Can't boot from the u-boot.bin file in current directory
[qemu/mini2440.git] / vl.c
blob40b1d8bf498928297ea0badd70a67e622d97d109
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
160 #include "disas.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
168 #endif
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
289 uint8_t qemu_uuid[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300 static uint32_t ioport_read(int index, uint32_t address)
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
313 static void ioport_write(int index, uint32_t address, uint32_t data)
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
377 int i, bsize;
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
395 return 0;
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
402 int i, bsize;
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
420 return 0;
423 void isa_unassign_ioport(int start, int length)
425 int i;
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
436 ioport_opaque[i] = NULL;
440 /***********************************************************/
442 void cpu_outb(CPUState *env, int addr, int val)
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
452 void cpu_outw(CPUState *env, int addr, int val)
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
462 void cpu_outl(CPUState *env, int addr, int val)
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
472 int cpu_inb(CPUState *env, int addr)
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
484 int cpu_inw(CPUState *env, int addr)
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
496 int cpu_inl(CPUState *env, int addr)
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
511 va_list ap;
512 CPUState *env;
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
526 va_end(ap);
527 abort();
530 /***************/
531 /* ballooning */
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
542 void qemu_balloon(ram_addr_t target)
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
548 ram_addr_t qemu_balloon_status(void)
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
555 /***********************************************************/
556 /* keyboard/mouse */
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
573 QEMUPutMouseEntry *s, *cursor;
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
595 return s;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600 QEMUPutMouseEntry *prev = NULL, *cursor;
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
622 prev->next = entry->next;
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
631 void kbd_put_keycode(int keycode)
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
644 if (!qemu_put_mouse_event_current) {
645 return;
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current)
670 return 0;
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
675 void do_info_mice(Monitor *mon)
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
696 void do_mouse_set(Monitor *mon, int index)
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
747 #ifdef WIN32
749 static int64_t clock_freq;
751 static void init_get_clock(void)
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
760 clock_freq = freq.QuadPart;
763 static int64_t get_clock(void)
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
770 #else
772 static int use_rt_clock;
774 static void init_get_clock(void)
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
785 #endif
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
806 #endif
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
819 return qemu_icount_bias + (icount << icount_time_shift);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
833 if (use_icount) {
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
884 /***********************************************************/
885 /* timers */
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918 return t->flags & ALARM_FLAG_DYNTICKS;
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923 if (!alarm_has_dynticks(t))
924 return;
926 t->rearm(t);
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer *alarm_timer;
934 #ifdef _WIN32
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
945 #else
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
950 #ifdef __linux__
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
962 #endif /* __linux__ */
964 #endif /* _WIN32 */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1002 static void icount_adjust_rt(void * opaque)
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1009 static void icount_adjust_vm(void * opaque)
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1051 static void show_available_alarms(void)
1053 int i;
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1060 static void configure_alarms(char const *opt)
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1074 arg = strdup(opt);
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1103 free(arg);
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1118 static QEMUTimer *active_timers[2];
1120 static QEMUClock *qemu_new_clock(int type)
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1130 QEMUTimer *ts;
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1139 void qemu_free_timer(QEMUTimer *ts)
1141 qemu_free(ts);
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1147 QEMUTimer **pt, *t;
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1160 pt = &t->next;
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1168 QEMUTimer **pt, *t;
1170 qemu_del_timer(ts);
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer *ts)
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1206 return 0;
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1218 QEMUTimer *ts;
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1233 int64_t qemu_get_clock(QEMUClock *clock)
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1248 static void init_timers(void)
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259 uint64_t expire_time;
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1266 qemu_put_be64(f, expire_time);
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271 uint64_t expire_time;
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1281 static void timer_save(QEMUFile *f, void *opaque)
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1303 return 0;
1306 static void qemu_event_increment(void);
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1316 #if 0
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1342 last_clock = ti;
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1362 #endif
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1372 int64_t delta;
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1382 if (delta < 0)
1383 delta = 0;
1385 return delta;
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1391 int64_t delta;
1392 int64_t rtdelta;
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1409 return delta;
1411 #endif
1413 #ifndef _WIN32
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1418 int flags;
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1427 return 0;
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd)
1436 struct sigaction act;
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1450 struct hpet_info info;
1451 int r, fd;
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492 int fd = (long)t->priv;
1494 close(fd);
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1519 enable_sigio_timer(rtc_fd);
1521 t->priv = (void *)(long)rtc_fd;
1523 return 0;
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528 int rtc_fd = (long)t->priv;
1530 close(rtc_fd);
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1543 sigaction(SIGALRM, &act, NULL);
1545 ev.sigev_value.sival_int = 0;
1546 ev.sigev_notify = SIGEV_SIGNAL;
1547 ev.sigev_signo = SIGALRM;
1549 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1550 perror("timer_create");
1552 /* disable dynticks */
1553 fprintf(stderr, "Dynamic Ticks disabled\n");
1555 return -1;
1558 t->priv = (void *)(long)host_timer;
1560 return 0;
1563 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1565 timer_t host_timer = (timer_t)(long)t->priv;
1567 timer_delete(host_timer);
1570 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1572 timer_t host_timer = (timer_t)(long)t->priv;
1573 struct itimerspec timeout;
1574 int64_t nearest_delta_us = INT64_MAX;
1575 int64_t current_us;
1577 if (!active_timers[QEMU_TIMER_REALTIME] &&
1578 !active_timers[QEMU_TIMER_VIRTUAL])
1579 return;
1581 nearest_delta_us = qemu_next_deadline_dyntick();
1583 /* check whether a timer is already running */
1584 if (timer_gettime(host_timer, &timeout)) {
1585 perror("gettime");
1586 fprintf(stderr, "Internal timer error: aborting\n");
1587 exit(1);
1589 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1590 if (current_us && current_us <= nearest_delta_us)
1591 return;
1593 timeout.it_interval.tv_sec = 0;
1594 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1595 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1596 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1597 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1598 perror("settime");
1599 fprintf(stderr, "Internal timer error: aborting\n");
1600 exit(1);
1604 #endif /* defined(__linux__) */
1606 static int unix_start_timer(struct qemu_alarm_timer *t)
1608 struct sigaction act;
1609 struct itimerval itv;
1610 int err;
1612 /* timer signal */
1613 sigfillset(&act.sa_mask);
1614 act.sa_flags = 0;
1615 act.sa_handler = host_alarm_handler;
1617 sigaction(SIGALRM, &act, NULL);
1619 itv.it_interval.tv_sec = 0;
1620 /* for i386 kernel 2.6 to get 1 ms */
1621 itv.it_interval.tv_usec = 999;
1622 itv.it_value.tv_sec = 0;
1623 itv.it_value.tv_usec = 10 * 1000;
1625 err = setitimer(ITIMER_REAL, &itv, NULL);
1626 if (err)
1627 return -1;
1629 return 0;
1632 static void unix_stop_timer(struct qemu_alarm_timer *t)
1634 struct itimerval itv;
1636 memset(&itv, 0, sizeof(itv));
1637 setitimer(ITIMER_REAL, &itv, NULL);
1640 #endif /* !defined(_WIN32) */
1643 #ifdef _WIN32
1645 static int win32_start_timer(struct qemu_alarm_timer *t)
1647 TIMECAPS tc;
1648 struct qemu_alarm_win32 *data = t->priv;
1649 UINT flags;
1651 memset(&tc, 0, sizeof(tc));
1652 timeGetDevCaps(&tc, sizeof(tc));
1654 if (data->period < tc.wPeriodMin)
1655 data->period = tc.wPeriodMin;
1657 timeBeginPeriod(data->period);
1659 flags = TIME_CALLBACK_FUNCTION;
1660 if (alarm_has_dynticks(t))
1661 flags |= TIME_ONESHOT;
1662 else
1663 flags |= TIME_PERIODIC;
1665 data->timerId = timeSetEvent(1, // interval (ms)
1666 data->period, // resolution
1667 host_alarm_handler, // function
1668 (DWORD)t, // parameter
1669 flags);
1671 if (!data->timerId) {
1672 perror("Failed to initialize win32 alarm timer");
1673 timeEndPeriod(data->period);
1674 return -1;
1677 return 0;
1680 static void win32_stop_timer(struct qemu_alarm_timer *t)
1682 struct qemu_alarm_win32 *data = t->priv;
1684 timeKillEvent(data->timerId);
1685 timeEndPeriod(data->period);
1688 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1690 struct qemu_alarm_win32 *data = t->priv;
1691 uint64_t nearest_delta_us;
1693 if (!active_timers[QEMU_TIMER_REALTIME] &&
1694 !active_timers[QEMU_TIMER_VIRTUAL])
1695 return;
1697 nearest_delta_us = qemu_next_deadline_dyntick();
1698 nearest_delta_us /= 1000;
1700 timeKillEvent(data->timerId);
1702 data->timerId = timeSetEvent(1,
1703 data->period,
1704 host_alarm_handler,
1705 (DWORD)t,
1706 TIME_ONESHOT | TIME_PERIODIC);
1708 if (!data->timerId) {
1709 perror("Failed to re-arm win32 alarm timer");
1711 timeEndPeriod(data->period);
1712 exit(1);
1716 #endif /* _WIN32 */
1718 static int init_timer_alarm(void)
1720 struct qemu_alarm_timer *t = NULL;
1721 int i, err = -1;
1723 for (i = 0; alarm_timers[i].name; i++) {
1724 t = &alarm_timers[i];
1726 err = t->start(t);
1727 if (!err)
1728 break;
1731 if (err) {
1732 err = -ENOENT;
1733 goto fail;
1736 alarm_timer = t;
1738 return 0;
1740 fail:
1741 return err;
1744 static void quit_timers(void)
1746 alarm_timer->stop(alarm_timer);
1747 alarm_timer = NULL;
1750 /***********************************************************/
1751 /* host time/date access */
1752 void qemu_get_timedate(struct tm *tm, int offset)
1754 time_t ti;
1755 struct tm *ret;
1757 time(&ti);
1758 ti += offset;
1759 if (rtc_date_offset == -1) {
1760 if (rtc_utc)
1761 ret = gmtime(&ti);
1762 else
1763 ret = localtime(&ti);
1764 } else {
1765 ti -= rtc_date_offset;
1766 ret = gmtime(&ti);
1769 memcpy(tm, ret, sizeof(struct tm));
1772 int qemu_timedate_diff(struct tm *tm)
1774 time_t seconds;
1776 if (rtc_date_offset == -1)
1777 if (rtc_utc)
1778 seconds = mktimegm(tm);
1779 else
1780 seconds = mktime(tm);
1781 else
1782 seconds = mktimegm(tm) + rtc_date_offset;
1784 return seconds - time(NULL);
1787 #ifdef _WIN32
1788 static void socket_cleanup(void)
1790 WSACleanup();
1793 static int socket_init(void)
1795 WSADATA Data;
1796 int ret, err;
1798 ret = WSAStartup(MAKEWORD(2,2), &Data);
1799 if (ret != 0) {
1800 err = WSAGetLastError();
1801 fprintf(stderr, "WSAStartup: %d\n", err);
1802 return -1;
1804 atexit(socket_cleanup);
1805 return 0;
1807 #endif
1809 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1811 char *q;
1813 q = buf;
1814 while (*p != '\0' && *p != delim) {
1815 if (q && (q - buf) < buf_size - 1)
1816 *q++ = *p;
1817 p++;
1819 if (q)
1820 *q = '\0';
1822 return p;
1825 const char *get_opt_value(char *buf, int buf_size, const char *p)
1827 char *q;
1829 q = buf;
1830 while (*p != '\0') {
1831 if (*p == ',') {
1832 if (*(p + 1) != ',')
1833 break;
1834 p++;
1836 if (q && (q - buf) < buf_size - 1)
1837 *q++ = *p;
1838 p++;
1840 if (q)
1841 *q = '\0';
1843 return p;
1846 int get_param_value(char *buf, int buf_size,
1847 const char *tag, const char *str)
1849 const char *p;
1850 char option[128];
1852 p = str;
1853 for(;;) {
1854 p = get_opt_name(option, sizeof(option), p, '=');
1855 if (*p != '=')
1856 break;
1857 p++;
1858 if (!strcmp(tag, option)) {
1859 (void)get_opt_value(buf, buf_size, p);
1860 return strlen(buf);
1861 } else {
1862 p = get_opt_value(NULL, 0, p);
1864 if (*p != ',')
1865 break;
1866 p++;
1868 return 0;
1871 int check_params(const char * const *params, const char *str)
1873 int name_buf_size = 1;
1874 const char *p;
1875 char *name_buf;
1876 int i, len;
1877 int ret = 0;
1879 for (i = 0; params[i] != NULL; i++) {
1880 len = strlen(params[i]) + 1;
1881 if (len > name_buf_size) {
1882 name_buf_size = len;
1885 name_buf = qemu_malloc(name_buf_size);
1887 p = str;
1888 while (*p != '\0') {
1889 p = get_opt_name(name_buf, name_buf_size, p, '=');
1890 if (*p != '=') {
1891 ret = -1;
1892 break;
1894 p++;
1895 for(i = 0; params[i] != NULL; i++)
1896 if (!strcmp(params[i], name_buf))
1897 break;
1898 if (params[i] == NULL) {
1899 ret = -1;
1900 break;
1902 p = get_opt_value(NULL, 0, p);
1903 if (*p != ',')
1904 break;
1905 p++;
1908 qemu_free(name_buf);
1909 return ret;
1912 /***********************************************************/
1913 /* Bluetooth support */
1914 static int nb_hcis;
1915 static int cur_hci;
1916 static struct HCIInfo *hci_table[MAX_NICS];
1918 static struct bt_vlan_s {
1919 struct bt_scatternet_s net;
1920 int id;
1921 struct bt_vlan_s *next;
1922 } *first_bt_vlan;
1924 /* find or alloc a new bluetooth "VLAN" */
1925 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1927 struct bt_vlan_s **pvlan, *vlan;
1928 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1929 if (vlan->id == id)
1930 return &vlan->net;
1932 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1933 vlan->id = id;
1934 pvlan = &first_bt_vlan;
1935 while (*pvlan != NULL)
1936 pvlan = &(*pvlan)->next;
1937 *pvlan = vlan;
1938 return &vlan->net;
1941 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1945 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1947 return -ENOTSUP;
1950 static struct HCIInfo null_hci = {
1951 .cmd_send = null_hci_send,
1952 .sco_send = null_hci_send,
1953 .acl_send = null_hci_send,
1954 .bdaddr_set = null_hci_addr_set,
1957 struct HCIInfo *qemu_next_hci(void)
1959 if (cur_hci == nb_hcis)
1960 return &null_hci;
1962 return hci_table[cur_hci++];
1965 static struct HCIInfo *hci_init(const char *str)
1967 char *endp;
1968 struct bt_scatternet_s *vlan = 0;
1970 if (!strcmp(str, "null"))
1971 /* null */
1972 return &null_hci;
1973 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1974 /* host[:hciN] */
1975 return bt_host_hci(str[4] ? str + 5 : "hci0");
1976 else if (!strncmp(str, "hci", 3)) {
1977 /* hci[,vlan=n] */
1978 if (str[3]) {
1979 if (!strncmp(str + 3, ",vlan=", 6)) {
1980 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1981 if (*endp)
1982 vlan = 0;
1984 } else
1985 vlan = qemu_find_bt_vlan(0);
1986 if (vlan)
1987 return bt_new_hci(vlan);
1990 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1992 return 0;
1995 static int bt_hci_parse(const char *str)
1997 struct HCIInfo *hci;
1998 bdaddr_t bdaddr;
2000 if (nb_hcis >= MAX_NICS) {
2001 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2002 return -1;
2005 hci = hci_init(str);
2006 if (!hci)
2007 return -1;
2009 bdaddr.b[0] = 0x52;
2010 bdaddr.b[1] = 0x54;
2011 bdaddr.b[2] = 0x00;
2012 bdaddr.b[3] = 0x12;
2013 bdaddr.b[4] = 0x34;
2014 bdaddr.b[5] = 0x56 + nb_hcis;
2015 hci->bdaddr_set(hci, bdaddr.b);
2017 hci_table[nb_hcis++] = hci;
2019 return 0;
2022 static void bt_vhci_add(int vlan_id)
2024 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2026 if (!vlan->slave)
2027 fprintf(stderr, "qemu: warning: adding a VHCI to "
2028 "an empty scatternet %i\n", vlan_id);
2030 bt_vhci_init(bt_new_hci(vlan));
2033 static struct bt_device_s *bt_device_add(const char *opt)
2035 struct bt_scatternet_s *vlan;
2036 int vlan_id = 0;
2037 char *endp = strstr(opt, ",vlan=");
2038 int len = (endp ? endp - opt : strlen(opt)) + 1;
2039 char devname[10];
2041 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2043 if (endp) {
2044 vlan_id = strtol(endp + 6, &endp, 0);
2045 if (*endp) {
2046 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2047 return 0;
2051 vlan = qemu_find_bt_vlan(vlan_id);
2053 if (!vlan->slave)
2054 fprintf(stderr, "qemu: warning: adding a slave device to "
2055 "an empty scatternet %i\n", vlan_id);
2057 if (!strcmp(devname, "keyboard"))
2058 return bt_keyboard_init(vlan);
2060 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2061 return 0;
2064 static int bt_parse(const char *opt)
2066 const char *endp, *p;
2067 int vlan;
2069 if (strstart(opt, "hci", &endp)) {
2070 if (!*endp || *endp == ',') {
2071 if (*endp)
2072 if (!strstart(endp, ",vlan=", 0))
2073 opt = endp + 1;
2075 return bt_hci_parse(opt);
2077 } else if (strstart(opt, "vhci", &endp)) {
2078 if (!*endp || *endp == ',') {
2079 if (*endp) {
2080 if (strstart(endp, ",vlan=", &p)) {
2081 vlan = strtol(p, (char **) &endp, 0);
2082 if (*endp) {
2083 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2084 return 1;
2086 } else {
2087 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2088 return 1;
2090 } else
2091 vlan = 0;
2093 bt_vhci_add(vlan);
2094 return 0;
2096 } else if (strstart(opt, "device:", &endp))
2097 return !bt_device_add(endp);
2099 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2100 return 1;
2103 /***********************************************************/
2104 /* QEMU Block devices */
2106 #define HD_ALIAS "index=%d,media=disk"
2107 #define CDROM_ALIAS "index=2,media=cdrom"
2108 #define FD_ALIAS "index=%d,if=floppy"
2109 #define PFLASH_ALIAS "if=pflash"
2110 #define MTD_ALIAS "if=mtd"
2111 #define SD_ALIAS "index=0,if=sd"
2113 static int drive_opt_get_free_idx(void)
2115 int index;
2117 for (index = 0; index < MAX_DRIVES; index++)
2118 if (!drives_opt[index].used) {
2119 drives_opt[index].used = 1;
2120 return index;
2123 return -1;
2126 static int drive_get_free_idx(void)
2128 int index;
2130 for (index = 0; index < MAX_DRIVES; index++)
2131 if (!drives_table[index].used) {
2132 drives_table[index].used = 1;
2133 return index;
2136 return -1;
2139 int drive_add(const char *file, const char *fmt, ...)
2141 va_list ap;
2142 int index = drive_opt_get_free_idx();
2144 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2145 fprintf(stderr, "qemu: too many drives\n");
2146 return -1;
2149 drives_opt[index].file = file;
2150 va_start(ap, fmt);
2151 vsnprintf(drives_opt[index].opt,
2152 sizeof(drives_opt[0].opt), fmt, ap);
2153 va_end(ap);
2155 nb_drives_opt++;
2156 return index;
2159 void drive_remove(int index)
2161 drives_opt[index].used = 0;
2162 nb_drives_opt--;
2165 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2167 int index;
2169 /* seek interface, bus and unit */
2171 for (index = 0; index < MAX_DRIVES; index++)
2172 if (drives_table[index].type == type &&
2173 drives_table[index].bus == bus &&
2174 drives_table[index].unit == unit &&
2175 drives_table[index].used)
2176 return index;
2178 return -1;
2181 int drive_get_max_bus(BlockInterfaceType type)
2183 int max_bus;
2184 int index;
2186 max_bus = -1;
2187 for (index = 0; index < nb_drives; index++) {
2188 if(drives_table[index].type == type &&
2189 drives_table[index].bus > max_bus)
2190 max_bus = drives_table[index].bus;
2192 return max_bus;
2195 const char *drive_get_serial(BlockDriverState *bdrv)
2197 int index;
2199 for (index = 0; index < nb_drives; index++)
2200 if (drives_table[index].bdrv == bdrv)
2201 return drives_table[index].serial;
2203 return "\0";
2206 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2208 int index;
2210 for (index = 0; index < nb_drives; index++)
2211 if (drives_table[index].bdrv == bdrv)
2212 return drives_table[index].onerror;
2214 return BLOCK_ERR_STOP_ENOSPC;
2217 static void bdrv_format_print(void *opaque, const char *name)
2219 fprintf(stderr, " %s", name);
2222 void drive_uninit(BlockDriverState *bdrv)
2224 int i;
2226 for (i = 0; i < MAX_DRIVES; i++)
2227 if (drives_table[i].bdrv == bdrv) {
2228 drives_table[i].bdrv = NULL;
2229 drives_table[i].used = 0;
2230 drive_remove(drives_table[i].drive_opt_idx);
2231 nb_drives--;
2232 break;
2236 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2238 char buf[128];
2239 char file[1024];
2240 char devname[128];
2241 char serial[21];
2242 const char *mediastr = "";
2243 BlockInterfaceType type;
2244 enum { MEDIA_DISK, MEDIA_CDROM } media;
2245 int bus_id, unit_id;
2246 int cyls, heads, secs, translation;
2247 BlockDriverState *bdrv;
2248 BlockDriver *drv = NULL;
2249 QEMUMachine *machine = opaque;
2250 int max_devs;
2251 int index;
2252 int cache;
2253 int bdrv_flags, onerror;
2254 int drives_table_idx;
2255 char *str = arg->opt;
2256 static const char * const params[] = { "bus", "unit", "if", "index",
2257 "cyls", "heads", "secs", "trans",
2258 "media", "snapshot", "file",
2259 "cache", "format", "serial", "werror",
2260 NULL };
2262 if (check_params(params, str) < 0) {
2263 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2264 buf, str);
2265 return -1;
2268 file[0] = 0;
2269 cyls = heads = secs = 0;
2270 bus_id = 0;
2271 unit_id = -1;
2272 translation = BIOS_ATA_TRANSLATION_AUTO;
2273 index = -1;
2274 cache = 3;
2276 if (machine->use_scsi) {
2277 type = IF_SCSI;
2278 max_devs = MAX_SCSI_DEVS;
2279 pstrcpy(devname, sizeof(devname), "scsi");
2280 } else {
2281 type = IF_IDE;
2282 max_devs = MAX_IDE_DEVS;
2283 pstrcpy(devname, sizeof(devname), "ide");
2285 media = MEDIA_DISK;
2287 /* extract parameters */
2289 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2290 bus_id = strtol(buf, NULL, 0);
2291 if (bus_id < 0) {
2292 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2293 return -1;
2297 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2298 unit_id = strtol(buf, NULL, 0);
2299 if (unit_id < 0) {
2300 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2301 return -1;
2305 if (get_param_value(buf, sizeof(buf), "if", str)) {
2306 pstrcpy(devname, sizeof(devname), buf);
2307 if (!strcmp(buf, "ide")) {
2308 type = IF_IDE;
2309 max_devs = MAX_IDE_DEVS;
2310 } else if (!strcmp(buf, "scsi")) {
2311 type = IF_SCSI;
2312 max_devs = MAX_SCSI_DEVS;
2313 } else if (!strcmp(buf, "floppy")) {
2314 type = IF_FLOPPY;
2315 max_devs = 0;
2316 } else if (!strcmp(buf, "pflash")) {
2317 type = IF_PFLASH;
2318 max_devs = 0;
2319 } else if (!strcmp(buf, "mtd")) {
2320 type = IF_MTD;
2321 max_devs = 0;
2322 } else if (!strcmp(buf, "sd")) {
2323 type = IF_SD;
2324 max_devs = 0;
2325 } else if (!strcmp(buf, "virtio")) {
2326 type = IF_VIRTIO;
2327 max_devs = 0;
2328 } else if (!strcmp(buf, "xen")) {
2329 type = IF_XEN;
2330 max_devs = 0;
2331 } else {
2332 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2333 return -1;
2337 if (get_param_value(buf, sizeof(buf), "index", str)) {
2338 index = strtol(buf, NULL, 0);
2339 if (index < 0) {
2340 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2341 return -1;
2345 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2346 cyls = strtol(buf, NULL, 0);
2349 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2350 heads = strtol(buf, NULL, 0);
2353 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2354 secs = strtol(buf, NULL, 0);
2357 if (cyls || heads || secs) {
2358 if (cyls < 1 || cyls > 16383) {
2359 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2360 return -1;
2362 if (heads < 1 || heads > 16) {
2363 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2364 return -1;
2366 if (secs < 1 || secs > 63) {
2367 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2368 return -1;
2372 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2373 if (!cyls) {
2374 fprintf(stderr,
2375 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2376 str);
2377 return -1;
2379 if (!strcmp(buf, "none"))
2380 translation = BIOS_ATA_TRANSLATION_NONE;
2381 else if (!strcmp(buf, "lba"))
2382 translation = BIOS_ATA_TRANSLATION_LBA;
2383 else if (!strcmp(buf, "auto"))
2384 translation = BIOS_ATA_TRANSLATION_AUTO;
2385 else {
2386 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2387 return -1;
2391 if (get_param_value(buf, sizeof(buf), "media", str)) {
2392 if (!strcmp(buf, "disk")) {
2393 media = MEDIA_DISK;
2394 } else if (!strcmp(buf, "cdrom")) {
2395 if (cyls || secs || heads) {
2396 fprintf(stderr,
2397 "qemu: '%s' invalid physical CHS format\n", str);
2398 return -1;
2400 media = MEDIA_CDROM;
2401 } else {
2402 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2403 return -1;
2407 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2408 if (!strcmp(buf, "on"))
2409 snapshot = 1;
2410 else if (!strcmp(buf, "off"))
2411 snapshot = 0;
2412 else {
2413 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2414 return -1;
2418 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2419 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2420 cache = 0;
2421 else if (!strcmp(buf, "writethrough"))
2422 cache = 1;
2423 else if (!strcmp(buf, "writeback"))
2424 cache = 2;
2425 else {
2426 fprintf(stderr, "qemu: invalid cache option\n");
2427 return -1;
2431 if (get_param_value(buf, sizeof(buf), "format", str)) {
2432 if (strcmp(buf, "?") == 0) {
2433 fprintf(stderr, "qemu: Supported formats:");
2434 bdrv_iterate_format(bdrv_format_print, NULL);
2435 fprintf(stderr, "\n");
2436 return -1;
2438 drv = bdrv_find_format(buf);
2439 if (!drv) {
2440 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2441 return -1;
2445 if (arg->file == NULL)
2446 get_param_value(file, sizeof(file), "file", str);
2447 else
2448 pstrcpy(file, sizeof(file), arg->file);
2450 if (!get_param_value(serial, sizeof(serial), "serial", str))
2451 memset(serial, 0, sizeof(serial));
2453 onerror = BLOCK_ERR_STOP_ENOSPC;
2454 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2455 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2456 fprintf(stderr, "werror is no supported by this format\n");
2457 return -1;
2459 if (!strcmp(buf, "ignore"))
2460 onerror = BLOCK_ERR_IGNORE;
2461 else if (!strcmp(buf, "enospc"))
2462 onerror = BLOCK_ERR_STOP_ENOSPC;
2463 else if (!strcmp(buf, "stop"))
2464 onerror = BLOCK_ERR_STOP_ANY;
2465 else if (!strcmp(buf, "report"))
2466 onerror = BLOCK_ERR_REPORT;
2467 else {
2468 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2469 return -1;
2473 /* compute bus and unit according index */
2475 if (index != -1) {
2476 if (bus_id != 0 || unit_id != -1) {
2477 fprintf(stderr,
2478 "qemu: '%s' index cannot be used with bus and unit\n", str);
2479 return -1;
2481 if (max_devs == 0)
2483 unit_id = index;
2484 bus_id = 0;
2485 } else {
2486 unit_id = index % max_devs;
2487 bus_id = index / max_devs;
2491 /* if user doesn't specify a unit_id,
2492 * try to find the first free
2495 if (unit_id == -1) {
2496 unit_id = 0;
2497 while (drive_get_index(type, bus_id, unit_id) != -1) {
2498 unit_id++;
2499 if (max_devs && unit_id >= max_devs) {
2500 unit_id -= max_devs;
2501 bus_id++;
2506 /* check unit id */
2508 if (max_devs && unit_id >= max_devs) {
2509 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2510 str, unit_id, max_devs - 1);
2511 return -1;
2515 * ignore multiple definitions
2518 if (drive_get_index(type, bus_id, unit_id) != -1)
2519 return -2;
2521 /* init */
2523 if (type == IF_IDE || type == IF_SCSI)
2524 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2525 if (max_devs)
2526 snprintf(buf, sizeof(buf), "%s%i%s%i",
2527 devname, bus_id, mediastr, unit_id);
2528 else
2529 snprintf(buf, sizeof(buf), "%s%s%i",
2530 devname, mediastr, unit_id);
2531 bdrv = bdrv_new(buf);
2532 drives_table_idx = drive_get_free_idx();
2533 drives_table[drives_table_idx].bdrv = bdrv;
2534 drives_table[drives_table_idx].type = type;
2535 drives_table[drives_table_idx].bus = bus_id;
2536 drives_table[drives_table_idx].unit = unit_id;
2537 drives_table[drives_table_idx].onerror = onerror;
2538 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2539 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2540 nb_drives++;
2542 switch(type) {
2543 case IF_IDE:
2544 case IF_SCSI:
2545 case IF_XEN:
2546 switch(media) {
2547 case MEDIA_DISK:
2548 if (cyls != 0) {
2549 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2550 bdrv_set_translation_hint(bdrv, translation);
2552 break;
2553 case MEDIA_CDROM:
2554 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2555 break;
2557 break;
2558 case IF_SD:
2559 /* FIXME: This isn't really a floppy, but it's a reasonable
2560 approximation. */
2561 case IF_FLOPPY:
2562 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2563 break;
2564 case IF_PFLASH:
2565 case IF_MTD:
2566 case IF_VIRTIO:
2567 break;
2568 case IF_COUNT:
2569 abort();
2571 if (!file[0])
2572 return -2;
2573 bdrv_flags = 0;
2574 if (snapshot) {
2575 bdrv_flags |= BDRV_O_SNAPSHOT;
2576 cache = 2; /* always use write-back with snapshot */
2578 if (cache == 0) /* no caching */
2579 bdrv_flags |= BDRV_O_NOCACHE;
2580 else if (cache == 2) /* write-back */
2581 bdrv_flags |= BDRV_O_CACHE_WB;
2582 else if (cache == 3) /* not specified */
2583 bdrv_flags |= BDRV_O_CACHE_DEF;
2584 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2585 fprintf(stderr, "qemu: could not open disk image %s\n",
2586 file);
2587 return -1;
2589 if (bdrv_key_required(bdrv))
2590 autostart = 0;
2591 return drives_table_idx;
2594 static void numa_add(const char *optarg)
2596 char option[128];
2597 char *endptr;
2598 unsigned long long value, endvalue;
2599 int nodenr;
2601 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2602 if (!strcmp(option, "node")) {
2603 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2604 nodenr = nb_numa_nodes;
2605 } else {
2606 nodenr = strtoull(option, NULL, 10);
2609 if (get_param_value(option, 128, "mem", optarg) == 0) {
2610 node_mem[nodenr] = 0;
2611 } else {
2612 value = strtoull(option, &endptr, 0);
2613 switch (*endptr) {
2614 case 0: case 'M': case 'm':
2615 value <<= 20;
2616 break;
2617 case 'G': case 'g':
2618 value <<= 30;
2619 break;
2621 node_mem[nodenr] = value;
2623 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2624 node_cpumask[nodenr] = 0;
2625 } else {
2626 value = strtoull(option, &endptr, 10);
2627 if (value >= 64) {
2628 value = 63;
2629 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2630 } else {
2631 if (*endptr == '-') {
2632 endvalue = strtoull(endptr+1, &endptr, 10);
2633 if (endvalue >= 63) {
2634 endvalue = 62;
2635 fprintf(stderr,
2636 "only 63 CPUs in NUMA mode supported.\n");
2638 value = (1 << (endvalue + 1)) - (1 << value);
2639 } else {
2640 value = 1 << value;
2643 node_cpumask[nodenr] = value;
2645 nb_numa_nodes++;
2647 return;
2650 /***********************************************************/
2651 /* USB devices */
2653 static USBPort *used_usb_ports;
2654 static USBPort *free_usb_ports;
2656 /* ??? Maybe change this to register a hub to keep track of the topology. */
2657 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2658 usb_attachfn attach)
2660 port->opaque = opaque;
2661 port->index = index;
2662 port->attach = attach;
2663 port->next = free_usb_ports;
2664 free_usb_ports = port;
2667 int usb_device_add_dev(USBDevice *dev)
2669 USBPort *port;
2671 /* Find a USB port to add the device to. */
2672 port = free_usb_ports;
2673 if (!port->next) {
2674 USBDevice *hub;
2676 /* Create a new hub and chain it on. */
2677 free_usb_ports = NULL;
2678 port->next = used_usb_ports;
2679 used_usb_ports = port;
2681 hub = usb_hub_init(VM_USB_HUB_SIZE);
2682 usb_attach(port, hub);
2683 port = free_usb_ports;
2686 free_usb_ports = port->next;
2687 port->next = used_usb_ports;
2688 used_usb_ports = port;
2689 usb_attach(port, dev);
2690 return 0;
2693 static void usb_msd_password_cb(void *opaque, int err)
2695 USBDevice *dev = opaque;
2697 if (!err)
2698 usb_device_add_dev(dev);
2699 else
2700 dev->handle_destroy(dev);
2703 static int usb_device_add(const char *devname, int is_hotplug)
2705 const char *p;
2706 USBDevice *dev;
2708 if (!free_usb_ports)
2709 return -1;
2711 if (strstart(devname, "host:", &p)) {
2712 dev = usb_host_device_open(p);
2713 } else if (!strcmp(devname, "mouse")) {
2714 dev = usb_mouse_init();
2715 } else if (!strcmp(devname, "tablet")) {
2716 dev = usb_tablet_init();
2717 } else if (!strcmp(devname, "keyboard")) {
2718 dev = usb_keyboard_init();
2719 } else if (strstart(devname, "disk:", &p)) {
2720 BlockDriverState *bs;
2722 dev = usb_msd_init(p);
2723 if (!dev)
2724 return -1;
2725 bs = usb_msd_get_bdrv(dev);
2726 if (bdrv_key_required(bs)) {
2727 autostart = 0;
2728 if (is_hotplug) {
2729 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2730 dev);
2731 return 0;
2734 } else if (!strcmp(devname, "wacom-tablet")) {
2735 dev = usb_wacom_init();
2736 } else if (strstart(devname, "serial:", &p)) {
2737 dev = usb_serial_init(p);
2738 #ifdef CONFIG_BRLAPI
2739 } else if (!strcmp(devname, "braille")) {
2740 dev = usb_baum_init();
2741 #endif
2742 } else if (strstart(devname, "net:", &p)) {
2743 int nic = nb_nics;
2745 if (net_client_init("nic", p) < 0)
2746 return -1;
2747 nd_table[nic].model = "usb";
2748 dev = usb_net_init(&nd_table[nic]);
2749 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2750 dev = usb_bt_init(devname[2] ? hci_init(p) :
2751 bt_new_hci(qemu_find_bt_vlan(0)));
2752 } else {
2753 return -1;
2755 if (!dev)
2756 return -1;
2758 return usb_device_add_dev(dev);
2761 int usb_device_del_addr(int bus_num, int addr)
2763 USBPort *port;
2764 USBPort **lastp;
2765 USBDevice *dev;
2767 if (!used_usb_ports)
2768 return -1;
2770 if (bus_num != 0)
2771 return -1;
2773 lastp = &used_usb_ports;
2774 port = used_usb_ports;
2775 while (port && port->dev->addr != addr) {
2776 lastp = &port->next;
2777 port = port->next;
2780 if (!port)
2781 return -1;
2783 dev = port->dev;
2784 *lastp = port->next;
2785 usb_attach(port, NULL);
2786 dev->handle_destroy(dev);
2787 port->next = free_usb_ports;
2788 free_usb_ports = port;
2789 return 0;
2792 static int usb_device_del(const char *devname)
2794 int bus_num, addr;
2795 const char *p;
2797 if (strstart(devname, "host:", &p))
2798 return usb_host_device_close(p);
2800 if (!used_usb_ports)
2801 return -1;
2803 p = strchr(devname, '.');
2804 if (!p)
2805 return -1;
2806 bus_num = strtoul(devname, NULL, 0);
2807 addr = strtoul(p + 1, NULL, 0);
2809 return usb_device_del_addr(bus_num, addr);
2812 void do_usb_add(Monitor *mon, const char *devname)
2814 usb_device_add(devname, 1);
2817 void do_usb_del(Monitor *mon, const char *devname)
2819 usb_device_del(devname);
2822 void usb_info(Monitor *mon)
2824 USBDevice *dev;
2825 USBPort *port;
2826 const char *speed_str;
2828 if (!usb_enabled) {
2829 monitor_printf(mon, "USB support not enabled\n");
2830 return;
2833 for (port = used_usb_ports; port; port = port->next) {
2834 dev = port->dev;
2835 if (!dev)
2836 continue;
2837 switch(dev->speed) {
2838 case USB_SPEED_LOW:
2839 speed_str = "1.5";
2840 break;
2841 case USB_SPEED_FULL:
2842 speed_str = "12";
2843 break;
2844 case USB_SPEED_HIGH:
2845 speed_str = "480";
2846 break;
2847 default:
2848 speed_str = "?";
2849 break;
2851 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2852 0, dev->addr, speed_str, dev->devname);
2856 /***********************************************************/
2857 /* PCMCIA/Cardbus */
2859 static struct pcmcia_socket_entry_s {
2860 PCMCIASocket *socket;
2861 struct pcmcia_socket_entry_s *next;
2862 } *pcmcia_sockets = 0;
2864 void pcmcia_socket_register(PCMCIASocket *socket)
2866 struct pcmcia_socket_entry_s *entry;
2868 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2869 entry->socket = socket;
2870 entry->next = pcmcia_sockets;
2871 pcmcia_sockets = entry;
2874 void pcmcia_socket_unregister(PCMCIASocket *socket)
2876 struct pcmcia_socket_entry_s *entry, **ptr;
2878 ptr = &pcmcia_sockets;
2879 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2880 if (entry->socket == socket) {
2881 *ptr = entry->next;
2882 qemu_free(entry);
2886 void pcmcia_info(Monitor *mon)
2888 struct pcmcia_socket_entry_s *iter;
2890 if (!pcmcia_sockets)
2891 monitor_printf(mon, "No PCMCIA sockets\n");
2893 for (iter = pcmcia_sockets; iter; iter = iter->next)
2894 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2895 iter->socket->attached ? iter->socket->card_string :
2896 "Empty");
2899 /***********************************************************/
2900 /* register display */
2902 struct DisplayAllocator default_allocator = {
2903 defaultallocator_create_displaysurface,
2904 defaultallocator_resize_displaysurface,
2905 defaultallocator_free_displaysurface
2908 void register_displaystate(DisplayState *ds)
2910 DisplayState **s;
2911 s = &display_state;
2912 while (*s != NULL)
2913 s = &(*s)->next;
2914 ds->next = NULL;
2915 *s = ds;
2918 DisplayState *get_displaystate(void)
2920 return display_state;
2923 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2925 if(ds->allocator == &default_allocator) ds->allocator = da;
2926 return ds->allocator;
2929 /* dumb display */
2931 static void dumb_display_init(void)
2933 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2934 ds->allocator = &default_allocator;
2935 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2936 register_displaystate(ds);
2939 /***********************************************************/
2940 /* I/O handling */
2942 typedef struct IOHandlerRecord {
2943 int fd;
2944 IOCanRWHandler *fd_read_poll;
2945 IOHandler *fd_read;
2946 IOHandler *fd_write;
2947 int deleted;
2948 void *opaque;
2949 /* temporary data */
2950 struct pollfd *ufd;
2951 struct IOHandlerRecord *next;
2952 } IOHandlerRecord;
2954 static IOHandlerRecord *first_io_handler;
2956 /* XXX: fd_read_poll should be suppressed, but an API change is
2957 necessary in the character devices to suppress fd_can_read(). */
2958 int qemu_set_fd_handler2(int fd,
2959 IOCanRWHandler *fd_read_poll,
2960 IOHandler *fd_read,
2961 IOHandler *fd_write,
2962 void *opaque)
2964 IOHandlerRecord **pioh, *ioh;
2966 if (!fd_read && !fd_write) {
2967 pioh = &first_io_handler;
2968 for(;;) {
2969 ioh = *pioh;
2970 if (ioh == NULL)
2971 break;
2972 if (ioh->fd == fd) {
2973 ioh->deleted = 1;
2974 break;
2976 pioh = &ioh->next;
2978 } else {
2979 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2980 if (ioh->fd == fd)
2981 goto found;
2983 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2984 ioh->next = first_io_handler;
2985 first_io_handler = ioh;
2986 found:
2987 ioh->fd = fd;
2988 ioh->fd_read_poll = fd_read_poll;
2989 ioh->fd_read = fd_read;
2990 ioh->fd_write = fd_write;
2991 ioh->opaque = opaque;
2992 ioh->deleted = 0;
2994 return 0;
2997 int qemu_set_fd_handler(int fd,
2998 IOHandler *fd_read,
2999 IOHandler *fd_write,
3000 void *opaque)
3002 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3005 #ifdef _WIN32
3006 /***********************************************************/
3007 /* Polling handling */
3009 typedef struct PollingEntry {
3010 PollingFunc *func;
3011 void *opaque;
3012 struct PollingEntry *next;
3013 } PollingEntry;
3015 static PollingEntry *first_polling_entry;
3017 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3019 PollingEntry **ppe, *pe;
3020 pe = qemu_mallocz(sizeof(PollingEntry));
3021 pe->func = func;
3022 pe->opaque = opaque;
3023 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3024 *ppe = pe;
3025 return 0;
3028 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3030 PollingEntry **ppe, *pe;
3031 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3032 pe = *ppe;
3033 if (pe->func == func && pe->opaque == opaque) {
3034 *ppe = pe->next;
3035 qemu_free(pe);
3036 break;
3041 /***********************************************************/
3042 /* Wait objects support */
3043 typedef struct WaitObjects {
3044 int num;
3045 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3046 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3047 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3048 } WaitObjects;
3050 static WaitObjects wait_objects = {0};
3052 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3054 WaitObjects *w = &wait_objects;
3056 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3057 return -1;
3058 w->events[w->num] = handle;
3059 w->func[w->num] = func;
3060 w->opaque[w->num] = opaque;
3061 w->num++;
3062 return 0;
3065 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3067 int i, found;
3068 WaitObjects *w = &wait_objects;
3070 found = 0;
3071 for (i = 0; i < w->num; i++) {
3072 if (w->events[i] == handle)
3073 found = 1;
3074 if (found) {
3075 w->events[i] = w->events[i + 1];
3076 w->func[i] = w->func[i + 1];
3077 w->opaque[i] = w->opaque[i + 1];
3080 if (found)
3081 w->num--;
3083 #endif
3085 /***********************************************************/
3086 /* ram save/restore */
3088 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3090 int v;
3092 v = qemu_get_byte(f);
3093 switch(v) {
3094 case 0:
3095 if (qemu_get_buffer(f, buf, len) != len)
3096 return -EIO;
3097 break;
3098 case 1:
3099 v = qemu_get_byte(f);
3100 memset(buf, v, len);
3101 break;
3102 default:
3103 return -EINVAL;
3106 if (qemu_file_has_error(f))
3107 return -EIO;
3109 return 0;
3112 static int ram_load_v1(QEMUFile *f, void *opaque)
3114 int ret;
3115 ram_addr_t i;
3117 if (qemu_get_be32(f) != last_ram_offset)
3118 return -EINVAL;
3119 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3120 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3121 if (ret)
3122 return ret;
3124 return 0;
3127 #define BDRV_HASH_BLOCK_SIZE 1024
3128 #define IOBUF_SIZE 4096
3129 #define RAM_CBLOCK_MAGIC 0xfabe
3131 typedef struct RamDecompressState {
3132 z_stream zstream;
3133 QEMUFile *f;
3134 uint8_t buf[IOBUF_SIZE];
3135 } RamDecompressState;
3137 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3139 int ret;
3140 memset(s, 0, sizeof(*s));
3141 s->f = f;
3142 ret = inflateInit(&s->zstream);
3143 if (ret != Z_OK)
3144 return -1;
3145 return 0;
3148 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3150 int ret, clen;
3152 s->zstream.avail_out = len;
3153 s->zstream.next_out = buf;
3154 while (s->zstream.avail_out > 0) {
3155 if (s->zstream.avail_in == 0) {
3156 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3157 return -1;
3158 clen = qemu_get_be16(s->f);
3159 if (clen > IOBUF_SIZE)
3160 return -1;
3161 qemu_get_buffer(s->f, s->buf, clen);
3162 s->zstream.avail_in = clen;
3163 s->zstream.next_in = s->buf;
3165 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3166 if (ret != Z_OK && ret != Z_STREAM_END) {
3167 return -1;
3170 return 0;
3173 static void ram_decompress_close(RamDecompressState *s)
3175 inflateEnd(&s->zstream);
3178 #define RAM_SAVE_FLAG_FULL 0x01
3179 #define RAM_SAVE_FLAG_COMPRESS 0x02
3180 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3181 #define RAM_SAVE_FLAG_PAGE 0x08
3182 #define RAM_SAVE_FLAG_EOS 0x10
3184 static int is_dup_page(uint8_t *page, uint8_t ch)
3186 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3187 uint32_t *array = (uint32_t *)page;
3188 int i;
3190 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3191 if (array[i] != val)
3192 return 0;
3195 return 1;
3198 static int ram_save_block(QEMUFile *f)
3200 static ram_addr_t current_addr = 0;
3201 ram_addr_t saved_addr = current_addr;
3202 ram_addr_t addr = 0;
3203 int found = 0;
3205 while (addr < last_ram_offset) {
3206 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3207 uint8_t *p;
3209 cpu_physical_memory_reset_dirty(current_addr,
3210 current_addr + TARGET_PAGE_SIZE,
3211 MIGRATION_DIRTY_FLAG);
3213 p = qemu_get_ram_ptr(current_addr);
3215 if (is_dup_page(p, *p)) {
3216 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3217 qemu_put_byte(f, *p);
3218 } else {
3219 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3220 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3223 found = 1;
3224 break;
3226 addr += TARGET_PAGE_SIZE;
3227 current_addr = (saved_addr + addr) % last_ram_offset;
3230 return found;
3233 static ram_addr_t ram_save_threshold = 10;
3235 static ram_addr_t ram_save_remaining(void)
3237 ram_addr_t addr;
3238 ram_addr_t count = 0;
3240 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3241 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3242 count++;
3245 return count;
3248 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3250 ram_addr_t addr;
3252 if (stage == 1) {
3253 /* Make sure all dirty bits are set */
3254 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3255 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3256 cpu_physical_memory_set_dirty(addr);
3259 /* Enable dirty memory tracking */
3260 cpu_physical_memory_set_dirty_tracking(1);
3262 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3265 while (!qemu_file_rate_limit(f)) {
3266 int ret;
3268 ret = ram_save_block(f);
3269 if (ret == 0) /* no more blocks */
3270 break;
3273 /* try transferring iterative blocks of memory */
3275 if (stage == 3) {
3277 /* flush all remaining blocks regardless of rate limiting */
3278 while (ram_save_block(f) != 0);
3279 cpu_physical_memory_set_dirty_tracking(0);
3282 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3284 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3287 static int ram_load_dead(QEMUFile *f, void *opaque)
3289 RamDecompressState s1, *s = &s1;
3290 uint8_t buf[10];
3291 ram_addr_t i;
3293 if (ram_decompress_open(s, f) < 0)
3294 return -EINVAL;
3295 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3296 if (ram_decompress_buf(s, buf, 1) < 0) {
3297 fprintf(stderr, "Error while reading ram block header\n");
3298 goto error;
3300 if (buf[0] == 0) {
3301 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3302 BDRV_HASH_BLOCK_SIZE) < 0) {
3303 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3304 goto error;
3306 } else {
3307 error:
3308 printf("Error block header\n");
3309 return -EINVAL;
3312 ram_decompress_close(s);
3314 return 0;
3317 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3319 ram_addr_t addr;
3320 int flags;
3322 if (version_id == 1)
3323 return ram_load_v1(f, opaque);
3325 if (version_id == 2) {
3326 if (qemu_get_be32(f) != last_ram_offset)
3327 return -EINVAL;
3328 return ram_load_dead(f, opaque);
3331 if (version_id != 3)
3332 return -EINVAL;
3334 do {
3335 addr = qemu_get_be64(f);
3337 flags = addr & ~TARGET_PAGE_MASK;
3338 addr &= TARGET_PAGE_MASK;
3340 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3341 if (addr != last_ram_offset)
3342 return -EINVAL;
3345 if (flags & RAM_SAVE_FLAG_FULL) {
3346 if (ram_load_dead(f, opaque) < 0)
3347 return -EINVAL;
3350 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3351 uint8_t ch = qemu_get_byte(f);
3352 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3353 } else if (flags & RAM_SAVE_FLAG_PAGE)
3354 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3355 } while (!(flags & RAM_SAVE_FLAG_EOS));
3357 return 0;
3360 void qemu_service_io(void)
3362 qemu_notify_event();
3365 /***********************************************************/
3366 /* bottom halves (can be seen as timers which expire ASAP) */
3368 struct QEMUBH {
3369 QEMUBHFunc *cb;
3370 void *opaque;
3371 int scheduled;
3372 int idle;
3373 int deleted;
3374 QEMUBH *next;
3377 static QEMUBH *first_bh = NULL;
3379 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3381 QEMUBH *bh;
3382 bh = qemu_mallocz(sizeof(QEMUBH));
3383 bh->cb = cb;
3384 bh->opaque = opaque;
3385 bh->next = first_bh;
3386 first_bh = bh;
3387 return bh;
3390 int qemu_bh_poll(void)
3392 QEMUBH *bh, **bhp;
3393 int ret;
3395 ret = 0;
3396 for (bh = first_bh; bh; bh = bh->next) {
3397 if (!bh->deleted && bh->scheduled) {
3398 bh->scheduled = 0;
3399 if (!bh->idle)
3400 ret = 1;
3401 bh->idle = 0;
3402 bh->cb(bh->opaque);
3406 /* remove deleted bhs */
3407 bhp = &first_bh;
3408 while (*bhp) {
3409 bh = *bhp;
3410 if (bh->deleted) {
3411 *bhp = bh->next;
3412 qemu_free(bh);
3413 } else
3414 bhp = &bh->next;
3417 return ret;
3420 void qemu_bh_schedule_idle(QEMUBH *bh)
3422 if (bh->scheduled)
3423 return;
3424 bh->scheduled = 1;
3425 bh->idle = 1;
3428 void qemu_bh_schedule(QEMUBH *bh)
3430 if (bh->scheduled)
3431 return;
3432 bh->scheduled = 1;
3433 bh->idle = 0;
3434 /* stop the currently executing CPU to execute the BH ASAP */
3435 qemu_notify_event();
3438 void qemu_bh_cancel(QEMUBH *bh)
3440 bh->scheduled = 0;
3443 void qemu_bh_delete(QEMUBH *bh)
3445 bh->scheduled = 0;
3446 bh->deleted = 1;
3449 static void qemu_bh_update_timeout(int *timeout)
3451 QEMUBH *bh;
3453 for (bh = first_bh; bh; bh = bh->next) {
3454 if (!bh->deleted && bh->scheduled) {
3455 if (bh->idle) {
3456 /* idle bottom halves will be polled at least
3457 * every 10ms */
3458 *timeout = MIN(10, *timeout);
3459 } else {
3460 /* non-idle bottom halves will be executed
3461 * immediately */
3462 *timeout = 0;
3463 break;
3469 /***********************************************************/
3470 /* machine registration */
3472 static QEMUMachine *first_machine = NULL;
3473 QEMUMachine *current_machine = NULL;
3475 int qemu_register_machine(QEMUMachine *m)
3477 QEMUMachine **pm;
3478 pm = &first_machine;
3479 while (*pm != NULL)
3480 pm = &(*pm)->next;
3481 m->next = NULL;
3482 *pm = m;
3483 return 0;
3486 static QEMUMachine *find_machine(const char *name)
3488 QEMUMachine *m;
3490 for(m = first_machine; m != NULL; m = m->next) {
3491 if (!strcmp(m->name, name))
3492 return m;
3494 return NULL;
3497 /***********************************************************/
3498 /* main execution loop */
3500 static void gui_update(void *opaque)
3502 uint64_t interval = GUI_REFRESH_INTERVAL;
3503 DisplayState *ds = opaque;
3504 DisplayChangeListener *dcl = ds->listeners;
3506 dpy_refresh(ds);
3508 while (dcl != NULL) {
3509 if (dcl->gui_timer_interval &&
3510 dcl->gui_timer_interval < interval)
3511 interval = dcl->gui_timer_interval;
3512 dcl = dcl->next;
3514 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3517 static void nographic_update(void *opaque)
3519 uint64_t interval = GUI_REFRESH_INTERVAL;
3521 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3524 struct vm_change_state_entry {
3525 VMChangeStateHandler *cb;
3526 void *opaque;
3527 LIST_ENTRY (vm_change_state_entry) entries;
3530 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3532 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3533 void *opaque)
3535 VMChangeStateEntry *e;
3537 e = qemu_mallocz(sizeof (*e));
3539 e->cb = cb;
3540 e->opaque = opaque;
3541 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3542 return e;
3545 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3547 LIST_REMOVE (e, entries);
3548 qemu_free (e);
3551 static void vm_state_notify(int running, int reason)
3553 VMChangeStateEntry *e;
3555 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3556 e->cb(e->opaque, running, reason);
3560 static void resume_all_vcpus(void);
3561 static void pause_all_vcpus(void);
3563 void vm_start(void)
3565 if (!vm_running) {
3566 cpu_enable_ticks();
3567 vm_running = 1;
3568 vm_state_notify(1, 0);
3569 qemu_rearm_alarm_timer(alarm_timer);
3570 resume_all_vcpus();
3574 /* reset/shutdown handler */
3576 typedef struct QEMUResetEntry {
3577 QEMUResetHandler *func;
3578 void *opaque;
3579 struct QEMUResetEntry *next;
3580 } QEMUResetEntry;
3582 static QEMUResetEntry *first_reset_entry;
3583 static int reset_requested;
3584 static int shutdown_requested;
3585 static int powerdown_requested;
3586 static int debug_requested;
3587 static int vmstop_requested;
3589 int qemu_shutdown_requested(void)
3591 int r = shutdown_requested;
3592 shutdown_requested = 0;
3593 return r;
3596 int qemu_reset_requested(void)
3598 int r = reset_requested;
3599 reset_requested = 0;
3600 return r;
3603 int qemu_powerdown_requested(void)
3605 int r = powerdown_requested;
3606 powerdown_requested = 0;
3607 return r;
3610 static int qemu_debug_requested(void)
3612 int r = debug_requested;
3613 debug_requested = 0;
3614 return r;
3617 static int qemu_vmstop_requested(void)
3619 int r = vmstop_requested;
3620 vmstop_requested = 0;
3621 return r;
3624 static void do_vm_stop(int reason)
3626 if (vm_running) {
3627 cpu_disable_ticks();
3628 vm_running = 0;
3629 pause_all_vcpus();
3630 vm_state_notify(0, reason);
3634 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3636 QEMUResetEntry **pre, *re;
3638 pre = &first_reset_entry;
3639 while (*pre != NULL)
3640 pre = &(*pre)->next;
3641 re = qemu_mallocz(sizeof(QEMUResetEntry));
3642 re->func = func;
3643 re->opaque = opaque;
3644 re->next = NULL;
3645 *pre = re;
3648 void qemu_system_reset(void)
3650 QEMUResetEntry *re;
3652 /* reset all devices */
3653 for(re = first_reset_entry; re != NULL; re = re->next) {
3654 re->func(re->opaque);
3656 if (kvm_enabled())
3657 kvm_sync_vcpus();
3660 void qemu_system_reset_request(void)
3662 if (no_reboot) {
3663 shutdown_requested = 1;
3664 } else {
3665 reset_requested = 1;
3667 qemu_notify_event();
3670 void qemu_system_shutdown_request(void)
3672 shutdown_requested = 1;
3673 qemu_notify_event();
3676 void qemu_system_powerdown_request(void)
3678 powerdown_requested = 1;
3679 qemu_notify_event();
3682 #ifdef CONFIG_IOTHREAD
3683 static void qemu_system_vmstop_request(int reason)
3685 vmstop_requested = reason;
3686 qemu_notify_event();
3688 #endif
3690 #ifndef _WIN32
3691 static int io_thread_fd = -1;
3693 static void qemu_event_increment(void)
3695 static const char byte = 0;
3697 if (io_thread_fd == -1)
3698 return;
3700 write(io_thread_fd, &byte, sizeof(byte));
3703 static void qemu_event_read(void *opaque)
3705 int fd = (unsigned long)opaque;
3706 ssize_t len;
3708 /* Drain the notify pipe */
3709 do {
3710 char buffer[512];
3711 len = read(fd, buffer, sizeof(buffer));
3712 } while ((len == -1 && errno == EINTR) || len > 0);
3715 static int qemu_event_init(void)
3717 int err;
3718 int fds[2];
3720 err = pipe(fds);
3721 if (err == -1)
3722 return -errno;
3724 err = fcntl_setfl(fds[0], O_NONBLOCK);
3725 if (err < 0)
3726 goto fail;
3728 err = fcntl_setfl(fds[1], O_NONBLOCK);
3729 if (err < 0)
3730 goto fail;
3732 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3733 (void *)(unsigned long)fds[0]);
3735 io_thread_fd = fds[1];
3736 return 0;
3738 fail:
3739 close(fds[0]);
3740 close(fds[1]);
3741 return err;
3743 #else
3744 HANDLE qemu_event_handle;
3746 static void dummy_event_handler(void *opaque)
3750 static int qemu_event_init(void)
3752 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3753 if (!qemu_event_handle) {
3754 perror("Failed CreateEvent");
3755 return -1;
3757 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3758 return 0;
3761 static void qemu_event_increment(void)
3763 SetEvent(qemu_event_handle);
3765 #endif
3767 static int cpu_can_run(CPUState *env)
3769 if (env->stop)
3770 return 0;
3771 if (env->stopped)
3772 return 0;
3773 return 1;
3776 #ifndef CONFIG_IOTHREAD
3777 static int qemu_init_main_loop(void)
3779 return qemu_event_init();
3782 void qemu_init_vcpu(void *_env)
3784 CPUState *env = _env;
3786 if (kvm_enabled())
3787 kvm_init_vcpu(env);
3788 return;
3791 int qemu_cpu_self(void *env)
3793 return 1;
3796 static void resume_all_vcpus(void)
3800 static void pause_all_vcpus(void)
3804 void qemu_cpu_kick(void *env)
3806 return;
3809 void qemu_notify_event(void)
3811 CPUState *env = cpu_single_env;
3813 if (env) {
3814 cpu_exit(env);
3815 #ifdef USE_KQEMU
3816 if (env->kqemu_enabled)
3817 kqemu_cpu_interrupt(env);
3818 #endif
3822 #define qemu_mutex_lock_iothread() do { } while (0)
3823 #define qemu_mutex_unlock_iothread() do { } while (0)
3825 void vm_stop(int reason)
3827 do_vm_stop(reason);
3830 #else /* CONFIG_IOTHREAD */
3832 #include "qemu-thread.h"
3834 QemuMutex qemu_global_mutex;
3835 static QemuMutex qemu_fair_mutex;
3837 static QemuThread io_thread;
3839 static QemuThread *tcg_cpu_thread;
3840 static QemuCond *tcg_halt_cond;
3842 static int qemu_system_ready;
3843 /* cpu creation */
3844 static QemuCond qemu_cpu_cond;
3845 /* system init */
3846 static QemuCond qemu_system_cond;
3847 static QemuCond qemu_pause_cond;
3849 static void block_io_signals(void);
3850 static void unblock_io_signals(void);
3851 static int tcg_has_work(void);
3853 static int qemu_init_main_loop(void)
3855 int ret;
3857 ret = qemu_event_init();
3858 if (ret)
3859 return ret;
3861 qemu_cond_init(&qemu_pause_cond);
3862 qemu_mutex_init(&qemu_fair_mutex);
3863 qemu_mutex_init(&qemu_global_mutex);
3864 qemu_mutex_lock(&qemu_global_mutex);
3866 unblock_io_signals();
3867 qemu_thread_self(&io_thread);
3869 return 0;
3872 static void qemu_wait_io_event(CPUState *env)
3874 while (!tcg_has_work())
3875 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3877 qemu_mutex_unlock(&qemu_global_mutex);
3880 * Users of qemu_global_mutex can be starved, having no chance
3881 * to acquire it since this path will get to it first.
3882 * So use another lock to provide fairness.
3884 qemu_mutex_lock(&qemu_fair_mutex);
3885 qemu_mutex_unlock(&qemu_fair_mutex);
3887 qemu_mutex_lock(&qemu_global_mutex);
3888 if (env->stop) {
3889 env->stop = 0;
3890 env->stopped = 1;
3891 qemu_cond_signal(&qemu_pause_cond);
3895 static int qemu_cpu_exec(CPUState *env);
3897 static void *kvm_cpu_thread_fn(void *arg)
3899 CPUState *env = arg;
3901 block_io_signals();
3902 qemu_thread_self(env->thread);
3904 /* signal CPU creation */
3905 qemu_mutex_lock(&qemu_global_mutex);
3906 env->created = 1;
3907 qemu_cond_signal(&qemu_cpu_cond);
3909 /* and wait for machine initialization */
3910 while (!qemu_system_ready)
3911 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3913 while (1) {
3914 if (cpu_can_run(env))
3915 qemu_cpu_exec(env);
3916 qemu_wait_io_event(env);
3919 return NULL;
3922 static void tcg_cpu_exec(void);
3924 static void *tcg_cpu_thread_fn(void *arg)
3926 CPUState *env = arg;
3928 block_io_signals();
3929 qemu_thread_self(env->thread);
3931 /* signal CPU creation */
3932 qemu_mutex_lock(&qemu_global_mutex);
3933 for (env = first_cpu; env != NULL; env = env->next_cpu)
3934 env->created = 1;
3935 qemu_cond_signal(&qemu_cpu_cond);
3937 /* and wait for machine initialization */
3938 while (!qemu_system_ready)
3939 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3941 while (1) {
3942 tcg_cpu_exec();
3943 qemu_wait_io_event(cur_cpu);
3946 return NULL;
3949 void qemu_cpu_kick(void *_env)
3951 CPUState *env = _env;
3952 qemu_cond_broadcast(env->halt_cond);
3953 if (kvm_enabled())
3954 qemu_thread_signal(env->thread, SIGUSR1);
3957 int qemu_cpu_self(void *env)
3959 return (cpu_single_env != NULL);
3962 static void cpu_signal(int sig)
3964 if (cpu_single_env)
3965 cpu_exit(cpu_single_env);
3968 static void block_io_signals(void)
3970 sigset_t set;
3971 struct sigaction sigact;
3973 sigemptyset(&set);
3974 sigaddset(&set, SIGUSR2);
3975 sigaddset(&set, SIGIO);
3976 sigaddset(&set, SIGALRM);
3977 pthread_sigmask(SIG_BLOCK, &set, NULL);
3979 sigemptyset(&set);
3980 sigaddset(&set, SIGUSR1);
3981 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3983 memset(&sigact, 0, sizeof(sigact));
3984 sigact.sa_handler = cpu_signal;
3985 sigaction(SIGUSR1, &sigact, NULL);
3988 static void unblock_io_signals(void)
3990 sigset_t set;
3992 sigemptyset(&set);
3993 sigaddset(&set, SIGUSR2);
3994 sigaddset(&set, SIGIO);
3995 sigaddset(&set, SIGALRM);
3996 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3998 sigemptyset(&set);
3999 sigaddset(&set, SIGUSR1);
4000 pthread_sigmask(SIG_BLOCK, &set, NULL);
4003 static void qemu_signal_lock(unsigned int msecs)
4005 qemu_mutex_lock(&qemu_fair_mutex);
4007 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4008 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4009 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4010 break;
4012 qemu_mutex_unlock(&qemu_fair_mutex);
4015 static void qemu_mutex_lock_iothread(void)
4017 if (kvm_enabled()) {
4018 qemu_mutex_lock(&qemu_fair_mutex);
4019 qemu_mutex_lock(&qemu_global_mutex);
4020 qemu_mutex_unlock(&qemu_fair_mutex);
4021 } else
4022 qemu_signal_lock(100);
4025 static void qemu_mutex_unlock_iothread(void)
4027 qemu_mutex_unlock(&qemu_global_mutex);
4030 static int all_vcpus_paused(void)
4032 CPUState *penv = first_cpu;
4034 while (penv) {
4035 if (!penv->stopped)
4036 return 0;
4037 penv = (CPUState *)penv->next_cpu;
4040 return 1;
4043 static void pause_all_vcpus(void)
4045 CPUState *penv = first_cpu;
4047 while (penv) {
4048 penv->stop = 1;
4049 qemu_thread_signal(penv->thread, SIGUSR1);
4050 qemu_cpu_kick(penv);
4051 penv = (CPUState *)penv->next_cpu;
4054 while (!all_vcpus_paused()) {
4055 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4056 penv = first_cpu;
4057 while (penv) {
4058 qemu_thread_signal(penv->thread, SIGUSR1);
4059 penv = (CPUState *)penv->next_cpu;
4064 static void resume_all_vcpus(void)
4066 CPUState *penv = first_cpu;
4068 while (penv) {
4069 penv->stop = 0;
4070 penv->stopped = 0;
4071 qemu_thread_signal(penv->thread, SIGUSR1);
4072 qemu_cpu_kick(penv);
4073 penv = (CPUState *)penv->next_cpu;
4077 static void tcg_init_vcpu(void *_env)
4079 CPUState *env = _env;
4080 /* share a single thread for all cpus with TCG */
4081 if (!tcg_cpu_thread) {
4082 env->thread = qemu_mallocz(sizeof(QemuThread));
4083 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4084 qemu_cond_init(env->halt_cond);
4085 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4086 while (env->created == 0)
4087 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4088 tcg_cpu_thread = env->thread;
4089 tcg_halt_cond = env->halt_cond;
4090 } else {
4091 env->thread = tcg_cpu_thread;
4092 env->halt_cond = tcg_halt_cond;
4096 static void kvm_start_vcpu(CPUState *env)
4098 kvm_init_vcpu(env);
4099 env->thread = qemu_mallocz(sizeof(QemuThread));
4100 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4101 qemu_cond_init(env->halt_cond);
4102 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4103 while (env->created == 0)
4104 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4107 void qemu_init_vcpu(void *_env)
4109 CPUState *env = _env;
4111 if (kvm_enabled())
4112 kvm_start_vcpu(env);
4113 else
4114 tcg_init_vcpu(env);
4117 void qemu_notify_event(void)
4119 qemu_event_increment();
4122 void vm_stop(int reason)
4124 QemuThread me;
4125 qemu_thread_self(&me);
4127 if (!qemu_thread_equal(&me, &io_thread)) {
4128 qemu_system_vmstop_request(reason);
4130 * FIXME: should not return to device code in case
4131 * vm_stop() has been requested.
4133 if (cpu_single_env) {
4134 cpu_exit(cpu_single_env);
4135 cpu_single_env->stop = 1;
4137 return;
4139 do_vm_stop(reason);
4142 #endif
4145 #ifdef _WIN32
4146 static void host_main_loop_wait(int *timeout)
4148 int ret, ret2, i;
4149 PollingEntry *pe;
4152 /* XXX: need to suppress polling by better using win32 events */
4153 ret = 0;
4154 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4155 ret |= pe->func(pe->opaque);
4157 if (ret == 0) {
4158 int err;
4159 WaitObjects *w = &wait_objects;
4161 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4162 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4163 if (w->func[ret - WAIT_OBJECT_0])
4164 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4166 /* Check for additional signaled events */
4167 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4169 /* Check if event is signaled */
4170 ret2 = WaitForSingleObject(w->events[i], 0);
4171 if(ret2 == WAIT_OBJECT_0) {
4172 if (w->func[i])
4173 w->func[i](w->opaque[i]);
4174 } else if (ret2 == WAIT_TIMEOUT) {
4175 } else {
4176 err = GetLastError();
4177 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4180 } else if (ret == WAIT_TIMEOUT) {
4181 } else {
4182 err = GetLastError();
4183 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4187 *timeout = 0;
4189 #else
4190 static void host_main_loop_wait(int *timeout)
4193 #endif
4195 void main_loop_wait(int timeout)
4197 IOHandlerRecord *ioh;
4198 fd_set rfds, wfds, xfds;
4199 int ret, nfds;
4200 struct timeval tv;
4202 qemu_bh_update_timeout(&timeout);
4204 host_main_loop_wait(&timeout);
4206 /* poll any events */
4207 /* XXX: separate device handlers from system ones */
4208 nfds = -1;
4209 FD_ZERO(&rfds);
4210 FD_ZERO(&wfds);
4211 FD_ZERO(&xfds);
4212 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4213 if (ioh->deleted)
4214 continue;
4215 if (ioh->fd_read &&
4216 (!ioh->fd_read_poll ||
4217 ioh->fd_read_poll(ioh->opaque) != 0)) {
4218 FD_SET(ioh->fd, &rfds);
4219 if (ioh->fd > nfds)
4220 nfds = ioh->fd;
4222 if (ioh->fd_write) {
4223 FD_SET(ioh->fd, &wfds);
4224 if (ioh->fd > nfds)
4225 nfds = ioh->fd;
4229 tv.tv_sec = timeout / 1000;
4230 tv.tv_usec = (timeout % 1000) * 1000;
4232 #if defined(CONFIG_SLIRP)
4233 if (slirp_is_inited()) {
4234 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4236 #endif
4237 qemu_mutex_unlock_iothread();
4238 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4239 qemu_mutex_lock_iothread();
4240 if (ret > 0) {
4241 IOHandlerRecord **pioh;
4243 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4244 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4245 ioh->fd_read(ioh->opaque);
4247 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4248 ioh->fd_write(ioh->opaque);
4252 /* remove deleted IO handlers */
4253 pioh = &first_io_handler;
4254 while (*pioh) {
4255 ioh = *pioh;
4256 if (ioh->deleted) {
4257 *pioh = ioh->next;
4258 qemu_free(ioh);
4259 } else
4260 pioh = &ioh->next;
4263 #if defined(CONFIG_SLIRP)
4264 if (slirp_is_inited()) {
4265 if (ret < 0) {
4266 FD_ZERO(&rfds);
4267 FD_ZERO(&wfds);
4268 FD_ZERO(&xfds);
4270 slirp_select_poll(&rfds, &wfds, &xfds);
4272 #endif
4274 /* rearm timer, if not periodic */
4275 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4276 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4277 qemu_rearm_alarm_timer(alarm_timer);
4280 /* vm time timers */
4281 if (vm_running) {
4282 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4283 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4284 qemu_get_clock(vm_clock));
4287 /* real time timers */
4288 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4289 qemu_get_clock(rt_clock));
4291 /* Check bottom-halves last in case any of the earlier events triggered
4292 them. */
4293 qemu_bh_poll();
4297 static int qemu_cpu_exec(CPUState *env)
4299 int ret;
4300 #ifdef CONFIG_PROFILER
4301 int64_t ti;
4302 #endif
4304 #ifdef CONFIG_PROFILER
4305 ti = profile_getclock();
4306 #endif
4307 if (use_icount) {
4308 int64_t count;
4309 int decr;
4310 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4311 env->icount_decr.u16.low = 0;
4312 env->icount_extra = 0;
4313 count = qemu_next_deadline();
4314 count = (count + (1 << icount_time_shift) - 1)
4315 >> icount_time_shift;
4316 qemu_icount += count;
4317 decr = (count > 0xffff) ? 0xffff : count;
4318 count -= decr;
4319 env->icount_decr.u16.low = decr;
4320 env->icount_extra = count;
4322 ret = cpu_exec(env);
4323 #ifdef CONFIG_PROFILER
4324 qemu_time += profile_getclock() - ti;
4325 #endif
4326 if (use_icount) {
4327 /* Fold pending instructions back into the
4328 instruction counter, and clear the interrupt flag. */
4329 qemu_icount -= (env->icount_decr.u16.low
4330 + env->icount_extra);
4331 env->icount_decr.u32 = 0;
4332 env->icount_extra = 0;
4334 return ret;
4337 static void tcg_cpu_exec(void)
4339 int ret = 0;
4341 if (next_cpu == NULL)
4342 next_cpu = first_cpu;
4343 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4344 CPUState *env = cur_cpu = next_cpu;
4346 if (!vm_running)
4347 break;
4348 if (timer_alarm_pending) {
4349 timer_alarm_pending = 0;
4350 break;
4352 if (cpu_can_run(env))
4353 ret = qemu_cpu_exec(env);
4354 if (ret == EXCP_DEBUG) {
4355 gdb_set_stop_cpu(env);
4356 debug_requested = 1;
4357 break;
4362 static int cpu_has_work(CPUState *env)
4364 if (env->stop)
4365 return 1;
4366 if (env->stopped)
4367 return 0;
4368 if (!env->halted)
4369 return 1;
4370 if (qemu_cpu_has_work(env))
4371 return 1;
4372 return 0;
4375 static int tcg_has_work(void)
4377 CPUState *env;
4379 for (env = first_cpu; env != NULL; env = env->next_cpu)
4380 if (cpu_has_work(env))
4381 return 1;
4382 return 0;
4385 static int qemu_calculate_timeout(void)
4387 int timeout;
4389 if (!vm_running)
4390 timeout = 5000;
4391 else if (tcg_has_work())
4392 timeout = 0;
4393 else if (!use_icount)
4394 timeout = 5000;
4395 else {
4396 /* XXX: use timeout computed from timers */
4397 int64_t add;
4398 int64_t delta;
4399 /* Advance virtual time to the next event. */
4400 if (use_icount == 1) {
4401 /* When not using an adaptive execution frequency
4402 we tend to get badly out of sync with real time,
4403 so just delay for a reasonable amount of time. */
4404 delta = 0;
4405 } else {
4406 delta = cpu_get_icount() - cpu_get_clock();
4408 if (delta > 0) {
4409 /* If virtual time is ahead of real time then just
4410 wait for IO. */
4411 timeout = (delta / 1000000) + 1;
4412 } else {
4413 /* Wait for either IO to occur or the next
4414 timer event. */
4415 add = qemu_next_deadline();
4416 /* We advance the timer before checking for IO.
4417 Limit the amount we advance so that early IO
4418 activity won't get the guest too far ahead. */
4419 if (add > 10000000)
4420 add = 10000000;
4421 delta += add;
4422 add = (add + (1 << icount_time_shift) - 1)
4423 >> icount_time_shift;
4424 qemu_icount += add;
4425 timeout = delta / 1000000;
4426 if (timeout < 0)
4427 timeout = 0;
4431 return timeout;
4434 static int vm_can_run(void)
4436 if (powerdown_requested)
4437 return 0;
4438 if (reset_requested)
4439 return 0;
4440 if (shutdown_requested)
4441 return 0;
4442 if (debug_requested)
4443 return 0;
4444 return 1;
4447 static void main_loop(void)
4449 int r;
4451 #ifdef CONFIG_IOTHREAD
4452 qemu_system_ready = 1;
4453 qemu_cond_broadcast(&qemu_system_cond);
4454 #endif
4456 for (;;) {
4457 do {
4458 #ifdef CONFIG_PROFILER
4459 int64_t ti;
4460 #endif
4461 #ifndef CONFIG_IOTHREAD
4462 tcg_cpu_exec();
4463 #endif
4464 #ifdef CONFIG_PROFILER
4465 ti = profile_getclock();
4466 #endif
4467 #ifdef CONFIG_IOTHREAD
4468 main_loop_wait(1000);
4469 #else
4470 main_loop_wait(qemu_calculate_timeout());
4471 #endif
4472 #ifdef CONFIG_PROFILER
4473 dev_time += profile_getclock() - ti;
4474 #endif
4475 } while (vm_can_run());
4477 if (qemu_debug_requested())
4478 vm_stop(EXCP_DEBUG);
4479 if (qemu_shutdown_requested()) {
4480 if (no_shutdown) {
4481 vm_stop(0);
4482 no_shutdown = 0;
4483 } else
4484 break;
4486 if (qemu_reset_requested()) {
4487 pause_all_vcpus();
4488 qemu_system_reset();
4489 resume_all_vcpus();
4491 if (qemu_powerdown_requested())
4492 qemu_system_powerdown();
4493 if ((r = qemu_vmstop_requested()))
4494 vm_stop(r);
4496 pause_all_vcpus();
4499 static void version(void)
4501 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4504 static void help(int exitcode)
4506 version();
4507 printf("usage: %s [options] [disk_image]\n"
4508 "\n"
4509 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4510 "\n"
4511 #define DEF(option, opt_arg, opt_enum, opt_help) \
4512 opt_help
4513 #define DEFHEADING(text) stringify(text) "\n"
4514 #include "qemu-options.h"
4515 #undef DEF
4516 #undef DEFHEADING
4517 #undef GEN_DOCS
4518 "\n"
4519 "During emulation, the following keys are useful:\n"
4520 "ctrl-alt-f toggle full screen\n"
4521 "ctrl-alt-n switch to virtual console 'n'\n"
4522 "ctrl-alt toggle mouse and keyboard grab\n"
4523 "\n"
4524 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4526 "qemu",
4527 DEFAULT_RAM_SIZE,
4528 #ifndef _WIN32
4529 DEFAULT_NETWORK_SCRIPT,
4530 DEFAULT_NETWORK_DOWN_SCRIPT,
4531 #endif
4532 DEFAULT_GDBSTUB_PORT,
4533 "/tmp/qemu.log");
4534 exit(exitcode);
4537 #define HAS_ARG 0x0001
4539 enum {
4540 #define DEF(option, opt_arg, opt_enum, opt_help) \
4541 opt_enum,
4542 #define DEFHEADING(text)
4543 #include "qemu-options.h"
4544 #undef DEF
4545 #undef DEFHEADING
4546 #undef GEN_DOCS
4549 typedef struct QEMUOption {
4550 const char *name;
4551 int flags;
4552 int index;
4553 } QEMUOption;
4555 static const QEMUOption qemu_options[] = {
4556 { "h", 0, QEMU_OPTION_h },
4557 #define DEF(option, opt_arg, opt_enum, opt_help) \
4558 { option, opt_arg, opt_enum },
4559 #define DEFHEADING(text)
4560 #include "qemu-options.h"
4561 #undef DEF
4562 #undef DEFHEADING
4563 #undef GEN_DOCS
4564 { NULL },
4567 #ifdef HAS_AUDIO
4568 struct soundhw soundhw[] = {
4569 #ifdef HAS_AUDIO_CHOICE
4570 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4572 "pcspk",
4573 "PC speaker",
4576 { .init_isa = pcspk_audio_init }
4578 #endif
4580 #ifdef CONFIG_SB16
4582 "sb16",
4583 "Creative Sound Blaster 16",
4586 { .init_isa = SB16_init }
4588 #endif
4590 #ifdef CONFIG_CS4231A
4592 "cs4231a",
4593 "CS4231A",
4596 { .init_isa = cs4231a_init }
4598 #endif
4600 #ifdef CONFIG_ADLIB
4602 "adlib",
4603 #ifdef HAS_YMF262
4604 "Yamaha YMF262 (OPL3)",
4605 #else
4606 "Yamaha YM3812 (OPL2)",
4607 #endif
4610 { .init_isa = Adlib_init }
4612 #endif
4614 #ifdef CONFIG_GUS
4616 "gus",
4617 "Gravis Ultrasound GF1",
4620 { .init_isa = GUS_init }
4622 #endif
4624 #ifdef CONFIG_AC97
4626 "ac97",
4627 "Intel 82801AA AC97 Audio",
4630 { .init_pci = ac97_init }
4632 #endif
4634 #ifdef CONFIG_ES1370
4636 "es1370",
4637 "ENSONIQ AudioPCI ES1370",
4640 { .init_pci = es1370_init }
4642 #endif
4644 #endif /* HAS_AUDIO_CHOICE */
4646 { NULL, NULL, 0, 0, { NULL } }
4649 static void select_soundhw (const char *optarg)
4651 struct soundhw *c;
4653 if (*optarg == '?') {
4654 show_valid_cards:
4656 printf ("Valid sound card names (comma separated):\n");
4657 for (c = soundhw; c->name; ++c) {
4658 printf ("%-11s %s\n", c->name, c->descr);
4660 printf ("\n-soundhw all will enable all of the above\n");
4661 exit (*optarg != '?');
4663 else {
4664 size_t l;
4665 const char *p;
4666 char *e;
4667 int bad_card = 0;
4669 if (!strcmp (optarg, "all")) {
4670 for (c = soundhw; c->name; ++c) {
4671 c->enabled = 1;
4673 return;
4676 p = optarg;
4677 while (*p) {
4678 e = strchr (p, ',');
4679 l = !e ? strlen (p) : (size_t) (e - p);
4681 for (c = soundhw; c->name; ++c) {
4682 if (!strncmp (c->name, p, l)) {
4683 c->enabled = 1;
4684 break;
4688 if (!c->name) {
4689 if (l > 80) {
4690 fprintf (stderr,
4691 "Unknown sound card name (too big to show)\n");
4693 else {
4694 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4695 (int) l, p);
4697 bad_card = 1;
4699 p += l + (e != NULL);
4702 if (bad_card)
4703 goto show_valid_cards;
4706 #endif
4708 static void select_vgahw (const char *p)
4710 const char *opts;
4712 cirrus_vga_enabled = 0;
4713 std_vga_enabled = 0;
4714 vmsvga_enabled = 0;
4715 xenfb_enabled = 0;
4716 if (strstart(p, "std", &opts)) {
4717 std_vga_enabled = 1;
4718 } else if (strstart(p, "cirrus", &opts)) {
4719 cirrus_vga_enabled = 1;
4720 } else if (strstart(p, "vmware", &opts)) {
4721 vmsvga_enabled = 1;
4722 } else if (strstart(p, "xenfb", &opts)) {
4723 xenfb_enabled = 1;
4724 } else if (!strstart(p, "none", &opts)) {
4725 invalid_vga:
4726 fprintf(stderr, "Unknown vga type: %s\n", p);
4727 exit(1);
4729 while (*opts) {
4730 const char *nextopt;
4732 if (strstart(opts, ",retrace=", &nextopt)) {
4733 opts = nextopt;
4734 if (strstart(opts, "dumb", &nextopt))
4735 vga_retrace_method = VGA_RETRACE_DUMB;
4736 else if (strstart(opts, "precise", &nextopt))
4737 vga_retrace_method = VGA_RETRACE_PRECISE;
4738 else goto invalid_vga;
4739 } else goto invalid_vga;
4740 opts = nextopt;
4744 #ifdef _WIN32
4745 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4747 exit(STATUS_CONTROL_C_EXIT);
4748 return TRUE;
4750 #endif
4752 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4754 int ret;
4756 if(strlen(str) != 36)
4757 return -1;
4759 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4760 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4761 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4763 if(ret != 16)
4764 return -1;
4766 #ifdef TARGET_I386
4767 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4768 #endif
4770 return 0;
4773 #define MAX_NET_CLIENTS 32
4775 #ifndef _WIN32
4777 static void termsig_handler(int signal)
4779 qemu_system_shutdown_request();
4782 static void termsig_setup(void)
4784 struct sigaction act;
4786 memset(&act, 0, sizeof(act));
4787 act.sa_handler = termsig_handler;
4788 sigaction(SIGINT, &act, NULL);
4789 sigaction(SIGHUP, &act, NULL);
4790 sigaction(SIGTERM, &act, NULL);
4793 #endif
4795 int main(int argc, char **argv, char **envp)
4797 const char *gdbstub_dev = NULL;
4798 uint32_t boot_devices_bitmap = 0;
4799 int i;
4800 int snapshot, linux_boot, net_boot;
4801 const char *initrd_filename;
4802 const char *kernel_filename, *kernel_cmdline;
4803 const char *boot_devices = "";
4804 DisplayState *ds;
4805 DisplayChangeListener *dcl;
4806 int cyls, heads, secs, translation;
4807 const char *net_clients[MAX_NET_CLIENTS];
4808 int nb_net_clients;
4809 const char *bt_opts[MAX_BT_CMDLINE];
4810 int nb_bt_opts;
4811 int hda_index;
4812 int optind;
4813 const char *r, *optarg;
4814 CharDriverState *monitor_hd = NULL;
4815 const char *monitor_device;
4816 const char *serial_devices[MAX_SERIAL_PORTS];
4817 int serial_device_index;
4818 const char *parallel_devices[MAX_PARALLEL_PORTS];
4819 int parallel_device_index;
4820 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4821 int virtio_console_index;
4822 const char *loadvm = NULL;
4823 QEMUMachine *machine;
4824 const char *cpu_model;
4825 const char *usb_devices[MAX_USB_CMDLINE];
4826 int usb_devices_index;
4827 #ifndef _WIN32
4828 int fds[2];
4829 #endif
4830 int tb_size;
4831 const char *pid_file = NULL;
4832 const char *incoming = NULL;
4833 #ifndef _WIN32
4834 int fd = 0;
4835 struct passwd *pwd = NULL;
4836 const char *chroot_dir = NULL;
4837 const char *run_as = NULL;
4838 #endif
4839 CPUState *env;
4841 qemu_cache_utils_init(envp);
4843 LIST_INIT (&vm_change_state_head);
4844 #ifndef _WIN32
4846 struct sigaction act;
4847 sigfillset(&act.sa_mask);
4848 act.sa_flags = 0;
4849 act.sa_handler = SIG_IGN;
4850 sigaction(SIGPIPE, &act, NULL);
4852 #else
4853 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4854 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4855 QEMU to run on a single CPU */
4857 HANDLE h;
4858 DWORD mask, smask;
4859 int i;
4860 h = GetCurrentProcess();
4861 if (GetProcessAffinityMask(h, &mask, &smask)) {
4862 for(i = 0; i < 32; i++) {
4863 if (mask & (1 << i))
4864 break;
4866 if (i != 32) {
4867 mask = 1 << i;
4868 SetProcessAffinityMask(h, mask);
4872 #endif
4874 register_machines();
4875 machine = first_machine;
4876 cpu_model = NULL;
4877 initrd_filename = NULL;
4878 ram_size = 0;
4879 snapshot = 0;
4880 nographic = 0;
4881 curses = 0;
4882 kernel_filename = NULL;
4883 kernel_cmdline = "";
4884 cyls = heads = secs = 0;
4885 translation = BIOS_ATA_TRANSLATION_AUTO;
4886 monitor_device = "vc:80Cx24C";
4888 serial_devices[0] = "vc:80Cx24C";
4889 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4890 serial_devices[i] = NULL;
4891 serial_device_index = 0;
4893 parallel_devices[0] = "vc:80Cx24C";
4894 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4895 parallel_devices[i] = NULL;
4896 parallel_device_index = 0;
4898 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4899 virtio_consoles[i] = NULL;
4900 virtio_console_index = 0;
4902 for (i = 0; i < MAX_NODES; i++) {
4903 node_mem[i] = 0;
4904 node_cpumask[i] = 0;
4907 usb_devices_index = 0;
4909 nb_net_clients = 0;
4910 nb_bt_opts = 0;
4911 nb_drives = 0;
4912 nb_drives_opt = 0;
4913 nb_numa_nodes = 0;
4914 hda_index = -1;
4916 nb_nics = 0;
4918 tb_size = 0;
4919 autostart= 1;
4921 register_watchdogs();
4923 optind = 1;
4924 for(;;) {
4925 if (optind >= argc)
4926 break;
4927 r = argv[optind];
4928 if (r[0] != '-') {
4929 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4930 } else {
4931 const QEMUOption *popt;
4933 optind++;
4934 /* Treat --foo the same as -foo. */
4935 if (r[1] == '-')
4936 r++;
4937 popt = qemu_options;
4938 for(;;) {
4939 if (!popt->name) {
4940 fprintf(stderr, "%s: invalid option -- '%s'\n",
4941 argv[0], r);
4942 exit(1);
4944 if (!strcmp(popt->name, r + 1))
4945 break;
4946 popt++;
4948 if (popt->flags & HAS_ARG) {
4949 if (optind >= argc) {
4950 fprintf(stderr, "%s: option '%s' requires an argument\n",
4951 argv[0], r);
4952 exit(1);
4954 optarg = argv[optind++];
4955 } else {
4956 optarg = NULL;
4959 switch(popt->index) {
4960 case QEMU_OPTION_M:
4961 machine = find_machine(optarg);
4962 if (!machine) {
4963 QEMUMachine *m;
4964 printf("Supported machines are:\n");
4965 for(m = first_machine; m != NULL; m = m->next) {
4966 printf("%-10s %s%s\n",
4967 m->name, m->desc,
4968 m == first_machine ? " (default)" : "");
4970 exit(*optarg != '?');
4972 break;
4973 case QEMU_OPTION_cpu:
4974 /* hw initialization will check this */
4975 if (*optarg == '?') {
4976 /* XXX: implement xxx_cpu_list for targets that still miss it */
4977 #if defined(cpu_list)
4978 cpu_list(stdout, &fprintf);
4979 #endif
4980 exit(0);
4981 } else {
4982 cpu_model = optarg;
4984 break;
4985 case QEMU_OPTION_initrd:
4986 initrd_filename = optarg;
4987 break;
4988 case QEMU_OPTION_hda:
4989 if (cyls == 0)
4990 hda_index = drive_add(optarg, HD_ALIAS, 0);
4991 else
4992 hda_index = drive_add(optarg, HD_ALIAS
4993 ",cyls=%d,heads=%d,secs=%d%s",
4994 0, cyls, heads, secs,
4995 translation == BIOS_ATA_TRANSLATION_LBA ?
4996 ",trans=lba" :
4997 translation == BIOS_ATA_TRANSLATION_NONE ?
4998 ",trans=none" : "");
4999 break;
5000 case QEMU_OPTION_hdb:
5001 case QEMU_OPTION_hdc:
5002 case QEMU_OPTION_hdd:
5003 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5004 break;
5005 case QEMU_OPTION_drive:
5006 drive_add(NULL, "%s", optarg);
5007 break;
5008 case QEMU_OPTION_mtdblock:
5009 drive_add(optarg, MTD_ALIAS);
5010 break;
5011 case QEMU_OPTION_sd:
5012 drive_add(optarg, SD_ALIAS);
5013 break;
5014 case QEMU_OPTION_pflash:
5015 drive_add(optarg, PFLASH_ALIAS);
5016 break;
5017 case QEMU_OPTION_snapshot:
5018 snapshot = 1;
5019 break;
5020 case QEMU_OPTION_hdachs:
5022 const char *p;
5023 p = optarg;
5024 cyls = strtol(p, (char **)&p, 0);
5025 if (cyls < 1 || cyls > 16383)
5026 goto chs_fail;
5027 if (*p != ',')
5028 goto chs_fail;
5029 p++;
5030 heads = strtol(p, (char **)&p, 0);
5031 if (heads < 1 || heads > 16)
5032 goto chs_fail;
5033 if (*p != ',')
5034 goto chs_fail;
5035 p++;
5036 secs = strtol(p, (char **)&p, 0);
5037 if (secs < 1 || secs > 63)
5038 goto chs_fail;
5039 if (*p == ',') {
5040 p++;
5041 if (!strcmp(p, "none"))
5042 translation = BIOS_ATA_TRANSLATION_NONE;
5043 else if (!strcmp(p, "lba"))
5044 translation = BIOS_ATA_TRANSLATION_LBA;
5045 else if (!strcmp(p, "auto"))
5046 translation = BIOS_ATA_TRANSLATION_AUTO;
5047 else
5048 goto chs_fail;
5049 } else if (*p != '\0') {
5050 chs_fail:
5051 fprintf(stderr, "qemu: invalid physical CHS format\n");
5052 exit(1);
5054 if (hda_index != -1)
5055 snprintf(drives_opt[hda_index].opt,
5056 sizeof(drives_opt[hda_index].opt),
5057 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5058 0, cyls, heads, secs,
5059 translation == BIOS_ATA_TRANSLATION_LBA ?
5060 ",trans=lba" :
5061 translation == BIOS_ATA_TRANSLATION_NONE ?
5062 ",trans=none" : "");
5064 break;
5065 case QEMU_OPTION_numa:
5066 if (nb_numa_nodes >= MAX_NODES) {
5067 fprintf(stderr, "qemu: too many NUMA nodes\n");
5068 exit(1);
5070 numa_add(optarg);
5071 break;
5072 case QEMU_OPTION_nographic:
5073 nographic = 1;
5074 break;
5075 #ifdef CONFIG_CURSES
5076 case QEMU_OPTION_curses:
5077 curses = 1;
5078 break;
5079 #endif
5080 case QEMU_OPTION_portrait:
5081 graphic_rotate = 1;
5082 break;
5083 case QEMU_OPTION_kernel:
5084 kernel_filename = optarg;
5085 break;
5086 case QEMU_OPTION_append:
5087 kernel_cmdline = optarg;
5088 break;
5089 case QEMU_OPTION_cdrom:
5090 drive_add(optarg, CDROM_ALIAS);
5091 break;
5092 case QEMU_OPTION_boot:
5093 boot_devices = optarg;
5094 /* We just do some generic consistency checks */
5096 /* Could easily be extended to 64 devices if needed */
5097 const char *p;
5099 boot_devices_bitmap = 0;
5100 for (p = boot_devices; *p != '\0'; p++) {
5101 /* Allowed boot devices are:
5102 * a b : floppy disk drives
5103 * c ... f : IDE disk drives
5104 * g ... m : machine implementation dependant drives
5105 * n ... p : network devices
5106 * It's up to each machine implementation to check
5107 * if the given boot devices match the actual hardware
5108 * implementation and firmware features.
5110 if (*p < 'a' || *p > 'q') {
5111 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5112 exit(1);
5114 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5115 fprintf(stderr,
5116 "Boot device '%c' was given twice\n",*p);
5117 exit(1);
5119 boot_devices_bitmap |= 1 << (*p - 'a');
5122 break;
5123 case QEMU_OPTION_fda:
5124 case QEMU_OPTION_fdb:
5125 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5126 break;
5127 #ifdef TARGET_I386
5128 case QEMU_OPTION_no_fd_bootchk:
5129 fd_bootchk = 0;
5130 break;
5131 #endif
5132 case QEMU_OPTION_net:
5133 if (nb_net_clients >= MAX_NET_CLIENTS) {
5134 fprintf(stderr, "qemu: too many network clients\n");
5135 exit(1);
5137 net_clients[nb_net_clients] = optarg;
5138 nb_net_clients++;
5139 break;
5140 #ifdef CONFIG_SLIRP
5141 case QEMU_OPTION_tftp:
5142 tftp_prefix = optarg;
5143 break;
5144 case QEMU_OPTION_bootp:
5145 bootp_filename = optarg;
5146 break;
5147 #ifndef _WIN32
5148 case QEMU_OPTION_smb:
5149 net_slirp_smb(optarg);
5150 break;
5151 #endif
5152 case QEMU_OPTION_redir:
5153 net_slirp_redir(NULL, optarg);
5154 break;
5155 #endif
5156 case QEMU_OPTION_bt:
5157 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5158 fprintf(stderr, "qemu: too many bluetooth options\n");
5159 exit(1);
5161 bt_opts[nb_bt_opts++] = optarg;
5162 break;
5163 #ifdef HAS_AUDIO
5164 case QEMU_OPTION_audio_help:
5165 AUD_help ();
5166 exit (0);
5167 break;
5168 case QEMU_OPTION_soundhw:
5169 select_soundhw (optarg);
5170 break;
5171 #endif
5172 case QEMU_OPTION_h:
5173 help(0);
5174 break;
5175 case QEMU_OPTION_version:
5176 version();
5177 exit(0);
5178 break;
5179 case QEMU_OPTION_m: {
5180 uint64_t value;
5181 char *ptr;
5183 value = strtoul(optarg, &ptr, 10);
5184 switch (*ptr) {
5185 case 0: case 'M': case 'm':
5186 value <<= 20;
5187 break;
5188 case 'G': case 'g':
5189 value <<= 30;
5190 break;
5191 default:
5192 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5193 exit(1);
5196 /* On 32-bit hosts, QEMU is limited by virtual address space */
5197 if (value > (2047 << 20)
5198 #ifndef CONFIG_KQEMU
5199 && HOST_LONG_BITS == 32
5200 #endif
5202 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5203 exit(1);
5205 if (value != (uint64_t)(ram_addr_t)value) {
5206 fprintf(stderr, "qemu: ram size too large\n");
5207 exit(1);
5209 ram_size = value;
5210 break;
5212 case QEMU_OPTION_d:
5214 int mask;
5215 const CPULogItem *item;
5217 mask = cpu_str_to_log_mask(optarg);
5218 if (!mask) {
5219 printf("Log items (comma separated):\n");
5220 for(item = cpu_log_items; item->mask != 0; item++) {
5221 printf("%-10s %s\n", item->name, item->help);
5223 exit(1);
5225 cpu_set_log(mask);
5227 break;
5228 case QEMU_OPTION_s:
5229 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5230 break;
5231 case QEMU_OPTION_gdb:
5232 gdbstub_dev = optarg;
5233 break;
5234 case QEMU_OPTION_L:
5235 bios_dir = optarg;
5236 break;
5237 case QEMU_OPTION_bios:
5238 bios_name = optarg;
5239 break;
5240 case QEMU_OPTION_singlestep:
5241 singlestep = 1;
5242 break;
5243 case QEMU_OPTION_S:
5244 autostart = 0;
5245 break;
5246 #ifndef _WIN32
5247 case QEMU_OPTION_k:
5248 keyboard_layout = optarg;
5249 break;
5250 #endif
5251 case QEMU_OPTION_localtime:
5252 rtc_utc = 0;
5253 break;
5254 case QEMU_OPTION_vga:
5255 select_vgahw (optarg);
5256 break;
5257 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5258 case QEMU_OPTION_g:
5260 const char *p;
5261 int w, h, depth;
5262 p = optarg;
5263 w = strtol(p, (char **)&p, 10);
5264 if (w <= 0) {
5265 graphic_error:
5266 fprintf(stderr, "qemu: invalid resolution or depth\n");
5267 exit(1);
5269 if (*p != 'x')
5270 goto graphic_error;
5271 p++;
5272 h = strtol(p, (char **)&p, 10);
5273 if (h <= 0)
5274 goto graphic_error;
5275 if (*p == 'x') {
5276 p++;
5277 depth = strtol(p, (char **)&p, 10);
5278 if (depth != 8 && depth != 15 && depth != 16 &&
5279 depth != 24 && depth != 32)
5280 goto graphic_error;
5281 } else if (*p == '\0') {
5282 depth = graphic_depth;
5283 } else {
5284 goto graphic_error;
5287 graphic_width = w;
5288 graphic_height = h;
5289 graphic_depth = depth;
5291 break;
5292 #endif
5293 case QEMU_OPTION_echr:
5295 char *r;
5296 term_escape_char = strtol(optarg, &r, 0);
5297 if (r == optarg)
5298 printf("Bad argument to echr\n");
5299 break;
5301 case QEMU_OPTION_monitor:
5302 monitor_device = optarg;
5303 break;
5304 case QEMU_OPTION_serial:
5305 if (serial_device_index >= MAX_SERIAL_PORTS) {
5306 fprintf(stderr, "qemu: too many serial ports\n");
5307 exit(1);
5309 serial_devices[serial_device_index] = optarg;
5310 serial_device_index++;
5311 break;
5312 case QEMU_OPTION_watchdog:
5313 i = select_watchdog(optarg);
5314 if (i > 0)
5315 exit (i == 1 ? 1 : 0);
5316 break;
5317 case QEMU_OPTION_watchdog_action:
5318 if (select_watchdog_action(optarg) == -1) {
5319 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5320 exit(1);
5322 break;
5323 case QEMU_OPTION_virtiocon:
5324 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5325 fprintf(stderr, "qemu: too many virtio consoles\n");
5326 exit(1);
5328 virtio_consoles[virtio_console_index] = optarg;
5329 virtio_console_index++;
5330 break;
5331 case QEMU_OPTION_parallel:
5332 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5333 fprintf(stderr, "qemu: too many parallel ports\n");
5334 exit(1);
5336 parallel_devices[parallel_device_index] = optarg;
5337 parallel_device_index++;
5338 break;
5339 case QEMU_OPTION_loadvm:
5340 loadvm = optarg;
5341 break;
5342 case QEMU_OPTION_full_screen:
5343 full_screen = 1;
5344 break;
5345 #ifdef CONFIG_SDL
5346 case QEMU_OPTION_no_frame:
5347 no_frame = 1;
5348 break;
5349 case QEMU_OPTION_alt_grab:
5350 alt_grab = 1;
5351 break;
5352 case QEMU_OPTION_no_quit:
5353 no_quit = 1;
5354 break;
5355 case QEMU_OPTION_sdl:
5356 sdl = 1;
5357 break;
5358 #endif
5359 case QEMU_OPTION_pidfile:
5360 pid_file = optarg;
5361 break;
5362 #ifdef TARGET_I386
5363 case QEMU_OPTION_win2k_hack:
5364 win2k_install_hack = 1;
5365 break;
5366 case QEMU_OPTION_rtc_td_hack:
5367 rtc_td_hack = 1;
5368 break;
5369 case QEMU_OPTION_acpitable:
5370 if(acpi_table_add(optarg) < 0) {
5371 fprintf(stderr, "Wrong acpi table provided\n");
5372 exit(1);
5374 break;
5375 case QEMU_OPTION_smbios:
5376 if(smbios_entry_add(optarg) < 0) {
5377 fprintf(stderr, "Wrong smbios provided\n");
5378 exit(1);
5380 break;
5381 #endif
5382 #ifdef CONFIG_KQEMU
5383 case QEMU_OPTION_no_kqemu:
5384 kqemu_allowed = 0;
5385 break;
5386 case QEMU_OPTION_kernel_kqemu:
5387 kqemu_allowed = 2;
5388 break;
5389 #endif
5390 #ifdef CONFIG_KVM
5391 case QEMU_OPTION_enable_kvm:
5392 kvm_allowed = 1;
5393 #ifdef CONFIG_KQEMU
5394 kqemu_allowed = 0;
5395 #endif
5396 break;
5397 #endif
5398 case QEMU_OPTION_usb:
5399 usb_enabled = 1;
5400 break;
5401 case QEMU_OPTION_usbdevice:
5402 usb_enabled = 1;
5403 if (usb_devices_index >= MAX_USB_CMDLINE) {
5404 fprintf(stderr, "Too many USB devices\n");
5405 exit(1);
5407 usb_devices[usb_devices_index] = optarg;
5408 usb_devices_index++;
5409 break;
5410 case QEMU_OPTION_smp:
5411 smp_cpus = atoi(optarg);
5412 if (smp_cpus < 1) {
5413 fprintf(stderr, "Invalid number of CPUs\n");
5414 exit(1);
5416 break;
5417 case QEMU_OPTION_vnc:
5418 vnc_display = optarg;
5419 break;
5420 #ifdef TARGET_I386
5421 case QEMU_OPTION_no_acpi:
5422 acpi_enabled = 0;
5423 break;
5424 case QEMU_OPTION_no_hpet:
5425 no_hpet = 1;
5426 break;
5427 #endif
5428 case QEMU_OPTION_no_reboot:
5429 no_reboot = 1;
5430 break;
5431 case QEMU_OPTION_no_shutdown:
5432 no_shutdown = 1;
5433 break;
5434 case QEMU_OPTION_show_cursor:
5435 cursor_hide = 0;
5436 break;
5437 case QEMU_OPTION_uuid:
5438 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5439 fprintf(stderr, "Fail to parse UUID string."
5440 " Wrong format.\n");
5441 exit(1);
5443 break;
5444 #ifndef _WIN32
5445 case QEMU_OPTION_daemonize:
5446 daemonize = 1;
5447 break;
5448 #endif
5449 case QEMU_OPTION_option_rom:
5450 if (nb_option_roms >= MAX_OPTION_ROMS) {
5451 fprintf(stderr, "Too many option ROMs\n");
5452 exit(1);
5454 option_rom[nb_option_roms] = optarg;
5455 nb_option_roms++;
5456 break;
5457 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5458 case QEMU_OPTION_semihosting:
5459 semihosting_enabled = 1;
5460 break;
5461 #endif
5462 case QEMU_OPTION_name:
5463 qemu_name = optarg;
5464 break;
5465 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5466 case QEMU_OPTION_prom_env:
5467 if (nb_prom_envs >= MAX_PROM_ENVS) {
5468 fprintf(stderr, "Too many prom variables\n");
5469 exit(1);
5471 prom_envs[nb_prom_envs] = optarg;
5472 nb_prom_envs++;
5473 break;
5474 #endif
5475 #ifdef TARGET_ARM
5476 case QEMU_OPTION_old_param:
5477 old_param = 1;
5478 break;
5479 #endif
5480 case QEMU_OPTION_clock:
5481 configure_alarms(optarg);
5482 break;
5483 case QEMU_OPTION_startdate:
5485 struct tm tm;
5486 time_t rtc_start_date;
5487 if (!strcmp(optarg, "now")) {
5488 rtc_date_offset = -1;
5489 } else {
5490 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5491 &tm.tm_year,
5492 &tm.tm_mon,
5493 &tm.tm_mday,
5494 &tm.tm_hour,
5495 &tm.tm_min,
5496 &tm.tm_sec) == 6) {
5497 /* OK */
5498 } else if (sscanf(optarg, "%d-%d-%d",
5499 &tm.tm_year,
5500 &tm.tm_mon,
5501 &tm.tm_mday) == 3) {
5502 tm.tm_hour = 0;
5503 tm.tm_min = 0;
5504 tm.tm_sec = 0;
5505 } else {
5506 goto date_fail;
5508 tm.tm_year -= 1900;
5509 tm.tm_mon--;
5510 rtc_start_date = mktimegm(&tm);
5511 if (rtc_start_date == -1) {
5512 date_fail:
5513 fprintf(stderr, "Invalid date format. Valid format are:\n"
5514 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5515 exit(1);
5517 rtc_date_offset = time(NULL) - rtc_start_date;
5520 break;
5521 case QEMU_OPTION_tb_size:
5522 tb_size = strtol(optarg, NULL, 0);
5523 if (tb_size < 0)
5524 tb_size = 0;
5525 break;
5526 case QEMU_OPTION_icount:
5527 use_icount = 1;
5528 if (strcmp(optarg, "auto") == 0) {
5529 icount_time_shift = -1;
5530 } else {
5531 icount_time_shift = strtol(optarg, NULL, 0);
5533 break;
5534 case QEMU_OPTION_incoming:
5535 incoming = optarg;
5536 break;
5537 #ifndef _WIN32
5538 case QEMU_OPTION_chroot:
5539 chroot_dir = optarg;
5540 break;
5541 case QEMU_OPTION_runas:
5542 run_as = optarg;
5543 break;
5544 #endif
5545 #ifdef CONFIG_XEN
5546 case QEMU_OPTION_xen_domid:
5547 xen_domid = atoi(optarg);
5548 break;
5549 case QEMU_OPTION_xen_create:
5550 xen_mode = XEN_CREATE;
5551 break;
5552 case QEMU_OPTION_xen_attach:
5553 xen_mode = XEN_ATTACH;
5554 break;
5555 #endif
5560 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5561 if (kvm_allowed && kqemu_allowed) {
5562 fprintf(stderr,
5563 "You can not enable both KVM and kqemu at the same time\n");
5564 exit(1);
5566 #endif
5568 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5569 if (smp_cpus > machine->max_cpus) {
5570 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5571 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5572 machine->max_cpus);
5573 exit(1);
5576 if (nographic) {
5577 if (serial_device_index == 0)
5578 serial_devices[0] = "stdio";
5579 if (parallel_device_index == 0)
5580 parallel_devices[0] = "null";
5581 if (strncmp(monitor_device, "vc", 2) == 0)
5582 monitor_device = "stdio";
5585 #ifndef _WIN32
5586 if (daemonize) {
5587 pid_t pid;
5589 if (pipe(fds) == -1)
5590 exit(1);
5592 pid = fork();
5593 if (pid > 0) {
5594 uint8_t status;
5595 ssize_t len;
5597 close(fds[1]);
5599 again:
5600 len = read(fds[0], &status, 1);
5601 if (len == -1 && (errno == EINTR))
5602 goto again;
5604 if (len != 1)
5605 exit(1);
5606 else if (status == 1) {
5607 fprintf(stderr, "Could not acquire pidfile\n");
5608 exit(1);
5609 } else
5610 exit(0);
5611 } else if (pid < 0)
5612 exit(1);
5614 setsid();
5616 pid = fork();
5617 if (pid > 0)
5618 exit(0);
5619 else if (pid < 0)
5620 exit(1);
5622 umask(027);
5624 signal(SIGTSTP, SIG_IGN);
5625 signal(SIGTTOU, SIG_IGN);
5626 signal(SIGTTIN, SIG_IGN);
5629 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5630 if (daemonize) {
5631 uint8_t status = 1;
5632 write(fds[1], &status, 1);
5633 } else
5634 fprintf(stderr, "Could not acquire pid file\n");
5635 exit(1);
5637 #endif
5639 #ifdef CONFIG_KQEMU
5640 if (smp_cpus > 1)
5641 kqemu_allowed = 0;
5642 #endif
5643 if (qemu_init_main_loop()) {
5644 fprintf(stderr, "qemu_init_main_loop failed\n");
5645 exit(1);
5647 linux_boot = (kernel_filename != NULL);
5648 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5650 if (!linux_boot && *kernel_cmdline != '\0') {
5651 fprintf(stderr, "-append only allowed with -kernel option\n");
5652 exit(1);
5655 if (!linux_boot && initrd_filename != NULL) {
5656 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5657 exit(1);
5660 /* boot to floppy or the default cd if no hard disk defined yet */
5661 if (!boot_devices[0]) {
5662 boot_devices = "cad";
5664 setvbuf(stdout, NULL, _IOLBF, 0);
5666 init_timers();
5667 if (init_timer_alarm() < 0) {
5668 fprintf(stderr, "could not initialize alarm timer\n");
5669 exit(1);
5671 if (use_icount && icount_time_shift < 0) {
5672 use_icount = 2;
5673 /* 125MIPS seems a reasonable initial guess at the guest speed.
5674 It will be corrected fairly quickly anyway. */
5675 icount_time_shift = 3;
5676 init_icount_adjust();
5679 #ifdef _WIN32
5680 socket_init();
5681 #endif
5683 /* init network clients */
5684 if (nb_net_clients == 0) {
5685 /* if no clients, we use a default config */
5686 net_clients[nb_net_clients++] = "nic";
5687 #ifdef CONFIG_SLIRP
5688 net_clients[nb_net_clients++] = "user";
5689 #endif
5692 for(i = 0;i < nb_net_clients; i++) {
5693 if (net_client_parse(net_clients[i]) < 0)
5694 exit(1);
5696 net_client_check();
5698 #ifdef TARGET_I386
5699 /* XXX: this should be moved in the PC machine instantiation code */
5700 if (net_boot != 0) {
5701 int netroms = 0;
5702 for (i = 0; i < nb_nics && i < 4; i++) {
5703 const char *model = nd_table[i].model;
5704 char buf[1024];
5705 if (net_boot & (1 << i)) {
5706 if (model == NULL)
5707 model = "ne2k_pci";
5708 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5709 if (get_image_size(buf) > 0) {
5710 if (nb_option_roms >= MAX_OPTION_ROMS) {
5711 fprintf(stderr, "Too many option ROMs\n");
5712 exit(1);
5714 option_rom[nb_option_roms] = strdup(buf);
5715 nb_option_roms++;
5716 netroms++;
5720 if (netroms == 0) {
5721 fprintf(stderr, "No valid PXE rom found for network device\n");
5722 exit(1);
5725 #endif
5727 /* init the bluetooth world */
5728 for (i = 0; i < nb_bt_opts; i++)
5729 if (bt_parse(bt_opts[i]))
5730 exit(1);
5732 /* init the memory */
5733 if (ram_size == 0)
5734 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5736 #ifdef CONFIG_KQEMU
5737 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5738 guest ram allocation. It needs to go away. */
5739 if (kqemu_allowed) {
5740 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5741 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5742 if (!kqemu_phys_ram_base) {
5743 fprintf(stderr, "Could not allocate physical memory\n");
5744 exit(1);
5747 #endif
5749 /* init the dynamic translator */
5750 cpu_exec_init_all(tb_size * 1024 * 1024);
5752 bdrv_init();
5753 dma_helper_init();
5755 /* we always create the cdrom drive, even if no disk is there */
5757 if (nb_drives_opt < MAX_DRIVES)
5758 drive_add(NULL, CDROM_ALIAS);
5760 /* we always create at least one floppy */
5762 if (nb_drives_opt < MAX_DRIVES)
5763 drive_add(NULL, FD_ALIAS, 0);
5765 /* we always create one sd slot, even if no card is in it */
5767 if (nb_drives_opt < MAX_DRIVES)
5768 drive_add(NULL, SD_ALIAS);
5770 /* open the virtual block devices */
5772 for(i = 0; i < nb_drives_opt; i++)
5773 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5774 exit(1);
5776 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5777 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5779 #ifndef _WIN32
5780 /* must be after terminal init, SDL library changes signal handlers */
5781 termsig_setup();
5782 #endif
5784 /* Maintain compatibility with multiple stdio monitors */
5785 if (!strcmp(monitor_device,"stdio")) {
5786 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5787 const char *devname = serial_devices[i];
5788 if (devname && !strcmp(devname,"mon:stdio")) {
5789 monitor_device = NULL;
5790 break;
5791 } else if (devname && !strcmp(devname,"stdio")) {
5792 monitor_device = NULL;
5793 serial_devices[i] = "mon:stdio";
5794 break;
5799 if (nb_numa_nodes > 0) {
5800 int i;
5802 if (nb_numa_nodes > smp_cpus) {
5803 nb_numa_nodes = smp_cpus;
5806 /* If no memory size if given for any node, assume the default case
5807 * and distribute the available memory equally across all nodes
5809 for (i = 0; i < nb_numa_nodes; i++) {
5810 if (node_mem[i] != 0)
5811 break;
5813 if (i == nb_numa_nodes) {
5814 uint64_t usedmem = 0;
5816 /* On Linux, the each node's border has to be 8MB aligned,
5817 * the final node gets the rest.
5819 for (i = 0; i < nb_numa_nodes - 1; i++) {
5820 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5821 usedmem += node_mem[i];
5823 node_mem[i] = ram_size - usedmem;
5826 for (i = 0; i < nb_numa_nodes; i++) {
5827 if (node_cpumask[i] != 0)
5828 break;
5830 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5831 * must cope with this anyway, because there are BIOSes out there in
5832 * real machines which also use this scheme.
5834 if (i == nb_numa_nodes) {
5835 for (i = 0; i < smp_cpus; i++) {
5836 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5841 if (kvm_enabled()) {
5842 int ret;
5844 ret = kvm_init(smp_cpus);
5845 if (ret < 0) {
5846 fprintf(stderr, "failed to initialize KVM\n");
5847 exit(1);
5851 if (monitor_device) {
5852 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5853 if (!monitor_hd) {
5854 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5855 exit(1);
5859 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5860 const char *devname = serial_devices[i];
5861 if (devname && strcmp(devname, "none")) {
5862 char label[32];
5863 snprintf(label, sizeof(label), "serial%d", i);
5864 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5865 if (!serial_hds[i]) {
5866 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5867 devname);
5868 exit(1);
5873 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5874 const char *devname = parallel_devices[i];
5875 if (devname && strcmp(devname, "none")) {
5876 char label[32];
5877 snprintf(label, sizeof(label), "parallel%d", i);
5878 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5879 if (!parallel_hds[i]) {
5880 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5881 devname);
5882 exit(1);
5887 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5888 const char *devname = virtio_consoles[i];
5889 if (devname && strcmp(devname, "none")) {
5890 char label[32];
5891 snprintf(label, sizeof(label), "virtcon%d", i);
5892 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5893 if (!virtcon_hds[i]) {
5894 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5895 devname);
5896 exit(1);
5901 module_call_init(MODULE_INIT_DEVICE);
5903 machine->init(ram_size, boot_devices,
5904 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5907 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5908 for (i = 0; i < nb_numa_nodes; i++) {
5909 if (node_cpumask[i] & (1 << env->cpu_index)) {
5910 env->numa_node = i;
5915 current_machine = machine;
5917 /* Set KVM's vcpu state to qemu's initial CPUState. */
5918 if (kvm_enabled()) {
5919 int ret;
5921 ret = kvm_sync_vcpus();
5922 if (ret < 0) {
5923 fprintf(stderr, "failed to initialize vcpus\n");
5924 exit(1);
5928 /* init USB devices */
5929 if (usb_enabled) {
5930 for(i = 0; i < usb_devices_index; i++) {
5931 if (usb_device_add(usb_devices[i], 0) < 0) {
5932 fprintf(stderr, "Warning: could not add USB device %s\n",
5933 usb_devices[i]);
5938 if (!display_state)
5939 dumb_display_init();
5940 /* just use the first displaystate for the moment */
5941 ds = display_state;
5942 /* terminal init */
5943 if (nographic) {
5944 if (curses) {
5945 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5946 exit(1);
5948 } else {
5949 #if defined(CONFIG_CURSES)
5950 if (curses) {
5951 /* At the moment curses cannot be used with other displays */
5952 curses_display_init(ds, full_screen);
5953 } else
5954 #endif
5956 if (vnc_display != NULL) {
5957 vnc_display_init(ds);
5958 if (vnc_display_open(ds, vnc_display) < 0)
5959 exit(1);
5961 #if defined(CONFIG_SDL)
5962 if (sdl || !vnc_display)
5963 sdl_display_init(ds, full_screen, no_frame);
5964 #elif defined(CONFIG_COCOA)
5965 if (sdl || !vnc_display)
5966 cocoa_display_init(ds, full_screen);
5967 #endif
5970 dpy_resize(ds);
5972 dcl = ds->listeners;
5973 while (dcl != NULL) {
5974 if (dcl->dpy_refresh != NULL) {
5975 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5976 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5978 dcl = dcl->next;
5981 if (nographic || (vnc_display && !sdl)) {
5982 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5983 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5986 text_consoles_set_display(display_state);
5987 qemu_chr_initial_reset();
5989 if (monitor_device && monitor_hd)
5990 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5992 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5993 const char *devname = serial_devices[i];
5994 if (devname && strcmp(devname, "none")) {
5995 char label[32];
5996 snprintf(label, sizeof(label), "serial%d", i);
5997 if (strstart(devname, "vc", 0))
5998 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6002 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6003 const char *devname = parallel_devices[i];
6004 if (devname && strcmp(devname, "none")) {
6005 char label[32];
6006 snprintf(label, sizeof(label), "parallel%d", i);
6007 if (strstart(devname, "vc", 0))
6008 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6012 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6013 const char *devname = virtio_consoles[i];
6014 if (virtcon_hds[i] && devname) {
6015 char label[32];
6016 snprintf(label, sizeof(label), "virtcon%d", i);
6017 if (strstart(devname, "vc", 0))
6018 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6022 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6023 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6024 gdbstub_dev);
6025 exit(1);
6028 if (loadvm)
6029 do_loadvm(cur_mon, loadvm);
6031 if (incoming) {
6032 autostart = 0; /* fixme how to deal with -daemonize */
6033 qemu_start_incoming_migration(incoming);
6036 if (autostart)
6037 vm_start();
6039 #ifndef _WIN32
6040 if (daemonize) {
6041 uint8_t status = 0;
6042 ssize_t len;
6044 again1:
6045 len = write(fds[1], &status, 1);
6046 if (len == -1 && (errno == EINTR))
6047 goto again1;
6049 if (len != 1)
6050 exit(1);
6052 chdir("/");
6053 TFR(fd = open("/dev/null", O_RDWR));
6054 if (fd == -1)
6055 exit(1);
6058 if (run_as) {
6059 pwd = getpwnam(run_as);
6060 if (!pwd) {
6061 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6062 exit(1);
6066 if (chroot_dir) {
6067 if (chroot(chroot_dir) < 0) {
6068 fprintf(stderr, "chroot failed\n");
6069 exit(1);
6071 chdir("/");
6074 if (run_as) {
6075 if (setgid(pwd->pw_gid) < 0) {
6076 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6077 exit(1);
6079 if (setuid(pwd->pw_uid) < 0) {
6080 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6081 exit(1);
6083 if (setuid(0) != -1) {
6084 fprintf(stderr, "Dropping privileges failed\n");
6085 exit(1);
6089 if (daemonize) {
6090 dup2(fd, 0);
6091 dup2(fd, 1);
6092 dup2(fd, 2);
6094 close(fd);
6096 #endif
6098 main_loop();
6099 quit_timers();
6100 net_cleanup();
6102 return 0;