Merge branch 'spice.v23.pull' of git://anongit.freedesktop.org/spice/qemu
[qemu.git] / hw / e1000.c
blobaf101bd7b762280152573cd50e015e2687ee2291
1 /*
2 * QEMU e1000 emulation
4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include "hw.h"
29 #include "pci.h"
30 #include "net.h"
31 #include "net/checksum.h"
32 #include "loader.h"
33 #include "sysemu.h"
35 #include "e1000_hw.h"
37 #define E1000_DEBUG
39 #ifdef E1000_DEBUG
40 enum {
41 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
42 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
43 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
44 DEBUG_RXFILTER, DEBUG_NOTYET,
46 #define DBGBIT(x) (1<<DEBUG_##x)
47 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
49 #define DBGOUT(what, fmt, ...) do { \
50 if (debugflags & DBGBIT(what)) \
51 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
52 } while (0)
53 #else
54 #define DBGOUT(what, fmt, ...) do {} while (0)
55 #endif
57 #define IOPORT_SIZE 0x40
58 #define PNPMMIO_SIZE 0x20000
59 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
62 * HW models:
63 * E1000_DEV_ID_82540EM works with Windows and Linux
64 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
65 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
66 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
67 * Others never tested
69 enum { E1000_DEVID = E1000_DEV_ID_82540EM };
72 * May need to specify additional MAC-to-PHY entries --
73 * Intel's Windows driver refuses to initialize unless they match
75 enum {
76 PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
77 E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
78 /* default to E1000_DEV_ID_82540EM */ 0xc20
81 typedef struct E1000State_st {
82 PCIDevice dev;
83 NICState *nic;
84 NICConf conf;
85 int mmio_index;
87 uint32_t mac_reg[0x8000];
88 uint16_t phy_reg[0x20];
89 uint16_t eeprom_data[64];
91 uint32_t rxbuf_size;
92 uint32_t rxbuf_min_shift;
93 int check_rxov;
94 struct e1000_tx {
95 unsigned char header[256];
96 unsigned char vlan_header[4];
97 /* Fields vlan and data must not be reordered or separated. */
98 unsigned char vlan[4];
99 unsigned char data[0x10000];
100 uint16_t size;
101 unsigned char sum_needed;
102 unsigned char vlan_needed;
103 uint8_t ipcss;
104 uint8_t ipcso;
105 uint16_t ipcse;
106 uint8_t tucss;
107 uint8_t tucso;
108 uint16_t tucse;
109 uint8_t hdr_len;
110 uint16_t mss;
111 uint32_t paylen;
112 uint16_t tso_frames;
113 char tse;
114 int8_t ip;
115 int8_t tcp;
116 char cptse; // current packet tse bit
117 } tx;
119 struct {
120 uint32_t val_in; // shifted in from guest driver
121 uint16_t bitnum_in;
122 uint16_t bitnum_out;
123 uint16_t reading;
124 uint32_t old_eecd;
125 } eecd_state;
126 } E1000State;
128 #define defreg(x) x = (E1000_##x>>2)
129 enum {
130 defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
131 defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
132 defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
133 defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
134 defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
135 defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
136 defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
137 defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
138 defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
139 defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
140 defreg(VET),
143 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
144 static const char phy_regcap[0x20] = {
145 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
146 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
147 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
148 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
149 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
150 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
153 static void
154 ioport_map(PCIDevice *pci_dev, int region_num, pcibus_t addr,
155 pcibus_t size, int type)
157 DBGOUT(IO, "e1000_ioport_map addr=0x%04"FMT_PCIBUS
158 " size=0x%08"FMT_PCIBUS"\n", addr, size);
161 static void
162 set_interrupt_cause(E1000State *s, int index, uint32_t val)
164 if (val)
165 val |= E1000_ICR_INT_ASSERTED;
166 s->mac_reg[ICR] = val;
167 s->mac_reg[ICS] = val;
168 qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
171 static void
172 set_ics(E1000State *s, int index, uint32_t val)
174 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
175 s->mac_reg[IMS]);
176 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
179 static int
180 rxbufsize(uint32_t v)
182 v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
183 E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
184 E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
185 switch (v) {
186 case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
187 return 16384;
188 case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
189 return 8192;
190 case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
191 return 4096;
192 case E1000_RCTL_SZ_1024:
193 return 1024;
194 case E1000_RCTL_SZ_512:
195 return 512;
196 case E1000_RCTL_SZ_256:
197 return 256;
199 return 2048;
202 static void
203 set_ctrl(E1000State *s, int index, uint32_t val)
205 /* RST is self clearing */
206 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
209 static void
210 set_rx_control(E1000State *s, int index, uint32_t val)
212 s->mac_reg[RCTL] = val;
213 s->rxbuf_size = rxbufsize(val);
214 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
215 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
216 s->mac_reg[RCTL]);
219 static void
220 set_mdic(E1000State *s, int index, uint32_t val)
222 uint32_t data = val & E1000_MDIC_DATA_MASK;
223 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
225 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
226 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
227 else if (val & E1000_MDIC_OP_READ) {
228 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
229 if (!(phy_regcap[addr] & PHY_R)) {
230 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
231 val |= E1000_MDIC_ERROR;
232 } else
233 val = (val ^ data) | s->phy_reg[addr];
234 } else if (val & E1000_MDIC_OP_WRITE) {
235 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
236 if (!(phy_regcap[addr] & PHY_W)) {
237 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
238 val |= E1000_MDIC_ERROR;
239 } else
240 s->phy_reg[addr] = data;
242 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
243 set_ics(s, 0, E1000_ICR_MDAC);
246 static uint32_t
247 get_eecd(E1000State *s, int index)
249 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
251 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
252 s->eecd_state.bitnum_out, s->eecd_state.reading);
253 if (!s->eecd_state.reading ||
254 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
255 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
256 ret |= E1000_EECD_DO;
257 return ret;
260 static void
261 set_eecd(E1000State *s, int index, uint32_t val)
263 uint32_t oldval = s->eecd_state.old_eecd;
265 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
266 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
267 if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do
268 return;
269 if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state
270 s->eecd_state.val_in = 0;
271 s->eecd_state.bitnum_in = 0;
272 s->eecd_state.bitnum_out = 0;
273 s->eecd_state.reading = 0;
275 if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
276 return;
277 if (!(E1000_EECD_SK & val)) { // falling edge
278 s->eecd_state.bitnum_out++;
279 return;
281 s->eecd_state.val_in <<= 1;
282 if (val & E1000_EECD_DI)
283 s->eecd_state.val_in |= 1;
284 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
285 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
286 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
287 EEPROM_READ_OPCODE_MICROWIRE);
289 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
290 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
291 s->eecd_state.reading);
294 static uint32_t
295 flash_eerd_read(E1000State *s, int x)
297 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
299 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
300 return (s->mac_reg[EERD]);
302 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
303 return (E1000_EEPROM_RW_REG_DONE | r);
305 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
306 E1000_EEPROM_RW_REG_DONE | r);
309 static void
310 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
312 uint32_t sum;
314 if (cse && cse < n)
315 n = cse + 1;
316 if (sloc < n-1) {
317 sum = net_checksum_add(n-css, data+css);
318 cpu_to_be16wu((uint16_t *)(data + sloc),
319 net_checksum_finish(sum));
323 static inline int
324 vlan_enabled(E1000State *s)
326 return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
329 static inline int
330 vlan_rx_filter_enabled(E1000State *s)
332 return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
335 static inline int
336 is_vlan_packet(E1000State *s, const uint8_t *buf)
338 return (be16_to_cpup((uint16_t *)(buf + 12)) ==
339 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
342 static inline int
343 is_vlan_txd(uint32_t txd_lower)
345 return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
348 /* FCS aka Ethernet CRC-32. We don't get it from backends and can't
349 * fill it in, just pad descriptor length by 4 bytes unless guest
350 * told us to strip it off the packet. */
351 static inline int
352 fcs_len(E1000State *s)
354 return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
357 static void
358 xmit_seg(E1000State *s)
360 uint16_t len, *sp;
361 unsigned int frames = s->tx.tso_frames, css, sofar, n;
362 struct e1000_tx *tp = &s->tx;
364 if (tp->tse && tp->cptse) {
365 css = tp->ipcss;
366 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
367 frames, tp->size, css);
368 if (tp->ip) { // IPv4
369 cpu_to_be16wu((uint16_t *)(tp->data+css+2),
370 tp->size - css);
371 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
372 be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
373 } else // IPv6
374 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
375 tp->size - css);
376 css = tp->tucss;
377 len = tp->size - css;
378 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
379 if (tp->tcp) {
380 sofar = frames * tp->mss;
381 cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
382 be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
383 if (tp->paylen - sofar > tp->mss)
384 tp->data[css + 13] &= ~9; // PSH, FIN
385 } else // UDP
386 cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
387 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
388 unsigned int phsum;
389 // add pseudo-header length before checksum calculation
390 sp = (uint16_t *)(tp->data + tp->tucso);
391 phsum = be16_to_cpup(sp) + len;
392 phsum = (phsum >> 16) + (phsum & 0xffff);
393 cpu_to_be16wu(sp, phsum);
395 tp->tso_frames++;
398 if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
399 putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
400 if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
401 putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
402 if (tp->vlan_needed) {
403 memmove(tp->vlan, tp->data, 4);
404 memmove(tp->data, tp->data + 4, 8);
405 memcpy(tp->data + 8, tp->vlan_header, 4);
406 qemu_send_packet(&s->nic->nc, tp->vlan, tp->size + 4);
407 } else
408 qemu_send_packet(&s->nic->nc, tp->data, tp->size);
409 s->mac_reg[TPT]++;
410 s->mac_reg[GPTC]++;
411 n = s->mac_reg[TOTL];
412 if ((s->mac_reg[TOTL] += s->tx.size) < n)
413 s->mac_reg[TOTH]++;
416 static void
417 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
419 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
420 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
421 unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
422 unsigned int msh = 0xfffff, hdr = 0;
423 uint64_t addr;
424 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
425 struct e1000_tx *tp = &s->tx;
427 if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
428 op = le32_to_cpu(xp->cmd_and_length);
429 tp->ipcss = xp->lower_setup.ip_fields.ipcss;
430 tp->ipcso = xp->lower_setup.ip_fields.ipcso;
431 tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
432 tp->tucss = xp->upper_setup.tcp_fields.tucss;
433 tp->tucso = xp->upper_setup.tcp_fields.tucso;
434 tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
435 tp->paylen = op & 0xfffff;
436 tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
437 tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
438 tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
439 tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
440 tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
441 tp->tso_frames = 0;
442 if (tp->tucso == 0) { // this is probably wrong
443 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
444 tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
446 return;
447 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
448 // data descriptor
449 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
450 tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
451 } else {
452 // legacy descriptor
453 tp->cptse = 0;
456 if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
457 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
458 tp->vlan_needed = 1;
459 cpu_to_be16wu((uint16_t *)(tp->vlan_header),
460 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
461 cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
462 le16_to_cpu(dp->upper.fields.special));
465 addr = le64_to_cpu(dp->buffer_addr);
466 if (tp->tse && tp->cptse) {
467 hdr = tp->hdr_len;
468 msh = hdr + tp->mss;
469 do {
470 bytes = split_size;
471 if (tp->size + bytes > msh)
472 bytes = msh - tp->size;
473 cpu_physical_memory_read(addr, tp->data + tp->size, bytes);
474 if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
475 memmove(tp->header, tp->data, hdr);
476 tp->size = sz;
477 addr += bytes;
478 if (sz == msh) {
479 xmit_seg(s);
480 memmove(tp->data, tp->header, hdr);
481 tp->size = hdr;
483 } while (split_size -= bytes);
484 } else if (!tp->tse && tp->cptse) {
485 // context descriptor TSE is not set, while data descriptor TSE is set
486 DBGOUT(TXERR, "TCP segmentaion Error\n");
487 } else {
488 cpu_physical_memory_read(addr, tp->data + tp->size, split_size);
489 tp->size += split_size;
492 if (!(txd_lower & E1000_TXD_CMD_EOP))
493 return;
494 if (!(tp->tse && tp->cptse && tp->size < hdr))
495 xmit_seg(s);
496 tp->tso_frames = 0;
497 tp->sum_needed = 0;
498 tp->vlan_needed = 0;
499 tp->size = 0;
500 tp->cptse = 0;
503 static uint32_t
504 txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp)
506 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
508 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
509 return 0;
510 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
511 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
512 dp->upper.data = cpu_to_le32(txd_upper);
513 cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp),
514 (void *)&dp->upper, sizeof(dp->upper));
515 return E1000_ICR_TXDW;
518 static void
519 start_xmit(E1000State *s)
521 target_phys_addr_t base;
522 struct e1000_tx_desc desc;
523 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
525 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
526 DBGOUT(TX, "tx disabled\n");
527 return;
530 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
531 base = ((uint64_t)s->mac_reg[TDBAH] << 32) + s->mac_reg[TDBAL] +
532 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
533 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
535 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
536 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
537 desc.upper.data);
539 process_tx_desc(s, &desc);
540 cause |= txdesc_writeback(base, &desc);
542 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
543 s->mac_reg[TDH] = 0;
545 * the following could happen only if guest sw assigns
546 * bogus values to TDT/TDLEN.
547 * there's nothing too intelligent we could do about this.
549 if (s->mac_reg[TDH] == tdh_start) {
550 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
551 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
552 break;
555 set_ics(s, 0, cause);
558 static int
559 receive_filter(E1000State *s, const uint8_t *buf, int size)
561 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
562 static const int mta_shift[] = {4, 3, 2, 0};
563 uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
565 if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
566 uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
567 uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
568 ((vid >> 5) & 0x7f));
569 if ((vfta & (1 << (vid & 0x1f))) == 0)
570 return 0;
573 if (rctl & E1000_RCTL_UPE) // promiscuous
574 return 1;
576 if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
577 return 1;
579 if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
580 return 1;
582 for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
583 if (!(rp[1] & E1000_RAH_AV))
584 continue;
585 ra[0] = cpu_to_le32(rp[0]);
586 ra[1] = cpu_to_le32(rp[1]);
587 if (!memcmp(buf, (uint8_t *)ra, 6)) {
588 DBGOUT(RXFILTER,
589 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
590 (int)(rp - s->mac_reg - RA)/2,
591 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
592 return 1;
595 DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
596 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
598 f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
599 f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
600 if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
601 return 1;
602 DBGOUT(RXFILTER,
603 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
604 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
605 (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
606 s->mac_reg[MTA + (f >> 5)]);
608 return 0;
611 static void
612 e1000_set_link_status(VLANClientState *nc)
614 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
615 uint32_t old_status = s->mac_reg[STATUS];
617 if (nc->link_down)
618 s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
619 else
620 s->mac_reg[STATUS] |= E1000_STATUS_LU;
622 if (s->mac_reg[STATUS] != old_status)
623 set_ics(s, 0, E1000_ICR_LSC);
626 static int
627 e1000_can_receive(VLANClientState *nc)
629 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
631 return (s->mac_reg[RCTL] & E1000_RCTL_EN);
634 static ssize_t
635 e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
637 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
638 struct e1000_rx_desc desc;
639 target_phys_addr_t base;
640 unsigned int n, rdt;
641 uint32_t rdh_start;
642 uint16_t vlan_special = 0;
643 uint8_t vlan_status = 0, vlan_offset = 0;
644 uint8_t min_buf[MIN_BUF_SIZE];
646 if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
647 return -1;
649 /* Pad to minimum Ethernet frame length */
650 if (size < sizeof(min_buf)) {
651 memcpy(min_buf, buf, size);
652 memset(&min_buf[size], 0, sizeof(min_buf) - size);
653 buf = min_buf;
654 size = sizeof(min_buf);
657 if (size > s->rxbuf_size) {
658 DBGOUT(RX, "packet too large for buffers (%lu > %d)\n",
659 (unsigned long)size, s->rxbuf_size);
660 return -1;
663 if (!receive_filter(s, buf, size))
664 return size;
666 if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
667 vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
668 memmove((uint8_t *)buf + 4, buf, 12);
669 vlan_status = E1000_RXD_STAT_VP;
670 vlan_offset = 4;
671 size -= 4;
674 rdh_start = s->mac_reg[RDH];
675 do {
676 if (s->mac_reg[RDH] == s->mac_reg[RDT] && s->check_rxov) {
677 set_ics(s, 0, E1000_ICS_RXO);
678 return -1;
680 base = ((uint64_t)s->mac_reg[RDBAH] << 32) + s->mac_reg[RDBAL] +
681 sizeof(desc) * s->mac_reg[RDH];
682 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
683 desc.special = vlan_special;
684 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
685 if (desc.buffer_addr) {
686 cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr),
687 (void *)(buf + vlan_offset), size);
688 desc.length = cpu_to_le16(size + fcs_len(s));
689 desc.status |= E1000_RXD_STAT_EOP|E1000_RXD_STAT_IXSM;
690 } else { // as per intel docs; skip descriptors with null buf addr
691 DBGOUT(RX, "Null RX descriptor!!\n");
693 cpu_physical_memory_write(base, (void *)&desc, sizeof(desc));
695 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
696 s->mac_reg[RDH] = 0;
697 s->check_rxov = 1;
698 /* see comment in start_xmit; same here */
699 if (s->mac_reg[RDH] == rdh_start) {
700 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
701 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
702 set_ics(s, 0, E1000_ICS_RXO);
703 return -1;
705 } while (desc.buffer_addr == 0);
707 s->mac_reg[GPRC]++;
708 s->mac_reg[TPR]++;
709 /* TOR - Total Octets Received:
710 * This register includes bytes received in a packet from the <Destination
711 * Address> field through the <CRC> field, inclusively.
713 n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
714 if (n < s->mac_reg[TORL])
715 s->mac_reg[TORH]++;
716 s->mac_reg[TORL] = n;
718 n = E1000_ICS_RXT0;
719 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
720 rdt += s->mac_reg[RDLEN] / sizeof(desc);
721 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
722 s->rxbuf_min_shift)
723 n |= E1000_ICS_RXDMT0;
725 set_ics(s, 0, n);
727 return size;
730 static uint32_t
731 mac_readreg(E1000State *s, int index)
733 return s->mac_reg[index];
736 static uint32_t
737 mac_icr_read(E1000State *s, int index)
739 uint32_t ret = s->mac_reg[ICR];
741 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
742 set_interrupt_cause(s, 0, 0);
743 return ret;
746 static uint32_t
747 mac_read_clr4(E1000State *s, int index)
749 uint32_t ret = s->mac_reg[index];
751 s->mac_reg[index] = 0;
752 return ret;
755 static uint32_t
756 mac_read_clr8(E1000State *s, int index)
758 uint32_t ret = s->mac_reg[index];
760 s->mac_reg[index] = 0;
761 s->mac_reg[index-1] = 0;
762 return ret;
765 static void
766 mac_writereg(E1000State *s, int index, uint32_t val)
768 s->mac_reg[index] = val;
771 static void
772 set_rdt(E1000State *s, int index, uint32_t val)
774 s->check_rxov = 0;
775 s->mac_reg[index] = val & 0xffff;
778 static void
779 set_16bit(E1000State *s, int index, uint32_t val)
781 s->mac_reg[index] = val & 0xffff;
784 static void
785 set_dlen(E1000State *s, int index, uint32_t val)
787 s->mac_reg[index] = val & 0xfff80;
790 static void
791 set_tctl(E1000State *s, int index, uint32_t val)
793 s->mac_reg[index] = val;
794 s->mac_reg[TDT] &= 0xffff;
795 start_xmit(s);
798 static void
799 set_icr(E1000State *s, int index, uint32_t val)
801 DBGOUT(INTERRUPT, "set_icr %x\n", val);
802 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
805 static void
806 set_imc(E1000State *s, int index, uint32_t val)
808 s->mac_reg[IMS] &= ~val;
809 set_ics(s, 0, 0);
812 static void
813 set_ims(E1000State *s, int index, uint32_t val)
815 s->mac_reg[IMS] |= val;
816 set_ics(s, 0, 0);
819 #define getreg(x) [x] = mac_readreg
820 static uint32_t (*macreg_readops[])(E1000State *, int) = {
821 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
822 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
823 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
824 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
825 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
826 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
827 getreg(TDLEN), getreg(RDLEN),
829 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
830 [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
831 [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
832 [CRCERRS ... MPC] = &mac_readreg,
833 [RA ... RA+31] = &mac_readreg,
834 [MTA ... MTA+127] = &mac_readreg,
835 [VFTA ... VFTA+127] = &mac_readreg,
837 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
839 #define putreg(x) [x] = mac_writereg
840 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
841 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
842 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
843 putreg(RDBAL), putreg(LEDCTL), putreg(VET),
844 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
845 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
846 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
847 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
848 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
849 [RA ... RA+31] = &mac_writereg,
850 [MTA ... MTA+127] = &mac_writereg,
851 [VFTA ... VFTA+127] = &mac_writereg,
853 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
855 static void
856 e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
858 E1000State *s = opaque;
859 unsigned int index = (addr & 0x1ffff) >> 2;
861 if (index < NWRITEOPS && macreg_writeops[index]) {
862 macreg_writeops[index](s, index, val);
863 } else if (index < NREADOPS && macreg_readops[index]) {
864 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val);
865 } else {
866 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
867 index<<2, val);
871 static void
872 e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
874 // emulate hw without byte enables: no RMW
875 e1000_mmio_writel(opaque, addr & ~3,
876 (val & 0xffff) << (8*(addr & 3)));
879 static void
880 e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
882 // emulate hw without byte enables: no RMW
883 e1000_mmio_writel(opaque, addr & ~3,
884 (val & 0xff) << (8*(addr & 3)));
887 static uint32_t
888 e1000_mmio_readl(void *opaque, target_phys_addr_t addr)
890 E1000State *s = opaque;
891 unsigned int index = (addr & 0x1ffff) >> 2;
893 if (index < NREADOPS && macreg_readops[index])
895 return macreg_readops[index](s, index);
897 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
898 return 0;
901 static uint32_t
902 e1000_mmio_readb(void *opaque, target_phys_addr_t addr)
904 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
905 (8 * (addr & 3))) & 0xff;
908 static uint32_t
909 e1000_mmio_readw(void *opaque, target_phys_addr_t addr)
911 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
912 (8 * (addr & 3))) & 0xffff;
915 static bool is_version_1(void *opaque, int version_id)
917 return version_id == 1;
920 static const VMStateDescription vmstate_e1000 = {
921 .name = "e1000",
922 .version_id = 2,
923 .minimum_version_id = 1,
924 .minimum_version_id_old = 1,
925 .fields = (VMStateField []) {
926 VMSTATE_PCI_DEVICE(dev, E1000State),
927 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
928 VMSTATE_UNUSED(4), /* Was mmio_base. */
929 VMSTATE_UINT32(rxbuf_size, E1000State),
930 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
931 VMSTATE_UINT32(eecd_state.val_in, E1000State),
932 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
933 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
934 VMSTATE_UINT16(eecd_state.reading, E1000State),
935 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
936 VMSTATE_UINT8(tx.ipcss, E1000State),
937 VMSTATE_UINT8(tx.ipcso, E1000State),
938 VMSTATE_UINT16(tx.ipcse, E1000State),
939 VMSTATE_UINT8(tx.tucss, E1000State),
940 VMSTATE_UINT8(tx.tucso, E1000State),
941 VMSTATE_UINT16(tx.tucse, E1000State),
942 VMSTATE_UINT32(tx.paylen, E1000State),
943 VMSTATE_UINT8(tx.hdr_len, E1000State),
944 VMSTATE_UINT16(tx.mss, E1000State),
945 VMSTATE_UINT16(tx.size, E1000State),
946 VMSTATE_UINT16(tx.tso_frames, E1000State),
947 VMSTATE_UINT8(tx.sum_needed, E1000State),
948 VMSTATE_INT8(tx.ip, E1000State),
949 VMSTATE_INT8(tx.tcp, E1000State),
950 VMSTATE_BUFFER(tx.header, E1000State),
951 VMSTATE_BUFFER(tx.data, E1000State),
952 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
953 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
954 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
955 VMSTATE_UINT32(mac_reg[EECD], E1000State),
956 VMSTATE_UINT32(mac_reg[EERD], E1000State),
957 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
958 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
959 VMSTATE_UINT32(mac_reg[ICR], E1000State),
960 VMSTATE_UINT32(mac_reg[ICS], E1000State),
961 VMSTATE_UINT32(mac_reg[IMC], E1000State),
962 VMSTATE_UINT32(mac_reg[IMS], E1000State),
963 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
964 VMSTATE_UINT32(mac_reg[MANC], E1000State),
965 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
966 VMSTATE_UINT32(mac_reg[MPC], E1000State),
967 VMSTATE_UINT32(mac_reg[PBA], E1000State),
968 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
969 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
970 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
971 VMSTATE_UINT32(mac_reg[RDH], E1000State),
972 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
973 VMSTATE_UINT32(mac_reg[RDT], E1000State),
974 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
975 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
976 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
977 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
978 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
979 VMSTATE_UINT32(mac_reg[TDH], E1000State),
980 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
981 VMSTATE_UINT32(mac_reg[TDT], E1000State),
982 VMSTATE_UINT32(mac_reg[TORH], E1000State),
983 VMSTATE_UINT32(mac_reg[TORL], E1000State),
984 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
985 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
986 VMSTATE_UINT32(mac_reg[TPR], E1000State),
987 VMSTATE_UINT32(mac_reg[TPT], E1000State),
988 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
989 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
990 VMSTATE_UINT32(mac_reg[VET], E1000State),
991 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
992 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
993 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
994 VMSTATE_END_OF_LIST()
998 static const uint16_t e1000_eeprom_template[64] = {
999 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1000 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
1001 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1002 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1003 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1004 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1005 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1006 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1009 static const uint16_t phy_reg_init[] = {
1010 [PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
1011 [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
1012 [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
1013 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
1014 [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
1015 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
1018 static const uint32_t mac_reg_init[] = {
1019 [PBA] = 0x00100030,
1020 [LEDCTL] = 0x602,
1021 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
1022 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
1023 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
1024 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
1025 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
1026 E1000_STATUS_LU,
1027 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
1028 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
1029 E1000_MANC_RMCP_EN,
1032 /* PCI interface */
1034 static CPUWriteMemoryFunc * const e1000_mmio_write[] = {
1035 e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel
1038 static CPUReadMemoryFunc * const e1000_mmio_read[] = {
1039 e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl
1042 static void
1043 e1000_mmio_map(PCIDevice *pci_dev, int region_num,
1044 pcibus_t addr, pcibus_t size, int type)
1046 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1047 int i;
1048 const uint32_t excluded_regs[] = {
1049 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1050 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1054 DBGOUT(MMIO, "e1000_mmio_map addr=0x%08"FMT_PCIBUS" 0x%08"FMT_PCIBUS"\n",
1055 addr, size);
1057 cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index);
1058 qemu_register_coalesced_mmio(addr, excluded_regs[0]);
1060 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1061 qemu_register_coalesced_mmio(addr + excluded_regs[i] + 4,
1062 excluded_regs[i + 1] -
1063 excluded_regs[i] - 4);
1066 static void
1067 e1000_cleanup(VLANClientState *nc)
1069 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1071 s->nic = NULL;
1074 static int
1075 pci_e1000_uninit(PCIDevice *dev)
1077 E1000State *d = DO_UPCAST(E1000State, dev, dev);
1079 cpu_unregister_io_memory(d->mmio_index);
1080 qemu_del_vlan_client(&d->nic->nc);
1081 return 0;
1084 static void e1000_reset(void *opaque)
1086 E1000State *d = opaque;
1088 memset(d->phy_reg, 0, sizeof d->phy_reg);
1089 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
1090 memset(d->mac_reg, 0, sizeof d->mac_reg);
1091 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
1092 d->rxbuf_min_shift = 1;
1093 memset(&d->tx, 0, sizeof d->tx);
1096 static NetClientInfo net_e1000_info = {
1097 .type = NET_CLIENT_TYPE_NIC,
1098 .size = sizeof(NICState),
1099 .can_receive = e1000_can_receive,
1100 .receive = e1000_receive,
1101 .cleanup = e1000_cleanup,
1102 .link_status_changed = e1000_set_link_status,
1105 static int pci_e1000_init(PCIDevice *pci_dev)
1107 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1108 uint8_t *pci_conf;
1109 uint16_t checksum = 0;
1110 int i;
1111 uint8_t *macaddr;
1113 pci_conf = d->dev.config;
1115 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
1116 pci_config_set_device_id(pci_conf, E1000_DEVID);
1117 /* TODO: we have no capabilities, so why is this bit set? */
1118 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_CAP_LIST);
1119 pci_conf[PCI_REVISION_ID] = 0x03;
1120 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
1121 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1122 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1124 /* TODO: RST# value should be 0 if programmable, PCI spec 6.2.4 */
1125 pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
1127 d->mmio_index = cpu_register_io_memory(e1000_mmio_read,
1128 e1000_mmio_write, d, DEVICE_LITTLE_ENDIAN);
1130 pci_register_bar(&d->dev, 0, PNPMMIO_SIZE,
1131 PCI_BASE_ADDRESS_SPACE_MEMORY, e1000_mmio_map);
1133 pci_register_bar(&d->dev, 1, IOPORT_SIZE,
1134 PCI_BASE_ADDRESS_SPACE_IO, ioport_map);
1136 memmove(d->eeprom_data, e1000_eeprom_template,
1137 sizeof e1000_eeprom_template);
1138 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1139 macaddr = d->conf.macaddr.a;
1140 for (i = 0; i < 3; i++)
1141 d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
1142 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1143 checksum += d->eeprom_data[i];
1144 checksum = (uint16_t) EEPROM_SUM - checksum;
1145 d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
1147 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1148 d->dev.qdev.info->name, d->dev.qdev.id, d);
1150 qemu_format_nic_info_str(&d->nic->nc, macaddr);
1152 add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1154 return 0;
1157 static void qdev_e1000_reset(DeviceState *dev)
1159 E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
1160 e1000_reset(d);
1163 static PCIDeviceInfo e1000_info = {
1164 .qdev.name = "e1000",
1165 .qdev.desc = "Intel Gigabit Ethernet",
1166 .qdev.size = sizeof(E1000State),
1167 .qdev.reset = qdev_e1000_reset,
1168 .qdev.vmsd = &vmstate_e1000,
1169 .init = pci_e1000_init,
1170 .exit = pci_e1000_uninit,
1171 .romfile = "pxe-e1000.bin",
1172 .qdev.props = (Property[]) {
1173 DEFINE_NIC_PROPERTIES(E1000State, conf),
1174 DEFINE_PROP_END_OF_LIST(),
1178 static void e1000_register_devices(void)
1180 pci_qdev_register(&e1000_info);
1183 device_init(e1000_register_devices)