MINI2440: General update
[qemu/mini2440.git] / hw / etraxfs_eth.c
blob68b8de38eb6cf1e109a3683f048432e34dcb5696
1 /*
2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
28 #include "etraxfs.h"
30 #define D(x)
32 /* Advertisement control register. */
33 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
34 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
35 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
36 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
38 /*
39 * The MDIO extensions in the TDK PHY model were reversed engineered from the
40 * linux driver (PHYID and Diagnostics reg).
41 * TODO: Add friendly names for the register nums.
43 struct qemu_phy
45 uint32_t regs[32];
47 int link;
49 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50 void (*write)(struct qemu_phy *phy, unsigned int req,
51 unsigned int data);
54 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
56 int regnum;
57 unsigned r = 0;
59 regnum = req & 0x1f;
61 switch (regnum) {
62 case 1:
63 if (!phy->link)
64 break;
65 /* MR1. */
66 /* Speeds and modes. */
67 r |= (1 << 13) | (1 << 14);
68 r |= (1 << 11) | (1 << 12);
69 r |= (1 << 5); /* Autoneg complete. */
70 r |= (1 << 3); /* Autoneg able. */
71 r |= (1 << 2); /* link. */
72 break;
73 case 5:
74 /* Link partner ability.
75 We are kind; always agree with whatever best mode
76 the guest advertises. */
77 r = 1 << 14; /* Success. */
78 /* Copy advertised modes. */
79 r |= phy->regs[4] & (15 << 5);
80 /* Autoneg support. */
81 r |= 1;
82 break;
83 case 18:
85 /* Diagnostics reg. */
86 int duplex = 0;
87 int speed_100 = 0;
89 if (!phy->link)
90 break;
92 /* Are we advertising 100 half or 100 duplex ? */
93 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
94 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
96 /* Are we advertising 10 duplex or 100 duplex ? */
97 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
98 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
99 r = (speed_100 << 10) | (duplex << 11);
101 break;
103 default:
104 r = phy->regs[regnum];
105 break;
107 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
108 return r;
111 static void
112 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
114 int regnum;
116 regnum = req & 0x1f;
117 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
118 switch (regnum) {
119 default:
120 phy->regs[regnum] = data;
121 break;
125 static void
126 tdk_init(struct qemu_phy *phy)
128 phy->regs[0] = 0x3100;
129 /* PHY Id. */
130 phy->regs[2] = 0x0300;
131 phy->regs[3] = 0xe400;
132 /* Autonegotiation advertisement reg. */
133 phy->regs[4] = 0x01E1;
134 phy->link = 1;
136 phy->read = tdk_read;
137 phy->write = tdk_write;
140 struct qemu_mdio
142 /* bus. */
143 int mdc;
144 int mdio;
146 /* decoder. */
147 enum {
148 PREAMBLE,
149 SOF,
150 OPC,
151 ADDR,
152 REQ,
153 TURNAROUND,
154 DATA
155 } state;
156 unsigned int drive;
158 unsigned int cnt;
159 unsigned int addr;
160 unsigned int opc;
161 unsigned int req;
162 unsigned int data;
164 struct qemu_phy *devs[32];
167 static void
168 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
170 bus->devs[addr & 0x1f] = phy;
173 #ifdef USE_THIS_DEAD_CODE
174 static void
175 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
177 bus->devs[addr & 0x1f] = NULL;
179 #endif
181 static void mdio_read_req(struct qemu_mdio *bus)
183 struct qemu_phy *phy;
185 phy = bus->devs[bus->addr];
186 if (phy && phy->read)
187 bus->data = phy->read(phy, bus->req);
188 else
189 bus->data = 0xffff;
192 static void mdio_write_req(struct qemu_mdio *bus)
194 struct qemu_phy *phy;
196 phy = bus->devs[bus->addr];
197 if (phy && phy->write)
198 phy->write(phy, bus->req, bus->data);
201 static void mdio_cycle(struct qemu_mdio *bus)
203 bus->cnt++;
205 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
206 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
207 #if 0
208 if (bus->mdc)
209 printf("%d", bus->mdio);
210 #endif
211 switch (bus->state)
213 case PREAMBLE:
214 if (bus->mdc) {
215 if (bus->cnt >= (32 * 2) && !bus->mdio) {
216 bus->cnt = 0;
217 bus->state = SOF;
218 bus->data = 0;
221 break;
222 case SOF:
223 if (bus->mdc) {
224 if (bus->mdio != 1)
225 printf("WARNING: no SOF\n");
226 if (bus->cnt == 1*2) {
227 bus->cnt = 0;
228 bus->opc = 0;
229 bus->state = OPC;
232 break;
233 case OPC:
234 if (bus->mdc) {
235 bus->opc <<= 1;
236 bus->opc |= bus->mdio & 1;
237 if (bus->cnt == 2*2) {
238 bus->cnt = 0;
239 bus->addr = 0;
240 bus->state = ADDR;
243 break;
244 case ADDR:
245 if (bus->mdc) {
246 bus->addr <<= 1;
247 bus->addr |= bus->mdio & 1;
249 if (bus->cnt == 5*2) {
250 bus->cnt = 0;
251 bus->req = 0;
252 bus->state = REQ;
255 break;
256 case REQ:
257 if (bus->mdc) {
258 bus->req <<= 1;
259 bus->req |= bus->mdio & 1;
260 if (bus->cnt == 5*2) {
261 bus->cnt = 0;
262 bus->state = TURNAROUND;
265 break;
266 case TURNAROUND:
267 if (bus->mdc && bus->cnt == 2*2) {
268 bus->mdio = 0;
269 bus->cnt = 0;
271 if (bus->opc == 2) {
272 bus->drive = 1;
273 mdio_read_req(bus);
274 bus->mdio = bus->data & 1;
276 bus->state = DATA;
278 break;
279 case DATA:
280 if (!bus->mdc) {
281 if (bus->drive) {
282 bus->mdio = !!(bus->data & (1 << 15));
283 bus->data <<= 1;
285 } else {
286 if (!bus->drive) {
287 bus->data <<= 1;
288 bus->data |= bus->mdio;
290 if (bus->cnt == 16 * 2) {
291 bus->cnt = 0;
292 bus->state = PREAMBLE;
293 if (!bus->drive)
294 mdio_write_req(bus);
295 bus->drive = 0;
298 break;
299 default:
300 break;
304 /* ETRAX-FS Ethernet MAC block starts here. */
306 #define RW_MA0_LO 0x00
307 #define RW_MA0_HI 0x01
308 #define RW_MA1_LO 0x02
309 #define RW_MA1_HI 0x03
310 #define RW_GA_LO 0x04
311 #define RW_GA_HI 0x05
312 #define RW_GEN_CTRL 0x06
313 #define RW_REC_CTRL 0x07
314 #define RW_TR_CTRL 0x08
315 #define RW_CLR_ERR 0x09
316 #define RW_MGM_CTRL 0x0a
317 #define R_STAT 0x0b
318 #define FS_ETH_MAX_REGS 0x17
320 struct fs_eth
322 CPUState *env;
323 VLANClientState *vc;
324 int ethregs;
326 /* Two addrs in the filter. */
327 uint8_t macaddr[2][6];
328 uint32_t regs[FS_ETH_MAX_REGS];
330 struct etraxfs_dma_client *dma_out;
331 struct etraxfs_dma_client *dma_in;
333 /* MDIO bus. */
334 struct qemu_mdio mdio_bus;
335 unsigned int phyaddr;
336 int duplex_mismatch;
338 /* PHY. */
339 struct qemu_phy phy;
342 static void eth_validate_duplex(struct fs_eth *eth)
344 struct qemu_phy *phy;
345 unsigned int phy_duplex;
346 unsigned int mac_duplex;
347 int new_mm = 0;
349 phy = eth->mdio_bus.devs[eth->phyaddr];
350 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
351 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
353 if (mac_duplex != phy_duplex)
354 new_mm = 1;
356 if (eth->regs[RW_GEN_CTRL] & 1) {
357 if (new_mm != eth->duplex_mismatch) {
358 if (new_mm)
359 printf("HW: WARNING "
360 "ETH duplex mismatch MAC=%d PHY=%d\n",
361 mac_duplex, phy_duplex);
362 else
363 printf("HW: ETH duplex ok.\n");
365 eth->duplex_mismatch = new_mm;
369 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
371 struct fs_eth *eth = opaque;
372 uint32_t r = 0;
374 addr >>= 2;
376 switch (addr) {
377 case R_STAT:
378 r = eth->mdio_bus.mdio & 1;
379 break;
380 default:
381 r = eth->regs[addr];
382 D(printf ("%s %x\n", __func__, addr * 4));
383 break;
385 return r;
388 static void eth_update_ma(struct fs_eth *eth, int ma)
390 int reg;
391 int i = 0;
393 ma &= 1;
395 reg = RW_MA0_LO;
396 if (ma)
397 reg = RW_MA1_LO;
399 eth->macaddr[ma][i++] = eth->regs[reg];
400 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
401 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
402 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
403 eth->macaddr[ma][i++] = eth->regs[reg + 1];
404 eth->macaddr[ma][i++] = eth->regs[reg + 1] >> 8;
406 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
407 eth->macaddr[ma][0], eth->macaddr[ma][1],
408 eth->macaddr[ma][2], eth->macaddr[ma][3],
409 eth->macaddr[ma][4], eth->macaddr[ma][5]));
412 static void
413 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
415 struct fs_eth *eth = opaque;
417 addr >>= 2;
418 switch (addr)
420 case RW_MA0_LO:
421 case RW_MA0_HI:
422 eth->regs[addr] = value;
423 eth_update_ma(eth, 0);
424 break;
425 case RW_MA1_LO:
426 case RW_MA1_HI:
427 eth->regs[addr] = value;
428 eth_update_ma(eth, 1);
429 break;
431 case RW_MGM_CTRL:
432 /* Attach an MDIO/PHY abstraction. */
433 if (value & 2)
434 eth->mdio_bus.mdio = value & 1;
435 if (eth->mdio_bus.mdc != (value & 4)) {
436 mdio_cycle(&eth->mdio_bus);
437 eth_validate_duplex(eth);
439 eth->mdio_bus.mdc = !!(value & 4);
440 break;
442 case RW_REC_CTRL:
443 eth->regs[addr] = value;
444 eth_validate_duplex(eth);
445 break;
447 default:
448 eth->regs[addr] = value;
449 D(printf ("%s %x %x\n",
450 __func__, addr, value));
451 break;
455 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
456 filter dropping group addresses we have not joined. The filter has 64
457 bits (m). The has function is a simple nible xor of the group addr. */
458 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
460 unsigned int hsh;
461 int m_individual = eth->regs[RW_REC_CTRL] & 4;
462 int match;
464 /* First bit on the wire of a MAC address signals multicast or
465 physical address. */
466 if (!m_individual && !sa[0] & 1)
467 return 0;
469 /* Calculate the hash index for the GA registers. */
470 hsh = 0;
471 hsh ^= (*sa) & 0x3f;
472 hsh ^= ((*sa) >> 6) & 0x03;
473 ++sa;
474 hsh ^= ((*sa) << 2) & 0x03c;
475 hsh ^= ((*sa) >> 4) & 0xf;
476 ++sa;
477 hsh ^= ((*sa) << 4) & 0x30;
478 hsh ^= ((*sa) >> 2) & 0x3f;
479 ++sa;
480 hsh ^= (*sa) & 0x3f;
481 hsh ^= ((*sa) >> 6) & 0x03;
482 ++sa;
483 hsh ^= ((*sa) << 2) & 0x03c;
484 hsh ^= ((*sa) >> 4) & 0xf;
485 ++sa;
486 hsh ^= ((*sa) << 4) & 0x30;
487 hsh ^= ((*sa) >> 2) & 0x3f;
489 hsh &= 63;
490 if (hsh > 31)
491 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
492 else
493 match = eth->regs[RW_GA_LO] & (1 << hsh);
494 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
495 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
496 return match;
499 static int eth_can_receive(void *opaque)
501 return 1;
504 static void eth_receive(void *opaque, const uint8_t *buf, int size)
506 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
507 struct fs_eth *eth = opaque;
508 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
509 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
510 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
512 if (size < 12)
513 return;
515 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
516 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
517 use_ma0, use_ma1, r_bcast));
519 /* Does the frame get through the address filters? */
520 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
521 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
522 && (!r_bcast || memcmp(buf, sa_bcast, 6))
523 && !eth_match_groupaddr(eth, buf))
524 return;
526 /* FIXME: Find another way to pass on the fake csum. */
527 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
530 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
532 struct fs_eth *eth = opaque;
534 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
535 qemu_send_packet(eth->vc, buf, len);
536 return len;
539 static void eth_set_link(VLANClientState *vc)
541 struct fs_eth *eth = vc->opaque;
542 D(printf("%s %d\n", __func__, vc->link_down));
543 eth->phy.link = !vc->link_down;
546 static CPUReadMemoryFunc *eth_read[] = {
547 NULL, NULL,
548 &eth_readl,
551 static CPUWriteMemoryFunc *eth_write[] = {
552 NULL, NULL,
553 &eth_writel,
556 static void eth_cleanup(VLANClientState *vc)
558 struct fs_eth *eth = vc->opaque;
560 cpu_unregister_io_memory(eth->ethregs);
562 qemu_free(eth->dma_out);
563 qemu_free(eth);
566 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
567 target_phys_addr_t base, int phyaddr)
569 struct etraxfs_dma_client *dma = NULL;
570 struct fs_eth *eth = NULL;
572 qemu_check_nic_model(nd, "fseth");
574 dma = qemu_mallocz(sizeof *dma * 2);
576 eth = qemu_mallocz(sizeof *eth);
578 dma[0].client.push = eth_tx_push;
579 dma[0].client.opaque = eth;
580 dma[1].client.opaque = eth;
581 dma[1].client.pull = NULL;
583 eth->env = env;
584 eth->dma_out = dma;
585 eth->dma_in = dma + 1;
587 /* Connect the phy. */
588 eth->phyaddr = phyaddr & 0x1f;
589 tdk_init(&eth->phy);
590 mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
592 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
593 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
595 eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
596 eth_receive, eth_can_receive,
597 eth_cleanup, eth);
598 eth->vc->opaque = eth;
599 eth->vc->link_status_changed = eth_set_link;
601 return dma;