Fix 32-bit overflow in parallels image support
[qemu-kvm/fedora.git] / net.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <sys/times.h>
37 #include <sys/wait.h>
38 #include <termios.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/resource.h>
42 #include <sys/socket.h>
43 #include <netinet/in.h>
44 #include <net/if.h>
45 #ifdef __NetBSD__
46 #include <net/if_tap.h>
47 #endif
48 #ifdef __linux__
49 #include <linux/if_tun.h>
50 #endif
51 #include <arpa/inet.h>
52 #include <dirent.h>
53 #include <netdb.h>
54 #include <sys/select.h>
55 #ifdef HOST_BSD
56 #include <sys/stat.h>
57 #if defined(__FreeBSD__) || defined(__DragonFly__)
58 #include <libutil.h>
59 #else
60 #include <util.h>
61 #endif
62 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
63 #include <freebsd/stdlib.h>
64 #else
65 #ifdef __linux__
66 #include <pty.h>
67 #include <malloc.h>
68 #include <linux/rtc.h>
69
70 /* For the benefit of older linux systems which don't supply it,
71 we use a local copy of hpet.h. */
72 /* #include <linux/hpet.h> */
73 #include "hpet.h"
74
75 #include <linux/ppdev.h>
76 #include <linux/parport.h>
77 #endif
78 #ifdef __sun__
79 #include <sys/stat.h>
80 #include <sys/ethernet.h>
81 #include <sys/sockio.h>
82 #include <netinet/arp.h>
83 #include <netinet/in.h>
84 #include <netinet/in_systm.h>
85 #include <netinet/ip.h>
86 #include <netinet/ip_icmp.h> // must come after ip.h
87 #include <netinet/udp.h>
88 #include <netinet/tcp.h>
89 #include <net/if.h>
90 #include <syslog.h>
91 #include <stropts.h>
92 #endif
93 #endif
94 #endif
95
96 #if defined(__OpenBSD__)
97 #include <util.h>
98 #endif
99
100 #if defined(CONFIG_VDE)
101 #include <libvdeplug.h>
102 #endif
103
104 #ifdef _WIN32
105 #include <windows.h>
106 #include <malloc.h>
107 #include <sys/timeb.h>
108 #include <mmsystem.h>
109 #define getopt_long_only getopt_long
110 #define memalign(align, size) malloc(size)
111 #endif
112
113 // FIXME: #include "qemu-kvm.h"
114 #include "qemu-common.h"
115 #include "net.h"
116 #include "monitor.h"
117 #include "sysemu.h"
118 #include "qemu-timer.h"
119 #include "qemu-char.h"
120 #include "audio/audio.h"
121 #include "qemu_socket.h"
122 #include "qemu-log.h"
123
124 #include "slirp/libslirp.h"
125
126
127 static VLANState *first_vlan;
128
129 /***********************************************************/
130 /* network device redirectors */
131
132 #if defined(DEBUG_NET) || defined(DEBUG_SLIRP)
133 static void hex_dump(FILE *f, const uint8_t *buf, int size)
134 {
135 int len, i, j, c;
136
137 for(i=0;i<size;i+=16) {
138 len = size - i;
139 if (len > 16)
140 len = 16;
141 fprintf(f, "%08x ", i);
142 for(j=0;j<16;j++) {
143 if (j < len)
144 fprintf(f, " %02x", buf[i+j]);
145 else
146 fprintf(f, " ");
147 }
148 fprintf(f, " ");
149 for(j=0;j<len;j++) {
150 c = buf[i+j];
151 if (c < ' ' || c > '~')
152 c = '.';
153 fprintf(f, "%c", c);
154 }
155 fprintf(f, "\n");
156 }
157 }
158 #endif
159
160 static int parse_macaddr(uint8_t *macaddr, const char *p)
161 {
162 int i;
163 char *last_char;
164 long int offset;
165
166 errno = 0;
167 offset = strtol(p, &last_char, 0);
168 if (0 == errno && '\0' == *last_char &&
169 offset >= 0 && offset <= 0xFFFFFF) {
170 macaddr[3] = (offset & 0xFF0000) >> 16;
171 macaddr[4] = (offset & 0xFF00) >> 8;
172 macaddr[5] = offset & 0xFF;
173 return 0;
174 } else {
175 for(i = 0; i < 6; i++) {
176 macaddr[i] = strtol(p, (char **)&p, 16);
177 if (i == 5) {
178 if (*p != '\0')
179 return -1;
180 } else {
181 if (*p != ':' && *p != '-')
182 return -1;
183 p++;
184 }
185 }
186 return 0;
187 }
188
189 return -1;
190 }
191
192 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
193 {
194 const char *p, *p1;
195 int len;
196 p = *pp;
197 p1 = strchr(p, sep);
198 if (!p1)
199 return -1;
200 len = p1 - p;
201 p1++;
202 if (buf_size > 0) {
203 if (len > buf_size - 1)
204 len = buf_size - 1;
205 memcpy(buf, p, len);
206 buf[len] = '\0';
207 }
208 *pp = p1;
209 return 0;
210 }
211
212 int parse_host_src_port(struct sockaddr_in *haddr,
213 struct sockaddr_in *saddr,
214 const char *input_str)
215 {
216 char *str = strdup(input_str);
217 char *host_str = str;
218 char *src_str;
219 const char *src_str2;
220 char *ptr;
221
222 /*
223 * Chop off any extra arguments at the end of the string which
224 * would start with a comma, then fill in the src port information
225 * if it was provided else use the "any address" and "any port".
226 */
227 if ((ptr = strchr(str,',')))
228 *ptr = '\0';
229
230 if ((src_str = strchr(input_str,'@'))) {
231 *src_str = '\0';
232 src_str++;
233 }
234
235 if (parse_host_port(haddr, host_str) < 0)
236 goto fail;
237
238 src_str2 = src_str;
239 if (!src_str || *src_str == '\0')
240 src_str2 = ":0";
241
242 if (parse_host_port(saddr, src_str2) < 0)
243 goto fail;
244
245 free(str);
246 return(0);
247
248 fail:
249 free(str);
250 return -1;
251 }
252
253 int parse_host_port(struct sockaddr_in *saddr, const char *str)
254 {
255 char buf[512];
256 struct hostent *he;
257 const char *p, *r;
258 int port;
259
260 p = str;
261 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
262 return -1;
263 saddr->sin_family = AF_INET;
264 if (buf[0] == '\0') {
265 saddr->sin_addr.s_addr = 0;
266 } else {
267 if (qemu_isdigit(buf[0])) {
268 if (!inet_aton(buf, &saddr->sin_addr))
269 return -1;
270 } else {
271 if ((he = gethostbyname(buf)) == NULL)
272 return - 1;
273 saddr->sin_addr = *(struct in_addr *)he->h_addr;
274 }
275 }
276 port = strtol(p, (char **)&r, 0);
277 if (r == p)
278 return -1;
279 saddr->sin_port = htons(port);
280 return 0;
281 }
282
283 #if !defined(_WIN32) && 0
284 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
285 {
286 const char *p;
287 int len;
288
289 len = MIN(108, strlen(str));
290 p = strchr(str, ',');
291 if (p)
292 len = MIN(len, p - str);
293
294 memset(uaddr, 0, sizeof(*uaddr));
295
296 uaddr->sun_family = AF_UNIX;
297 memcpy(uaddr->sun_path, str, len);
298
299 return 0;
300 }
301 #endif
302
303 void qemu_format_nic_info_str(VLANClientState *vc, uint8_t macaddr[6])
304 {
305 snprintf(vc->info_str, sizeof(vc->info_str),
306 "model=%s,macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
307 vc->model,
308 macaddr[0], macaddr[1], macaddr[2],
309 macaddr[3], macaddr[4], macaddr[5]);
310 }
311
312 static char *assign_name(VLANClientState *vc1, const char *model)
313 {
314 VLANState *vlan;
315 char buf[256];
316 int id = 0;
317
318 for (vlan = first_vlan; vlan; vlan = vlan->next) {
319 VLANClientState *vc;
320
321 for (vc = vlan->first_client; vc; vc = vc->next)
322 if (vc != vc1 && strcmp(vc->model, model) == 0)
323 id++;
324 }
325
326 snprintf(buf, sizeof(buf), "%s.%d", model, id);
327
328 return strdup(buf);
329 }
330
331 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
332 const char *model,
333 const char *name,
334 NetCanReceive *can_receive,
335 NetReceive *receive,
336 NetReceiveIOV *receive_iov,
337 NetCleanup *cleanup,
338 void *opaque)
339 {
340 VLANClientState *vc, **pvc;
341 vc = qemu_mallocz(sizeof(VLANClientState));
342 vc->model = strdup(model);
343 if (name)
344 vc->name = strdup(name);
345 else
346 vc->name = assign_name(vc, model);
347 vc->can_receive = can_receive;
348 vc->receive = receive;
349 vc->receive_iov = receive_iov;
350 vc->cleanup = cleanup;
351 vc->opaque = opaque;
352 vc->vlan = vlan;
353
354 vc->next = NULL;
355 pvc = &vlan->first_client;
356 while (*pvc != NULL)
357 pvc = &(*pvc)->next;
358 *pvc = vc;
359 return vc;
360 }
361
362 void qemu_del_vlan_client(VLANClientState *vc)
363 {
364 VLANClientState **pvc = &vc->vlan->first_client;
365
366 while (*pvc != NULL)
367 if (*pvc == vc) {
368 *pvc = vc->next;
369 if (vc->cleanup) {
370 vc->cleanup(vc);
371 }
372 free(vc->name);
373 free(vc->model);
374 qemu_free(vc);
375 break;
376 } else
377 pvc = &(*pvc)->next;
378 }
379
380 VLANClientState *qemu_find_vlan_client(VLANState *vlan, void *opaque)
381 {
382 VLANClientState **pvc = &vlan->first_client;
383
384 while (*pvc != NULL)
385 if ((*pvc)->opaque == opaque)
386 return *pvc;
387 else
388 pvc = &(*pvc)->next;
389
390 return NULL;
391 }
392
393 static VLANClientState *
394 qemu_find_vlan_client_by_name(Monitor *mon, int vlan_id,
395 const char *client_str)
396 {
397 VLANState *vlan;
398 VLANClientState *vc;
399
400 vlan = qemu_find_vlan(vlan_id, 0);
401 if (!vlan) {
402 monitor_printf(mon, "unknown VLAN %d\n", vlan_id);
403 return NULL;
404 }
405
406 for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
407 if (!strcmp(vc->name, client_str)) {
408 break;
409 }
410 }
411 if (!vc) {
412 monitor_printf(mon, "can't find device %s on VLAN %d\n",
413 client_str, vlan_id);
414 }
415
416 return vc;
417 }
418
419 int qemu_can_send_packet(VLANClientState *sender)
420 {
421 VLANState *vlan = sender->vlan;
422 VLANClientState *vc;
423
424 for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
425 if (vc == sender) {
426 continue;
427 }
428
429 /* no can_receive() handler, they can always receive */
430 if (!vc->can_receive || vc->can_receive(vc)) {
431 return 1;
432 }
433 }
434 return 0;
435 }
436
437 static int
438 qemu_deliver_packet(VLANClientState *sender, const uint8_t *buf, int size, int raw)
439 {
440 VLANClientState *vc;
441 int ret = -1;
442
443 sender->vlan->delivering = 1;
444
445 for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) {
446 ssize_t len;
447
448 if (vc == sender) {
449 continue;
450 }
451
452 if (vc->link_down) {
453 ret = size;
454 continue;
455 }
456
457 if (raw && vc->receive_raw) {
458 len = vc->receive_raw(vc, buf, size);
459 } else {
460 len = vc->receive(vc, buf, size);
461 }
462
463 ret = (ret >= 0) ? ret : len;
464 }
465
466 sender->vlan->delivering = 0;
467
468 return ret;
469 }
470
471 void qemu_purge_queued_packets(VLANClientState *vc)
472 {
473 VLANPacket *packet, *next;
474
475 TAILQ_FOREACH_SAFE(packet, &vc->vlan->send_queue, entry, next) {
476 if (packet->sender == vc) {
477 TAILQ_REMOVE(&vc->vlan->send_queue, packet, entry);
478 qemu_free(packet);
479 }
480 }
481 }
482
483 void qemu_flush_queued_packets(VLANClientState *vc)
484 {
485 while (!TAILQ_EMPTY(&vc->vlan->send_queue)) {
486 VLANPacket *packet;
487 int ret;
488
489 packet = TAILQ_FIRST(&vc->vlan->send_queue);
490 TAILQ_REMOVE(&vc->vlan->send_queue, packet, entry);
491
492 ret = qemu_deliver_packet(packet->sender, packet->data,
493 packet->size, packet->raw);
494 if (ret == 0 && packet->sent_cb != NULL) {
495 TAILQ_INSERT_HEAD(&vc->vlan->send_queue, packet, entry);
496 break;
497 }
498
499 if (packet->sent_cb)
500 packet->sent_cb(packet->sender, ret);
501
502 qemu_free(packet);
503 }
504 }
505
506 static void qemu_enqueue_packet(VLANClientState *sender,
507 const uint8_t *buf, int size, int raw,
508 NetPacketSent *sent_cb)
509 {
510 VLANPacket *packet;
511
512 packet = qemu_malloc(sizeof(VLANPacket) + size);
513 packet->sender = sender;
514 packet->size = size;
515 packet->raw = raw;
516 packet->sent_cb = sent_cb;
517 memcpy(packet->data, buf, size);
518
519 TAILQ_INSERT_TAIL(&sender->vlan->send_queue, packet, entry);
520 }
521
522 static ssize_t qemu_send_packet_async2(VLANClientState *sender,
523 const uint8_t *buf, int size, int raw,
524 NetPacketSent *sent_cb)
525 {
526 int ret;
527
528 if (sender->link_down) {
529 return size;
530 }
531
532 #ifdef DEBUG_NET
533 printf("vlan %d send:\n", sender->vlan->id);
534 hex_dump(stdout, buf, size);
535 #endif
536
537 if (sender->vlan->delivering) {
538 qemu_enqueue_packet(sender, buf, size, raw, NULL);
539 return size;
540 }
541
542 ret = qemu_deliver_packet(sender, buf, size, raw);
543 if (ret == 0 && sent_cb != NULL) {
544 qemu_enqueue_packet(sender, buf, size, raw, sent_cb);
545 return 0;
546 }
547
548 qemu_flush_queued_packets(sender);
549
550 return ret;
551 }
552
553 ssize_t qemu_send_packet_async(VLANClientState *sender,
554 const uint8_t *buf, int size,
555 NetPacketSent *sent_cb)
556 {
557 return qemu_send_packet_async2(sender, buf, size, 0, sent_cb);
558 }
559
560 ssize_t qemu_send_packet(VLANClientState *sender, const uint8_t *buf, int size)
561 {
562 return qemu_send_packet_async2(sender, buf, size, 0, NULL);
563 }
564
565 ssize_t qemu_send_packet_raw(VLANClientState *sender, const uint8_t *buf, int size)
566 {
567 return qemu_send_packet_async2(sender, buf, size, 1, NULL);
568 }
569
570 static ssize_t vc_sendv_compat(VLANClientState *vc, const struct iovec *iov,
571 int iovcnt)
572 {
573 uint8_t buffer[4096];
574 size_t offset = 0;
575 int i;
576
577 for (i = 0; i < iovcnt; i++) {
578 size_t len;
579
580 len = MIN(sizeof(buffer) - offset, iov[i].iov_len);
581 memcpy(buffer + offset, iov[i].iov_base, len);
582 offset += len;
583 }
584
585 return vc->receive(vc, buffer, offset);
586 }
587
588 static ssize_t calc_iov_length(const struct iovec *iov, int iovcnt)
589 {
590 size_t offset = 0;
591 int i;
592
593 for (i = 0; i < iovcnt; i++)
594 offset += iov[i].iov_len;
595 return offset;
596 }
597
598 static int qemu_deliver_packet_iov(VLANClientState *sender,
599 const struct iovec *iov, int iovcnt)
600 {
601 VLANClientState *vc;
602 int ret = -1;
603
604 sender->vlan->delivering = 1;
605
606 for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) {
607 ssize_t len;
608
609 if (vc == sender) {
610 continue;
611 }
612
613 if (vc->link_down) {
614 ret = calc_iov_length(iov, iovcnt);
615 continue;
616 }
617
618 if (vc->receive_iov) {
619 len = vc->receive_iov(vc, iov, iovcnt);
620 } else {
621 len = vc_sendv_compat(vc, iov, iovcnt);
622 }
623
624 ret = (ret >= 0) ? ret : len;
625 }
626
627 sender->vlan->delivering = 0;
628
629 return ret;
630 }
631
632 static ssize_t qemu_enqueue_packet_iov(VLANClientState *sender,
633 const struct iovec *iov, int iovcnt,
634 NetPacketSent *sent_cb)
635 {
636 VLANPacket *packet;
637 size_t max_len = 0;
638 int i;
639
640 max_len = calc_iov_length(iov, iovcnt);
641
642 packet = qemu_malloc(sizeof(VLANPacket) + max_len);
643 packet->sender = sender;
644 packet->sent_cb = sent_cb;
645 packet->size = 0;
646 packet->raw = 0;
647
648 for (i = 0; i < iovcnt; i++) {
649 size_t len = iov[i].iov_len;
650
651 memcpy(packet->data + packet->size, iov[i].iov_base, len);
652 packet->size += len;
653 }
654
655 TAILQ_INSERT_TAIL(&sender->vlan->send_queue, packet, entry);
656
657 return packet->size;
658 }
659
660 ssize_t qemu_sendv_packet_async(VLANClientState *sender,
661 const struct iovec *iov, int iovcnt,
662 NetPacketSent *sent_cb)
663 {
664 int ret;
665
666 if (sender->link_down) {
667 return calc_iov_length(iov, iovcnt);
668 }
669
670 if (sender->vlan->delivering) {
671 return qemu_enqueue_packet_iov(sender, iov, iovcnt, NULL);
672 }
673
674 ret = qemu_deliver_packet_iov(sender, iov, iovcnt);
675 if (ret == 0 && sent_cb != NULL) {
676 qemu_enqueue_packet_iov(sender, iov, iovcnt, sent_cb);
677 return 0;
678 }
679
680 qemu_flush_queued_packets(sender);
681
682 return ret;
683 }
684
685 ssize_t
686 qemu_sendv_packet(VLANClientState *vc, const struct iovec *iov, int iovcnt)
687 {
688 return qemu_sendv_packet_async(vc, iov, iovcnt, NULL);
689 }
690
691 static void config_error(Monitor *mon, const char *fmt, ...)
692 {
693 va_list ap;
694
695 va_start(ap, fmt);
696 if (mon) {
697 monitor_vprintf(mon, fmt, ap);
698 } else {
699 fprintf(stderr, "qemu: ");
700 vfprintf(stderr, fmt, ap);
701 exit(1);
702 }
703 va_end(ap);
704 }
705
706 #if defined(CONFIG_SLIRP)
707
708 /* slirp network adapter */
709
710 #define SLIRP_CFG_HOSTFWD 1
711 #define SLIRP_CFG_LEGACY 2
712
713 struct slirp_config_str {
714 struct slirp_config_str *next;
715 int flags;
716 char str[1024];
717 int legacy_format;
718 };
719
720 typedef struct SlirpState {
721 TAILQ_ENTRY(SlirpState) entry;
722 VLANClientState *vc;
723 Slirp *slirp;
724 #ifndef _WIN32
725 char smb_dir[128];
726 #endif
727 } SlirpState;
728
729 static struct slirp_config_str *slirp_configs;
730 const char *legacy_tftp_prefix;
731 const char *legacy_bootp_filename;
732 static TAILQ_HEAD(slirp_stacks, SlirpState) slirp_stacks =
733 TAILQ_HEAD_INITIALIZER(slirp_stacks);
734
735 static void slirp_hostfwd(SlirpState *s, Monitor *mon, const char *redir_str,
736 int legacy_format);
737 static void slirp_guestfwd(SlirpState *s, Monitor *mon, const char *config_str,
738 int legacy_format);
739
740 #ifndef _WIN32
741 static const char *legacy_smb_export;
742
743 static void slirp_smb(SlirpState *s, Monitor *mon, const char *exported_dir,
744 struct in_addr vserver_addr);
745 static void slirp_smb_cleanup(SlirpState *s);
746 #else
747 static inline void slirp_smb_cleanup(SlirpState *s) { }
748 #endif
749
750 int slirp_can_output(void *opaque)
751 {
752 SlirpState *s = opaque;
753
754 return qemu_can_send_packet(s->vc);
755 }
756
757 void slirp_output(void *opaque, const uint8_t *pkt, int pkt_len)
758 {
759 SlirpState *s = opaque;
760
761 #ifdef DEBUG_SLIRP
762 printf("slirp output:\n");
763 hex_dump(stdout, pkt, pkt_len);
764 #endif
765 qemu_send_packet(s->vc, pkt, pkt_len);
766 }
767
768 static ssize_t slirp_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
769 {
770 SlirpState *s = vc->opaque;
771
772 #ifdef DEBUG_SLIRP
773 printf("slirp input:\n");
774 hex_dump(stdout, buf, size);
775 #endif
776 slirp_input(s->slirp, buf, size);
777 return size;
778 }
779
780 static void net_slirp_cleanup(VLANClientState *vc)
781 {
782 SlirpState *s = vc->opaque;
783
784 slirp_cleanup(s->slirp);
785 slirp_smb_cleanup(s);
786 TAILQ_REMOVE(&slirp_stacks, s, entry);
787 qemu_free(s);
788 }
789
790 static int net_slirp_init(Monitor *mon, VLANState *vlan, const char *model,
791 const char *name, int restricted,
792 const char *vnetwork, const char *vhost,
793 const char *vhostname, const char *tftp_export,
794 const char *bootfile, const char *vdhcp_start,
795 const char *vnameserver, const char *smb_export,
796 const char *vsmbserver)
797 {
798 /* default settings according to historic slirp */
799 struct in_addr net = { .s_addr = htonl(0x0a000200) }; /* 10.0.2.0 */
800 struct in_addr mask = { .s_addr = htonl(0xffffff00) }; /* 255.255.255.0 */
801 struct in_addr host = { .s_addr = htonl(0x0a000202) }; /* 10.0.2.2 */
802 struct in_addr dhcp = { .s_addr = htonl(0x0a00020f) }; /* 10.0.2.15 */
803 struct in_addr dns = { .s_addr = htonl(0x0a000203) }; /* 10.0.2.3 */
804 #ifndef _WIN32
805 struct in_addr smbsrv = { .s_addr = 0 };
806 #endif
807 SlirpState *s;
808 char buf[20];
809 uint32_t addr;
810 int shift;
811 char *end;
812
813 if (!tftp_export) {
814 tftp_export = legacy_tftp_prefix;
815 }
816 if (!bootfile) {
817 bootfile = legacy_bootp_filename;
818 }
819
820 if (vnetwork) {
821 if (get_str_sep(buf, sizeof(buf), &vnetwork, '/') < 0) {
822 if (!inet_aton(vnetwork, &net)) {
823 return -1;
824 }
825 addr = ntohl(net.s_addr);
826 if (!(addr & 0x80000000)) {
827 mask.s_addr = htonl(0xff000000); /* class A */
828 } else if ((addr & 0xfff00000) == 0xac100000) {
829 mask.s_addr = htonl(0xfff00000); /* priv. 172.16.0.0/12 */
830 } else if ((addr & 0xc0000000) == 0x80000000) {
831 mask.s_addr = htonl(0xffff0000); /* class B */
832 } else if ((addr & 0xffff0000) == 0xc0a80000) {
833 mask.s_addr = htonl(0xffff0000); /* priv. 192.168.0.0/16 */
834 } else if ((addr & 0xffff0000) == 0xc6120000) {
835 mask.s_addr = htonl(0xfffe0000); /* tests 198.18.0.0/15 */
836 } else if ((addr & 0xe0000000) == 0xe0000000) {
837 mask.s_addr = htonl(0xffffff00); /* class C */
838 } else {
839 mask.s_addr = htonl(0xfffffff0); /* multicast/reserved */
840 }
841 } else {
842 if (!inet_aton(buf, &net)) {
843 return -1;
844 }
845 shift = strtol(vnetwork, &end, 10);
846 if (*end != '\0') {
847 if (!inet_aton(vnetwork, &mask)) {
848 return -1;
849 }
850 } else if (shift < 4 || shift > 32) {
851 return -1;
852 } else {
853 mask.s_addr = htonl(0xffffffff << (32 - shift));
854 }
855 }
856 net.s_addr &= mask.s_addr;
857 host.s_addr = net.s_addr | (htonl(0x0202) & ~mask.s_addr);
858 dhcp.s_addr = net.s_addr | (htonl(0x020f) & ~mask.s_addr);
859 dns.s_addr = net.s_addr | (htonl(0x0203) & ~mask.s_addr);
860 }
861
862 if (vhost && !inet_aton(vhost, &host)) {
863 return -1;
864 }
865 if ((host.s_addr & mask.s_addr) != net.s_addr) {
866 return -1;
867 }
868
869 if (vdhcp_start && !inet_aton(vdhcp_start, &dhcp)) {
870 return -1;
871 }
872 if ((dhcp.s_addr & mask.s_addr) != net.s_addr ||
873 dhcp.s_addr == host.s_addr || dhcp.s_addr == dns.s_addr) {
874 return -1;
875 }
876
877 if (vnameserver && !inet_aton(vnameserver, &dns)) {
878 return -1;
879 }
880 if ((dns.s_addr & mask.s_addr) != net.s_addr ||
881 dns.s_addr == host.s_addr) {
882 return -1;
883 }
884
885 #ifndef _WIN32
886 if (vsmbserver && !inet_aton(vsmbserver, &smbsrv)) {
887 return -1;
888 }
889 #endif
890
891 s = qemu_mallocz(sizeof(SlirpState));
892 s->slirp = slirp_init(restricted, net, mask, host, vhostname,
893 tftp_export, bootfile, dhcp, dns, s);
894 TAILQ_INSERT_TAIL(&slirp_stacks, s, entry);
895
896 while (slirp_configs) {
897 struct slirp_config_str *config = slirp_configs;
898
899 if (config->flags & SLIRP_CFG_HOSTFWD) {
900 slirp_hostfwd(s, mon, config->str,
901 config->flags & SLIRP_CFG_LEGACY);
902 } else {
903 slirp_guestfwd(s, mon, config->str,
904 config->flags & SLIRP_CFG_LEGACY);
905 }
906 slirp_configs = config->next;
907 qemu_free(config);
908 }
909 #ifndef _WIN32
910 if (!smb_export) {
911 smb_export = legacy_smb_export;
912 }
913 if (smb_export) {
914 slirp_smb(s, mon, smb_export, smbsrv);
915 }
916 #endif
917
918 s->vc = qemu_new_vlan_client(vlan, model, name, NULL, slirp_receive, NULL,
919 net_slirp_cleanup, s);
920 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
921 "net=%s, restricted=%c", inet_ntoa(net), restricted ? 'y' : 'n');
922 return 0;
923 }
924
925 static SlirpState *slirp_lookup(Monitor *mon, const char *vlan,
926 const char *stack)
927 {
928 VLANClientState *vc;
929
930 if (vlan) {
931 vc = qemu_find_vlan_client_by_name(mon, strtol(vlan, NULL, 0), stack);
932 if (!vc) {
933 return NULL;
934 }
935 if (strcmp(vc->model, "user")) {
936 monitor_printf(mon, "invalid device specified\n");
937 return NULL;
938 }
939 return vc->opaque;
940 } else {
941 if (TAILQ_EMPTY(&slirp_stacks)) {
942 monitor_printf(mon, "user mode network stack not in use\n");
943 return NULL;
944 }
945 return TAILQ_FIRST(&slirp_stacks);
946 }
947 }
948
949 void net_slirp_hostfwd_remove(Monitor *mon, const char *arg1,
950 const char *arg2, const char *arg3)
951 {
952 struct in_addr host_addr = { .s_addr = INADDR_ANY };
953 int host_port;
954 char buf[256] = "";
955 const char *src_str, *p;
956 SlirpState *s;
957 int is_udp = 0;
958 int err;
959
960 if (arg2) {
961 s = slirp_lookup(mon, arg1, arg2);
962 src_str = arg3;
963 } else {
964 s = slirp_lookup(mon, NULL, NULL);
965 src_str = arg1;
966 }
967 if (!s) {
968 return;
969 }
970
971 if (!src_str || !src_str[0])
972 goto fail_syntax;
973
974 p = src_str;
975 get_str_sep(buf, sizeof(buf), &p, ':');
976
977 if (!strcmp(buf, "tcp") || buf[0] == '\0') {
978 is_udp = 0;
979 } else if (!strcmp(buf, "udp")) {
980 is_udp = 1;
981 } else {
982 goto fail_syntax;
983 }
984
985 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
986 goto fail_syntax;
987 }
988 if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) {
989 goto fail_syntax;
990 }
991
992 host_port = atoi(p);
993
994 err = slirp_remove_hostfwd(TAILQ_FIRST(&slirp_stacks)->slirp, is_udp,
995 host_addr, host_port);
996
997 monitor_printf(mon, "host forwarding rule for %s %s\n", src_str,
998 err ? "removed" : "not found");
999 return;
1000
1001 fail_syntax:
1002 monitor_printf(mon, "invalid format\n");
1003 }
1004
1005 static void slirp_hostfwd(SlirpState *s, Monitor *mon, const char *redir_str,
1006 int legacy_format)
1007 {
1008 struct in_addr host_addr = { .s_addr = INADDR_ANY };
1009 struct in_addr guest_addr = { .s_addr = 0 };
1010 int host_port, guest_port;
1011 const char *p;
1012 char buf[256];
1013 int is_udp;
1014 char *end;
1015
1016 p = redir_str;
1017 if (!p || get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1018 goto fail_syntax;
1019 }
1020 if (!strcmp(buf, "tcp") || buf[0] == '\0') {
1021 is_udp = 0;
1022 } else if (!strcmp(buf, "udp")) {
1023 is_udp = 1;
1024 } else {
1025 goto fail_syntax;
1026 }
1027
1028 if (!legacy_format) {
1029 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1030 goto fail_syntax;
1031 }
1032 if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) {
1033 goto fail_syntax;
1034 }
1035 }
1036
1037 if (get_str_sep(buf, sizeof(buf), &p, legacy_format ? ':' : '-') < 0) {
1038 goto fail_syntax;
1039 }
1040 host_port = strtol(buf, &end, 0);
1041 if (*end != '\0' || host_port < 1 || host_port > 65535) {
1042 goto fail_syntax;
1043 }
1044
1045 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1046 goto fail_syntax;
1047 }
1048 if (buf[0] != '\0' && !inet_aton(buf, &guest_addr)) {
1049 goto fail_syntax;
1050 }
1051
1052 guest_port = strtol(p, &end, 0);
1053 if (*end != '\0' || guest_port < 1 || guest_port > 65535) {
1054 goto fail_syntax;
1055 }
1056
1057 if (slirp_add_hostfwd(s->slirp, is_udp, host_addr, host_port, guest_addr,
1058 guest_port) < 0) {
1059 config_error(mon, "could not set up host forwarding rule '%s'\n",
1060 redir_str);
1061 }
1062 return;
1063
1064 fail_syntax:
1065 config_error(mon, "invalid host forwarding rule '%s'\n", redir_str);
1066 }
1067
1068 void net_slirp_hostfwd_add(Monitor *mon, const char *arg1,
1069 const char *arg2, const char *arg3)
1070 {
1071 const char *redir_str;
1072 SlirpState *s;
1073
1074 if (arg2) {
1075 s = slirp_lookup(mon, arg1, arg2);
1076 redir_str = arg3;
1077 } else {
1078 s = slirp_lookup(mon, NULL, NULL);
1079 redir_str = arg1;
1080 }
1081 if (s) {
1082 slirp_hostfwd(s, mon, redir_str, 0);
1083 }
1084
1085 }
1086
1087 void net_slirp_redir(const char *redir_str)
1088 {
1089 struct slirp_config_str *config;
1090
1091 if (TAILQ_EMPTY(&slirp_stacks)) {
1092 config = qemu_malloc(sizeof(*config));
1093 pstrcpy(config->str, sizeof(config->str), redir_str);
1094 config->flags = SLIRP_CFG_HOSTFWD | SLIRP_CFG_LEGACY;
1095 config->next = slirp_configs;
1096 slirp_configs = config;
1097 return;
1098 }
1099
1100 slirp_hostfwd(TAILQ_FIRST(&slirp_stacks), NULL, redir_str, 1);
1101 }
1102
1103 #ifndef _WIN32
1104
1105 /* automatic user mode samba server configuration */
1106 static void slirp_smb_cleanup(SlirpState *s)
1107 {
1108 char cmd[128];
1109
1110 if (s->smb_dir[0] != '\0') {
1111 snprintf(cmd, sizeof(cmd), "rm -rf %s", s->smb_dir);
1112 system(cmd);
1113 s->smb_dir[0] = '\0';
1114 }
1115 }
1116
1117 static void slirp_smb(SlirpState* s, Monitor *mon, const char *exported_dir,
1118 struct in_addr vserver_addr)
1119 {
1120 static int instance;
1121 char smb_conf[128];
1122 char smb_cmdline[128];
1123 FILE *f;
1124
1125 snprintf(s->smb_dir, sizeof(s->smb_dir), "/tmp/qemu-smb.%ld-%d",
1126 (long)getpid(), instance++);
1127 if (mkdir(s->smb_dir, 0700) < 0) {
1128 config_error(mon, "could not create samba server dir '%s'\n",
1129 s->smb_dir);
1130 return;
1131 }
1132 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", s->smb_dir, "smb.conf");
1133
1134 f = fopen(smb_conf, "w");
1135 if (!f) {
1136 slirp_smb_cleanup(s);
1137 config_error(mon, "could not create samba server "
1138 "configuration file '%s'\n", smb_conf);
1139 return;
1140 }
1141 fprintf(f,
1142 "[global]\n"
1143 "private dir=%s\n"
1144 "smb ports=0\n"
1145 "socket address=127.0.0.1\n"
1146 "pid directory=%s\n"
1147 "lock directory=%s\n"
1148 "log file=%s/log.smbd\n"
1149 "smb passwd file=%s/smbpasswd\n"
1150 "security = share\n"
1151 "[qemu]\n"
1152 "path=%s\n"
1153 "read only=no\n"
1154 "guest ok=yes\n",
1155 s->smb_dir,
1156 s->smb_dir,
1157 s->smb_dir,
1158 s->smb_dir,
1159 s->smb_dir,
1160 exported_dir
1161 );
1162 fclose(f);
1163
1164 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
1165 SMBD_COMMAND, smb_conf);
1166
1167 if (slirp_add_exec(s->slirp, 0, smb_cmdline, &vserver_addr, 139) < 0) {
1168 slirp_smb_cleanup(s);
1169 config_error(mon, "conflicting/invalid smbserver address\n");
1170 }
1171 }
1172
1173 /* automatic user mode samba server configuration (legacy interface) */
1174 void net_slirp_smb(const char *exported_dir)
1175 {
1176 struct in_addr vserver_addr = { .s_addr = 0 };
1177
1178 if (legacy_smb_export) {
1179 fprintf(stderr, "-smb given twice\n");
1180 exit(1);
1181 }
1182 legacy_smb_export = exported_dir;
1183 if (!TAILQ_EMPTY(&slirp_stacks)) {
1184 slirp_smb(TAILQ_FIRST(&slirp_stacks), NULL, exported_dir,
1185 vserver_addr);
1186 }
1187 }
1188
1189 #endif /* !defined(_WIN32) */
1190
1191 struct GuestFwd {
1192 CharDriverState *hd;
1193 struct in_addr server;
1194 int port;
1195 Slirp *slirp;
1196 };
1197
1198 static int guestfwd_can_read(void *opaque)
1199 {
1200 struct GuestFwd *fwd = opaque;
1201 return slirp_socket_can_recv(fwd->slirp, fwd->server, fwd->port);
1202 }
1203
1204 static void guestfwd_read(void *opaque, const uint8_t *buf, int size)
1205 {
1206 struct GuestFwd *fwd = opaque;
1207 slirp_socket_recv(fwd->slirp, fwd->server, fwd->port, buf, size);
1208 }
1209
1210 static void slirp_guestfwd(SlirpState *s, Monitor *mon, const char *config_str,
1211 int legacy_format)
1212 {
1213 struct in_addr server = { .s_addr = 0 };
1214 struct GuestFwd *fwd;
1215 const char *p;
1216 char buf[128];
1217 char *end;
1218 int port;
1219
1220 p = config_str;
1221 if (legacy_format) {
1222 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1223 goto fail_syntax;
1224 }
1225 } else {
1226 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1227 goto fail_syntax;
1228 }
1229 if (strcmp(buf, "tcp") && buf[0] != '\0') {
1230 goto fail_syntax;
1231 }
1232 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1233 goto fail_syntax;
1234 }
1235 if (buf[0] != '\0' && !inet_aton(buf, &server)) {
1236 goto fail_syntax;
1237 }
1238 if (get_str_sep(buf, sizeof(buf), &p, '-') < 0) {
1239 goto fail_syntax;
1240 }
1241 }
1242 port = strtol(buf, &end, 10);
1243 if (*end != '\0' || port < 1 || port > 65535) {
1244 goto fail_syntax;
1245 }
1246
1247 fwd = qemu_malloc(sizeof(struct GuestFwd));
1248 snprintf(buf, sizeof(buf), "guestfwd.tcp:%d", port);
1249 fwd->hd = qemu_chr_open(buf, p, NULL);
1250 if (!fwd->hd) {
1251 config_error(mon, "could not open guest forwarding device '%s'\n",
1252 buf);
1253 qemu_free(fwd);
1254 return;
1255 }
1256
1257 if (slirp_add_exec(s->slirp, 3, fwd->hd, &server, port) < 0) {
1258 config_error(mon, "conflicting/invalid host:port in guest forwarding "
1259 "rule '%s'\n", config_str);
1260 qemu_free(fwd);
1261 return;
1262 }
1263 fwd->server = server;
1264 fwd->port = port;
1265 fwd->slirp = s->slirp;
1266
1267 qemu_chr_add_handlers(fwd->hd, guestfwd_can_read, guestfwd_read,
1268 NULL, fwd);
1269 return;
1270
1271 fail_syntax:
1272 config_error(mon, "invalid guest forwarding rule '%s'\n", config_str);
1273 }
1274
1275 void do_info_usernet(Monitor *mon)
1276 {
1277 SlirpState *s;
1278
1279 TAILQ_FOREACH(s, &slirp_stacks, entry) {
1280 monitor_printf(mon, "VLAN %d (%s):\n", s->vc->vlan->id, s->vc->name);
1281 slirp_connection_info(s->slirp, mon);
1282 }
1283 }
1284
1285 #endif /* CONFIG_SLIRP */
1286
1287 #ifdef _WIN32
1288
1289 int tap_has_vnet_hdr(void *opaque)
1290 {
1291 return 0;
1292 }
1293
1294 void tap_using_vnet_hdr(void *opaque, int using_vnet_hdr)
1295 {
1296 }
1297
1298 #else /* !defined(_WIN32) */
1299
1300 /* Maximum GSO packet size (64k) plus plenty of room for
1301 * the ethernet and virtio_net headers
1302 */
1303 #define TAP_BUFSIZE (4096 + 65536)
1304
1305 #ifdef IFF_VNET_HDR
1306 #include <linux/virtio_net.h>
1307 #endif
1308
1309 typedef struct TAPState {
1310 VLANClientState *vc;
1311 int fd;
1312 char down_script[1024];
1313 char down_script_arg[128];
1314 uint8_t buf[TAP_BUFSIZE];
1315 unsigned int read_poll : 1;
1316 unsigned int write_poll : 1;
1317 unsigned int has_vnet_hdr : 1;
1318 unsigned int using_vnet_hdr : 1;
1319 } TAPState;
1320
1321 static int launch_script(const char *setup_script, const char *ifname, int fd);
1322
1323 static int tap_can_send(void *opaque);
1324 static void tap_send(void *opaque);
1325 static void tap_writable(void *opaque);
1326
1327 static void tap_update_fd_handler(TAPState *s)
1328 {
1329 qemu_set_fd_handler2(s->fd,
1330 s->read_poll ? tap_can_send : NULL,
1331 s->read_poll ? tap_send : NULL,
1332 s->write_poll ? tap_writable : NULL,
1333 s);
1334 }
1335
1336 static void tap_read_poll(TAPState *s, int enable)
1337 {
1338 s->read_poll = !!enable;
1339 tap_update_fd_handler(s);
1340 }
1341
1342 static void tap_write_poll(TAPState *s, int enable)
1343 {
1344 s->write_poll = !!enable;
1345 tap_update_fd_handler(s);
1346 }
1347
1348 static void tap_writable(void *opaque)
1349 {
1350 TAPState *s = opaque;
1351
1352 tap_write_poll(s, 0);
1353
1354 qemu_flush_queued_packets(s->vc);
1355 }
1356
1357 static ssize_t tap_receive_iov(VLANClientState *vc, const struct iovec *iov,
1358 int iovcnt)
1359 {
1360 TAPState *s = vc->opaque;
1361 ssize_t len;
1362
1363 do {
1364 len = writev(s->fd, iov, iovcnt);
1365 } while (len == -1 && errno == EINTR);
1366
1367 if (len == -1 && errno == EAGAIN) {
1368 tap_write_poll(s, 1);
1369 return 0;
1370 }
1371
1372 return len;
1373 }
1374
1375 static ssize_t tap_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
1376 {
1377 struct iovec iov[2];
1378 int i = 0;
1379
1380 #ifdef IFF_VNET_HDR
1381 TAPState *s = vc->opaque;
1382 struct virtio_net_hdr hdr = { 0, };
1383
1384 if (s->has_vnet_hdr && !s->using_vnet_hdr) {
1385 iov[i].iov_base = &hdr;
1386 iov[i].iov_len = sizeof(hdr);
1387 i++;
1388 }
1389 #endif
1390
1391 iov[i].iov_base = (char *) buf;
1392 iov[i].iov_len = size;
1393 i++;
1394
1395 return tap_receive_iov(vc, iov, i);
1396 }
1397
1398 static ssize_t tap_receive_raw(VLANClientState *vc, const uint8_t *buf, size_t size)
1399 {
1400 struct iovec iov[2];
1401 int i = 0;
1402
1403 #ifdef IFF_VNET_HDR
1404 TAPState *s = vc->opaque;
1405 struct virtio_net_hdr hdr = { 0, };
1406
1407 if (s->has_vnet_hdr && s->using_vnet_hdr) {
1408 iov[i].iov_base = &hdr;
1409 iov[i].iov_len = sizeof(hdr);
1410 i++;
1411 }
1412 #endif
1413
1414 iov[i].iov_base = (char *) buf;
1415 iov[i].iov_len = size;
1416 i++;
1417
1418 return tap_receive_iov(vc, iov, i);
1419 }
1420
1421 static int tap_can_send(void *opaque)
1422 {
1423 TAPState *s = opaque;
1424
1425 return qemu_can_send_packet(s->vc);
1426 }
1427
1428 #ifdef __sun__
1429 static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen)
1430 {
1431 struct strbuf sbuf;
1432 int f = 0;
1433
1434 sbuf.maxlen = maxlen;
1435 sbuf.buf = (char *)buf;
1436
1437 return getmsg(tapfd, NULL, &sbuf, &f) >= 0 ? sbuf.len : -1;
1438 }
1439 #else
1440 static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen)
1441 {
1442 return read(tapfd, buf, maxlen);
1443 }
1444 #endif
1445
1446 static void tap_send_completed(VLANClientState *vc, ssize_t len)
1447 {
1448 TAPState *s = vc->opaque;
1449 tap_read_poll(s, 1);
1450 }
1451
1452 static void tap_send(void *opaque)
1453 {
1454 TAPState *s = opaque;
1455 int size;
1456 uint8_t *buf = s->buf;
1457
1458 size = tap_read_packet(s->fd, s->buf, sizeof(s->buf));
1459 if (size <= 0) {
1460 return;
1461 }
1462
1463 #ifdef IFF_VNET_HDR
1464 if (s->has_vnet_hdr && !s->using_vnet_hdr) {
1465 buf += sizeof(struct virtio_net_hdr);
1466 size -= sizeof(struct virtio_net_hdr);
1467 }
1468 #endif
1469
1470 size = qemu_send_packet_async(s->vc, buf, size, tap_send_completed);
1471 if (size == 0) {
1472 tap_read_poll(s, 0);
1473 }
1474 }
1475
1476 #ifdef TUNSETSNDBUF
1477 /* sndbuf should be set to a value lower than the tx queue
1478 * capacity of any destination network interface.
1479 * Ethernet NICs generally have txqueuelen=1000, so 1Mb is
1480 * a good default, given a 1500 byte MTU.
1481 */
1482 #define TAP_DEFAULT_SNDBUF 1024*1024
1483
1484 static void tap_set_sndbuf(TAPState *s, const char *sndbuf_str, Monitor *mon)
1485 {
1486 int sndbuf = TAP_DEFAULT_SNDBUF;
1487
1488 if (sndbuf_str) {
1489 sndbuf = atoi(sndbuf_str);
1490 }
1491
1492 if (!sndbuf) {
1493 sndbuf = INT_MAX;
1494 }
1495
1496 if (ioctl(s->fd, TUNSETSNDBUF, &sndbuf) == -1 && sndbuf_str) {
1497 config_error(mon, "TUNSETSNDBUF ioctl failed: %s\n",
1498 strerror(errno));
1499 }
1500 }
1501 #else
1502 static void tap_set_sndbuf(TAPState *s, const char *sndbuf_str, Monitor *mon)
1503 {
1504 if (sndbuf_str) {
1505 config_error(mon, "No '-net tap,sndbuf=<nbytes>' support available\n");
1506 }
1507 }
1508 #endif /* TUNSETSNDBUF */
1509
1510 int tap_has_vnet_hdr(void *opaque)
1511 {
1512 VLANClientState *vc = opaque;
1513 TAPState *s = vc->opaque;
1514
1515 if (vc->receive != tap_receive)
1516 return 0;
1517
1518 return s ? s->has_vnet_hdr : 0;
1519 }
1520
1521 void tap_using_vnet_hdr(void *opaque, int using_vnet_hdr)
1522 {
1523 VLANClientState *vc = opaque;
1524 TAPState *s = vc->opaque;
1525
1526 if (vc->receive != tap_receive)
1527 return;
1528
1529 if (!s || !s->has_vnet_hdr)
1530 return;
1531
1532 s->using_vnet_hdr = using_vnet_hdr != 0;
1533 }
1534
1535 static int tap_probe_vnet_hdr(int fd)
1536 {
1537 #if defined(TUNGETIFF) && defined(IFF_VNET_HDR)
1538 struct ifreq ifr;
1539
1540 if (ioctl(fd, TUNGETIFF, &ifr) != 0) {
1541 fprintf(stderr, "TUNGETIFF ioctl() failed: %s\n", strerror(errno));
1542 return 0;
1543 }
1544
1545 return ifr.ifr_flags & IFF_VNET_HDR;
1546 #else
1547 return 0;
1548 #endif
1549 }
1550
1551 #ifdef TUNSETOFFLOAD
1552 static void tap_set_offload(VLANClientState *vc, int csum, int tso4, int tso6,
1553 int ecn)
1554 {
1555 TAPState *s = vc->opaque;
1556 unsigned int offload = 0;
1557
1558 if (csum) {
1559 offload |= TUN_F_CSUM;
1560 if (tso4)
1561 offload |= TUN_F_TSO4;
1562 if (tso6)
1563 offload |= TUN_F_TSO6;
1564 if ((tso4 || tso6) && ecn)
1565 offload |= TUN_F_TSO_ECN;
1566 }
1567
1568 if (ioctl(s->fd, TUNSETOFFLOAD, offload) != 0)
1569 fprintf(stderr, "TUNSETOFFLOAD ioctl() failed: %s\n",
1570 strerror(errno));
1571 }
1572 #endif /* TUNSETOFFLOAD */
1573
1574 static void tap_cleanup(VLANClientState *vc)
1575 {
1576 TAPState *s = vc->opaque;
1577
1578 qemu_purge_queued_packets(vc);
1579
1580 if (s->down_script[0])
1581 launch_script(s->down_script, s->down_script_arg, s->fd);
1582
1583 tap_read_poll(s, 0);
1584 tap_write_poll(s, 0);
1585 close(s->fd);
1586 qemu_free(s);
1587 }
1588
1589 /* fd support */
1590
1591 static TAPState *net_tap_fd_init(VLANState *vlan,
1592 const char *model,
1593 const char *name,
1594 int fd,
1595 int vnet_hdr)
1596 {
1597 TAPState *s;
1598
1599 s = qemu_mallocz(sizeof(TAPState));
1600 s->fd = fd;
1601 s->has_vnet_hdr = vnet_hdr != 0;
1602 s->vc = qemu_new_vlan_client(vlan, model, name, NULL, tap_receive,
1603 tap_receive_iov, tap_cleanup, s);
1604 s->vc->receive_raw = tap_receive_raw;
1605 #ifdef TUNSETOFFLOAD
1606 s->vc->set_offload = tap_set_offload;
1607 tap_set_offload(s->vc, 0, 0, 0, 0);
1608 #endif
1609 tap_read_poll(s, 1);
1610 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "fd=%d", fd);
1611 return s;
1612 }
1613
1614 #if defined (HOST_BSD) || defined (__FreeBSD_kernel__)
1615 static int tap_open(char *ifname, int ifname_size)
1616 {
1617 int fd;
1618 char *dev;
1619 struct stat s;
1620
1621 TFR(fd = open("/dev/tap", O_RDWR));
1622 if (fd < 0) {
1623 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
1624 return -1;
1625 }
1626
1627 fstat(fd, &s);
1628 dev = devname(s.st_rdev, S_IFCHR);
1629 pstrcpy(ifname, ifname_size, dev);
1630
1631 fcntl(fd, F_SETFL, O_NONBLOCK);
1632 return fd;
1633 }
1634 #elif defined(__sun__)
1635 #define TUNNEWPPA (('T'<<16) | 0x0001)
1636 /*
1637 * Allocate TAP device, returns opened fd.
1638 * Stores dev name in the first arg(must be large enough).
1639 */
1640 static int tap_alloc(char *dev, size_t dev_size)
1641 {
1642 int tap_fd, if_fd, ppa = -1;
1643 static int ip_fd = 0;
1644 char *ptr;
1645
1646 static int arp_fd = 0;
1647 int ip_muxid, arp_muxid;
1648 struct strioctl strioc_if, strioc_ppa;
1649 int link_type = I_PLINK;;
1650 struct lifreq ifr;
1651 char actual_name[32] = "";
1652
1653 memset(&ifr, 0x0, sizeof(ifr));
1654
1655 if( *dev ){
1656 ptr = dev;
1657 while( *ptr && !qemu_isdigit((int)*ptr) ) ptr++;
1658 ppa = atoi(ptr);
1659 }
1660
1661 /* Check if IP device was opened */
1662 if( ip_fd )
1663 close(ip_fd);
1664
1665 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
1666 if (ip_fd < 0) {
1667 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
1668 return -1;
1669 }
1670
1671 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
1672 if (tap_fd < 0) {
1673 syslog(LOG_ERR, "Can't open /dev/tap");
1674 return -1;
1675 }
1676
1677 /* Assign a new PPA and get its unit number. */
1678 strioc_ppa.ic_cmd = TUNNEWPPA;
1679 strioc_ppa.ic_timout = 0;
1680 strioc_ppa.ic_len = sizeof(ppa);
1681 strioc_ppa.ic_dp = (char *)&ppa;
1682 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
1683 syslog (LOG_ERR, "Can't assign new interface");
1684
1685 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
1686 if (if_fd < 0) {
1687 syslog(LOG_ERR, "Can't open /dev/tap (2)");
1688 return -1;
1689 }
1690 if(ioctl(if_fd, I_PUSH, "ip") < 0){
1691 syslog(LOG_ERR, "Can't push IP module");
1692 return -1;
1693 }
1694
1695 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
1696 syslog(LOG_ERR, "Can't get flags\n");
1697
1698 snprintf (actual_name, 32, "tap%d", ppa);
1699 pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
1700
1701 ifr.lifr_ppa = ppa;
1702 /* Assign ppa according to the unit number returned by tun device */
1703
1704 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
1705 syslog (LOG_ERR, "Can't set PPA %d", ppa);
1706 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
1707 syslog (LOG_ERR, "Can't get flags\n");
1708 /* Push arp module to if_fd */
1709 if (ioctl (if_fd, I_PUSH, "arp") < 0)
1710 syslog (LOG_ERR, "Can't push ARP module (2)");
1711
1712 /* Push arp module to ip_fd */
1713 if (ioctl (ip_fd, I_POP, NULL) < 0)
1714 syslog (LOG_ERR, "I_POP failed\n");
1715 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
1716 syslog (LOG_ERR, "Can't push ARP module (3)\n");
1717 /* Open arp_fd */
1718 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
1719 if (arp_fd < 0)
1720 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
1721
1722 /* Set ifname to arp */
1723 strioc_if.ic_cmd = SIOCSLIFNAME;
1724 strioc_if.ic_timout = 0;
1725 strioc_if.ic_len = sizeof(ifr);
1726 strioc_if.ic_dp = (char *)&ifr;
1727 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
1728 syslog (LOG_ERR, "Can't set ifname to arp\n");
1729 }
1730
1731 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
1732 syslog(LOG_ERR, "Can't link TAP device to IP");
1733 return -1;
1734 }
1735
1736 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
1737 syslog (LOG_ERR, "Can't link TAP device to ARP");
1738
1739 close (if_fd);
1740
1741 memset(&ifr, 0x0, sizeof(ifr));
1742 pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
1743 ifr.lifr_ip_muxid = ip_muxid;
1744 ifr.lifr_arp_muxid = arp_muxid;
1745
1746 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
1747 {
1748 ioctl (ip_fd, I_PUNLINK , arp_muxid);
1749 ioctl (ip_fd, I_PUNLINK, ip_muxid);
1750 syslog (LOG_ERR, "Can't set multiplexor id");
1751 }
1752
1753 snprintf(dev, dev_size, "tap%d", ppa);
1754 return tap_fd;
1755 }
1756
1757 static int tap_open(char *ifname, int ifname_size, int *vnet_hdr)
1758 {
1759 char dev[10]="";
1760 int fd;
1761 if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
1762 fprintf(stderr, "Cannot allocate TAP device\n");
1763 return -1;
1764 }
1765 pstrcpy(ifname, ifname_size, dev);
1766 fcntl(fd, F_SETFL, O_NONBLOCK);
1767 return fd;
1768 }
1769 #elif defined (_AIX)
1770 static int tap_open(char *ifname, int ifname_size)
1771 {
1772 fprintf (stderr, "no tap on AIX\n");
1773 return -1;
1774 }
1775 #else
1776 static int tap_open(char *ifname, int ifname_size, int *vnet_hdr)
1777 {
1778 struct ifreq ifr;
1779 int fd, ret;
1780
1781 TFR(fd = open("/dev/net/tun", O_RDWR));
1782 if (fd < 0) {
1783 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1784 return -1;
1785 }
1786 memset(&ifr, 0, sizeof(ifr));
1787 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1788
1789 #if defined(TUNGETFEATURES) && defined(IFF_VNET_HDR)
1790 {
1791 unsigned int features;
1792
1793 if (ioctl(fd, TUNGETFEATURES, &features) == 0 &&
1794 features & IFF_VNET_HDR) {
1795 *vnet_hdr = 1;
1796 ifr.ifr_flags |= IFF_VNET_HDR;
1797 }
1798 }
1799 #endif
1800
1801 if (ifname[0] != '\0')
1802 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
1803 else
1804 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
1805 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1806 if (ret != 0) {
1807 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1808 close(fd);
1809 return -1;
1810 }
1811 pstrcpy(ifname, ifname_size, ifr.ifr_name);
1812 fcntl(fd, F_SETFL, O_NONBLOCK);
1813 return fd;
1814 }
1815 #endif
1816
1817 static int launch_script(const char *setup_script, const char *ifname, int fd)
1818 {
1819 sigset_t oldmask, mask;
1820 int pid, status;
1821 char *args[3];
1822 char **parg;
1823
1824 sigemptyset(&mask);
1825 sigaddset(&mask, SIGCHLD);
1826 sigprocmask(SIG_BLOCK, &mask, &oldmask);
1827
1828 /* try to launch network script */
1829 pid = fork();
1830 if (pid == 0) {
1831 int open_max = sysconf(_SC_OPEN_MAX), i;
1832
1833 for (i = 0; i < open_max; i++) {
1834 if (i != STDIN_FILENO &&
1835 i != STDOUT_FILENO &&
1836 i != STDERR_FILENO &&
1837 i != fd) {
1838 close(i);
1839 }
1840 }
1841 parg = args;
1842 *parg++ = (char *)setup_script;
1843 *parg++ = (char *)ifname;
1844 *parg++ = NULL;
1845 execv(setup_script, args);
1846 _exit(1);
1847 } else if (pid > 0) {
1848 while (waitpid(pid, &status, 0) != pid) {
1849 /* loop */
1850 }
1851 sigprocmask(SIG_SETMASK, &oldmask, NULL);
1852
1853 if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
1854 return 0;
1855 }
1856 }
1857 fprintf(stderr, "%s: could not launch network script\n", setup_script);
1858 return -1;
1859 }
1860
1861 static TAPState *net_tap_init(VLANState *vlan, const char *model,
1862 const char *name, const char *ifname1,
1863 const char *setup_script, const char *down_script)
1864 {
1865 TAPState *s;
1866 int fd;
1867 int vnet_hdr;
1868 char ifname[128];
1869
1870 if (ifname1 != NULL)
1871 pstrcpy(ifname, sizeof(ifname), ifname1);
1872 else
1873 ifname[0] = '\0';
1874 vnet_hdr = 0;
1875 TFR(fd = tap_open(ifname, sizeof(ifname), &vnet_hdr));
1876 if (fd < 0)
1877 return NULL;
1878
1879 if (!setup_script || !strcmp(setup_script, "no"))
1880 setup_script = "";
1881 if (setup_script[0] != '\0' &&
1882 launch_script(setup_script, ifname, fd)) {
1883 return NULL;
1884 }
1885 s = net_tap_fd_init(vlan, model, name, fd, vnet_hdr);
1886 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
1887 "ifname=%s,script=%s,downscript=%s",
1888 ifname, setup_script, down_script);
1889 if (down_script && strcmp(down_script, "no")) {
1890 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
1891 snprintf(s->down_script_arg, sizeof(s->down_script_arg), "%s", ifname);
1892 }
1893 return s;
1894 }
1895
1896 #endif /* !_WIN32 */
1897
1898 #if defined(CONFIG_VDE)
1899 typedef struct VDEState {
1900 VLANClientState *vc;
1901 VDECONN *vde;
1902 } VDEState;
1903
1904 static void vde_to_qemu(void *opaque)
1905 {
1906 VDEState *s = opaque;
1907 uint8_t buf[4096];
1908 int size;
1909
1910 size = vde_recv(s->vde, (char *)buf, sizeof(buf), 0);
1911 if (size > 0) {
1912 qemu_send_packet(s->vc, buf, size);
1913 }
1914 }
1915
1916 static ssize_t vde_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
1917 {
1918 VDEState *s = vc->opaque;
1919 ssize_t ret;
1920
1921 do {
1922 ret = vde_send(s->vde, (const char *)buf, size, 0);
1923 } while (ret < 0 && errno == EINTR);
1924
1925 return ret;
1926 }
1927
1928 static void vde_cleanup(VLANClientState *vc)
1929 {
1930 VDEState *s = vc->opaque;
1931 qemu_set_fd_handler(vde_datafd(s->vde), NULL, NULL, NULL);
1932 vde_close(s->vde);
1933 qemu_free(s);
1934 }
1935
1936 static int net_vde_init(VLANState *vlan, const char *model,
1937 const char *name, const char *sock,
1938 int port, const char *group, int mode)
1939 {
1940 VDEState *s;
1941 char *init_group = strlen(group) ? (char *)group : NULL;
1942 char *init_sock = strlen(sock) ? (char *)sock : NULL;
1943
1944 struct vde_open_args args = {
1945 .port = port,
1946 .group = init_group,
1947 .mode = mode,
1948 };
1949
1950 s = qemu_mallocz(sizeof(VDEState));
1951 s->vde = vde_open(init_sock, (char *)"QEMU", &args);
1952 if (!s->vde){
1953 free(s);
1954 return -1;
1955 }
1956 s->vc = qemu_new_vlan_client(vlan, model, name, NULL, vde_receive,
1957 NULL, vde_cleanup, s);
1958 qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
1959 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "sock=%s,fd=%d",
1960 sock, vde_datafd(s->vde));
1961 return 0;
1962 }
1963 #endif
1964
1965 /* network connection */
1966 typedef struct NetSocketState {
1967 VLANClientState *vc;
1968 int fd;
1969 int state; /* 0 = getting length, 1 = getting data */
1970 unsigned int index;
1971 unsigned int packet_len;
1972 uint8_t buf[4096];
1973 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
1974 } NetSocketState;
1975
1976 typedef struct NetSocketListenState {
1977 VLANState *vlan;
1978 char *model;
1979 char *name;
1980 int fd;
1981 } NetSocketListenState;
1982
1983 /* XXX: we consider we can send the whole packet without blocking */
1984 static ssize_t net_socket_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
1985 {
1986 NetSocketState *s = vc->opaque;
1987 uint32_t len;
1988 len = htonl(size);
1989
1990 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
1991 return send_all(s->fd, buf, size);
1992 }
1993
1994 static ssize_t net_socket_receive_dgram(VLANClientState *vc, const uint8_t *buf, size_t size)
1995 {
1996 NetSocketState *s = vc->opaque;
1997
1998 return sendto(s->fd, (const void *)buf, size, 0,
1999 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
2000 }
2001
2002 static void net_socket_send(void *opaque)
2003 {
2004 NetSocketState *s = opaque;
2005 int size, err;
2006 unsigned l;
2007 uint8_t buf1[4096];
2008 const uint8_t *buf;
2009
2010 size = recv(s->fd, (void *)buf1, sizeof(buf1), 0);
2011 if (size < 0) {
2012 err = socket_error();
2013 if (err != EWOULDBLOCK)
2014 goto eoc;
2015 } else if (size == 0) {
2016 /* end of connection */
2017 eoc:
2018 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2019 closesocket(s->fd);
2020 return;
2021 }
2022 buf = buf1;
2023 while (size > 0) {
2024 /* reassemble a packet from the network */
2025 switch(s->state) {
2026 case 0:
2027 l = 4 - s->index;
2028 if (l > size)
2029 l = size;
2030 memcpy(s->buf + s->index, buf, l);
2031 buf += l;
2032 size -= l;
2033 s->index += l;
2034 if (s->index == 4) {
2035 /* got length */
2036 s->packet_len = ntohl(*(uint32_t *)s->buf);
2037 s->index = 0;
2038 s->state = 1;
2039 }
2040 break;
2041 case 1:
2042 l = s->packet_len - s->index;
2043 if (l > size)
2044 l = size;
2045 if (s->index + l <= sizeof(s->buf)) {
2046 memcpy(s->buf + s->index, buf, l);
2047 } else {
2048 fprintf(stderr, "serious error: oversized packet received,"
2049 "connection terminated.\n");
2050 s->state = 0;
2051 goto eoc;
2052 }
2053
2054 s->index += l;
2055 buf += l;
2056 size -= l;
2057 if (s->index >= s->packet_len) {
2058 qemu_send_packet(s->vc, s->buf, s->packet_len);
2059 s->index = 0;
2060 s->state = 0;
2061 }
2062 break;
2063 }
2064 }
2065 }
2066
2067 static void net_socket_send_dgram(void *opaque)
2068 {
2069 NetSocketState *s = opaque;
2070 int size;
2071
2072 size = recv(s->fd, (void *)s->buf, sizeof(s->buf), 0);
2073 if (size < 0)
2074 return;
2075 if (size == 0) {
2076 /* end of connection */
2077 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2078 return;
2079 }
2080 qemu_send_packet(s->vc, s->buf, size);
2081 }
2082
2083 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
2084 {
2085 struct ip_mreq imr;
2086 int fd;
2087 int val, ret;
2088 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
2089 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
2090 inet_ntoa(mcastaddr->sin_addr),
2091 (int)ntohl(mcastaddr->sin_addr.s_addr));
2092 return -1;
2093
2094 }
2095 fd = socket(PF_INET, SOCK_DGRAM, 0);
2096 if (fd < 0) {
2097 perror("socket(PF_INET, SOCK_DGRAM)");
2098 return -1;
2099 }
2100
2101 val = 1;
2102 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
2103 (const char *)&val, sizeof(val));
2104 if (ret < 0) {
2105 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
2106 goto fail;
2107 }
2108
2109 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
2110 if (ret < 0) {
2111 perror("bind");
2112 goto fail;
2113 }
2114
2115 /* Add host to multicast group */
2116 imr.imr_multiaddr = mcastaddr->sin_addr;
2117 imr.imr_interface.s_addr = htonl(INADDR_ANY);
2118
2119 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
2120 (const char *)&imr, sizeof(struct ip_mreq));
2121 if (ret < 0) {
2122 perror("setsockopt(IP_ADD_MEMBERSHIP)");
2123 goto fail;
2124 }
2125
2126 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
2127 val = 1;
2128 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
2129 (const char *)&val, sizeof(val));
2130 if (ret < 0) {
2131 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
2132 goto fail;
2133 }
2134
2135 socket_set_nonblock(fd);
2136 return fd;
2137 fail:
2138 if (fd >= 0)
2139 closesocket(fd);
2140 return -1;
2141 }
2142
2143 static void net_socket_cleanup(VLANClientState *vc)
2144 {
2145 NetSocketState *s = vc->opaque;
2146 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2147 close(s->fd);
2148 qemu_free(s);
2149 }
2150
2151 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan,
2152 const char *model,
2153 const char *name,
2154 int fd, int is_connected)
2155 {
2156 struct sockaddr_in saddr;
2157 int newfd;
2158 socklen_t saddr_len;
2159 NetSocketState *s;
2160
2161 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
2162 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
2163 * by ONLY ONE process: we must "clone" this dgram socket --jjo
2164 */
2165
2166 if (is_connected) {
2167 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
2168 /* must be bound */
2169 if (saddr.sin_addr.s_addr==0) {
2170 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
2171 fd);
2172 return NULL;
2173 }
2174 /* clone dgram socket */
2175 newfd = net_socket_mcast_create(&saddr);
2176 if (newfd < 0) {
2177 /* error already reported by net_socket_mcast_create() */
2178 close(fd);
2179 return NULL;
2180 }
2181 /* clone newfd to fd, close newfd */
2182 dup2(newfd, fd);
2183 close(newfd);
2184
2185 } else {
2186 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
2187 fd, strerror(errno));
2188 return NULL;
2189 }
2190 }
2191
2192 s = qemu_mallocz(sizeof(NetSocketState));
2193 s->fd = fd;
2194
2195 s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive_dgram,
2196 NULL, net_socket_cleanup, s);
2197 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
2198
2199 /* mcast: save bound address as dst */
2200 if (is_connected) s->dgram_dst=saddr;
2201
2202 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
2203 "socket: fd=%d (%s mcast=%s:%d)",
2204 fd, is_connected? "cloned" : "",
2205 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
2206 return s;
2207 }
2208
2209 static void net_socket_connect(void *opaque)
2210 {
2211 NetSocketState *s = opaque;
2212 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
2213 }
2214
2215 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan,
2216 const char *model,
2217 const char *name,
2218 int fd, int is_connected)
2219 {
2220 NetSocketState *s;
2221 s = qemu_mallocz(sizeof(NetSocketState));
2222 s->fd = fd;
2223 s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive,
2224 NULL, net_socket_cleanup, s);
2225 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
2226 "socket: fd=%d", fd);
2227 if (is_connected) {
2228 net_socket_connect(s);
2229 } else {
2230 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
2231 }
2232 return s;
2233 }
2234
2235 static NetSocketState *net_socket_fd_init(VLANState *vlan,
2236 const char *model, const char *name,
2237 int fd, int is_connected)
2238 {
2239 int so_type=-1, optlen=sizeof(so_type);
2240
2241 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
2242 (socklen_t *)&optlen)< 0) {
2243 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
2244 return NULL;
2245 }
2246 switch(so_type) {
2247 case SOCK_DGRAM:
2248 return net_socket_fd_init_dgram(vlan, model, name, fd, is_connected);
2249 case SOCK_STREAM:
2250 return net_socket_fd_init_stream(vlan, model, name, fd, is_connected);
2251 default:
2252 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
2253 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
2254 return net_socket_fd_init_stream(vlan, model, name, fd, is_connected);
2255 }
2256 return NULL;
2257 }
2258
2259 static void net_socket_accept(void *opaque)
2260 {
2261 NetSocketListenState *s = opaque;
2262 NetSocketState *s1;
2263 struct sockaddr_in saddr;
2264 socklen_t len;
2265 int fd;
2266
2267 for(;;) {
2268 len = sizeof(saddr);
2269 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
2270 if (fd < 0 && errno != EINTR) {
2271 return;
2272 } else if (fd >= 0) {
2273 break;
2274 }
2275 }
2276 s1 = net_socket_fd_init(s->vlan, s->model, s->name, fd, 1);
2277 if (!s1) {
2278 closesocket(fd);
2279 } else {
2280 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
2281 "socket: connection from %s:%d",
2282 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
2283 }
2284 }
2285
2286 static int net_socket_listen_init(VLANState *vlan,
2287 const char *model,
2288 const char *name,
2289 const char *host_str)
2290 {
2291 NetSocketListenState *s;
2292 int fd, val, ret;
2293 struct sockaddr_in saddr;
2294
2295 if (parse_host_port(&saddr, host_str) < 0)
2296 return -1;
2297
2298 s = qemu_mallocz(sizeof(NetSocketListenState));
2299
2300 fd = socket(PF_INET, SOCK_STREAM, 0);
2301 if (fd < 0) {
2302 perror("socket");
2303 return -1;
2304 }
2305 socket_set_nonblock(fd);
2306
2307 /* allow fast reuse */
2308 val = 1;
2309 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2310
2311 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2312 if (ret < 0) {
2313 perror("bind");
2314 return -1;
2315 }
2316 ret = listen(fd, 0);
2317 if (ret < 0) {
2318 perror("listen");
2319 return -1;
2320 }
2321 s->vlan = vlan;
2322 s->model = strdup(model);
2323 s->name = name ? strdup(name) : NULL;
2324 s->fd = fd;
2325 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
2326 return 0;
2327 }
2328
2329 static int net_socket_connect_init(VLANState *vlan,
2330 const char *model,
2331 const char *name,
2332 const char *host_str)
2333 {
2334 NetSocketState *s;
2335 int fd, connected, ret, err;
2336 struct sockaddr_in saddr;
2337
2338 if (parse_host_port(&saddr, host_str) < 0)
2339 return -1;
2340
2341 fd = socket(PF_INET, SOCK_STREAM, 0);
2342 if (fd < 0) {
2343 perror("socket");
2344 return -1;
2345 }
2346 socket_set_nonblock(fd);
2347
2348 connected = 0;
2349 for(;;) {
2350 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2351 if (ret < 0) {
2352 err = socket_error();
2353 if (err == EINTR || err == EWOULDBLOCK) {
2354 } else if (err == EINPROGRESS) {
2355 break;
2356 #ifdef _WIN32
2357 } else if (err == WSAEALREADY) {
2358 break;
2359 #endif
2360 } else {
2361 perror("connect");
2362 closesocket(fd);
2363 return -1;
2364 }
2365 } else {
2366 connected = 1;
2367 break;
2368 }
2369 }
2370 s = net_socket_fd_init(vlan, model, name, fd, connected);
2371 if (!s)
2372 return -1;
2373 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
2374 "socket: connect to %s:%d",
2375 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
2376 return 0;
2377 }
2378
2379 static int net_socket_mcast_init(VLANState *vlan,
2380 const char *model,
2381 const char *name,
2382 const char *host_str)
2383 {
2384 NetSocketState *s;
2385 int fd;
2386 struct sockaddr_in saddr;
2387
2388 if (parse_host_port(&saddr, host_str) < 0)
2389 return -1;
2390
2391
2392 fd = net_socket_mcast_create(&saddr);
2393 if (fd < 0)
2394 return -1;
2395
2396 s = net_socket_fd_init(vlan, model, name, fd, 0);
2397 if (!s)
2398 return -1;
2399
2400 s->dgram_dst = saddr;
2401
2402 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
2403 "socket: mcast=%s:%d",
2404 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
2405 return 0;
2406
2407 }
2408
2409 typedef struct DumpState {
2410 VLANClientState *pcap_vc;
2411 int fd;
2412 int pcap_caplen;
2413 } DumpState;
2414
2415 #define PCAP_MAGIC 0xa1b2c3d4
2416
2417 struct pcap_file_hdr {
2418 uint32_t magic;
2419 uint16_t version_major;
2420 uint16_t version_minor;
2421 int32_t thiszone;
2422 uint32_t sigfigs;
2423 uint32_t snaplen;
2424 uint32_t linktype;
2425 };
2426
2427 struct pcap_sf_pkthdr {
2428 struct {
2429 int32_t tv_sec;
2430 int32_t tv_usec;
2431 } ts;
2432 uint32_t caplen;
2433 uint32_t len;
2434 };
2435
2436 static ssize_t dump_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
2437 {
2438 DumpState *s = vc->opaque;
2439 struct pcap_sf_pkthdr hdr;
2440 int64_t ts;
2441 int caplen;
2442
2443 /* Early return in case of previous error. */
2444 if (s->fd < 0) {
2445 return size;
2446 }
2447
2448 ts = muldiv64(qemu_get_clock(vm_clock), 1000000, ticks_per_sec);
2449 caplen = size > s->pcap_caplen ? s->pcap_caplen : size;
2450
2451 hdr.ts.tv_sec = ts / 1000000;
2452 hdr.ts.tv_usec = ts % 1000000;
2453 hdr.caplen = caplen;
2454 hdr.len = size;
2455 if (write(s->fd, &hdr, sizeof(hdr)) != sizeof(hdr) ||
2456 write(s->fd, buf, caplen) != caplen) {
2457 qemu_log("-net dump write error - stop dump\n");
2458 close(s->fd);
2459 s->fd = -1;
2460 }
2461
2462 return size;
2463 }
2464
2465 static void net_dump_cleanup(VLANClientState *vc)
2466 {
2467 DumpState *s = vc->opaque;
2468
2469 close(s->fd);
2470 qemu_free(s);
2471 }
2472
2473 static int net_dump_init(Monitor *mon, VLANState *vlan, const char *device,
2474 const char *name, const char *filename, int len)
2475 {
2476 struct pcap_file_hdr hdr;
2477 DumpState *s;
2478
2479 s = qemu_malloc(sizeof(DumpState));
2480
2481 s->fd = open(filename, O_CREAT | O_WRONLY | O_BINARY, 0644);
2482 if (s->fd < 0) {
2483 config_error(mon, "-net dump: can't open %s\n", filename);
2484 return -1;
2485 }
2486
2487 s->pcap_caplen = len;
2488
2489 hdr.magic = PCAP_MAGIC;
2490 hdr.version_major = 2;
2491 hdr.version_minor = 4;
2492 hdr.thiszone = 0;
2493 hdr.sigfigs = 0;
2494 hdr.snaplen = s->pcap_caplen;
2495 hdr.linktype = 1;
2496
2497 if (write(s->fd, &hdr, sizeof(hdr)) < sizeof(hdr)) {
2498 config_error(mon, "-net dump write error: %s\n", strerror(errno));
2499 close(s->fd);
2500 qemu_free(s);
2501 return -1;
2502 }
2503
2504 s->pcap_vc = qemu_new_vlan_client(vlan, device, name, NULL, dump_receive, NULL,
2505 net_dump_cleanup, s);
2506 snprintf(s->pcap_vc->info_str, sizeof(s->pcap_vc->info_str),
2507 "dump to %s (len=%d)", filename, len);
2508 return 0;
2509 }
2510
2511 /* find or alloc a new VLAN */
2512 VLANState *qemu_find_vlan(int id, int allocate)
2513 {
2514 VLANState **pvlan, *vlan;
2515 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
2516 if (vlan->id == id)
2517 return vlan;
2518 }
2519 if (!allocate) {
2520 return NULL;
2521 }
2522 vlan = qemu_mallocz(sizeof(VLANState));
2523 vlan->id = id;
2524 TAILQ_INIT(&vlan->send_queue);
2525 vlan->next = NULL;
2526 pvlan = &first_vlan;
2527 while (*pvlan != NULL)
2528 pvlan = &(*pvlan)->next;
2529 *pvlan = vlan;
2530 return vlan;
2531 }
2532
2533 static int nic_get_free_idx(void)
2534 {
2535 int index;
2536
2537 for (index = 0; index < MAX_NICS; index++)
2538 if (!nd_table[index].used)
2539 return index;
2540 return -1;
2541 }
2542
2543 int qemu_show_nic_models(const char *arg, const char *const *models)
2544 {
2545 int i;
2546
2547 if (!arg || strcmp(arg, "?"))
2548 return 0;
2549
2550 fprintf(stderr, "qemu: Supported NIC models: ");
2551 for (i = 0 ; models[i]; i++)
2552 fprintf(stderr, "%s%c", models[i], models[i+1] ? ',' : '\n');
2553 return 1;
2554 }
2555
2556 void qemu_check_nic_model(NICInfo *nd, const char *model)
2557 {
2558 const char *models[2];
2559
2560 models[0] = model;
2561 models[1] = NULL;
2562
2563 if (qemu_show_nic_models(nd->model, models))
2564 exit(0);
2565 if (qemu_find_nic_model(nd, models, model) < 0)
2566 exit(1);
2567 }
2568
2569 int qemu_find_nic_model(NICInfo *nd, const char * const *models,
2570 const char *default_model)
2571 {
2572 int i;
2573
2574 if (!nd->model)
2575 nd->model = qemu_strdup(default_model);
2576
2577 for (i = 0 ; models[i]; i++) {
2578 if (strcmp(nd->model, models[i]) == 0)
2579 return i;
2580 }
2581
2582 fprintf(stderr, "qemu: Unsupported NIC model: %s\n", nd->model);
2583 return -1;
2584 }
2585
2586 static int net_handle_fd_param(Monitor *mon, const char *param)
2587 {
2588 if (!qemu_isdigit(param[0])) {
2589 int fd;
2590
2591 fd = monitor_get_fd(mon, param);
2592 if (fd == -1) {
2593 config_error(mon, "No file descriptor named %s found", param);
2594 return -1;
2595 }
2596
2597 return fd;
2598 } else {
2599 return strtol(param, NULL, 0);
2600 }
2601 }
2602
2603 int net_client_init(Monitor *mon, const char *device, const char *p)
2604 {
2605 char buf[1024];
2606 int vlan_id, ret;
2607 VLANState *vlan;
2608 char *name = NULL;
2609
2610 vlan_id = 0;
2611 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
2612 vlan_id = strtol(buf, NULL, 0);
2613 }
2614 vlan = qemu_find_vlan(vlan_id, 1);
2615
2616 if (get_param_value(buf, sizeof(buf), "name", p)) {
2617 name = qemu_strdup(buf);
2618 }
2619 if (!strcmp(device, "nic")) {
2620 static const char * const nic_params[] = {
2621 "vlan", "name", "macaddr", "model", "addr", "id", "vectors", NULL
2622 };
2623 NICInfo *nd;
2624 uint8_t *macaddr;
2625 int idx = nic_get_free_idx();
2626
2627 if (check_params(buf, sizeof(buf), nic_params, p) < 0) {
2628 config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
2629 ret = -1;
2630 goto out;
2631 }
2632 if (idx == -1 || nb_nics >= MAX_NICS) {
2633 config_error(mon, "Too Many NICs\n");
2634 ret = -1;
2635 goto out;
2636 }
2637 nd = &nd_table[idx];
2638 memset(nd, 0, sizeof(*nd));
2639 macaddr = nd->macaddr;
2640 macaddr[0] = 0x52;
2641 macaddr[1] = 0x54;
2642 macaddr[2] = 0x00;
2643 macaddr[3] = 0x12;
2644 macaddr[4] = 0x34;
2645 macaddr[5] = 0x56 + idx;
2646
2647 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
2648 if (parse_macaddr(macaddr, buf) < 0) {
2649 config_error(mon, "invalid syntax for ethernet address\n");
2650 ret = -1;
2651 goto out;
2652 }
2653 }
2654 if (get_param_value(buf, sizeof(buf), "model", p)) {
2655 nd->model = qemu_strdup(buf);
2656 }
2657 if (get_param_value(buf, sizeof(buf), "addr", p)) {
2658 nd->devaddr = qemu_strdup(buf);
2659 }
2660 if (get_param_value(buf, sizeof(buf), "id", p)) {
2661 nd->id = qemu_strdup(buf);
2662 }
2663 nd->nvectors = NIC_NVECTORS_UNSPECIFIED;
2664 if (get_param_value(buf, sizeof(buf), "vectors", p)) {
2665 char *endptr;
2666 long vectors = strtol(buf, &endptr, 0);
2667 if (*endptr) {
2668 config_error(mon, "invalid syntax for # of vectors\n");
2669 ret = -1;
2670 goto out;
2671 }
2672 if (vectors < 0 || vectors > 0x7ffffff) {
2673 config_error(mon, "invalid # of vectors\n");
2674 ret = -1;
2675 goto out;
2676 }
2677 nd->nvectors = vectors;
2678 }
2679 nd->vlan = vlan;
2680 nd->name = name;
2681 nd->used = 1;
2682 name = NULL;
2683 nb_nics++;
2684 vlan->nb_guest_devs++;
2685 ret = idx;
2686 } else
2687 if (!strcmp(device, "none")) {
2688 if (*p != '\0') {
2689 config_error(mon, "'none' takes no parameters\n");
2690 ret = -1;
2691 goto out;
2692 }
2693 /* does nothing. It is needed to signal that no network cards
2694 are wanted */
2695 ret = 0;
2696 } else
2697 #ifdef CONFIG_SLIRP
2698 if (!strcmp(device, "user")) {
2699 static const char * const slirp_params[] = {
2700 "vlan", "name", "hostname", "restrict", "ip", "net", "host",
2701 "tftp", "bootfile", "dhcpstart", "dns", "smb", "smbserver",
2702 "hostfwd", "guestfwd", NULL
2703 };
2704 struct slirp_config_str *config;
2705 int restricted = 0;
2706 char *vnet = NULL;
2707 char *vhost = NULL;
2708 char *vhostname = NULL;
2709 char *tftp_export = NULL;
2710 char *bootfile = NULL;
2711 char *vdhcp_start = NULL;
2712 char *vnamesrv = NULL;
2713 char *smb_export = NULL;
2714 char *vsmbsrv = NULL;
2715 const char *q;
2716
2717 if (check_params(buf, sizeof(buf), slirp_params, p) < 0) {
2718 config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
2719 ret = -1;
2720 goto out;
2721 }
2722 if (get_param_value(buf, sizeof(buf), "ip", p)) {
2723 int vnet_buflen = strlen(buf) + strlen("/24") + 1;
2724 /* emulate legacy parameter */
2725 vnet = qemu_malloc(vnet_buflen);
2726 pstrcpy(vnet, vnet_buflen, buf);
2727 pstrcat(vnet, vnet_buflen, "/24");
2728 }
2729 if (get_param_value(buf, sizeof(buf), "net", p)) {
2730 vnet = qemu_strdup(buf);
2731 }
2732 if (get_param_value(buf, sizeof(buf), "host", p)) {
2733 vhost = qemu_strdup(buf);
2734 }
2735 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
2736 vhostname = qemu_strdup(buf);
2737 }
2738 if (get_param_value(buf, sizeof(buf), "restrict", p)) {
2739 restricted = (buf[0] == 'y') ? 1 : 0;
2740 }
2741 if (get_param_value(buf, sizeof(buf), "dhcpstart", p)) {
2742 vdhcp_start = qemu_strdup(buf);
2743 }
2744 if (get_param_value(buf, sizeof(buf), "dns", p)) {
2745 vnamesrv = qemu_strdup(buf);
2746 }
2747 if (get_param_value(buf, sizeof(buf), "tftp", p)) {
2748 tftp_export = qemu_strdup(buf);
2749 }
2750 if (get_param_value(buf, sizeof(buf), "bootfile", p)) {
2751 bootfile = qemu_strdup(buf);
2752 }
2753 if (get_param_value(buf, sizeof(buf), "smb", p)) {
2754 smb_export = qemu_strdup(buf);
2755 if (get_param_value(buf, sizeof(buf), "smbserver", p)) {
2756 vsmbsrv = qemu_strdup(buf);
2757 }
2758 }
2759 q = p;
2760 while (1) {
2761 config = qemu_malloc(sizeof(*config));
2762 if (!get_next_param_value(config->str, sizeof(config->str),
2763 "hostfwd", &q)) {
2764 break;
2765 }
2766 config->flags = SLIRP_CFG_HOSTFWD;
2767 config->next = slirp_configs;
2768 slirp_configs = config;
2769 config = NULL;
2770 }
2771 q = p;
2772 while (1) {
2773 config = qemu_malloc(sizeof(*config));
2774 if (!get_next_param_value(config->str, sizeof(config->str),
2775 "guestfwd", &q)) {
2776 break;
2777 }
2778 config->flags = 0;
2779 config->next = slirp_configs;
2780 slirp_configs = config;
2781 config = NULL;
2782 }
2783 qemu_free(config);
2784 vlan->nb_host_devs++;
2785 ret = net_slirp_init(mon, vlan, device, name, restricted, vnet, vhost,
2786 vhostname, tftp_export, bootfile, vdhcp_start,
2787 vnamesrv, smb_export, vsmbsrv);
2788 qemu_free(vnet);
2789 qemu_free(vhost);
2790 qemu_free(vhostname);
2791 qemu_free(tftp_export);
2792 qemu_free(bootfile);
2793 qemu_free(vdhcp_start);
2794 qemu_free(vnamesrv);
2795 qemu_free(smb_export);
2796 qemu_free(vsmbsrv);
2797 } else if (!strcmp(device, "channel")) {
2798 if (TAILQ_EMPTY(&slirp_stacks)) {
2799 struct slirp_config_str *config;
2800
2801 config = qemu_malloc(sizeof(*config));
2802 pstrcpy(config->str, sizeof(config->str), p);
2803 config->flags = SLIRP_CFG_LEGACY;
2804 config->next = slirp_configs;
2805 slirp_configs = config;
2806 } else {
2807 slirp_guestfwd(TAILQ_FIRST(&slirp_stacks), mon, p, 1);
2808 }
2809 ret = 0;
2810 } else
2811 #endif
2812 #ifdef _WIN32
2813 if (!strcmp(device, "tap")) {
2814 static const char * const tap_params[] = {
2815 "vlan", "name", "ifname", NULL
2816 };
2817 char ifname[64];
2818
2819 if (check_params(buf, sizeof(buf), tap_params, p) < 0) {
2820 config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
2821 ret = -1;
2822 goto out;
2823 }
2824 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
2825 config_error(mon, "tap: no interface name\n");
2826 ret = -1;
2827 goto out;
2828 }
2829 vlan->nb_host_devs++;
2830 ret = tap_win32_init(vlan, device, name, ifname);
2831 } else
2832 #elif defined (_AIX)
2833 #else
2834 if (!strcmp(device, "tap")) {
2835 char ifname[64], chkbuf[64];
2836 char setup_script[1024], down_script[1024];
2837 TAPState *s;
2838 int fd;
2839 vlan->nb_host_devs++;
2840 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
2841 static const char * const fd_params[] = {
2842 "vlan", "name", "fd", "sndbuf", NULL
2843 };
2844 ret = -1;
2845 if (check_params(chkbuf, sizeof(chkbuf), fd_params, p) < 0) {
2846 config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
2847 goto out;
2848 }
2849 fd = net_handle_fd_param(mon, buf);
2850 if (fd == -1) {
2851 goto out;
2852 }
2853 fcntl(fd, F_SETFL, O_NONBLOCK);
2854 s = net_tap_fd_init(vlan, device, name, fd, tap_probe_vnet_hdr(fd));
2855 if (!s) {
2856 close(fd);
2857 }
2858 } else {
2859 static const char * const tap_params[] = {
2860 "vlan", "name", "ifname", "script", "downscript", "sndbuf", NULL
2861 };
2862 if (check_params(chkbuf, sizeof(chkbuf), tap_params, p) < 0) {
2863 config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
2864 ret = -1;
2865 goto out;
2866 }
2867 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
2868 ifname[0] = '\0';
2869 }
2870 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
2871 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
2872 }
2873 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
2874 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
2875 }
2876 s = net_tap_init(vlan, device, name, ifname, setup_script, down_script);
2877 }
2878 if (s != NULL) {
2879 const char *sndbuf_str = NULL;
2880 if (get_param_value(buf, sizeof(buf), "sndbuf", p)) {
2881 sndbuf_str = buf;
2882 }
2883 tap_set_sndbuf(s, sndbuf_str, mon);
2884 ret = 0;
2885 } else {
2886 ret = -1;
2887 }
2888 } else
2889 #endif
2890 if (!strcmp(device, "socket")) {
2891 char chkbuf[64];
2892 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
2893 static const char * const fd_params[] = {
2894 "vlan", "name", "fd", NULL
2895 };
2896 int fd;
2897 ret = -1;
2898 if (check_params(chkbuf, sizeof(chkbuf), fd_params, p) < 0) {
2899 config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
2900 goto out;
2901 }
2902 fd = net_handle_fd_param(mon, buf);
2903 if (fd == -1) {
2904 goto out;
2905 }
2906 if (!net_socket_fd_init(vlan, device, name, fd, 1)) {
2907 close(fd);
2908 goto out;
2909 }
2910 ret = 0;
2911 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
2912 static const char * const listen_params[] = {
2913 "vlan", "name", "listen", NULL
2914 };
2915 if (check_params(chkbuf, sizeof(chkbuf), listen_params, p) < 0) {
2916 config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
2917 ret = -1;
2918 goto out;
2919 }
2920 ret = net_socket_listen_init(vlan, device, name, buf);
2921 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
2922 static const char * const connect_params[] = {
2923 "vlan", "name", "connect", NULL
2924 };
2925 if (check_params(chkbuf, sizeof(chkbuf), connect_params, p) < 0) {
2926 config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
2927 ret = -1;
2928 goto out;
2929 }
2930 ret = net_socket_connect_init(vlan, device, name, buf);
2931 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
2932 static const char * const mcast_params[] = {
2933 "vlan", "name", "mcast", NULL
2934 };
2935 if (check_params(chkbuf, sizeof(chkbuf), mcast_params, p) < 0) {
2936 config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
2937 ret = -1;
2938 goto out;
2939 }
2940 ret = net_socket_mcast_init(vlan, device, name, buf);
2941 } else {
2942 config_error(mon, "Unknown socket options: %s\n", p);
2943 ret = -1;
2944 goto out;
2945 }
2946 vlan->nb_host_devs++;
2947 } else
2948 #ifdef CONFIG_VDE
2949 if (!strcmp(device, "vde")) {
2950 static const char * const vde_params[] = {
2951 "vlan", "name", "sock", "port", "group", "mode", NULL
2952 };
2953 char vde_sock[1024], vde_group[512];
2954 int vde_port, vde_mode;
2955
2956 if (check_params(buf, sizeof(buf), vde_params, p) < 0) {
2957 config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
2958 ret = -1;
2959 goto out;
2960 }
2961 vlan->nb_host_devs++;
2962 if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
2963 vde_sock[0] = '\0';
2964 }
2965 if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
2966 vde_port = strtol(buf, NULL, 10);
2967 } else {
2968 vde_port = 0;
2969 }
2970 if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
2971 vde_group[0] = '\0';
2972 }
2973 if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
2974 vde_mode = strtol(buf, NULL, 8);
2975 } else {
2976 vde_mode = 0700;
2977 }
2978 ret = net_vde_init(vlan, device, name, vde_sock, vde_port, vde_group, vde_mode);
2979 } else
2980 #endif
2981 if (!strcmp(device, "dump")) {
2982 int len = 65536;
2983
2984 if (get_param_value(buf, sizeof(buf), "len", p) > 0) {
2985 len = strtol(buf, NULL, 0);
2986 }
2987 if (!get_param_value(buf, sizeof(buf), "file", p)) {
2988 snprintf(buf, sizeof(buf), "qemu-vlan%d.pcap", vlan_id);
2989 }
2990 ret = net_dump_init(mon, vlan, device, name, buf, len);
2991 } else {
2992 config_error(mon, "Unknown network device: %s\n", device);
2993 ret = -1;
2994 goto out;
2995 }
2996 if (ret < 0) {
2997 config_error(mon, "Could not initialize device '%s'\n", device);
2998 }
2999 out:
3000 qemu_free(name);
3001 return ret;
3002 }
3003
3004 void net_client_uninit(NICInfo *nd)
3005 {
3006 nd->vlan->nb_guest_devs--;
3007 nb_nics--;
3008
3009 qemu_free(nd->model);
3010 qemu_free(nd->name);
3011 qemu_free(nd->devaddr);
3012 qemu_free(nd->id);
3013
3014 nd->used = 0;
3015 }
3016
3017 static int net_host_check_device(const char *device)
3018 {
3019 int i;
3020 const char *valid_param_list[] = { "tap", "socket", "dump"
3021 #ifdef CONFIG_SLIRP
3022 ,"user"
3023 #endif
3024 #ifdef CONFIG_VDE
3025 ,"vde"
3026 #endif
3027 };
3028 for (i = 0; i < sizeof(valid_param_list) / sizeof(char *); i++) {
3029 if (!strncmp(valid_param_list[i], device,
3030 strlen(valid_param_list[i])))
3031 return 1;
3032 }
3033
3034 return 0;
3035 }
3036
3037 void net_host_device_add(Monitor *mon, const char *device, const char *opts)
3038 {
3039 if (!net_host_check_device(device)) {
3040 monitor_printf(mon, "invalid host network device %s\n", device);
3041 return;
3042 }
3043 if (net_client_init(mon, device, opts ? opts : "") < 0) {
3044 monitor_printf(mon, "adding host network device %s failed\n", device);
3045 }
3046 }
3047
3048 void net_host_device_remove(Monitor *mon, int vlan_id, const char *device)
3049 {
3050 VLANClientState *vc;
3051
3052 vc = qemu_find_vlan_client_by_name(mon, vlan_id, device);
3053 if (!vc) {
3054 return;
3055 }
3056 if (!net_host_check_device(vc->model)) {
3057 monitor_printf(mon, "invalid host network device %s\n", device);
3058 return;
3059 }
3060 qemu_del_vlan_client(vc);
3061 }
3062
3063 int net_client_parse(const char *str)
3064 {
3065 const char *p;
3066 char *q;
3067 char device[64];
3068
3069 p = str;
3070 q = device;
3071 while (*p != '\0' && *p != ',') {
3072 if ((q - device) < sizeof(device) - 1)
3073 *q++ = *p;
3074 p++;
3075 }
3076 *q = '\0';
3077 if (*p == ',')
3078 p++;
3079
3080 return net_client_init(NULL, device, p);
3081 }
3082
3083 void net_set_boot_mask(int net_boot_mask)
3084 {
3085 int i;
3086
3087 /* Only the first four NICs may be bootable */
3088 net_boot_mask = net_boot_mask & 0xF;
3089
3090 for (i = 0; i < nb_nics; i++) {
3091 if (net_boot_mask & (1 << i)) {
3092 nd_table[i].bootable = 1;
3093 net_boot_mask &= ~(1 << i);
3094 }
3095 }
3096
3097 if (net_boot_mask) {
3098 fprintf(stderr, "Cannot boot from non-existent NIC\n");
3099 exit(1);
3100 }
3101 }
3102
3103 void do_info_network(Monitor *mon)
3104 {
3105 VLANState *vlan;
3106 VLANClientState *vc;
3107
3108 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3109 monitor_printf(mon, "VLAN %d devices:\n", vlan->id);
3110 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
3111 monitor_printf(mon, " %s: %s\n", vc->name, vc->info_str);
3112 }
3113 }
3114
3115 void do_set_link(Monitor *mon, const char *name, const char *up_or_down)
3116 {
3117 VLANState *vlan;
3118 VLANClientState *vc = NULL;
3119
3120 for (vlan = first_vlan; vlan != NULL; vlan = vlan->next)
3121 for (vc = vlan->first_client; vc != NULL; vc = vc->next)
3122 if (strcmp(vc->name, name) == 0)
3123 goto done;
3124 done:
3125
3126 if (!vc) {
3127 monitor_printf(mon, "could not find network device '%s'\n", name);
3128 return;
3129 }
3130
3131 if (strcmp(up_or_down, "up") == 0)
3132 vc->link_down = 0;
3133 else if (strcmp(up_or_down, "down") == 0)
3134 vc->link_down = 1;
3135 else
3136 monitor_printf(mon, "invalid link status '%s'; only 'up' or 'down' "
3137 "valid\n", up_or_down);
3138
3139 if (vc->link_status_changed)
3140 vc->link_status_changed(vc);
3141 }
3142
3143 void net_cleanup(void)
3144 {
3145 VLANState *vlan;
3146
3147 /* close network clients */
3148 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3149 VLANClientState *vc = vlan->first_client;
3150
3151 while (vc) {
3152 VLANClientState *next = vc->next;
3153
3154 qemu_del_vlan_client(vc);
3155
3156 vc = next;
3157 }
3158 }
3159 }
3160
3161 void net_client_check(void)
3162 {
3163 VLANState *vlan;
3164
3165 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3166 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
3167 continue;
3168 if (vlan->nb_guest_devs == 0)
3169 fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
3170 if (vlan->nb_host_devs == 0)
3171 fprintf(stderr,
3172 "Warning: vlan %d is not connected to host network\n",
3173 vlan->id);
3174 }
3175 }