fix the rtc emulation bug
[qemu/qemu-JZ.git] / exec.c
bloba19c06c9cf0e14b7d4235423e888e17da9369016
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #include "kvm.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #endif
47 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_FLUSH
49 //#define DEBUG_TLB
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
61 #undef DEBUG_TB_CHECK
62 #endif
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
82 #else
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
85 #endif
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
90 static int nb_tbs;
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101 #else
102 #define code_gen_section \
103 __attribute__((aligned (32)))
104 #endif
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
115 int phys_ram_fd;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
120 #endif
122 CPUState *first_cpu;
123 /* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
129 int use_icount = 0;
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132 int64_t qemu_icount;
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 ram_addr_t region_offset;
150 } PhysPageDesc;
152 #define L2_BITS 10
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159 #else
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
161 #endif
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size;
167 unsigned long qemu_host_page_bits;
168 unsigned long qemu_host_page_size;
169 unsigned long qemu_host_page_mask;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc *l1_map[L1_SIZE];
173 static PhysPageDesc **l1_phys_map;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
181 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
182 static int io_mem_nb;
183 static int io_mem_watch;
184 #endif
186 /* log support */
187 static const char *logfilename = "/tmp/qemu.log";
188 FILE *logfile;
189 int loglevel;
190 static int log_append = 0;
192 /* statistics */
193 static int tlb_flush_count;
194 static int tb_flush_count;
195 static int tb_phys_invalidate_count;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t {
199 target_phys_addr_t base;
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
204 } subpage_t;
206 #ifdef _WIN32
207 static void map_exec(void *addr, long size)
209 DWORD old_protect;
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
214 #else
215 static void map_exec(void *addr, long size)
217 unsigned long start, end, page_size;
219 page_size = getpagesize();
220 start = (unsigned long)addr;
221 start &= ~(page_size - 1);
223 end = (unsigned long)addr + size;
224 end += page_size - 1;
225 end &= ~(page_size - 1);
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
230 #endif
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
235 TARGET_PAGE_SIZE */
236 #ifdef _WIN32
238 SYSTEM_INFO system_info;
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
243 #else
244 qemu_real_host_page_size = getpagesize();
245 #endif
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr, endaddr;
260 FILE *f;
261 int n;
263 mmap_lock();
264 last_brk = (unsigned long)sbrk(0);
265 f = fopen("/proc/self/maps", "r");
266 if (f) {
267 do {
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
269 if (n == 2) {
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
274 page_set_flags(startaddr & TARGET_PAGE_MASK,
275 TARGET_PAGE_ALIGN(endaddr),
276 PAGE_RESERVED);
278 } while (!feof(f));
279 fclose(f);
281 mmap_unlock();
283 #endif
286 static inline PageDesc **page_l1_map(target_ulong index)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
292 return NULL;
293 #endif
294 return &l1_map[index >> L2_BITS];
297 static inline PageDesc *page_find_alloc(target_ulong index)
299 PageDesc **lp, *p;
300 lp = page_l1_map(index);
301 if (!lp)
302 return NULL;
304 p = *lp;
305 if (!p) {
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
312 *lp = p;
313 if (h2g_valid(p)) {
314 unsigned long addr = h2g(p);
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
317 PAGE_RESERVED);
319 #else
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
321 *lp = p;
322 #endif
324 return p + (index & (L2_SIZE - 1));
327 static inline PageDesc *page_find(target_ulong index)
329 PageDesc **lp, *p;
330 lp = page_l1_map(index);
331 if (!lp)
332 return NULL;
334 p = *lp;
335 if (!p)
336 return 0;
337 return p + (index & (L2_SIZE - 1));
340 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
342 void **lp, **p;
343 PhysPageDesc *pd;
345 p = (void **)l1_phys_map;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350 #endif
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
352 p = *lp;
353 if (!p) {
354 /* allocate if not found */
355 if (!alloc)
356 return NULL;
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
359 *lp = p;
361 #endif
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
363 pd = *lp;
364 if (!pd) {
365 int i;
366 /* allocate if not found */
367 if (!alloc)
368 return NULL;
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 *lp = pd;
371 for (i = 0; i < L2_SIZE; i++)
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
374 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
377 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
379 return phys_page_find_alloc(index, 0);
382 #if !defined(CONFIG_USER_ONLY)
383 static void tlb_protect_code(ram_addr_t ram_addr);
384 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
385 target_ulong vaddr);
386 #define mmap_lock() do { } while(0)
387 #define mmap_unlock() do { } while(0)
388 #endif
390 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
392 #if defined(CONFIG_USER_ONLY)
393 /* Currently it is not recommanded to allocate big chunks of data in
394 user mode. It will change when a dedicated libc will be used */
395 #define USE_STATIC_CODE_GEN_BUFFER
396 #endif
398 #ifdef USE_STATIC_CODE_GEN_BUFFER
399 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
400 #endif
402 static void code_gen_alloc(unsigned long tb_size)
404 #ifdef USE_STATIC_CODE_GEN_BUFFER
405 code_gen_buffer = static_code_gen_buffer;
406 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
407 map_exec(code_gen_buffer, code_gen_buffer_size);
408 #else
409 code_gen_buffer_size = tb_size;
410 if (code_gen_buffer_size == 0) {
411 #if defined(CONFIG_USER_ONLY)
412 /* in user mode, phys_ram_size is not meaningful */
413 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
414 #else
415 /* XXX: needs ajustments */
416 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
417 #endif
419 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
420 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
421 /* The code gen buffer location may have constraints depending on
422 the host cpu and OS */
423 #if defined(__linux__)
425 int flags;
426 void *start = NULL;
428 flags = MAP_PRIVATE | MAP_ANONYMOUS;
429 #if defined(__x86_64__)
430 flags |= MAP_32BIT;
431 /* Cannot map more than that */
432 if (code_gen_buffer_size > (800 * 1024 * 1024))
433 code_gen_buffer_size = (800 * 1024 * 1024);
434 #elif defined(__sparc_v9__)
435 // Map the buffer below 2G, so we can use direct calls and branches
436 flags |= MAP_FIXED;
437 start = (void *) 0x60000000UL;
438 if (code_gen_buffer_size > (512 * 1024 * 1024))
439 code_gen_buffer_size = (512 * 1024 * 1024);
440 #elif defined(__arm__)
441 /* Map the buffer below 32M, so we can use direct calls and branches */
442 flags |= MAP_FIXED;
443 start = (void *) 0x01000000UL;
444 if (code_gen_buffer_size > 16 * 1024 * 1024)
445 code_gen_buffer_size = 16 * 1024 * 1024;
446 #endif
447 code_gen_buffer = mmap(start, code_gen_buffer_size,
448 PROT_WRITE | PROT_READ | PROT_EXEC,
449 flags, -1, 0);
450 if (code_gen_buffer == MAP_FAILED) {
451 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
452 exit(1);
455 #elif defined(__FreeBSD__)
457 int flags;
458 void *addr = NULL;
459 flags = MAP_PRIVATE | MAP_ANONYMOUS;
460 #if defined(__x86_64__)
461 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
462 * 0x40000000 is free */
463 flags |= MAP_FIXED;
464 addr = (void *)0x40000000;
465 /* Cannot map more than that */
466 if (code_gen_buffer_size > (800 * 1024 * 1024))
467 code_gen_buffer_size = (800 * 1024 * 1024);
468 #endif
469 code_gen_buffer = mmap(addr, code_gen_buffer_size,
470 PROT_WRITE | PROT_READ | PROT_EXEC,
471 flags, -1, 0);
472 if (code_gen_buffer == MAP_FAILED) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
477 #else
478 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
479 if (!code_gen_buffer) {
480 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
481 exit(1);
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484 #endif
485 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
486 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
487 code_gen_buffer_max_size = code_gen_buffer_size -
488 code_gen_max_block_size();
489 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
490 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
493 /* Must be called before using the QEMU cpus. 'tb_size' is the size
494 (in bytes) allocated to the translation buffer. Zero means default
495 size. */
496 void cpu_exec_init_all(unsigned long tb_size)
498 cpu_gen_init();
499 code_gen_alloc(tb_size);
500 code_gen_ptr = code_gen_buffer;
501 page_init();
502 #if !defined(CONFIG_USER_ONLY)
503 io_mem_init();
504 #endif
507 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
509 #define CPU_COMMON_SAVE_VERSION 1
511 static void cpu_common_save(QEMUFile *f, void *opaque)
513 CPUState *env = opaque;
515 qemu_put_be32s(f, &env->halted);
516 qemu_put_be32s(f, &env->interrupt_request);
519 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
521 CPUState *env = opaque;
523 if (version_id != CPU_COMMON_SAVE_VERSION)
524 return -EINVAL;
526 qemu_get_be32s(f, &env->halted);
527 qemu_get_be32s(f, &env->interrupt_request);
528 tlb_flush(env, 1);
530 return 0;
532 #endif
534 void cpu_exec_init(CPUState *env)
536 CPUState **penv;
537 int cpu_index;
539 env->next_cpu = NULL;
540 penv = &first_cpu;
541 cpu_index = 0;
542 while (*penv != NULL) {
543 penv = (CPUState **)&(*penv)->next_cpu;
544 cpu_index++;
546 env->cpu_index = cpu_index;
547 TAILQ_INIT(&env->breakpoints);
548 TAILQ_INIT(&env->watchpoints);
549 *penv = env;
550 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
551 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
552 cpu_common_save, cpu_common_load, env);
553 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
554 cpu_save, cpu_load, env);
555 #endif
558 static inline void invalidate_page_bitmap(PageDesc *p)
560 if (p->code_bitmap) {
561 qemu_free(p->code_bitmap);
562 p->code_bitmap = NULL;
564 p->code_write_count = 0;
567 /* set to NULL all the 'first_tb' fields in all PageDescs */
568 static void page_flush_tb(void)
570 int i, j;
571 PageDesc *p;
573 for(i = 0; i < L1_SIZE; i++) {
574 p = l1_map[i];
575 if (p) {
576 for(j = 0; j < L2_SIZE; j++) {
577 p->first_tb = NULL;
578 invalidate_page_bitmap(p);
579 p++;
585 /* flush all the translation blocks */
586 /* XXX: tb_flush is currently not thread safe */
587 void tb_flush(CPUState *env1)
589 CPUState *env;
590 #if defined(DEBUG_FLUSH)
591 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
592 (unsigned long)(code_gen_ptr - code_gen_buffer),
593 nb_tbs, nb_tbs > 0 ?
594 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
595 #endif
596 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
597 cpu_abort(env1, "Internal error: code buffer overflow\n");
599 nb_tbs = 0;
601 for(env = first_cpu; env != NULL; env = env->next_cpu) {
602 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
605 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
606 page_flush_tb();
608 code_gen_ptr = code_gen_buffer;
609 /* XXX: flush processor icache at this point if cache flush is
610 expensive */
611 tb_flush_count++;
614 #ifdef DEBUG_TB_CHECK
616 static void tb_invalidate_check(target_ulong address)
618 TranslationBlock *tb;
619 int i;
620 address &= TARGET_PAGE_MASK;
621 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
622 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
623 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
624 address >= tb->pc + tb->size)) {
625 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
626 address, (long)tb->pc, tb->size);
632 /* verify that all the pages have correct rights for code */
633 static void tb_page_check(void)
635 TranslationBlock *tb;
636 int i, flags1, flags2;
638 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
639 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
640 flags1 = page_get_flags(tb->pc);
641 flags2 = page_get_flags(tb->pc + tb->size - 1);
642 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
643 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
644 (long)tb->pc, tb->size, flags1, flags2);
650 static void tb_jmp_check(TranslationBlock *tb)
652 TranslationBlock *tb1;
653 unsigned int n1;
655 /* suppress any remaining jumps to this TB */
656 tb1 = tb->jmp_first;
657 for(;;) {
658 n1 = (long)tb1 & 3;
659 tb1 = (TranslationBlock *)((long)tb1 & ~3);
660 if (n1 == 2)
661 break;
662 tb1 = tb1->jmp_next[n1];
664 /* check end of list */
665 if (tb1 != tb) {
666 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
670 #endif
672 /* invalidate one TB */
673 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
674 int next_offset)
676 TranslationBlock *tb1;
677 for(;;) {
678 tb1 = *ptb;
679 if (tb1 == tb) {
680 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
681 break;
683 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
687 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
689 TranslationBlock *tb1;
690 unsigned int n1;
692 for(;;) {
693 tb1 = *ptb;
694 n1 = (long)tb1 & 3;
695 tb1 = (TranslationBlock *)((long)tb1 & ~3);
696 if (tb1 == tb) {
697 *ptb = tb1->page_next[n1];
698 break;
700 ptb = &tb1->page_next[n1];
704 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
706 TranslationBlock *tb1, **ptb;
707 unsigned int n1;
709 ptb = &tb->jmp_next[n];
710 tb1 = *ptb;
711 if (tb1) {
712 /* find tb(n) in circular list */
713 for(;;) {
714 tb1 = *ptb;
715 n1 = (long)tb1 & 3;
716 tb1 = (TranslationBlock *)((long)tb1 & ~3);
717 if (n1 == n && tb1 == tb)
718 break;
719 if (n1 == 2) {
720 ptb = &tb1->jmp_first;
721 } else {
722 ptb = &tb1->jmp_next[n1];
725 /* now we can suppress tb(n) from the list */
726 *ptb = tb->jmp_next[n];
728 tb->jmp_next[n] = NULL;
732 /* reset the jump entry 'n' of a TB so that it is not chained to
733 another TB */
734 static inline void tb_reset_jump(TranslationBlock *tb, int n)
736 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
739 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
741 CPUState *env;
742 PageDesc *p;
743 unsigned int h, n1;
744 target_phys_addr_t phys_pc;
745 TranslationBlock *tb1, *tb2;
747 /* remove the TB from the hash list */
748 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
749 h = tb_phys_hash_func(phys_pc);
750 tb_remove(&tb_phys_hash[h], tb,
751 offsetof(TranslationBlock, phys_hash_next));
753 /* remove the TB from the page list */
754 if (tb->page_addr[0] != page_addr) {
755 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
756 tb_page_remove(&p->first_tb, tb);
757 invalidate_page_bitmap(p);
759 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
760 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
761 tb_page_remove(&p->first_tb, tb);
762 invalidate_page_bitmap(p);
765 tb_invalidated_flag = 1;
767 /* remove the TB from the hash list */
768 h = tb_jmp_cache_hash_func(tb->pc);
769 for(env = first_cpu; env != NULL; env = env->next_cpu) {
770 if (env->tb_jmp_cache[h] == tb)
771 env->tb_jmp_cache[h] = NULL;
774 /* suppress this TB from the two jump lists */
775 tb_jmp_remove(tb, 0);
776 tb_jmp_remove(tb, 1);
778 /* suppress any remaining jumps to this TB */
779 tb1 = tb->jmp_first;
780 for(;;) {
781 n1 = (long)tb1 & 3;
782 if (n1 == 2)
783 break;
784 tb1 = (TranslationBlock *)((long)tb1 & ~3);
785 tb2 = tb1->jmp_next[n1];
786 tb_reset_jump(tb1, n1);
787 tb1->jmp_next[n1] = NULL;
788 tb1 = tb2;
790 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
792 tb_phys_invalidate_count++;
795 static inline void set_bits(uint8_t *tab, int start, int len)
797 int end, mask, end1;
799 end = start + len;
800 tab += start >> 3;
801 mask = 0xff << (start & 7);
802 if ((start & ~7) == (end & ~7)) {
803 if (start < end) {
804 mask &= ~(0xff << (end & 7));
805 *tab |= mask;
807 } else {
808 *tab++ |= mask;
809 start = (start + 8) & ~7;
810 end1 = end & ~7;
811 while (start < end1) {
812 *tab++ = 0xff;
813 start += 8;
815 if (start < end) {
816 mask = ~(0xff << (end & 7));
817 *tab |= mask;
822 static void build_page_bitmap(PageDesc *p)
824 int n, tb_start, tb_end;
825 TranslationBlock *tb;
827 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
828 if (!p->code_bitmap)
829 return;
831 tb = p->first_tb;
832 while (tb != NULL) {
833 n = (long)tb & 3;
834 tb = (TranslationBlock *)((long)tb & ~3);
835 /* NOTE: this is subtle as a TB may span two physical pages */
836 if (n == 0) {
837 /* NOTE: tb_end may be after the end of the page, but
838 it is not a problem */
839 tb_start = tb->pc & ~TARGET_PAGE_MASK;
840 tb_end = tb_start + tb->size;
841 if (tb_end > TARGET_PAGE_SIZE)
842 tb_end = TARGET_PAGE_SIZE;
843 } else {
844 tb_start = 0;
845 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
847 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
848 tb = tb->page_next[n];
852 TranslationBlock *tb_gen_code(CPUState *env,
853 target_ulong pc, target_ulong cs_base,
854 int flags, int cflags)
856 TranslationBlock *tb;
857 uint8_t *tc_ptr;
858 target_ulong phys_pc, phys_page2, virt_page2;
859 int code_gen_size;
861 phys_pc = get_phys_addr_code(env, pc);
862 tb = tb_alloc(pc);
863 if (!tb) {
864 /* flush must be done */
865 tb_flush(env);
866 /* cannot fail at this point */
867 tb = tb_alloc(pc);
868 /* Don't forget to invalidate previous TB info. */
869 tb_invalidated_flag = 1;
871 tc_ptr = code_gen_ptr;
872 tb->tc_ptr = tc_ptr;
873 tb->cs_base = cs_base;
874 tb->flags = flags;
875 tb->cflags = cflags;
876 cpu_gen_code(env, tb, &code_gen_size);
877 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
879 /* check next page if needed */
880 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
881 phys_page2 = -1;
882 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
883 phys_page2 = get_phys_addr_code(env, virt_page2);
885 tb_link_phys(tb, phys_pc, phys_page2);
886 return tb;
889 /* invalidate all TBs which intersect with the target physical page
890 starting in range [start;end[. NOTE: start and end must refer to
891 the same physical page. 'is_cpu_write_access' should be true if called
892 from a real cpu write access: the virtual CPU will exit the current
893 TB if code is modified inside this TB. */
894 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
895 int is_cpu_write_access)
897 TranslationBlock *tb, *tb_next, *saved_tb;
898 CPUState *env = cpu_single_env;
899 target_ulong tb_start, tb_end;
900 PageDesc *p;
901 int n;
902 #ifdef TARGET_HAS_PRECISE_SMC
903 int current_tb_not_found = is_cpu_write_access;
904 TranslationBlock *current_tb = NULL;
905 int current_tb_modified = 0;
906 target_ulong current_pc = 0;
907 target_ulong current_cs_base = 0;
908 int current_flags = 0;
909 #endif /* TARGET_HAS_PRECISE_SMC */
911 p = page_find(start >> TARGET_PAGE_BITS);
912 if (!p)
913 return;
914 if (!p->code_bitmap &&
915 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
916 is_cpu_write_access) {
917 /* build code bitmap */
918 build_page_bitmap(p);
921 /* we remove all the TBs in the range [start, end[ */
922 /* XXX: see if in some cases it could be faster to invalidate all the code */
923 tb = p->first_tb;
924 while (tb != NULL) {
925 n = (long)tb & 3;
926 tb = (TranslationBlock *)((long)tb & ~3);
927 tb_next = tb->page_next[n];
928 /* NOTE: this is subtle as a TB may span two physical pages */
929 if (n == 0) {
930 /* NOTE: tb_end may be after the end of the page, but
931 it is not a problem */
932 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
933 tb_end = tb_start + tb->size;
934 } else {
935 tb_start = tb->page_addr[1];
936 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
938 if (!(tb_end <= start || tb_start >= end)) {
939 #ifdef TARGET_HAS_PRECISE_SMC
940 if (current_tb_not_found) {
941 current_tb_not_found = 0;
942 current_tb = NULL;
943 if (env->mem_io_pc) {
944 /* now we have a real cpu fault */
945 current_tb = tb_find_pc(env->mem_io_pc);
948 if (current_tb == tb &&
949 (current_tb->cflags & CF_COUNT_MASK) != 1) {
950 /* If we are modifying the current TB, we must stop
951 its execution. We could be more precise by checking
952 that the modification is after the current PC, but it
953 would require a specialized function to partially
954 restore the CPU state */
956 current_tb_modified = 1;
957 cpu_restore_state(current_tb, env,
958 env->mem_io_pc, NULL);
959 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
960 &current_flags);
962 #endif /* TARGET_HAS_PRECISE_SMC */
963 /* we need to do that to handle the case where a signal
964 occurs while doing tb_phys_invalidate() */
965 saved_tb = NULL;
966 if (env) {
967 saved_tb = env->current_tb;
968 env->current_tb = NULL;
970 tb_phys_invalidate(tb, -1);
971 if (env) {
972 env->current_tb = saved_tb;
973 if (env->interrupt_request && env->current_tb)
974 cpu_interrupt(env, env->interrupt_request);
977 tb = tb_next;
979 #if !defined(CONFIG_USER_ONLY)
980 /* if no code remaining, no need to continue to use slow writes */
981 if (!p->first_tb) {
982 invalidate_page_bitmap(p);
983 if (is_cpu_write_access) {
984 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
987 #endif
988 #ifdef TARGET_HAS_PRECISE_SMC
989 if (current_tb_modified) {
990 /* we generate a block containing just the instruction
991 modifying the memory. It will ensure that it cannot modify
992 itself */
993 env->current_tb = NULL;
994 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
995 cpu_resume_from_signal(env, NULL);
997 #endif
1000 /* len must be <= 8 and start must be a multiple of len */
1001 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1003 PageDesc *p;
1004 int offset, b;
1005 #if 0
1006 if (1) {
1007 if (loglevel) {
1008 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1009 cpu_single_env->mem_io_vaddr, len,
1010 cpu_single_env->eip,
1011 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1014 #endif
1015 p = page_find(start >> TARGET_PAGE_BITS);
1016 if (!p)
1017 return;
1018 if (p->code_bitmap) {
1019 offset = start & ~TARGET_PAGE_MASK;
1020 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1021 if (b & ((1 << len) - 1))
1022 goto do_invalidate;
1023 } else {
1024 do_invalidate:
1025 tb_invalidate_phys_page_range(start, start + len, 1);
1029 #if !defined(CONFIG_SOFTMMU)
1030 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1031 unsigned long pc, void *puc)
1033 TranslationBlock *tb;
1034 PageDesc *p;
1035 int n;
1036 #ifdef TARGET_HAS_PRECISE_SMC
1037 TranslationBlock *current_tb = NULL;
1038 CPUState *env = cpu_single_env;
1039 int current_tb_modified = 0;
1040 target_ulong current_pc = 0;
1041 target_ulong current_cs_base = 0;
1042 int current_flags = 0;
1043 #endif
1045 addr &= TARGET_PAGE_MASK;
1046 p = page_find(addr >> TARGET_PAGE_BITS);
1047 if (!p)
1048 return;
1049 tb = p->first_tb;
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (tb && pc != 0) {
1052 current_tb = tb_find_pc(pc);
1054 #endif
1055 while (tb != NULL) {
1056 n = (long)tb & 3;
1057 tb = (TranslationBlock *)((long)tb & ~3);
1058 #ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env, pc, puc);
1069 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1070 &current_flags);
1072 #endif /* TARGET_HAS_PRECISE_SMC */
1073 tb_phys_invalidate(tb, addr);
1074 tb = tb->page_next[n];
1076 p->first_tb = NULL;
1077 #ifdef TARGET_HAS_PRECISE_SMC
1078 if (current_tb_modified) {
1079 /* we generate a block containing just the instruction
1080 modifying the memory. It will ensure that it cannot modify
1081 itself */
1082 env->current_tb = NULL;
1083 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1084 cpu_resume_from_signal(env, puc);
1086 #endif
1088 #endif
1090 /* add the tb in the target page and protect it if necessary */
1091 static inline void tb_alloc_page(TranslationBlock *tb,
1092 unsigned int n, target_ulong page_addr)
1094 PageDesc *p;
1095 TranslationBlock *last_first_tb;
1097 tb->page_addr[n] = page_addr;
1098 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1099 tb->page_next[n] = p->first_tb;
1100 last_first_tb = p->first_tb;
1101 p->first_tb = (TranslationBlock *)((long)tb | n);
1102 invalidate_page_bitmap(p);
1104 #if defined(TARGET_HAS_SMC) || 1
1106 #if defined(CONFIG_USER_ONLY)
1107 if (p->flags & PAGE_WRITE) {
1108 target_ulong addr;
1109 PageDesc *p2;
1110 int prot;
1112 /* force the host page as non writable (writes will have a
1113 page fault + mprotect overhead) */
1114 page_addr &= qemu_host_page_mask;
1115 prot = 0;
1116 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1117 addr += TARGET_PAGE_SIZE) {
1119 p2 = page_find (addr >> TARGET_PAGE_BITS);
1120 if (!p2)
1121 continue;
1122 prot |= p2->flags;
1123 p2->flags &= ~PAGE_WRITE;
1124 page_get_flags(addr);
1126 mprotect(g2h(page_addr), qemu_host_page_size,
1127 (prot & PAGE_BITS) & ~PAGE_WRITE);
1128 #ifdef DEBUG_TB_INVALIDATE
1129 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1130 page_addr);
1131 #endif
1133 #else
1134 /* if some code is already present, then the pages are already
1135 protected. So we handle the case where only the first TB is
1136 allocated in a physical page */
1137 if (!last_first_tb) {
1138 tlb_protect_code(page_addr);
1140 #endif
1142 #endif /* TARGET_HAS_SMC */
1145 /* Allocate a new translation block. Flush the translation buffer if
1146 too many translation blocks or too much generated code. */
1147 TranslationBlock *tb_alloc(target_ulong pc)
1149 TranslationBlock *tb;
1151 if (nb_tbs >= code_gen_max_blocks ||
1152 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1153 return NULL;
1154 tb = &tbs[nb_tbs++];
1155 tb->pc = pc;
1156 tb->cflags = 0;
1157 return tb;
1160 void tb_free(TranslationBlock *tb)
1162 /* In practice this is mostly used for single use temporary TB
1163 Ignore the hard cases and just back up if this TB happens to
1164 be the last one generated. */
1165 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1166 code_gen_ptr = tb->tc_ptr;
1167 nb_tbs--;
1171 /* add a new TB and link it to the physical page tables. phys_page2 is
1172 (-1) to indicate that only one page contains the TB. */
1173 void tb_link_phys(TranslationBlock *tb,
1174 target_ulong phys_pc, target_ulong phys_page2)
1176 unsigned int h;
1177 TranslationBlock **ptb;
1179 /* Grab the mmap lock to stop another thread invalidating this TB
1180 before we are done. */
1181 mmap_lock();
1182 /* add in the physical hash table */
1183 h = tb_phys_hash_func(phys_pc);
1184 ptb = &tb_phys_hash[h];
1185 tb->phys_hash_next = *ptb;
1186 *ptb = tb;
1188 /* add in the page list */
1189 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1190 if (phys_page2 != -1)
1191 tb_alloc_page(tb, 1, phys_page2);
1192 else
1193 tb->page_addr[1] = -1;
1195 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1196 tb->jmp_next[0] = NULL;
1197 tb->jmp_next[1] = NULL;
1199 /* init original jump addresses */
1200 if (tb->tb_next_offset[0] != 0xffff)
1201 tb_reset_jump(tb, 0);
1202 if (tb->tb_next_offset[1] != 0xffff)
1203 tb_reset_jump(tb, 1);
1205 #ifdef DEBUG_TB_CHECK
1206 tb_page_check();
1207 #endif
1208 mmap_unlock();
1211 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1212 tb[1].tc_ptr. Return NULL if not found */
1213 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1215 int m_min, m_max, m;
1216 unsigned long v;
1217 TranslationBlock *tb;
1219 if (nb_tbs <= 0)
1220 return NULL;
1221 if (tc_ptr < (unsigned long)code_gen_buffer ||
1222 tc_ptr >= (unsigned long)code_gen_ptr)
1223 return NULL;
1224 /* binary search (cf Knuth) */
1225 m_min = 0;
1226 m_max = nb_tbs - 1;
1227 while (m_min <= m_max) {
1228 m = (m_min + m_max) >> 1;
1229 tb = &tbs[m];
1230 v = (unsigned long)tb->tc_ptr;
1231 if (v == tc_ptr)
1232 return tb;
1233 else if (tc_ptr < v) {
1234 m_max = m - 1;
1235 } else {
1236 m_min = m + 1;
1239 return &tbs[m_max];
1242 static void tb_reset_jump_recursive(TranslationBlock *tb);
1244 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1246 TranslationBlock *tb1, *tb_next, **ptb;
1247 unsigned int n1;
1249 tb1 = tb->jmp_next[n];
1250 if (tb1 != NULL) {
1251 /* find head of list */
1252 for(;;) {
1253 n1 = (long)tb1 & 3;
1254 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1255 if (n1 == 2)
1256 break;
1257 tb1 = tb1->jmp_next[n1];
1259 /* we are now sure now that tb jumps to tb1 */
1260 tb_next = tb1;
1262 /* remove tb from the jmp_first list */
1263 ptb = &tb_next->jmp_first;
1264 for(;;) {
1265 tb1 = *ptb;
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == n && tb1 == tb)
1269 break;
1270 ptb = &tb1->jmp_next[n1];
1272 *ptb = tb->jmp_next[n];
1273 tb->jmp_next[n] = NULL;
1275 /* suppress the jump to next tb in generated code */
1276 tb_reset_jump(tb, n);
1278 /* suppress jumps in the tb on which we could have jumped */
1279 tb_reset_jump_recursive(tb_next);
1283 static void tb_reset_jump_recursive(TranslationBlock *tb)
1285 tb_reset_jump_recursive2(tb, 0);
1286 tb_reset_jump_recursive2(tb, 1);
1289 #if defined(TARGET_HAS_ICE)
1290 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1292 target_phys_addr_t addr;
1293 target_ulong pd;
1294 ram_addr_t ram_addr;
1295 PhysPageDesc *p;
1297 addr = cpu_get_phys_page_debug(env, pc);
1298 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1299 if (!p) {
1300 pd = IO_MEM_UNASSIGNED;
1301 } else {
1302 pd = p->phys_offset;
1304 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1305 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1307 #endif
1309 /* Add a watchpoint. */
1310 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1311 int flags, CPUWatchpoint **watchpoint)
1313 target_ulong len_mask = ~(len - 1);
1314 CPUWatchpoint *wp;
1316 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1317 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1318 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1319 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1320 return -EINVAL;
1322 wp = qemu_malloc(sizeof(*wp));
1323 if (!wp)
1324 return -ENOMEM;
1326 wp->vaddr = addr;
1327 wp->len_mask = len_mask;
1328 wp->flags = flags;
1330 /* keep all GDB-injected watchpoints in front */
1331 if (flags & BP_GDB)
1332 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1333 else
1334 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1336 tlb_flush_page(env, addr);
1338 if (watchpoint)
1339 *watchpoint = wp;
1340 return 0;
1343 /* Remove a specific watchpoint. */
1344 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1345 int flags)
1347 target_ulong len_mask = ~(len - 1);
1348 CPUWatchpoint *wp;
1350 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1351 if (addr == wp->vaddr && len_mask == wp->len_mask
1352 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1353 cpu_watchpoint_remove_by_ref(env, wp);
1354 return 0;
1357 return -ENOENT;
1360 /* Remove a specific watchpoint by reference. */
1361 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1363 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1365 tlb_flush_page(env, watchpoint->vaddr);
1367 qemu_free(watchpoint);
1370 /* Remove all matching watchpoints. */
1371 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1373 CPUWatchpoint *wp, *next;
1375 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1376 if (wp->flags & mask)
1377 cpu_watchpoint_remove_by_ref(env, wp);
1381 /* Add a breakpoint. */
1382 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1383 CPUBreakpoint **breakpoint)
1385 #if defined(TARGET_HAS_ICE)
1386 CPUBreakpoint *bp;
1388 bp = qemu_malloc(sizeof(*bp));
1389 if (!bp)
1390 return -ENOMEM;
1392 bp->pc = pc;
1393 bp->flags = flags;
1395 /* keep all GDB-injected breakpoints in front */
1396 if (flags & BP_GDB)
1397 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1398 else
1399 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1401 breakpoint_invalidate(env, pc);
1403 if (breakpoint)
1404 *breakpoint = bp;
1405 return 0;
1406 #else
1407 return -ENOSYS;
1408 #endif
1411 /* Remove a specific breakpoint. */
1412 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1414 #if defined(TARGET_HAS_ICE)
1415 CPUBreakpoint *bp;
1417 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1418 if (bp->pc == pc && bp->flags == flags) {
1419 cpu_breakpoint_remove_by_ref(env, bp);
1420 return 0;
1423 return -ENOENT;
1424 #else
1425 return -ENOSYS;
1426 #endif
1429 /* Remove a specific breakpoint by reference. */
1430 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1432 #if defined(TARGET_HAS_ICE)
1433 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1435 breakpoint_invalidate(env, breakpoint->pc);
1437 qemu_free(breakpoint);
1438 #endif
1441 /* Remove all matching breakpoints. */
1442 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1444 #if defined(TARGET_HAS_ICE)
1445 CPUBreakpoint *bp, *next;
1447 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1448 if (bp->flags & mask)
1449 cpu_breakpoint_remove_by_ref(env, bp);
1451 #endif
1454 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1455 CPU loop after each instruction */
1456 void cpu_single_step(CPUState *env, int enabled)
1458 #if defined(TARGET_HAS_ICE)
1459 if (env->singlestep_enabled != enabled) {
1460 env->singlestep_enabled = enabled;
1461 /* must flush all the translated code to avoid inconsistancies */
1462 /* XXX: only flush what is necessary */
1463 tb_flush(env);
1465 #endif
1468 /* enable or disable low levels log */
1469 void cpu_set_log(int log_flags)
1471 loglevel = log_flags;
1472 if (loglevel && !logfile) {
1473 logfile = fopen(logfilename, log_append ? "a" : "w");
1474 if (!logfile) {
1475 perror(logfilename);
1476 _exit(1);
1478 #if !defined(CONFIG_SOFTMMU)
1479 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1481 static char logfile_buf[4096];
1482 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1484 #else
1485 setvbuf(logfile, NULL, _IOLBF, 0);
1486 #endif
1487 log_append = 1;
1489 if (!loglevel && logfile) {
1490 fclose(logfile);
1491 logfile = NULL;
1495 void cpu_set_log_filename(const char *filename)
1497 logfilename = strdup(filename);
1498 if (logfile) {
1499 fclose(logfile);
1500 logfile = NULL;
1502 cpu_set_log(loglevel);
1505 /* mask must never be zero, except for A20 change call */
1506 void cpu_interrupt(CPUState *env, int mask)
1508 #if !defined(USE_NPTL)
1509 TranslationBlock *tb;
1510 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1511 #endif
1512 int old_mask;
1514 old_mask = env->interrupt_request;
1515 /* FIXME: This is probably not threadsafe. A different thread could
1516 be in the middle of a read-modify-write operation. */
1517 env->interrupt_request |= mask;
1518 #if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523 #else
1524 if (use_icount) {
1525 env->icount_decr.u16.high = 0xffff;
1526 #ifndef CONFIG_USER_ONLY
1527 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1528 an async event happened and we need to process it. */
1529 if (!can_do_io(env)
1530 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1531 cpu_abort(env, "Raised interrupt while not in I/O function");
1533 #endif
1534 } else {
1535 tb = env->current_tb;
1536 /* if the cpu is currently executing code, we must unlink it and
1537 all the potentially executing TB */
1538 if (tb && !testandset(&interrupt_lock)) {
1539 env->current_tb = NULL;
1540 tb_reset_jump_recursive(tb);
1541 resetlock(&interrupt_lock);
1544 #endif
1547 void cpu_reset_interrupt(CPUState *env, int mask)
1549 env->interrupt_request &= ~mask;
1552 const CPULogItem cpu_log_items[] = {
1553 { CPU_LOG_TB_OUT_ASM, "out_asm",
1554 "show generated host assembly code for each compiled TB" },
1555 { CPU_LOG_TB_IN_ASM, "in_asm",
1556 "show target assembly code for each compiled TB" },
1557 { CPU_LOG_TB_OP, "op",
1558 "show micro ops for each compiled TB" },
1559 { CPU_LOG_TB_OP_OPT, "op_opt",
1560 "show micro ops "
1561 #ifdef TARGET_I386
1562 "before eflags optimization and "
1563 #endif
1564 "after liveness analysis" },
1565 { CPU_LOG_INT, "int",
1566 "show interrupts/exceptions in short format" },
1567 { CPU_LOG_EXEC, "exec",
1568 "show trace before each executed TB (lots of logs)" },
1569 { CPU_LOG_TB_CPU, "cpu",
1570 "show CPU state before block translation" },
1571 #ifdef TARGET_I386
1572 { CPU_LOG_PCALL, "pcall",
1573 "show protected mode far calls/returns/exceptions" },
1574 #endif
1575 #ifdef DEBUG_IOPORT
1576 { CPU_LOG_IOPORT, "ioport",
1577 "show all i/o ports accesses" },
1578 #endif
1579 { 0, NULL, NULL },
1582 static int cmp1(const char *s1, int n, const char *s2)
1584 if (strlen(s2) != n)
1585 return 0;
1586 return memcmp(s1, s2, n) == 0;
1589 /* takes a comma separated list of log masks. Return 0 if error. */
1590 int cpu_str_to_log_mask(const char *str)
1592 const CPULogItem *item;
1593 int mask;
1594 const char *p, *p1;
1596 p = str;
1597 mask = 0;
1598 for(;;) {
1599 p1 = strchr(p, ',');
1600 if (!p1)
1601 p1 = p + strlen(p);
1602 if(cmp1(p,p1-p,"all")) {
1603 for(item = cpu_log_items; item->mask != 0; item++) {
1604 mask |= item->mask;
1606 } else {
1607 for(item = cpu_log_items; item->mask != 0; item++) {
1608 if (cmp1(p, p1 - p, item->name))
1609 goto found;
1611 return 0;
1613 found:
1614 mask |= item->mask;
1615 if (*p1 != ',')
1616 break;
1617 p = p1 + 1;
1619 return mask;
1622 void cpu_abort(CPUState *env, const char *fmt, ...)
1624 va_list ap;
1625 va_list ap2;
1627 va_start(ap, fmt);
1628 va_copy(ap2, ap);
1629 fprintf(stderr, "qemu: fatal: ");
1630 vfprintf(stderr, fmt, ap);
1631 fprintf(stderr, "\n");
1632 #ifdef TARGET_I386
1633 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1634 #else
1635 cpu_dump_state(env, stderr, fprintf, 0);
1636 #endif
1637 if (logfile) {
1638 fprintf(logfile, "qemu: fatal: ");
1639 vfprintf(logfile, fmt, ap2);
1640 fprintf(logfile, "\n");
1641 #ifdef TARGET_I386
1642 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1643 #else
1644 cpu_dump_state(env, logfile, fprintf, 0);
1645 #endif
1646 fflush(logfile);
1647 fclose(logfile);
1649 va_end(ap2);
1650 va_end(ap);
1651 abort();
1654 CPUState *cpu_copy(CPUState *env)
1656 CPUState *new_env = cpu_init(env->cpu_model_str);
1657 /* preserve chaining and index */
1658 CPUState *next_cpu = new_env->next_cpu;
1659 int cpu_index = new_env->cpu_index;
1660 memcpy(new_env, env, sizeof(CPUState));
1661 new_env->next_cpu = next_cpu;
1662 new_env->cpu_index = cpu_index;
1663 return new_env;
1666 #if !defined(CONFIG_USER_ONLY)
1668 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1670 unsigned int i;
1672 /* Discard jump cache entries for any tb which might potentially
1673 overlap the flushed page. */
1674 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1675 memset (&env->tb_jmp_cache[i], 0,
1676 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1678 i = tb_jmp_cache_hash_page(addr);
1679 memset (&env->tb_jmp_cache[i], 0,
1680 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1683 /* NOTE: if flush_global is true, also flush global entries (not
1684 implemented yet) */
1685 void tlb_flush(CPUState *env, int flush_global)
1687 int i;
1689 #if defined(DEBUG_TLB)
1690 printf("tlb_flush:\n");
1691 #endif
1692 /* must reset current TB so that interrupts cannot modify the
1693 links while we are modifying them */
1694 env->current_tb = NULL;
1696 for(i = 0; i < CPU_TLB_SIZE; i++) {
1697 env->tlb_table[0][i].addr_read = -1;
1698 env->tlb_table[0][i].addr_write = -1;
1699 env->tlb_table[0][i].addr_code = -1;
1700 env->tlb_table[1][i].addr_read = -1;
1701 env->tlb_table[1][i].addr_write = -1;
1702 env->tlb_table[1][i].addr_code = -1;
1703 #if (NB_MMU_MODES >= 3)
1704 env->tlb_table[2][i].addr_read = -1;
1705 env->tlb_table[2][i].addr_write = -1;
1706 env->tlb_table[2][i].addr_code = -1;
1707 #if (NB_MMU_MODES == 4)
1708 env->tlb_table[3][i].addr_read = -1;
1709 env->tlb_table[3][i].addr_write = -1;
1710 env->tlb_table[3][i].addr_code = -1;
1711 #endif
1712 #endif
1715 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1717 #ifdef USE_KQEMU
1718 if (env->kqemu_enabled) {
1719 kqemu_flush(env, flush_global);
1721 #endif
1722 tlb_flush_count++;
1725 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1727 if (addr == (tlb_entry->addr_read &
1728 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1729 addr == (tlb_entry->addr_write &
1730 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1731 addr == (tlb_entry->addr_code &
1732 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1733 tlb_entry->addr_read = -1;
1734 tlb_entry->addr_write = -1;
1735 tlb_entry->addr_code = -1;
1739 void tlb_flush_page(CPUState *env, target_ulong addr)
1741 int i;
1743 #if defined(DEBUG_TLB)
1744 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1745 #endif
1746 /* must reset current TB so that interrupts cannot modify the
1747 links while we are modifying them */
1748 env->current_tb = NULL;
1750 addr &= TARGET_PAGE_MASK;
1751 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1752 tlb_flush_entry(&env->tlb_table[0][i], addr);
1753 tlb_flush_entry(&env->tlb_table[1][i], addr);
1754 #if (NB_MMU_MODES >= 3)
1755 tlb_flush_entry(&env->tlb_table[2][i], addr);
1756 #if (NB_MMU_MODES == 4)
1757 tlb_flush_entry(&env->tlb_table[3][i], addr);
1758 #endif
1759 #endif
1761 tlb_flush_jmp_cache(env, addr);
1763 #ifdef USE_KQEMU
1764 if (env->kqemu_enabled) {
1765 kqemu_flush_page(env, addr);
1767 #endif
1770 /* update the TLBs so that writes to code in the virtual page 'addr'
1771 can be detected */
1772 static void tlb_protect_code(ram_addr_t ram_addr)
1774 cpu_physical_memory_reset_dirty(ram_addr,
1775 ram_addr + TARGET_PAGE_SIZE,
1776 CODE_DIRTY_FLAG);
1779 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1780 tested for self modifying code */
1781 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1782 target_ulong vaddr)
1784 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1787 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1788 unsigned long start, unsigned long length)
1790 unsigned long addr;
1791 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1792 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1793 if ((addr - start) < length) {
1794 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1799 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1800 int dirty_flags)
1802 CPUState *env;
1803 unsigned long length, start1;
1804 int i, mask, len;
1805 uint8_t *p;
1807 start &= TARGET_PAGE_MASK;
1808 end = TARGET_PAGE_ALIGN(end);
1810 length = end - start;
1811 if (length == 0)
1812 return;
1813 len = length >> TARGET_PAGE_BITS;
1814 #ifdef USE_KQEMU
1815 /* XXX: should not depend on cpu context */
1816 env = first_cpu;
1817 if (env->kqemu_enabled) {
1818 ram_addr_t addr;
1819 addr = start;
1820 for(i = 0; i < len; i++) {
1821 kqemu_set_notdirty(env, addr);
1822 addr += TARGET_PAGE_SIZE;
1825 #endif
1826 mask = ~dirty_flags;
1827 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1828 for(i = 0; i < len; i++)
1829 p[i] &= mask;
1831 /* we modify the TLB cache so that the dirty bit will be set again
1832 when accessing the range */
1833 start1 = start + (unsigned long)phys_ram_base;
1834 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1835 for(i = 0; i < CPU_TLB_SIZE; i++)
1836 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1837 for(i = 0; i < CPU_TLB_SIZE; i++)
1838 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1839 #if (NB_MMU_MODES >= 3)
1840 for(i = 0; i < CPU_TLB_SIZE; i++)
1841 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1842 #if (NB_MMU_MODES == 4)
1843 for(i = 0; i < CPU_TLB_SIZE; i++)
1844 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1845 #endif
1846 #endif
1850 int cpu_physical_memory_set_dirty_tracking(int enable)
1852 in_migration = enable;
1853 return 0;
1856 int cpu_physical_memory_get_dirty_tracking(void)
1858 return in_migration;
1861 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1863 if (kvm_enabled())
1864 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1867 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1869 ram_addr_t ram_addr;
1871 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1872 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1873 tlb_entry->addend - (unsigned long)phys_ram_base;
1874 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1875 tlb_entry->addr_write |= TLB_NOTDIRTY;
1880 /* update the TLB according to the current state of the dirty bits */
1881 void cpu_tlb_update_dirty(CPUState *env)
1883 int i;
1884 for(i = 0; i < CPU_TLB_SIZE; i++)
1885 tlb_update_dirty(&env->tlb_table[0][i]);
1886 for(i = 0; i < CPU_TLB_SIZE; i++)
1887 tlb_update_dirty(&env->tlb_table[1][i]);
1888 #if (NB_MMU_MODES >= 3)
1889 for(i = 0; i < CPU_TLB_SIZE; i++)
1890 tlb_update_dirty(&env->tlb_table[2][i]);
1891 #if (NB_MMU_MODES == 4)
1892 for(i = 0; i < CPU_TLB_SIZE; i++)
1893 tlb_update_dirty(&env->tlb_table[3][i]);
1894 #endif
1895 #endif
1898 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1900 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1901 tlb_entry->addr_write = vaddr;
1904 /* update the TLB corresponding to virtual page vaddr
1905 so that it is no longer dirty */
1906 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1908 int i;
1910 vaddr &= TARGET_PAGE_MASK;
1911 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1912 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1913 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1914 #if (NB_MMU_MODES >= 3)
1915 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1916 #if (NB_MMU_MODES == 4)
1917 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1918 #endif
1919 #endif
1922 /* add a new TLB entry. At most one entry for a given virtual address
1923 is permitted. Return 0 if OK or 2 if the page could not be mapped
1924 (can only happen in non SOFTMMU mode for I/O pages or pages
1925 conflicting with the host address space). */
1926 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1927 target_phys_addr_t paddr, int prot,
1928 int mmu_idx, int is_softmmu)
1930 PhysPageDesc *p;
1931 unsigned long pd;
1932 unsigned int index;
1933 target_ulong address;
1934 target_ulong code_address;
1935 target_phys_addr_t addend;
1936 int ret;
1937 CPUTLBEntry *te;
1938 CPUWatchpoint *wp;
1939 target_phys_addr_t iotlb;
1941 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1942 if (!p) {
1943 pd = IO_MEM_UNASSIGNED;
1944 } else {
1945 pd = p->phys_offset;
1947 #if defined(DEBUG_TLB)
1948 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1949 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1950 #endif
1952 ret = 0;
1953 address = vaddr;
1954 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1955 /* IO memory case (romd handled later) */
1956 address |= TLB_MMIO;
1958 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1959 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1960 /* Normal RAM. */
1961 iotlb = pd & TARGET_PAGE_MASK;
1962 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1963 iotlb |= IO_MEM_NOTDIRTY;
1964 else
1965 iotlb |= IO_MEM_ROM;
1966 } else {
1967 /* IO handlers are currently passed a phsical address.
1968 It would be nice to pass an offset from the base address
1969 of that region. This would avoid having to special case RAM,
1970 and avoid full address decoding in every device.
1971 We can't use the high bits of pd for this because
1972 IO_MEM_ROMD uses these as a ram address. */
1973 iotlb = (pd & ~TARGET_PAGE_MASK);
1974 if (p) {
1975 iotlb += p->region_offset;
1976 } else {
1977 iotlb += paddr;
1981 code_address = address;
1982 /* Make accesses to pages with watchpoints go via the
1983 watchpoint trap routines. */
1984 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1985 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1986 iotlb = io_mem_watch + paddr;
1987 /* TODO: The memory case can be optimized by not trapping
1988 reads of pages with a write breakpoint. */
1989 address |= TLB_MMIO;
1993 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1994 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1995 te = &env->tlb_table[mmu_idx][index];
1996 te->addend = addend - vaddr;
1997 if (prot & PAGE_READ) {
1998 te->addr_read = address;
1999 } else {
2000 te->addr_read = -1;
2003 if (prot & PAGE_EXEC) {
2004 te->addr_code = code_address;
2005 } else {
2006 te->addr_code = -1;
2008 if (prot & PAGE_WRITE) {
2009 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2010 (pd & IO_MEM_ROMD)) {
2011 /* Write access calls the I/O callback. */
2012 te->addr_write = address | TLB_MMIO;
2013 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2014 !cpu_physical_memory_is_dirty(pd)) {
2015 te->addr_write = address | TLB_NOTDIRTY;
2016 } else {
2017 te->addr_write = address;
2019 } else {
2020 te->addr_write = -1;
2022 return ret;
2025 #else
2027 void tlb_flush(CPUState *env, int flush_global)
2031 void tlb_flush_page(CPUState *env, target_ulong addr)
2035 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2036 target_phys_addr_t paddr, int prot,
2037 int mmu_idx, int is_softmmu)
2039 return 0;
2042 /* dump memory mappings */
2043 void page_dump(FILE *f)
2045 unsigned long start, end;
2046 int i, j, prot, prot1;
2047 PageDesc *p;
2049 fprintf(f, "%-8s %-8s %-8s %s\n",
2050 "start", "end", "size", "prot");
2051 start = -1;
2052 end = -1;
2053 prot = 0;
2054 for(i = 0; i <= L1_SIZE; i++) {
2055 if (i < L1_SIZE)
2056 p = l1_map[i];
2057 else
2058 p = NULL;
2059 for(j = 0;j < L2_SIZE; j++) {
2060 if (!p)
2061 prot1 = 0;
2062 else
2063 prot1 = p[j].flags;
2064 if (prot1 != prot) {
2065 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2066 if (start != -1) {
2067 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2068 start, end, end - start,
2069 prot & PAGE_READ ? 'r' : '-',
2070 prot & PAGE_WRITE ? 'w' : '-',
2071 prot & PAGE_EXEC ? 'x' : '-');
2073 if (prot1 != 0)
2074 start = end;
2075 else
2076 start = -1;
2077 prot = prot1;
2079 if (!p)
2080 break;
2085 int page_get_flags(target_ulong address)
2087 PageDesc *p;
2089 p = page_find(address >> TARGET_PAGE_BITS);
2090 if (!p)
2091 return 0;
2092 return p->flags;
2095 /* modify the flags of a page and invalidate the code if
2096 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2097 depending on PAGE_WRITE */
2098 void page_set_flags(target_ulong start, target_ulong end, int flags)
2100 PageDesc *p;
2101 target_ulong addr;
2103 /* mmap_lock should already be held. */
2104 start = start & TARGET_PAGE_MASK;
2105 end = TARGET_PAGE_ALIGN(end);
2106 if (flags & PAGE_WRITE)
2107 flags |= PAGE_WRITE_ORG;
2108 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2109 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2110 /* We may be called for host regions that are outside guest
2111 address space. */
2112 if (!p)
2113 return;
2114 /* if the write protection is set, then we invalidate the code
2115 inside */
2116 if (!(p->flags & PAGE_WRITE) &&
2117 (flags & PAGE_WRITE) &&
2118 p->first_tb) {
2119 tb_invalidate_phys_page(addr, 0, NULL);
2121 p->flags = flags;
2125 int page_check_range(target_ulong start, target_ulong len, int flags)
2127 PageDesc *p;
2128 target_ulong end;
2129 target_ulong addr;
2131 if (start + len < start)
2132 /* we've wrapped around */
2133 return -1;
2135 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2136 start = start & TARGET_PAGE_MASK;
2138 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2139 p = page_find(addr >> TARGET_PAGE_BITS);
2140 if( !p )
2141 return -1;
2142 if( !(p->flags & PAGE_VALID) )
2143 return -1;
2145 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2146 return -1;
2147 if (flags & PAGE_WRITE) {
2148 if (!(p->flags & PAGE_WRITE_ORG))
2149 return -1;
2150 /* unprotect the page if it was put read-only because it
2151 contains translated code */
2152 if (!(p->flags & PAGE_WRITE)) {
2153 if (!page_unprotect(addr, 0, NULL))
2154 return -1;
2156 return 0;
2159 return 0;
2162 /* called from signal handler: invalidate the code and unprotect the
2163 page. Return TRUE if the fault was succesfully handled. */
2164 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2166 unsigned int page_index, prot, pindex;
2167 PageDesc *p, *p1;
2168 target_ulong host_start, host_end, addr;
2170 /* Technically this isn't safe inside a signal handler. However we
2171 know this only ever happens in a synchronous SEGV handler, so in
2172 practice it seems to be ok. */
2173 mmap_lock();
2175 host_start = address & qemu_host_page_mask;
2176 page_index = host_start >> TARGET_PAGE_BITS;
2177 p1 = page_find(page_index);
2178 if (!p1) {
2179 mmap_unlock();
2180 return 0;
2182 host_end = host_start + qemu_host_page_size;
2183 p = p1;
2184 prot = 0;
2185 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2186 prot |= p->flags;
2187 p++;
2189 /* if the page was really writable, then we change its
2190 protection back to writable */
2191 if (prot & PAGE_WRITE_ORG) {
2192 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2193 if (!(p1[pindex].flags & PAGE_WRITE)) {
2194 mprotect((void *)g2h(host_start), qemu_host_page_size,
2195 (prot & PAGE_BITS) | PAGE_WRITE);
2196 p1[pindex].flags |= PAGE_WRITE;
2197 /* and since the content will be modified, we must invalidate
2198 the corresponding translated code. */
2199 tb_invalidate_phys_page(address, pc, puc);
2200 #ifdef DEBUG_TB_CHECK
2201 tb_invalidate_check(address);
2202 #endif
2203 mmap_unlock();
2204 return 1;
2207 mmap_unlock();
2208 return 0;
2211 static inline void tlb_set_dirty(CPUState *env,
2212 unsigned long addr, target_ulong vaddr)
2215 #endif /* defined(CONFIG_USER_ONLY) */
2217 #if !defined(CONFIG_USER_ONLY)
2219 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2220 ram_addr_t memory, ram_addr_t region_offset);
2221 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2222 ram_addr_t orig_memory, ram_addr_t region_offset);
2223 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2224 need_subpage) \
2225 do { \
2226 if (addr > start_addr) \
2227 start_addr2 = 0; \
2228 else { \
2229 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2230 if (start_addr2 > 0) \
2231 need_subpage = 1; \
2234 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2235 end_addr2 = TARGET_PAGE_SIZE - 1; \
2236 else { \
2237 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2238 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2239 need_subpage = 1; \
2241 } while (0)
2243 /* register physical memory. 'size' must be a multiple of the target
2244 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2245 io memory page. The address used when calling the IO function is
2246 the offset from the start of the region, plus region_offset. Both
2247 start_region and regon_offset are rounded down to a page boundary
2248 before calculating this offset. This should not be a problem unless
2249 the low bits of start_addr and region_offset differ. */
2250 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2251 ram_addr_t size,
2252 ram_addr_t phys_offset,
2253 ram_addr_t region_offset)
2255 target_phys_addr_t addr, end_addr;
2256 PhysPageDesc *p;
2257 CPUState *env;
2258 ram_addr_t orig_size = size;
2259 void *subpage;
2261 #ifdef USE_KQEMU
2262 /* XXX: should not depend on cpu context */
2263 env = first_cpu;
2264 if (env->kqemu_enabled) {
2265 kqemu_set_phys_mem(start_addr, size, phys_offset);
2267 #endif
2268 if (kvm_enabled())
2269 kvm_set_phys_mem(start_addr, size, phys_offset);
2271 region_offset &= TARGET_PAGE_MASK;
2272 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2273 end_addr = start_addr + (target_phys_addr_t)size;
2274 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2275 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2276 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2277 ram_addr_t orig_memory = p->phys_offset;
2278 target_phys_addr_t start_addr2, end_addr2;
2279 int need_subpage = 0;
2281 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2282 need_subpage);
2283 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2284 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2285 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2286 &p->phys_offset, orig_memory,
2287 p->region_offset);
2288 } else {
2289 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2290 >> IO_MEM_SHIFT];
2292 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2293 region_offset);
2294 p->region_offset = 0;
2295 } else {
2296 p->phys_offset = phys_offset;
2297 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2298 (phys_offset & IO_MEM_ROMD))
2299 phys_offset += TARGET_PAGE_SIZE;
2301 } else {
2302 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2303 p->phys_offset = phys_offset;
2304 p->region_offset = region_offset;
2305 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2306 (phys_offset & IO_MEM_ROMD)) {
2307 phys_offset += TARGET_PAGE_SIZE;
2308 } else {
2309 target_phys_addr_t start_addr2, end_addr2;
2310 int need_subpage = 0;
2312 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2313 end_addr2, need_subpage);
2315 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2316 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2317 &p->phys_offset, IO_MEM_UNASSIGNED,
2319 subpage_register(subpage, start_addr2, end_addr2,
2320 phys_offset, region_offset);
2321 p->region_offset = 0;
2325 region_offset += TARGET_PAGE_SIZE;
2328 /* since each CPU stores ram addresses in its TLB cache, we must
2329 reset the modified entries */
2330 /* XXX: slow ! */
2331 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2332 tlb_flush(env, 1);
2336 /* XXX: temporary until new memory mapping API */
2337 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2339 PhysPageDesc *p;
2341 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342 if (!p)
2343 return IO_MEM_UNASSIGNED;
2344 return p->phys_offset;
2347 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2349 if (kvm_enabled())
2350 kvm_coalesce_mmio_region(addr, size);
2353 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2355 if (kvm_enabled())
2356 kvm_uncoalesce_mmio_region(addr, size);
2359 /* XXX: better than nothing */
2360 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2362 ram_addr_t addr;
2363 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2364 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2365 (uint64_t)size, (uint64_t)phys_ram_size);
2366 abort();
2368 addr = phys_ram_alloc_offset;
2369 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2370 return addr;
2373 void qemu_ram_free(ram_addr_t addr)
2377 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2379 #ifdef DEBUG_UNASSIGNED
2380 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2381 #endif
2382 //printf("Unassigned mem readb " TARGET_FMT_plx " pc %x \n", addr,cpu_single_env->active_tc.PC);
2383 //exit(-1);
2384 #if defined(TARGET_SPARC)
2385 do_unassigned_access(addr, 0, 0, 0, 1);
2386 #endif
2387 return 0;
2390 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2392 #ifdef DEBUG_UNASSIGNED
2393 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2394 #endif
2395 //printf("Unassigned mem readw " TARGET_FMT_plx " pc %x \n", addr,cpu_single_env->active_tc.PC);
2396 //exit(-1);
2397 #if defined(TARGET_SPARC)
2398 do_unassigned_access(addr, 0, 0, 0, 2);
2399 #endif
2400 return 0;
2403 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2405 #ifdef DEBUG_UNASSIGNED
2406 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2407 #endif
2408 //printf("Unassigned mem readl " TARGET_FMT_plx " pc %x \n", addr,cpu_single_env->active_tc.PC);
2409 //exit(-1);
2410 #if defined(TARGET_SPARC)
2411 do_unassigned_access(addr, 0, 0, 0, 4);
2412 #endif
2413 return 0;
2416 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2418 #ifdef DEBUG_UNASSIGNED
2419 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2420 #endif
2421 //printf("Unassigned mem writeb " TARGET_FMT_plx " = 0x%x PC %x \n", addr, val,cpu_single_env->active_tc.PC);
2422 //if (addr!=0x20 )exit(-1);
2423 #if defined(TARGET_SPARC)
2424 do_unassigned_access(addr, 1, 0, 0, 1);
2425 #endif
2428 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2430 #ifdef DEBUG_UNASSIGNED
2431 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2432 #endif
2433 //printf("Unassigned mem writew " TARGET_FMT_plx " = 0x%x PC %x \n", addr, val,cpu_single_env->active_tc.PC);
2434 //exit(-1);
2435 #if defined(TARGET_SPARC)
2436 do_unassigned_access(addr, 1, 0, 0, 2);
2437 #endif
2440 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2442 #ifdef DEBUG_UNASSIGNED
2443 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2444 #endif
2445 //printf("Unassigned mem writel " TARGET_FMT_plx " = 0x%x PC %x \n", addr, val,cpu_single_env->active_tc.PC);
2446 //exit(-1);
2447 #if defined(TARGET_SPARC)
2448 do_unassigned_access(addr, 1, 0, 0, 4);
2449 #endif
2452 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2453 unassigned_mem_readb,
2454 unassigned_mem_readw,
2455 unassigned_mem_readl,
2458 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2459 unassigned_mem_writeb,
2460 unassigned_mem_writew,
2461 unassigned_mem_writel,
2464 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2465 uint32_t val)
2467 int dirty_flags;
2468 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2469 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2470 #if !defined(CONFIG_USER_ONLY)
2471 tb_invalidate_phys_page_fast(ram_addr, 1);
2472 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2473 #endif
2475 stb_p(phys_ram_base + ram_addr, val);
2476 #ifdef USE_KQEMU
2477 if (cpu_single_env->kqemu_enabled &&
2478 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2479 kqemu_modify_page(cpu_single_env, ram_addr);
2480 #endif
2481 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2482 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2483 /* we remove the notdirty callback only if the code has been
2484 flushed */
2485 if (dirty_flags == 0xff)
2486 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2489 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2490 uint32_t val)
2492 int dirty_flags;
2493 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2494 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2495 #if !defined(CONFIG_USER_ONLY)
2496 tb_invalidate_phys_page_fast(ram_addr, 2);
2497 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2498 #endif
2500 stw_p(phys_ram_base + ram_addr, val);
2501 #ifdef USE_KQEMU
2502 if (cpu_single_env->kqemu_enabled &&
2503 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2504 kqemu_modify_page(cpu_single_env, ram_addr);
2505 #endif
2506 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2507 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2508 /* we remove the notdirty callback only if the code has been
2509 flushed */
2510 if (dirty_flags == 0xff)
2511 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2514 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2515 uint32_t val)
2517 int dirty_flags;
2518 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2519 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2520 #if !defined(CONFIG_USER_ONLY)
2521 tb_invalidate_phys_page_fast(ram_addr, 4);
2522 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2523 #endif
2525 stl_p(phys_ram_base + ram_addr, val);
2526 #ifdef USE_KQEMU
2527 if (cpu_single_env->kqemu_enabled &&
2528 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2529 kqemu_modify_page(cpu_single_env, ram_addr);
2530 #endif
2531 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2532 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2533 /* we remove the notdirty callback only if the code has been
2534 flushed */
2535 if (dirty_flags == 0xff)
2536 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2539 static CPUReadMemoryFunc *error_mem_read[3] = {
2540 NULL, /* never used */
2541 NULL, /* never used */
2542 NULL, /* never used */
2545 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2546 notdirty_mem_writeb,
2547 notdirty_mem_writew,
2548 notdirty_mem_writel,
2551 /* Generate a debug exception if a watchpoint has been hit. */
2552 static void check_watchpoint(int offset, int len_mask, int flags)
2554 CPUState *env = cpu_single_env;
2555 target_ulong pc, cs_base;
2556 TranslationBlock *tb;
2557 target_ulong vaddr;
2558 CPUWatchpoint *wp;
2559 int cpu_flags;
2561 if (env->watchpoint_hit) {
2562 /* We re-entered the check after replacing the TB. Now raise
2563 * the debug interrupt so that is will trigger after the
2564 * current instruction. */
2565 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2566 return;
2568 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2569 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2570 if ((vaddr == (wp->vaddr & len_mask) ||
2571 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2572 wp->flags |= BP_WATCHPOINT_HIT;
2573 if (!env->watchpoint_hit) {
2574 env->watchpoint_hit = wp;
2575 tb = tb_find_pc(env->mem_io_pc);
2576 if (!tb) {
2577 cpu_abort(env, "check_watchpoint: could not find TB for "
2578 "pc=%p", (void *)env->mem_io_pc);
2580 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2581 tb_phys_invalidate(tb, -1);
2582 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2583 env->exception_index = EXCP_DEBUG;
2584 } else {
2585 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2586 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2588 cpu_resume_from_signal(env, NULL);
2590 } else {
2591 wp->flags &= ~BP_WATCHPOINT_HIT;
2596 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2597 so these check for a hit then pass through to the normal out-of-line
2598 phys routines. */
2599 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2601 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2602 return ldub_phys(addr);
2605 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2607 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2608 return lduw_phys(addr);
2611 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2613 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2614 return ldl_phys(addr);
2617 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2618 uint32_t val)
2620 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2621 stb_phys(addr, val);
2624 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2625 uint32_t val)
2627 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2628 stw_phys(addr, val);
2631 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2632 uint32_t val)
2634 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2635 stl_phys(addr, val);
2638 static CPUReadMemoryFunc *watch_mem_read[3] = {
2639 watch_mem_readb,
2640 watch_mem_readw,
2641 watch_mem_readl,
2644 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2645 watch_mem_writeb,
2646 watch_mem_writew,
2647 watch_mem_writel,
2650 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2651 unsigned int len)
2653 uint32_t ret;
2654 unsigned int idx;
2656 idx = SUBPAGE_IDX(addr);
2657 #if defined(DEBUG_SUBPAGE)
2658 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2659 mmio, len, addr, idx);
2660 #endif
2661 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2662 addr + mmio->region_offset[idx][0][len]);
2664 return ret;
2667 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2668 uint32_t value, unsigned int len)
2670 unsigned int idx;
2672 idx = SUBPAGE_IDX(addr);
2673 #if defined(DEBUG_SUBPAGE)
2674 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2675 mmio, len, addr, idx, value);
2676 #endif
2677 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2678 addr + mmio->region_offset[idx][1][len],
2679 value);
2682 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2684 #if defined(DEBUG_SUBPAGE)
2685 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2686 #endif
2688 return subpage_readlen(opaque, addr, 0);
2691 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2692 uint32_t value)
2694 #if defined(DEBUG_SUBPAGE)
2695 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2696 #endif
2697 subpage_writelen(opaque, addr, value, 0);
2700 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2702 #if defined(DEBUG_SUBPAGE)
2703 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2704 #endif
2706 return subpage_readlen(opaque, addr, 1);
2709 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2710 uint32_t value)
2712 #if defined(DEBUG_SUBPAGE)
2713 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2714 #endif
2715 subpage_writelen(opaque, addr, value, 1);
2718 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2720 #if defined(DEBUG_SUBPAGE)
2721 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2722 #endif
2724 return subpage_readlen(opaque, addr, 2);
2727 static void subpage_writel (void *opaque,
2728 target_phys_addr_t addr, uint32_t value)
2730 #if defined(DEBUG_SUBPAGE)
2731 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2732 #endif
2733 subpage_writelen(opaque, addr, value, 2);
2736 static CPUReadMemoryFunc *subpage_read[] = {
2737 &subpage_readb,
2738 &subpage_readw,
2739 &subpage_readl,
2742 static CPUWriteMemoryFunc *subpage_write[] = {
2743 &subpage_writeb,
2744 &subpage_writew,
2745 &subpage_writel,
2748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2749 ram_addr_t memory, ram_addr_t region_offset)
2751 int idx, eidx;
2752 unsigned int i;
2754 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2755 return -1;
2756 idx = SUBPAGE_IDX(start);
2757 eidx = SUBPAGE_IDX(end);
2758 #if defined(DEBUG_SUBPAGE)
2759 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2760 mmio, start, end, idx, eidx, memory);
2761 #endif
2762 memory >>= IO_MEM_SHIFT;
2763 for (; idx <= eidx; idx++) {
2764 for (i = 0; i < 4; i++) {
2765 if (io_mem_read[memory][i]) {
2766 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2767 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2768 mmio->region_offset[idx][0][i] = region_offset;
2770 if (io_mem_write[memory][i]) {
2771 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2772 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2773 mmio->region_offset[idx][1][i] = region_offset;
2778 return 0;
2781 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2782 ram_addr_t orig_memory, ram_addr_t region_offset)
2784 subpage_t *mmio;
2785 int subpage_memory;
2787 mmio = qemu_mallocz(sizeof(subpage_t));
2788 if (mmio != NULL) {
2789 mmio->base = base;
2790 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2791 #if defined(DEBUG_SUBPAGE)
2792 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2793 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2794 #endif
2795 *phys = subpage_memory | IO_MEM_SUBPAGE;
2796 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2797 region_offset);
2800 return mmio;
2803 static void io_mem_init(void)
2805 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2806 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2807 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2808 io_mem_nb = 5;
2810 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2811 watch_mem_write, NULL);
2812 /* alloc dirty bits array */
2813 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2814 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2817 /* mem_read and mem_write are arrays of functions containing the
2818 function to access byte (index 0), word (index 1) and dword (index
2819 2). Functions can be omitted with a NULL function pointer. The
2820 registered functions may be modified dynamically later.
2821 If io_index is non zero, the corresponding io zone is
2822 modified. If it is zero, a new io zone is allocated. The return
2823 value can be used with cpu_register_physical_memory(). (-1) is
2824 returned if error. */
2825 int cpu_register_io_memory(int io_index,
2826 CPUReadMemoryFunc **mem_read,
2827 CPUWriteMemoryFunc **mem_write,
2828 void *opaque)
2830 int i, subwidth = 0;
2832 if (io_index <= 0) {
2833 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2834 return -1;
2835 io_index = io_mem_nb++;
2836 } else {
2837 if (io_index >= IO_MEM_NB_ENTRIES)
2838 return -1;
2841 for(i = 0;i < 3; i++) {
2842 if (!mem_read[i] || !mem_write[i])
2843 subwidth = IO_MEM_SUBWIDTH;
2844 io_mem_read[io_index][i] = mem_read[i];
2845 io_mem_write[io_index][i] = mem_write[i];
2847 io_mem_opaque[io_index] = opaque;
2848 return (io_index << IO_MEM_SHIFT) | subwidth;
2851 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2853 return io_mem_write[io_index >> IO_MEM_SHIFT];
2856 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2858 return io_mem_read[io_index >> IO_MEM_SHIFT];
2861 #endif /* !defined(CONFIG_USER_ONLY) */
2863 /* physical memory access (slow version, mainly for debug) */
2864 #if defined(CONFIG_USER_ONLY)
2865 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2866 int len, int is_write)
2868 int l, flags;
2869 target_ulong page;
2870 void * p;
2872 while (len > 0) {
2873 page = addr & TARGET_PAGE_MASK;
2874 l = (page + TARGET_PAGE_SIZE) - addr;
2875 if (l > len)
2876 l = len;
2877 flags = page_get_flags(page);
2878 if (!(flags & PAGE_VALID))
2879 return;
2880 if (is_write) {
2881 if (!(flags & PAGE_WRITE))
2882 return;
2883 /* XXX: this code should not depend on lock_user */
2884 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2885 /* FIXME - should this return an error rather than just fail? */
2886 return;
2887 memcpy(p, buf, l);
2888 unlock_user(p, addr, l);
2889 } else {
2890 if (!(flags & PAGE_READ))
2891 return;
2892 /* XXX: this code should not depend on lock_user */
2893 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2894 /* FIXME - should this return an error rather than just fail? */
2895 return;
2896 memcpy(buf, p, l);
2897 unlock_user(p, addr, 0);
2899 len -= l;
2900 buf += l;
2901 addr += l;
2905 #else
2906 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2907 int len, int is_write)
2909 int l, io_index;
2910 uint8_t *ptr;
2911 uint32_t val;
2912 target_phys_addr_t page;
2913 unsigned long pd;
2914 PhysPageDesc *p;
2916 while (len > 0) {
2917 page = addr & TARGET_PAGE_MASK;
2918 l = (page + TARGET_PAGE_SIZE) - addr;
2919 if (l > len)
2920 l = len;
2921 p = phys_page_find(page >> TARGET_PAGE_BITS);
2922 if (!p) {
2923 pd = IO_MEM_UNASSIGNED;
2924 } else {
2925 pd = p->phys_offset;
2928 if (is_write) {
2929 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2930 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2931 if (p)
2932 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2933 /* XXX: could force cpu_single_env to NULL to avoid
2934 potential bugs */
2935 if (l >= 4 && ((addr & 3) == 0)) {
2936 /* 32 bit write access */
2937 val = ldl_p(buf);
2938 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2939 l = 4;
2940 } else if (l >= 2 && ((addr & 1) == 0)) {
2941 /* 16 bit write access */
2942 val = lduw_p(buf);
2943 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2944 l = 2;
2945 } else {
2946 /* 8 bit write access */
2947 val = ldub_p(buf);
2948 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2949 l = 1;
2951 } else {
2952 unsigned long addr1;
2953 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2954 /* RAM case */
2955 ptr = phys_ram_base + addr1;
2956 memcpy(ptr, buf, l);
2957 if (!cpu_physical_memory_is_dirty(addr1)) {
2958 /* invalidate code */
2959 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2960 /* set dirty bit */
2961 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2962 (0xff & ~CODE_DIRTY_FLAG);
2965 } else {
2966 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2967 !(pd & IO_MEM_ROMD)) {
2968 /* I/O case */
2969 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2970 if (p)
2971 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2972 if (l >= 4 && ((addr & 3) == 0)) {
2973 /* 32 bit read access */
2974 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2975 stl_p(buf, val);
2976 l = 4;
2977 } else if (l >= 2 && ((addr & 1) == 0)) {
2978 /* 16 bit read access */
2979 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2980 stw_p(buf, val);
2981 l = 2;
2982 } else {
2983 /* 8 bit read access */
2984 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2985 stb_p(buf, val);
2986 l = 1;
2988 } else {
2989 /* RAM case */
2990 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2991 (addr & ~TARGET_PAGE_MASK);
2992 memcpy(buf, ptr, l);
2995 len -= l;
2996 buf += l;
2997 addr += l;
3001 /* used for ROM loading : can write in RAM and ROM */
3002 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3003 const uint8_t *buf, int len)
3005 int l;
3006 uint8_t *ptr;
3007 target_phys_addr_t page;
3008 unsigned long pd;
3009 PhysPageDesc *p;
3011 while (len > 0) {
3012 page = addr & TARGET_PAGE_MASK;
3013 l = (page + TARGET_PAGE_SIZE) - addr;
3014 if (l > len)
3015 l = len;
3016 p = phys_page_find(page >> TARGET_PAGE_BITS);
3017 if (!p) {
3018 pd = IO_MEM_UNASSIGNED;
3019 } else {
3020 pd = p->phys_offset;
3023 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3024 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3025 !(pd & IO_MEM_ROMD)) {
3026 /* do nothing */
3027 } else {
3028 unsigned long addr1;
3029 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3030 /* ROM/RAM case */
3031 ptr = phys_ram_base + addr1;
3032 memcpy(ptr, buf, l);
3034 len -= l;
3035 buf += l;
3036 addr += l;
3041 /* warning: addr must be aligned */
3042 uint32_t ldl_phys(target_phys_addr_t addr)
3044 int io_index;
3045 uint8_t *ptr;
3046 uint32_t val;
3047 unsigned long pd;
3048 PhysPageDesc *p;
3050 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3051 if (!p) {
3052 pd = IO_MEM_UNASSIGNED;
3053 } else {
3054 pd = p->phys_offset;
3057 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3058 !(pd & IO_MEM_ROMD)) {
3059 /* I/O case */
3060 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3061 if (p)
3062 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3063 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3064 } else {
3065 /* RAM case */
3066 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3067 (addr & ~TARGET_PAGE_MASK);
3068 val = ldl_p(ptr);
3070 return val;
3073 /* warning: addr must be aligned */
3074 uint64_t ldq_phys(target_phys_addr_t addr)
3076 int io_index;
3077 uint8_t *ptr;
3078 uint64_t val;
3079 unsigned long pd;
3080 PhysPageDesc *p;
3082 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3083 if (!p) {
3084 pd = IO_MEM_UNASSIGNED;
3085 } else {
3086 pd = p->phys_offset;
3089 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3090 !(pd & IO_MEM_ROMD)) {
3091 /* I/O case */
3092 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3093 if (p)
3094 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3095 #ifdef TARGET_WORDS_BIGENDIAN
3096 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3097 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3098 #else
3099 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3100 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3101 #endif
3102 } else {
3103 /* RAM case */
3104 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3105 (addr & ~TARGET_PAGE_MASK);
3106 val = ldq_p(ptr);
3108 return val;
3111 /* XXX: optimize */
3112 uint32_t ldub_phys(target_phys_addr_t addr)
3114 uint8_t val;
3115 cpu_physical_memory_read(addr, &val, 1);
3116 return val;
3119 /* XXX: optimize */
3120 uint32_t lduw_phys(target_phys_addr_t addr)
3122 uint16_t val;
3123 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3124 return tswap16(val);
3127 /* warning: addr must be aligned. The ram page is not masked as dirty
3128 and the code inside is not invalidated. It is useful if the dirty
3129 bits are used to track modified PTEs */
3130 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3132 int io_index;
3133 uint8_t *ptr;
3134 unsigned long pd;
3135 PhysPageDesc *p;
3137 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3138 if (!p) {
3139 pd = IO_MEM_UNASSIGNED;
3140 } else {
3141 pd = p->phys_offset;
3144 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3145 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3146 if (p)
3147 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3148 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3149 } else {
3150 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3151 ptr = phys_ram_base + addr1;
3152 stl_p(ptr, val);
3154 if (unlikely(in_migration)) {
3155 if (!cpu_physical_memory_is_dirty(addr1)) {
3156 /* invalidate code */
3157 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3158 /* set dirty bit */
3159 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3160 (0xff & ~CODE_DIRTY_FLAG);
3166 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3168 int io_index;
3169 uint8_t *ptr;
3170 unsigned long pd;
3171 PhysPageDesc *p;
3173 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3174 if (!p) {
3175 pd = IO_MEM_UNASSIGNED;
3176 } else {
3177 pd = p->phys_offset;
3180 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3181 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3182 if (p)
3183 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3184 #ifdef TARGET_WORDS_BIGENDIAN
3185 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3186 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3187 #else
3188 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3189 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3190 #endif
3191 } else {
3192 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3193 (addr & ~TARGET_PAGE_MASK);
3194 stq_p(ptr, val);
3198 /* warning: addr must be aligned */
3199 void stl_phys(target_phys_addr_t addr, uint32_t val)
3201 int io_index;
3202 uint8_t *ptr;
3203 unsigned long pd;
3204 PhysPageDesc *p;
3206 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3207 if (!p) {
3208 pd = IO_MEM_UNASSIGNED;
3209 } else {
3210 pd = p->phys_offset;
3213 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3214 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3215 if (p)
3216 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3217 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3218 } else {
3219 unsigned long addr1;
3220 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3221 /* RAM case */
3222 ptr = phys_ram_base + addr1;
3223 stl_p(ptr, val);
3224 if (!cpu_physical_memory_is_dirty(addr1)) {
3225 /* invalidate code */
3226 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3227 /* set dirty bit */
3228 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3229 (0xff & ~CODE_DIRTY_FLAG);
3234 /* XXX: optimize */
3235 void stb_phys(target_phys_addr_t addr, uint32_t val)
3237 uint8_t v = val;
3238 cpu_physical_memory_write(addr, &v, 1);
3241 /* XXX: optimize */
3242 void stw_phys(target_phys_addr_t addr, uint32_t val)
3244 uint16_t v = tswap16(val);
3245 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3248 /* XXX: optimize */
3249 void stq_phys(target_phys_addr_t addr, uint64_t val)
3251 val = tswap64(val);
3252 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3255 #endif
3257 /* virtual memory access for debug */
3258 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3259 uint8_t *buf, int len, int is_write)
3261 int l;
3262 target_phys_addr_t phys_addr;
3263 target_ulong page;
3265 while (len > 0) {
3266 page = addr & TARGET_PAGE_MASK;
3267 phys_addr = cpu_get_phys_page_debug(env, page);
3268 /* if no physical page mapped, return an error */
3269 if (phys_addr == -1)
3270 return -1;
3271 l = (page + TARGET_PAGE_SIZE) - addr;
3272 if (l > len)
3273 l = len;
3274 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3275 buf, l, is_write);
3276 len -= l;
3277 buf += l;
3278 addr += l;
3280 return 0;
3283 /* in deterministic execution mode, instructions doing device I/Os
3284 must be at the end of the TB */
3285 void cpu_io_recompile(CPUState *env, void *retaddr)
3287 TranslationBlock *tb;
3288 uint32_t n, cflags;
3289 target_ulong pc, cs_base;
3290 uint64_t flags;
3292 tb = tb_find_pc((unsigned long)retaddr);
3293 if (!tb) {
3294 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3295 retaddr);
3297 n = env->icount_decr.u16.low + tb->icount;
3298 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3299 /* Calculate how many instructions had been executed before the fault
3300 occurred. */
3301 n = n - env->icount_decr.u16.low;
3302 /* Generate a new TB ending on the I/O insn. */
3303 n++;
3304 /* On MIPS and SH, delay slot instructions can only be restarted if
3305 they were already the first instruction in the TB. If this is not
3306 the first instruction in a TB then re-execute the preceding
3307 branch. */
3308 #if defined(TARGET_MIPS)
3309 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3310 env->active_tc.PC -= 4;
3311 env->icount_decr.u16.low++;
3312 env->hflags &= ~MIPS_HFLAG_BMASK;
3314 #elif defined(TARGET_SH4)
3315 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3316 && n > 1) {
3317 env->pc -= 2;
3318 env->icount_decr.u16.low++;
3319 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3321 #endif
3322 /* This should never happen. */
3323 if (n > CF_COUNT_MASK)
3324 cpu_abort(env, "TB too big during recompile");
3326 cflags = n | CF_LAST_IO;
3327 pc = tb->pc;
3328 cs_base = tb->cs_base;
3329 flags = tb->flags;
3330 tb_phys_invalidate(tb, -1);
3331 /* FIXME: In theory this could raise an exception. In practice
3332 we have already translated the block once so it's probably ok. */
3333 tb_gen_code(env, pc, cs_base, flags, cflags);
3334 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3335 the first in the TB) then we end up generating a whole new TB and
3336 repeating the fault, which is horribly inefficient.
3337 Better would be to execute just this insn uncached, or generate a
3338 second new TB. */
3339 cpu_resume_from_signal(env, NULL);
3342 void dump_exec_info(FILE *f,
3343 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3345 int i, target_code_size, max_target_code_size;
3346 int direct_jmp_count, direct_jmp2_count, cross_page;
3347 TranslationBlock *tb;
3349 target_code_size = 0;
3350 max_target_code_size = 0;
3351 cross_page = 0;
3352 direct_jmp_count = 0;
3353 direct_jmp2_count = 0;
3354 for(i = 0; i < nb_tbs; i++) {
3355 tb = &tbs[i];
3356 target_code_size += tb->size;
3357 if (tb->size > max_target_code_size)
3358 max_target_code_size = tb->size;
3359 if (tb->page_addr[1] != -1)
3360 cross_page++;
3361 if (tb->tb_next_offset[0] != 0xffff) {
3362 direct_jmp_count++;
3363 if (tb->tb_next_offset[1] != 0xffff) {
3364 direct_jmp2_count++;
3368 /* XXX: avoid using doubles ? */
3369 cpu_fprintf(f, "Translation buffer state:\n");
3370 cpu_fprintf(f, "gen code size %ld/%ld\n",
3371 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3372 cpu_fprintf(f, "TB count %d/%d\n",
3373 nb_tbs, code_gen_max_blocks);
3374 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3375 nb_tbs ? target_code_size / nb_tbs : 0,
3376 max_target_code_size);
3377 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3378 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3379 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3380 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3381 cross_page,
3382 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3383 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3384 direct_jmp_count,
3385 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3386 direct_jmp2_count,
3387 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3388 cpu_fprintf(f, "\nStatistics:\n");
3389 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3390 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3391 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3392 tcg_dump_info(f, cpu_fprintf);
3395 #if !defined(CONFIG_USER_ONLY)
3397 #define MMUSUFFIX _cmmu
3398 #define GETPC() NULL
3399 #define env cpu_single_env
3400 #define SOFTMMU_CODE_ACCESS
3402 #define SHIFT 0
3403 #include "softmmu_template.h"
3405 #define SHIFT 1
3406 #include "softmmu_template.h"
3408 #define SHIFT 2
3409 #include "softmmu_template.h"
3411 #define SHIFT 3
3412 #include "softmmu_template.h"
3414 #undef env
3416 #endif