GCC: -Wextra warning: ‘static’ is not at beginning of declaration.
[pachi.git] / uct / policy / ucb1amaf.c
blob9d304d3ec1c8819761ee25e4d6c3543dc7e568b6
1 #include <assert.h>
2 #include <limits.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "move.h"
11 #include "random.h"
12 #include "tactics/util.h"
13 #include "uct/internal.h"
14 #include "uct/tree.h"
15 #include "uct/policy/generic.h"
17 /* This implements the UCB1 policy with an extra AMAF heuristics. */
19 struct ucb1_policy_amaf {
20 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
21 * paper calls 'p'. Original UCB has this on 2, but this seems to
22 * produce way too wide searches; reduce this to get deeper and
23 * narrower readouts - try 0.2. */
24 floating_t explore_p;
25 /* In distributed mode, encourage different slaves to work on different
26 * parts of the tree by adding virtual wins to different nodes. */
27 int virtual_win;
28 int root_virtual_win;
29 int vwin_min_playouts;
30 /* First Play Urgency - if set to less than infinity (the MoGo paper
31 * above reports 1.0 as the best), new branches are explored only
32 * if none of the existing ones has higher urgency than fpu. */
33 floating_t fpu;
34 unsigned int equiv_rave;
35 bool sylvain_rave;
36 /* Give more weight to moves played earlier. */
37 int distance_rave;
38 /* Give 0 or negative rave bonus to ko threats before taking the ko.
39 1=normal bonus, 0=no bonus, -1=invert rave bonus, -2=double penalty... */
40 int threat_rave;
41 /* Coefficient of local tree values embedded in RAVE. */
42 floating_t ltree_rave;
43 /* Coefficient of criticality embedded in RAVE. */
44 floating_t crit_rave;
45 int crit_min_playouts;
46 floating_t crit_plthres_coef;
47 bool crit_negative;
48 bool crit_negflip;
49 bool crit_amaf;
50 bool crit_lvalue;
54 static inline floating_t fast_sqrt(unsigned int x)
56 static const floating_t table[] = {
57 0, 1, 1.41421356237309504880, 1.73205080756887729352,
58 2.00000000000000000000, 2.23606797749978969640,
59 2.44948974278317809819, 2.64575131106459059050,
60 2.82842712474619009760, 3.00000000000000000000,
61 3.16227766016837933199, 3.31662479035539984911,
62 3.46410161513775458705, 3.60555127546398929311,
63 3.74165738677394138558, 3.87298334620741688517,
64 4.00000000000000000000, 4.12310562561766054982,
65 4.24264068711928514640, 4.35889894354067355223,
66 4.47213595499957939281, 4.58257569495584000658,
67 4.69041575982342955456, 4.79583152331271954159,
68 4.89897948556635619639, 5.00000000000000000000,
69 5.09901951359278483002, 5.19615242270663188058,
70 5.29150262212918118100, 5.38516480713450403125,
71 5.47722557505166113456, 5.56776436283002192211,
72 5.65685424949238019520, 5.74456264653802865985,
73 5.83095189484530047087, 5.91607978309961604256,
74 6.00000000000000000000, 6.08276253029821968899,
75 6.16441400296897645025, 6.24499799839839820584,
76 6.32455532033675866399, 6.40312423743284868648,
77 6.48074069840786023096, 6.55743852430200065234,
78 6.63324958071079969822, 6.70820393249936908922,
79 6.78232998312526813906, 6.85565460040104412493,
80 6.92820323027550917410, 7.00000000000000000000,
81 7.07106781186547524400, 7.14142842854284999799,
82 7.21110255092797858623, 7.28010988928051827109,
83 7.34846922834953429459, 7.41619848709566294871,
84 7.48331477354788277116, 7.54983443527074969723,
85 7.61577310586390828566, 7.68114574786860817576,
86 7.74596669241483377035, 7.81024967590665439412,
87 7.87400787401181101968, 7.93725393319377177150,
89 if (x < sizeof(table) / sizeof(*table)) {
90 return table[x];
91 } else {
92 return sqrt(x);
96 #define URAVE_DEBUG if (0)
97 static inline floating_t
98 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
100 struct ucb1_policy_amaf *b = p->data;
101 struct tree_node *node = descent->node;
102 struct tree_node *lnode = descent->lnode;
104 struct move_stats n = node->u, r = node->amaf;
105 if (p->uct->amaf_prior) {
106 stats_merge(&r, &node->prior);
107 } else {
108 stats_merge(&n, &node->prior);
111 /* Local tree heuristics. */
112 assert(!lnode || lnode->parent);
113 if (p->uct->local_tree && b->ltree_rave > 0 && lnode
114 && (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
115 struct move_stats l = lnode->u;
116 l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
117 URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
118 coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
119 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
120 stats_merge(&r, &l);
123 /* Criticality heuristics. */
124 if (b->crit_rave > 0 && (b->crit_plthres_coef > 0
125 ? node->u.playouts > tree->root->u.playouts * b->crit_plthres_coef
126 : node->u.playouts > b->crit_min_playouts)) {
127 floating_t crit = tree_node_criticality(tree, node);
128 if (b->crit_negative || crit > 0) {
129 floating_t val = 1.0f;
130 if (b->crit_negflip && crit < 0) {
131 val = 0;
132 crit = -crit;
134 struct move_stats c = {
135 .value = tree_node_get_value(tree, parity, val),
136 .playouts = crit * r.playouts * b->crit_rave
138 URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
139 c.value, c.playouts,
140 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
141 stats_merge(&r, &c);
146 floating_t value = 0;
147 if (n.playouts) {
148 if (r.playouts) {
149 /* At the beginning, beta is at 1 and RAVE is used.
150 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
151 floating_t beta;
152 if (b->sylvain_rave) {
153 beta = (floating_t) r.playouts / (r.playouts + n.playouts
154 + (floating_t) n.playouts * r.playouts / b->equiv_rave);
155 } else {
156 /* XXX: This can be cached in descend; but we don't use this by default. */
157 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
160 value = beta * r.value + (1.f - beta) * n.value;
161 URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
162 coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
163 } else {
164 value = n.value;
165 URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
166 coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
168 } else if (r.playouts) {
169 value = r.value;
170 URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
171 coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
173 descent->value.playouts = r.playouts + n.playouts;
174 descent->value.value = value;
175 return tree_node_get_value(tree, parity, value);
178 void
179 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
181 struct ucb1_policy_amaf *b = p->data;
182 floating_t nconf = 1.f;
183 if (b->explore_p > 0)
184 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
185 struct uct *u = p->uct;
186 int vwin = 0;
187 if (u->max_slaves > 0 && u->slave_index >= 0)
188 vwin = descent->node == tree->root ? b->root_virtual_win : b->virtual_win;
189 int child = 0;
191 uctd_try_node_children(tree, descent, allow_pass, parity, u->tenuki_d, di, urgency) {
192 struct tree_node *ni = di.node;
193 urgency = ucb1rave_evaluate(p, tree, &di, parity);
195 /* In distributed mode, encourage different slaves to work on different
196 * parts of the tree. We rely on the fact that children (if they exist)
197 * are the same and in the same order in all slaves. */
198 if (vwin > 0 && ni->u.playouts > b->vwin_min_playouts && (child - u->slave_index) % u->max_slaves == 0)
199 urgency += vwin / (ni->u.playouts + vwin);
201 if (ni->u.playouts > 0 && b->explore_p > 0) {
202 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
204 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
205 /* assert(!u->even_eqex); */
206 urgency = b->fpu;
208 } uctd_set_best_child(di, urgency);
210 uctd_get_best_child(descent);
214 /* Return the length of the current ko (number of moves up to to the last ko capture),
215 * 0 if the sequence is empty or doesn't start with a ko capture.
216 * B captures a ko
217 * W plays a ko threat
218 * B answers ko threat
219 * W re-captures the ko <- return 4
220 * B plays a ko threat
221 * W connects the ko */
222 static inline int ko_length(bool *ko_capture_map, int map_length)
224 if (map_length <= 0 || !ko_capture_map[0]) return 0;
225 int length = 1;
226 while (length + 2 < map_length && ko_capture_map[length + 2]) length += 3;
227 return length;
230 void
231 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
232 enum stone node_color, enum stone player_color,
233 struct playout_amafmap *map, struct board *final_board,
234 floating_t result)
236 struct ucb1_policy_amaf *b = p->data;
237 enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
239 /* Record of the random playout - for each intersection coord,
240 * first_move[coord] is the index map->game of the first move
241 * at this coordinate, or INT_MAX if the move was not played.
242 * The parity gives the color of this move.
244 int first_map[board_size2(final_board)+1];
245 int *first_move = &first_map[1]; // +1 for pass
247 #if 0
248 struct board bb; bb.size = 9+2;
249 for (struct tree_node *ni = node; ni; ni = ni->parent)
250 fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
251 fprintf(stderr, "[color %d] update result %d (color %d)\n",
252 node_color, result, player_color);
253 #endif
255 /* Initialize first_move */
256 for (int i = pass; i < board_size2(final_board); i++) first_move[i] = INT_MAX;
257 int move;
258 assert(map->gamelen > 0);
259 for (move = map->gamelen - 1; move >= map->game_baselen; move--)
260 first_move[map->game[move]] = move;
262 while (node) {
263 if (!b->crit_amaf && !is_pass(node_coord(node))) {
264 stats_add_result(&node->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), winner_color), 1);
265 stats_add_result(&node->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), S_BLACK), 1);
267 stats_add_result(&node->u, result, 1);
269 bool *ko_capture_map = &map->is_ko_capture[move+1];
270 int max_threat_dist = b->threat_rave <= 0 ? ko_length(ko_capture_map, map->gamelen - (move+1)) : -1;
272 /* This loop ignores symmetry considerations, but they should
273 * matter only at a point when AMAF doesn't help much. */
274 assert(map->game_baselen >= 0);
275 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
276 if (is_pass(node_coord(ni))) continue;
278 /* Use the child move only if it was first played by the same color. */
279 int first = first_move[node_coord(ni)];
280 if (first == INT_MAX) continue;
281 assert(first > move && first < map->gamelen);
282 int distance = first - (move + 1);
283 if (distance & 1) continue;
285 int weight = 1;
286 floating_t res = result;
288 /* Don't give amaf bonus to a ko threat before taking the ko.
289 * http://www.grappa.univ-lille3.fr/~coulom/Aja_PhD_Thesis.pdf
291 if (distance <= max_threat_dist && distance % 6 == 4) {
292 weight = - b->threat_rave;
293 res = 1.0 - res;
294 } else if (b->distance_rave != 0) {
295 /* Give more weight to moves played earlier */
296 weight += b->distance_rave * (map->gamelen - first) / (map->gamelen - move);
298 stats_add_result(&ni->amaf, res, weight);
300 if (b->crit_amaf) {
301 stats_add_result(&ni->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), winner_color), 1);
302 stats_add_result(&ni->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), S_BLACK), 1);
304 #if 0
305 struct board bb; bb.size = 9+2;
306 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
307 coord2sstr(node_coord(node), &bb), node->hash,
308 coord2sstr(node_coord(ni), &bb), ni->hash,
309 player_color, result, move, res);
310 #endif
312 if (node->parent) {
313 assert(move >= 0 && map->game[move] == node_coord(node) && first_move[node_coord(node)] > move);
314 first_move[node_coord(node)] = move;
315 move--;
317 node = node->parent;
322 struct uct_policy *
323 policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board)
325 struct uct_policy *p = calloc2(1, sizeof(*p));
326 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
327 p->uct = u;
328 p->data = b;
329 p->choose = uctp_generic_choose;
330 p->winner = uctp_generic_winner;
331 p->evaluate = ucb1rave_evaluate;
332 p->descend = ucb1rave_descend;
333 p->update = ucb1amaf_update;
334 p->wants_amaf = true;
336 b->explore_p = 0;
337 b->equiv_rave = board_large(board) ? 4000 : 3000;
338 b->fpu = INFINITY;
339 b->sylvain_rave = true;
340 b->distance_rave = 3;
341 b->threat_rave = 0;
342 b->ltree_rave = 0.75f;
344 b->crit_rave = 1.1f;
345 b->crit_min_playouts = 2000;
346 b->crit_negative = 1;
347 b->crit_amaf = 0;
349 b->root_virtual_win = -1;
350 b->vwin_min_playouts = 1000;
352 if (arg) {
353 char *optspec, *next = arg;
354 while (*next) {
355 optspec = next;
356 next += strcspn(next, ":");
357 if (*next) { *next++ = 0; } else { *next = 0; }
359 char *optname = optspec;
360 char *optval = strchr(optspec, '=');
361 if (optval) *optval++ = 0;
363 if (!strcasecmp(optname, "explore_p")) {
364 b->explore_p = atof(optval);
365 } else if (!strcasecmp(optname, "fpu") && optval) {
366 b->fpu = atof(optval);
367 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
368 b->equiv_rave = atof(optval);
369 } else if (!strcasecmp(optname, "sylvain_rave")) {
370 b->sylvain_rave = !optval || *optval == '1';
371 } else if (!strcasecmp(optname, "distance_rave") && optval) {
372 b->distance_rave = atoi(optval);
373 } else if (!strcasecmp(optname, "threat_rave") && optval) {
374 b->threat_rave = atoi(optval);
375 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
376 b->ltree_rave = atof(optval);
377 } else if (!strcasecmp(optname, "crit_rave") && optval) {
378 b->crit_rave = atof(optval);
379 } else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
380 b->crit_min_playouts = atoi(optval);
381 } else if (!strcasecmp(optname, "crit_plthres_coef") && optval) {
382 b->crit_plthres_coef = atof(optval);
383 } else if (!strcasecmp(optname, "crit_negative")) {
384 b->crit_negative = !optval || *optval == '1';
385 } else if (!strcasecmp(optname, "crit_negflip")) {
386 b->crit_negflip = !optval || *optval == '1';
387 } else if (!strcasecmp(optname, "crit_amaf")) {
388 b->crit_amaf = !optval || *optval == '1';
389 } else if (!strcasecmp(optname, "crit_lvalue")) {
390 b->crit_lvalue = !optval || *optval == '1';
391 } else if (!strcasecmp(optname, "virtual_win") && optval) {
392 b->virtual_win = atoi(optval);
393 } else if (!strcasecmp(optname, "root_virtual_win") && optval) {
394 b->root_virtual_win = atoi(optval);
395 } else if (!strcasecmp(optname, "vwin_min_playouts") && optval) {
396 b->vwin_min_playouts = atoi(optval);
397 } else {
398 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
399 optname);
400 exit(1);
404 if (b->root_virtual_win < 0)
405 b->root_virtual_win = b->virtual_win;
407 return p;