg/mem))
3464 (:printer rex-ext-reg/mem-no-width ((op '(#x18 2)))
3465 '("PREFETCHT1" :tab reg/mem))
3466 (:printer rex-ext-reg/mem-no-width ((op '(#x18 3)))
3467 '("PREFETCHT2" :tab reg/mem))
3468 (:emitter
3469 (aver (not (or (register-p src)
3470 (xmm-register-p src))))
3471 (aver (eq (operand-size src) :byte))
3472 (let ((type (position type #(:nta :t0 :t1 :t2))))
3473 (aver type)
3474 (maybe-emit-rex-for-ea segment src nil)
3475 (emit-byte segment #x0f)
3476 (emit-byte segment #x18)
3477 (emit-ea segment src type))))
3479 (define-instruction clflush (segment src)
3480 (:printer ext-reg/mem-no-width ((op '(#xae 7))))
3481 (:printer rex-ext-reg/mem-no-width ((op '(#xae 7))))
3482 (:emitter
3483 (aver (not (or (register-p src)
3484 (xmm-register-p src))))
3485 (aver (eq (operand-size src) :byte))
3486 (maybe-emit-rex-for-ea segment src nil)
3487 (emit-byte segment #x0f)
3488 (emit-byte segment #x18)
3489 (emit-ea segment src 7)))
3491 (macrolet ((define-fence-instruction (name last-byte)
3492 `(define-instruction ,name (segment)
3493 (:printer three-bytes ((op '(#x0f #xae ,last-byte))))
3494 (:emitter
3495 (emit-byte segment #x0f)
3496 (emit-byte segment #xae)
3497 (emit-byte segment ,last-byte)))))
3498 (define-fence-instruction lfence #b11101000)
3499 (define-fence-instruction mfence #b11110000)
3500 (define-fence-instruction sfence #b11111000))
3502 (define-instruction pause (segment)
3503 (:printer two-bytes ((op '(#xf3 #x90))))
3504 (:emitter
3505 (emit-byte segment #xf3)
3506 (emit-byte segment #x90)))
3508 (define-instruction ldmxcsr (segment src)
3509 (:printer ext-reg/mem-no-width ((op '(#xae 2))))
3510 (:printer rex-ext-reg/mem-no-width ((op '(#xae 2))))
3511 (:emitter
3512 (aver (not (or (register-p src)
3513 (xmm-register-p src))))
3514 (aver (eq (operand-size src) :dword))
3515 (maybe-emit-rex-for-ea segment src nil)
3516 (emit-byte segment #x0f)
3517 (emit-byte segment #xae)
3518 (emit-ea segment src 2)))
3520 (define-instruction stmxcsr (segment dst)
3521 (:printer ext-reg/mem-no-width ((op '(#xae 3))))
3522 (:printer rex-ext-reg/mem-no-width ((op '(#xae 3))))
3523 (:emitter
3524 (aver (not (or (register-p dst)
3525 (xmm-register-p dst))))
3526 (aver (eq (operand-size dst) :dword))
3527 (maybe-emit-rex-for-ea segment dst nil)
3528 (emit-byte segment #x0f)
3529 (emit-byte segment #xae)
3530 (emit-ea segment dst 3)))
3532 ;;;; Miscellany
3534 (define-instruction cpuid (segment)
3535 (:printer two-bytes ((op '(#b00001111 #b10100010))))
3536 (:emitter
3537 (emit-byte segment #b00001111)
3538 (emit-byte segment #b10100010)))
3540 (define-instruction rdtsc (segment)
3541 (:printer two-bytes ((op '(#b00001111 #b00110001))))
3542 (:emitter
3543 (emit-byte segment #b00001111)
3544 (emit-byte segment #b00110001)))
3546 ;;;; Late VM definitions
3548 (defun canonicalize-inline-constant (constant &aux (alignedp nil))
3549 (let ((first (car constant)))
3550 (when (eql first :aligned)
3551 (setf alignedp t)
3552 (pop constant)
3553 (setf first (car constant)))
3554 (typecase first
3555 (single-float (setf constant (list :single-float first)))
3556 (double-float (setf constant (list :double-float first)))
3557 ((complex single-float)
3558 (setf constant (list :complex-single-float first)))
3559 ((complex double-float)
3560 (setf constant (list :complex-double-float first)))))
3561 (destructuring-bind (type value) constant
3562 (ecase type
3563 ((:byte :word :dword :qword)
3564 (aver (integerp value))
3565 (cons type value))
3566 ((:base-char)
3567 (aver (base-char-p value))
3568 (cons :byte (char-code value)))
3569 ((:character)
3570 (aver (characterp value))
3571 (cons :dword (char-code value)))
3572 ((:single-float)
3573 (aver (typep value 'single-float))
3574 (cons (if alignedp :oword :dword)
3575 (ldb (byte 32 0) (single-float-bits value))))
3576 ((:double-float)
3577 (aver (typep value 'double-float))
3578 (cons (if alignedp :oword :qword)
3579 (ldb (byte 64 0) (logior (ash (double-float-high-bits value) 32)
3580 (double-float-low-bits value)))))
3581 ((:complex-single-float)
3582 (aver (typep value '(complex single-float)))
3583 (cons (if alignedp :oword :qword)
3584 (ldb (byte 64 0)
3585 (logior (ash (single-float-bits (imagpart value)) 32)
3586 (ldb (byte 32 0)
3587 (single-float-bits (realpart value)))))))
3588 ((:oword :sse)
3589 (aver (integerp value))
3590 (cons :oword value))
3591 ((:complex-double-float)
3592 (aver (typep value '(complex double-float)))
3593 (cons :oword
3594 (logior (ash (double-float-high-bits (imagpart value)) 96)
3595 (ash (double-float-low-bits (imagpart value)) 64)
3596 (ash (ldb (byte 32 0)
3597 (double-float-high-bits (realpart value)))
3599 (double-float-low-bits (realpart value))))))))
3601 (defun inline-constant-value (constant)
3602 (let ((label (gen-label))
3603 (size (ecase (car constant)
3604 ((:byte :word :dword :qword) (car constant))
3605 ((:oword) :qword))))
3606 (values label (make-ea size
3607 :disp (make-fixup nil :code-object label)))))
3609 (defun emit-constant-segment-header (constants optimize)
3610 (declare (ignore constants))
3611 (loop repeat (if optimize 64 16) do (inst byte #x90)))
3613 (defun size-nbyte (size)
3614 (ecase size
3615 (:byte 1)
3616 (:word 2)
3617 (:dword 4)
3618 (:qword 8)
3619 (:oword 16)))
3621 (defun sort-inline-constants (constants)
3622 (stable-sort constants #'> :key (lambda (constant)
3623 (size-nbyte (caar constant)))))
3625 (defun emit-inline-constant (constant label)
3626 (let ((size (size-nbyte (car constant))))
3627 (emit-alignment (integer-length (1- size)))
3628 (emit-label label)
3629 (let ((val (cdr constant)))
3630 (loop repeat size
3631 do (inst byte (ldb (byte 8 0) val))
3632 (setf val (ash val -8))))))