fce1cd42dff740bab04c97e1152b4053350a51ea
[openocd.git] / src / target / target.c
blobfce1cd42dff740bab04c97e1152b4053350a51ea
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm3_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
105 static struct target_type *target_types[] = {
106 &arm7tdmi_target,
107 &arm9tdmi_target,
108 &arm920t_target,
109 &arm720t_target,
110 &arm966e_target,
111 &arm946e_target,
112 &arm926ejs_target,
113 &fa526_target,
114 &feroceon_target,
115 &dragonite_target,
116 &xscale_target,
117 &cortexm3_target,
118 &cortexa8_target,
119 &cortexr4_target,
120 &arm11_target,
121 &mips_m4k_target,
122 &avr_target,
123 &dsp563xx_target,
124 &dsp5680xx_target,
125 &testee_target,
126 &avr32_ap7k_target,
127 &hla_target,
128 &nds32_v2_target,
129 &nds32_v3_target,
130 &nds32_v3m_target,
131 NULL,
134 struct target *all_targets;
135 static struct target_event_callback *target_event_callbacks;
136 static struct target_timer_callback *target_timer_callbacks;
137 static const int polling_interval = 100;
139 static const Jim_Nvp nvp_assert[] = {
140 { .name = "assert", NVP_ASSERT },
141 { .name = "deassert", NVP_DEASSERT },
142 { .name = "T", NVP_ASSERT },
143 { .name = "F", NVP_DEASSERT },
144 { .name = "t", NVP_ASSERT },
145 { .name = "f", NVP_DEASSERT },
146 { .name = NULL, .value = -1 }
149 static const Jim_Nvp nvp_error_target[] = {
150 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
151 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
152 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
153 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
154 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
155 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
156 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
157 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
158 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
159 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
160 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
161 { .value = -1, .name = NULL }
164 static const char *target_strerror_safe(int err)
166 const Jim_Nvp *n;
168 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
169 if (n->name == NULL)
170 return "unknown";
171 else
172 return n->name;
175 static const Jim_Nvp nvp_target_event[] = {
177 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
178 { .value = TARGET_EVENT_HALTED, .name = "halted" },
179 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
180 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
181 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
183 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
184 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
186 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
187 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
188 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
189 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
190 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
191 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
192 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
193 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
194 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
195 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
196 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
197 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
199 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
200 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
202 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
203 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
205 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
206 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
208 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
209 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
211 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
212 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
214 { .name = NULL, .value = -1 }
217 static const Jim_Nvp nvp_target_state[] = {
218 { .name = "unknown", .value = TARGET_UNKNOWN },
219 { .name = "running", .value = TARGET_RUNNING },
220 { .name = "halted", .value = TARGET_HALTED },
221 { .name = "reset", .value = TARGET_RESET },
222 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
223 { .name = NULL, .value = -1 },
226 static const Jim_Nvp nvp_target_debug_reason[] = {
227 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
228 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
229 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
230 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
231 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
232 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
233 { .name = "program-exit" , .value = DBG_REASON_EXIT },
234 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
235 { .name = NULL, .value = -1 },
238 static const Jim_Nvp nvp_target_endian[] = {
239 { .name = "big", .value = TARGET_BIG_ENDIAN },
240 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
241 { .name = "be", .value = TARGET_BIG_ENDIAN },
242 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
243 { .name = NULL, .value = -1 },
246 static const Jim_Nvp nvp_reset_modes[] = {
247 { .name = "unknown", .value = RESET_UNKNOWN },
248 { .name = "run" , .value = RESET_RUN },
249 { .name = "halt" , .value = RESET_HALT },
250 { .name = "init" , .value = RESET_INIT },
251 { .name = NULL , .value = -1 },
254 const char *debug_reason_name(struct target *t)
256 const char *cp;
258 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
259 t->debug_reason)->name;
260 if (!cp) {
261 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
262 cp = "(*BUG*unknown*BUG*)";
264 return cp;
267 const char *target_state_name(struct target *t)
269 const char *cp;
270 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
271 if (!cp) {
272 LOG_ERROR("Invalid target state: %d", (int)(t->state));
273 cp = "(*BUG*unknown*BUG*)";
275 return cp;
278 /* determine the number of the new target */
279 static int new_target_number(void)
281 struct target *t;
282 int x;
284 /* number is 0 based */
285 x = -1;
286 t = all_targets;
287 while (t) {
288 if (x < t->target_number)
289 x = t->target_number;
290 t = t->next;
292 return x + 1;
295 /* read a uint32_t from a buffer in target memory endianness */
296 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
298 if (target->endianness == TARGET_LITTLE_ENDIAN)
299 return le_to_h_u32(buffer);
300 else
301 return be_to_h_u32(buffer);
304 /* read a uint24_t from a buffer in target memory endianness */
305 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
307 if (target->endianness == TARGET_LITTLE_ENDIAN)
308 return le_to_h_u24(buffer);
309 else
310 return be_to_h_u24(buffer);
313 /* read a uint16_t from a buffer in target memory endianness */
314 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
316 if (target->endianness == TARGET_LITTLE_ENDIAN)
317 return le_to_h_u16(buffer);
318 else
319 return be_to_h_u16(buffer);
322 /* read a uint8_t from a buffer in target memory endianness */
323 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
325 return *buffer & 0x0ff;
328 /* write a uint32_t to a buffer in target memory endianness */
329 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 h_u32_to_le(buffer, value);
333 else
334 h_u32_to_be(buffer, value);
337 /* write a uint24_t to a buffer in target memory endianness */
338 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
340 if (target->endianness == TARGET_LITTLE_ENDIAN)
341 h_u24_to_le(buffer, value);
342 else
343 h_u24_to_be(buffer, value);
346 /* write a uint16_t to a buffer in target memory endianness */
347 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
349 if (target->endianness == TARGET_LITTLE_ENDIAN)
350 h_u16_to_le(buffer, value);
351 else
352 h_u16_to_be(buffer, value);
355 /* write a uint8_t to a buffer in target memory endianness */
356 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
358 *buffer = value;
361 /* write a uint32_t array to a buffer in target memory endianness */
362 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
364 uint32_t i;
365 for (i = 0; i < count; i++)
366 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
369 /* write a uint16_t array to a buffer in target memory endianness */
370 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
372 uint32_t i;
373 for (i = 0; i < count; i++)
374 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
377 /* write a uint32_t array to a buffer in target memory endianness */
378 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
380 uint32_t i;
381 for (i = 0; i < count; i++)
382 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
385 /* write a uint16_t array to a buffer in target memory endianness */
386 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
388 uint32_t i;
389 for (i = 0; i < count; i++)
390 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
393 /* return a pointer to a configured target; id is name or number */
394 struct target *get_target(const char *id)
396 struct target *target;
398 /* try as tcltarget name */
399 for (target = all_targets; target; target = target->next) {
400 if (target_name(target) == NULL)
401 continue;
402 if (strcmp(id, target_name(target)) == 0)
403 return target;
406 /* It's OK to remove this fallback sometime after August 2010 or so */
408 /* no match, try as number */
409 unsigned num;
410 if (parse_uint(id, &num) != ERROR_OK)
411 return NULL;
413 for (target = all_targets; target; target = target->next) {
414 if (target->target_number == (int)num) {
415 LOG_WARNING("use '%s' as target identifier, not '%u'",
416 target_name(target), num);
417 return target;
421 return NULL;
424 /* returns a pointer to the n-th configured target */
425 static struct target *get_target_by_num(int num)
427 struct target *target = all_targets;
429 while (target) {
430 if (target->target_number == num)
431 return target;
432 target = target->next;
435 return NULL;
438 struct target *get_current_target(struct command_context *cmd_ctx)
440 struct target *target = get_target_by_num(cmd_ctx->current_target);
442 if (target == NULL) {
443 LOG_ERROR("BUG: current_target out of bounds");
444 exit(-1);
447 return target;
450 int target_poll(struct target *target)
452 int retval;
454 /* We can't poll until after examine */
455 if (!target_was_examined(target)) {
456 /* Fail silently lest we pollute the log */
457 return ERROR_FAIL;
460 retval = target->type->poll(target);
461 if (retval != ERROR_OK)
462 return retval;
464 if (target->halt_issued) {
465 if (target->state == TARGET_HALTED)
466 target->halt_issued = false;
467 else {
468 long long t = timeval_ms() - target->halt_issued_time;
469 if (t > DEFAULT_HALT_TIMEOUT) {
470 target->halt_issued = false;
471 LOG_INFO("Halt timed out, wake up GDB.");
472 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
477 return ERROR_OK;
480 int target_halt(struct target *target)
482 int retval;
483 /* We can't poll until after examine */
484 if (!target_was_examined(target)) {
485 LOG_ERROR("Target not examined yet");
486 return ERROR_FAIL;
489 retval = target->type->halt(target);
490 if (retval != ERROR_OK)
491 return retval;
493 target->halt_issued = true;
494 target->halt_issued_time = timeval_ms();
496 return ERROR_OK;
500 * Make the target (re)start executing using its saved execution
501 * context (possibly with some modifications).
503 * @param target Which target should start executing.
504 * @param current True to use the target's saved program counter instead
505 * of the address parameter
506 * @param address Optionally used as the program counter.
507 * @param handle_breakpoints True iff breakpoints at the resumption PC
508 * should be skipped. (For example, maybe execution was stopped by
509 * such a breakpoint, in which case it would be counterprodutive to
510 * let it re-trigger.
511 * @param debug_execution False if all working areas allocated by OpenOCD
512 * should be released and/or restored to their original contents.
513 * (This would for example be true to run some downloaded "helper"
514 * algorithm code, which resides in one such working buffer and uses
515 * another for data storage.)
517 * @todo Resolve the ambiguity about what the "debug_execution" flag
518 * signifies. For example, Target implementations don't agree on how
519 * it relates to invalidation of the register cache, or to whether
520 * breakpoints and watchpoints should be enabled. (It would seem wrong
521 * to enable breakpoints when running downloaded "helper" algorithms
522 * (debug_execution true), since the breakpoints would be set to match
523 * target firmware being debugged, not the helper algorithm.... and
524 * enabling them could cause such helpers to malfunction (for example,
525 * by overwriting data with a breakpoint instruction. On the other
526 * hand the infrastructure for running such helpers might use this
527 * procedure but rely on hardware breakpoint to detect termination.)
529 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
531 int retval;
533 /* We can't poll until after examine */
534 if (!target_was_examined(target)) {
535 LOG_ERROR("Target not examined yet");
536 return ERROR_FAIL;
539 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
541 /* note that resume *must* be asynchronous. The CPU can halt before
542 * we poll. The CPU can even halt at the current PC as a result of
543 * a software breakpoint being inserted by (a bug?) the application.
545 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
546 if (retval != ERROR_OK)
547 return retval;
549 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
551 return retval;
554 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
556 char buf[100];
557 int retval;
558 Jim_Nvp *n;
559 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
560 if (n->name == NULL) {
561 LOG_ERROR("invalid reset mode");
562 return ERROR_FAIL;
565 /* disable polling during reset to make reset event scripts
566 * more predictable, i.e. dr/irscan & pathmove in events will
567 * not have JTAG operations injected into the middle of a sequence.
569 bool save_poll = jtag_poll_get_enabled();
571 jtag_poll_set_enabled(false);
573 sprintf(buf, "ocd_process_reset %s", n->name);
574 retval = Jim_Eval(cmd_ctx->interp, buf);
576 jtag_poll_set_enabled(save_poll);
578 if (retval != JIM_OK) {
579 Jim_MakeErrorMessage(cmd_ctx->interp);
580 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
581 return ERROR_FAIL;
584 /* We want any events to be processed before the prompt */
585 retval = target_call_timer_callbacks_now();
587 struct target *target;
588 for (target = all_targets; target; target = target->next) {
589 target->type->check_reset(target);
590 target->running_alg = false;
593 return retval;
596 static int identity_virt2phys(struct target *target,
597 uint32_t virtual, uint32_t *physical)
599 *physical = virtual;
600 return ERROR_OK;
603 static int no_mmu(struct target *target, int *enabled)
605 *enabled = 0;
606 return ERROR_OK;
609 static int default_examine(struct target *target)
611 target_set_examined(target);
612 return ERROR_OK;
615 /* no check by default */
616 static int default_check_reset(struct target *target)
618 return ERROR_OK;
621 int target_examine_one(struct target *target)
623 return target->type->examine(target);
626 static int jtag_enable_callback(enum jtag_event event, void *priv)
628 struct target *target = priv;
630 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
631 return ERROR_OK;
633 jtag_unregister_event_callback(jtag_enable_callback, target);
635 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
637 int retval = target_examine_one(target);
638 if (retval != ERROR_OK)
639 return retval;
641 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
643 return retval;
646 /* Targets that correctly implement init + examine, i.e.
647 * no communication with target during init:
649 * XScale
651 int target_examine(void)
653 int retval = ERROR_OK;
654 struct target *target;
656 for (target = all_targets; target; target = target->next) {
657 /* defer examination, but don't skip it */
658 if (!target->tap->enabled) {
659 jtag_register_event_callback(jtag_enable_callback,
660 target);
661 continue;
664 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
666 retval = target_examine_one(target);
667 if (retval != ERROR_OK)
668 return retval;
670 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
672 return retval;
675 const char *target_type_name(struct target *target)
677 return target->type->name;
680 static int target_soft_reset_halt(struct target *target)
682 if (!target_was_examined(target)) {
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
686 if (!target->type->soft_reset_halt) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
691 return target->type->soft_reset_halt(target);
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
711 int retval = ERROR_FAIL;
713 if (!target_was_examined(target)) {
714 LOG_ERROR("Target not examined yet");
715 goto done;
717 if (!target->type->run_algorithm) {
718 LOG_ERROR("Target type '%s' does not support %s",
719 target_type_name(target), __func__);
720 goto done;
723 target->running_alg = true;
724 retval = target->type->run_algorithm(target,
725 num_mem_params, mem_params,
726 num_reg_params, reg_param,
727 entry_point, exit_point, timeout_ms, arch_info);
728 target->running_alg = false;
730 done:
731 return retval;
735 * Downloads a target-specific native code algorithm to the target,
736 * executes and leaves it running.
738 * @param target used to run the algorithm
739 * @param arch_info target-specific description of the algorithm.
741 int target_start_algorithm(struct target *target,
742 int num_mem_params, struct mem_param *mem_params,
743 int num_reg_params, struct reg_param *reg_params,
744 uint32_t entry_point, uint32_t exit_point,
745 void *arch_info)
747 int retval = ERROR_FAIL;
749 if (!target_was_examined(target)) {
750 LOG_ERROR("Target not examined yet");
751 goto done;
753 if (!target->type->start_algorithm) {
754 LOG_ERROR("Target type '%s' does not support %s",
755 target_type_name(target), __func__);
756 goto done;
758 if (target->running_alg) {
759 LOG_ERROR("Target is already running an algorithm");
760 goto done;
763 target->running_alg = true;
764 retval = target->type->start_algorithm(target,
765 num_mem_params, mem_params,
766 num_reg_params, reg_params,
767 entry_point, exit_point, arch_info);
769 done:
770 return retval;
774 * Waits for an algorithm started with target_start_algorithm() to complete.
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
779 int target_wait_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t exit_point, int timeout_ms,
783 void *arch_info)
785 int retval = ERROR_FAIL;
787 if (!target->type->wait_algorithm) {
788 LOG_ERROR("Target type '%s' does not support %s",
789 target_type_name(target), __func__);
790 goto done;
792 if (!target->running_alg) {
793 LOG_ERROR("Target is not running an algorithm");
794 goto done;
797 retval = target->type->wait_algorithm(target,
798 num_mem_params, mem_params,
799 num_reg_params, reg_params,
800 exit_point, timeout_ms, arch_info);
801 if (retval != ERROR_TARGET_TIMEOUT)
802 target->running_alg = false;
804 done:
805 return retval;
809 * Executes a target-specific native code algorithm in the target.
810 * It differs from target_run_algorithm in that the algorithm is asynchronous.
811 * Because of this it requires an compliant algorithm:
812 * see contrib/loaders/flash/stm32f1x.S for example.
814 * @param target used to run the algorithm
817 int target_run_flash_async_algorithm(struct target *target,
818 uint8_t *buffer, uint32_t count, int block_size,
819 int num_mem_params, struct mem_param *mem_params,
820 int num_reg_params, struct reg_param *reg_params,
821 uint32_t buffer_start, uint32_t buffer_size,
822 uint32_t entry_point, uint32_t exit_point, void *arch_info)
824 int retval;
825 int timeout = 0;
827 /* Set up working area. First word is write pointer, second word is read pointer,
828 * rest is fifo data area. */
829 uint32_t wp_addr = buffer_start;
830 uint32_t rp_addr = buffer_start + 4;
831 uint32_t fifo_start_addr = buffer_start + 8;
832 uint32_t fifo_end_addr = buffer_start + buffer_size;
834 uint32_t wp = fifo_start_addr;
835 uint32_t rp = fifo_start_addr;
837 /* validate block_size is 2^n */
838 assert(!block_size || !(block_size & (block_size - 1)));
840 retval = target_write_u32(target, wp_addr, wp);
841 if (retval != ERROR_OK)
842 return retval;
843 retval = target_write_u32(target, rp_addr, rp);
844 if (retval != ERROR_OK)
845 return retval;
847 /* Start up algorithm on target and let it idle while writing the first chunk */
848 retval = target_start_algorithm(target, num_mem_params, mem_params,
849 num_reg_params, reg_params,
850 entry_point,
851 exit_point,
852 arch_info);
854 if (retval != ERROR_OK) {
855 LOG_ERROR("error starting target flash write algorithm");
856 return retval;
859 while (count > 0) {
861 retval = target_read_u32(target, rp_addr, &rp);
862 if (retval != ERROR_OK) {
863 LOG_ERROR("failed to get read pointer");
864 break;
867 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
869 if (rp == 0) {
870 LOG_ERROR("flash write algorithm aborted by target");
871 retval = ERROR_FLASH_OPERATION_FAILED;
872 break;
875 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
876 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
877 break;
880 /* Count the number of bytes available in the fifo without
881 * crossing the wrap around. Make sure to not fill it completely,
882 * because that would make wp == rp and that's the empty condition. */
883 uint32_t thisrun_bytes;
884 if (rp > wp)
885 thisrun_bytes = rp - wp - block_size;
886 else if (rp > fifo_start_addr)
887 thisrun_bytes = fifo_end_addr - wp;
888 else
889 thisrun_bytes = fifo_end_addr - wp - block_size;
891 if (thisrun_bytes == 0) {
892 /* Throttle polling a bit if transfer is (much) faster than flash
893 * programming. The exact delay shouldn't matter as long as it's
894 * less than buffer size / flash speed. This is very unlikely to
895 * run when using high latency connections such as USB. */
896 alive_sleep(10);
898 /* to stop an infinite loop on some targets check and increment a timeout
899 * this issue was observed on a stellaris using the new ICDI interface */
900 if (timeout++ >= 500) {
901 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
902 return ERROR_FLASH_OPERATION_FAILED;
904 continue;
907 /* reset our timeout */
908 timeout = 0;
910 /* Limit to the amount of data we actually want to write */
911 if (thisrun_bytes > count * block_size)
912 thisrun_bytes = count * block_size;
914 /* Write data to fifo */
915 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
916 if (retval != ERROR_OK)
917 break;
919 /* Update counters and wrap write pointer */
920 buffer += thisrun_bytes;
921 count -= thisrun_bytes / block_size;
922 wp += thisrun_bytes;
923 if (wp >= fifo_end_addr)
924 wp = fifo_start_addr;
926 /* Store updated write pointer to target */
927 retval = target_write_u32(target, wp_addr, wp);
928 if (retval != ERROR_OK)
929 break;
932 if (retval != ERROR_OK) {
933 /* abort flash write algorithm on target */
934 target_write_u32(target, wp_addr, 0);
937 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
938 num_reg_params, reg_params,
939 exit_point,
940 10000,
941 arch_info);
943 if (retval2 != ERROR_OK) {
944 LOG_ERROR("error waiting for target flash write algorithm");
945 retval = retval2;
948 return retval;
951 int target_read_memory(struct target *target,
952 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
954 if (!target_was_examined(target)) {
955 LOG_ERROR("Target not examined yet");
956 return ERROR_FAIL;
958 return target->type->read_memory(target, address, size, count, buffer);
961 int target_read_phys_memory(struct target *target,
962 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
964 if (!target_was_examined(target)) {
965 LOG_ERROR("Target not examined yet");
966 return ERROR_FAIL;
968 return target->type->read_phys_memory(target, address, size, count, buffer);
971 int target_write_memory(struct target *target,
972 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
974 if (!target_was_examined(target)) {
975 LOG_ERROR("Target not examined yet");
976 return ERROR_FAIL;
978 return target->type->write_memory(target, address, size, count, buffer);
981 int target_write_phys_memory(struct target *target,
982 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
984 if (!target_was_examined(target)) {
985 LOG_ERROR("Target not examined yet");
986 return ERROR_FAIL;
988 return target->type->write_phys_memory(target, address, size, count, buffer);
991 int target_add_breakpoint(struct target *target,
992 struct breakpoint *breakpoint)
994 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
995 LOG_WARNING("target %s is not halted", target_name(target));
996 return ERROR_TARGET_NOT_HALTED;
998 return target->type->add_breakpoint(target, breakpoint);
1001 int target_add_context_breakpoint(struct target *target,
1002 struct breakpoint *breakpoint)
1004 if (target->state != TARGET_HALTED) {
1005 LOG_WARNING("target %s is not halted", target_name(target));
1006 return ERROR_TARGET_NOT_HALTED;
1008 return target->type->add_context_breakpoint(target, breakpoint);
1011 int target_add_hybrid_breakpoint(struct target *target,
1012 struct breakpoint *breakpoint)
1014 if (target->state != TARGET_HALTED) {
1015 LOG_WARNING("target %s is not halted", target_name(target));
1016 return ERROR_TARGET_NOT_HALTED;
1018 return target->type->add_hybrid_breakpoint(target, breakpoint);
1021 int target_remove_breakpoint(struct target *target,
1022 struct breakpoint *breakpoint)
1024 return target->type->remove_breakpoint(target, breakpoint);
1027 int target_add_watchpoint(struct target *target,
1028 struct watchpoint *watchpoint)
1030 if (target->state != TARGET_HALTED) {
1031 LOG_WARNING("target %s is not halted", target_name(target));
1032 return ERROR_TARGET_NOT_HALTED;
1034 return target->type->add_watchpoint(target, watchpoint);
1036 int target_remove_watchpoint(struct target *target,
1037 struct watchpoint *watchpoint)
1039 return target->type->remove_watchpoint(target, watchpoint);
1041 int target_hit_watchpoint(struct target *target,
1042 struct watchpoint **hit_watchpoint)
1044 if (target->state != TARGET_HALTED) {
1045 LOG_WARNING("target %s is not halted", target->cmd_name);
1046 return ERROR_TARGET_NOT_HALTED;
1049 if (target->type->hit_watchpoint == NULL) {
1050 /* For backward compatible, if hit_watchpoint is not implemented,
1051 * return ERROR_FAIL such that gdb_server will not take the nonsense
1052 * information. */
1053 return ERROR_FAIL;
1056 return target->type->hit_watchpoint(target, hit_watchpoint);
1059 int target_get_gdb_reg_list(struct target *target,
1060 struct reg **reg_list[], int *reg_list_size,
1061 enum target_register_class reg_class)
1063 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1065 int target_step(struct target *target,
1066 int current, uint32_t address, int handle_breakpoints)
1068 return target->type->step(target, current, address, handle_breakpoints);
1071 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1073 if (target->state != TARGET_HALTED) {
1074 LOG_WARNING("target %s is not halted", target->cmd_name);
1075 return ERROR_TARGET_NOT_HALTED;
1077 return target->type->get_gdb_fileio_info(target, fileio_info);
1080 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1082 if (target->state != TARGET_HALTED) {
1083 LOG_WARNING("target %s is not halted", target->cmd_name);
1084 return ERROR_TARGET_NOT_HALTED;
1086 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1089 int target_profiling(struct target *target, uint32_t *samples,
1090 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1092 if (target->state != TARGET_HALTED) {
1093 LOG_WARNING("target %s is not halted", target->cmd_name);
1094 return ERROR_TARGET_NOT_HALTED;
1096 return target->type->profiling(target, samples, max_num_samples,
1097 num_samples, seconds);
1101 * Reset the @c examined flag for the given target.
1102 * Pure paranoia -- targets are zeroed on allocation.
1104 static void target_reset_examined(struct target *target)
1106 target->examined = false;
1109 static int err_read_phys_memory(struct target *target, uint32_t address,
1110 uint32_t size, uint32_t count, uint8_t *buffer)
1112 LOG_ERROR("Not implemented: %s", __func__);
1113 return ERROR_FAIL;
1116 static int err_write_phys_memory(struct target *target, uint32_t address,
1117 uint32_t size, uint32_t count, const uint8_t *buffer)
1119 LOG_ERROR("Not implemented: %s", __func__);
1120 return ERROR_FAIL;
1123 static int handle_target(void *priv);
1125 static int target_init_one(struct command_context *cmd_ctx,
1126 struct target *target)
1128 target_reset_examined(target);
1130 struct target_type *type = target->type;
1131 if (type->examine == NULL)
1132 type->examine = default_examine;
1134 if (type->check_reset == NULL)
1135 type->check_reset = default_check_reset;
1137 assert(type->init_target != NULL);
1139 int retval = type->init_target(cmd_ctx, target);
1140 if (ERROR_OK != retval) {
1141 LOG_ERROR("target '%s' init failed", target_name(target));
1142 return retval;
1145 /* Sanity-check MMU support ... stub in what we must, to help
1146 * implement it in stages, but warn if we need to do so.
1148 if (type->mmu) {
1149 if (type->write_phys_memory == NULL) {
1150 LOG_ERROR("type '%s' is missing write_phys_memory",
1151 type->name);
1152 type->write_phys_memory = err_write_phys_memory;
1154 if (type->read_phys_memory == NULL) {
1155 LOG_ERROR("type '%s' is missing read_phys_memory",
1156 type->name);
1157 type->read_phys_memory = err_read_phys_memory;
1159 if (type->virt2phys == NULL) {
1160 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1161 type->virt2phys = identity_virt2phys;
1163 } else {
1164 /* Make sure no-MMU targets all behave the same: make no
1165 * distinction between physical and virtual addresses, and
1166 * ensure that virt2phys() is always an identity mapping.
1168 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1169 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1171 type->mmu = no_mmu;
1172 type->write_phys_memory = type->write_memory;
1173 type->read_phys_memory = type->read_memory;
1174 type->virt2phys = identity_virt2phys;
1177 if (target->type->read_buffer == NULL)
1178 target->type->read_buffer = target_read_buffer_default;
1180 if (target->type->write_buffer == NULL)
1181 target->type->write_buffer = target_write_buffer_default;
1183 if (target->type->get_gdb_fileio_info == NULL)
1184 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1186 if (target->type->gdb_fileio_end == NULL)
1187 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1189 if (target->type->profiling == NULL)
1190 target->type->profiling = target_profiling_default;
1192 return ERROR_OK;
1195 static int target_init(struct command_context *cmd_ctx)
1197 struct target *target;
1198 int retval;
1200 for (target = all_targets; target; target = target->next) {
1201 retval = target_init_one(cmd_ctx, target);
1202 if (ERROR_OK != retval)
1203 return retval;
1206 if (!all_targets)
1207 return ERROR_OK;
1209 retval = target_register_user_commands(cmd_ctx);
1210 if (ERROR_OK != retval)
1211 return retval;
1213 retval = target_register_timer_callback(&handle_target,
1214 polling_interval, 1, cmd_ctx->interp);
1215 if (ERROR_OK != retval)
1216 return retval;
1218 return ERROR_OK;
1221 COMMAND_HANDLER(handle_target_init_command)
1223 int retval;
1225 if (CMD_ARGC != 0)
1226 return ERROR_COMMAND_SYNTAX_ERROR;
1228 static bool target_initialized;
1229 if (target_initialized) {
1230 LOG_INFO("'target init' has already been called");
1231 return ERROR_OK;
1233 target_initialized = true;
1235 retval = command_run_line(CMD_CTX, "init_targets");
1236 if (ERROR_OK != retval)
1237 return retval;
1239 retval = command_run_line(CMD_CTX, "init_board");
1240 if (ERROR_OK != retval)
1241 return retval;
1243 LOG_DEBUG("Initializing targets...");
1244 return target_init(CMD_CTX);
1247 int target_register_event_callback(int (*callback)(struct target *target,
1248 enum target_event event, void *priv), void *priv)
1250 struct target_event_callback **callbacks_p = &target_event_callbacks;
1252 if (callback == NULL)
1253 return ERROR_COMMAND_SYNTAX_ERROR;
1255 if (*callbacks_p) {
1256 while ((*callbacks_p)->next)
1257 callbacks_p = &((*callbacks_p)->next);
1258 callbacks_p = &((*callbacks_p)->next);
1261 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1262 (*callbacks_p)->callback = callback;
1263 (*callbacks_p)->priv = priv;
1264 (*callbacks_p)->next = NULL;
1266 return ERROR_OK;
1269 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1271 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1272 struct timeval now;
1274 if (callback == NULL)
1275 return ERROR_COMMAND_SYNTAX_ERROR;
1277 if (*callbacks_p) {
1278 while ((*callbacks_p)->next)
1279 callbacks_p = &((*callbacks_p)->next);
1280 callbacks_p = &((*callbacks_p)->next);
1283 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1284 (*callbacks_p)->callback = callback;
1285 (*callbacks_p)->periodic = periodic;
1286 (*callbacks_p)->time_ms = time_ms;
1288 gettimeofday(&now, NULL);
1289 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1290 time_ms -= (time_ms % 1000);
1291 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1292 if ((*callbacks_p)->when.tv_usec > 1000000) {
1293 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1294 (*callbacks_p)->when.tv_sec += 1;
1297 (*callbacks_p)->priv = priv;
1298 (*callbacks_p)->next = NULL;
1300 return ERROR_OK;
1303 int target_unregister_event_callback(int (*callback)(struct target *target,
1304 enum target_event event, void *priv), void *priv)
1306 struct target_event_callback **p = &target_event_callbacks;
1307 struct target_event_callback *c = target_event_callbacks;
1309 if (callback == NULL)
1310 return ERROR_COMMAND_SYNTAX_ERROR;
1312 while (c) {
1313 struct target_event_callback *next = c->next;
1314 if ((c->callback == callback) && (c->priv == priv)) {
1315 *p = next;
1316 free(c);
1317 return ERROR_OK;
1318 } else
1319 p = &(c->next);
1320 c = next;
1323 return ERROR_OK;
1326 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1328 struct target_timer_callback **p = &target_timer_callbacks;
1329 struct target_timer_callback *c = target_timer_callbacks;
1331 if (callback == NULL)
1332 return ERROR_COMMAND_SYNTAX_ERROR;
1334 while (c) {
1335 struct target_timer_callback *next = c->next;
1336 if ((c->callback == callback) && (c->priv == priv)) {
1337 *p = next;
1338 free(c);
1339 return ERROR_OK;
1340 } else
1341 p = &(c->next);
1342 c = next;
1345 return ERROR_OK;
1348 int target_call_event_callbacks(struct target *target, enum target_event event)
1350 struct target_event_callback *callback = target_event_callbacks;
1351 struct target_event_callback *next_callback;
1353 if (event == TARGET_EVENT_HALTED) {
1354 /* execute early halted first */
1355 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1358 LOG_DEBUG("target event %i (%s)", event,
1359 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1361 target_handle_event(target, event);
1363 while (callback) {
1364 next_callback = callback->next;
1365 callback->callback(target, event, callback->priv);
1366 callback = next_callback;
1369 return ERROR_OK;
1372 static int target_timer_callback_periodic_restart(
1373 struct target_timer_callback *cb, struct timeval *now)
1375 int time_ms = cb->time_ms;
1376 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1377 time_ms -= (time_ms % 1000);
1378 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1379 if (cb->when.tv_usec > 1000000) {
1380 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1381 cb->when.tv_sec += 1;
1383 return ERROR_OK;
1386 static int target_call_timer_callback(struct target_timer_callback *cb,
1387 struct timeval *now)
1389 cb->callback(cb->priv);
1391 if (cb->periodic)
1392 return target_timer_callback_periodic_restart(cb, now);
1394 return target_unregister_timer_callback(cb->callback, cb->priv);
1397 static int target_call_timer_callbacks_check_time(int checktime)
1399 keep_alive();
1401 struct timeval now;
1402 gettimeofday(&now, NULL);
1404 struct target_timer_callback *callback = target_timer_callbacks;
1405 while (callback) {
1406 /* cleaning up may unregister and free this callback */
1407 struct target_timer_callback *next_callback = callback->next;
1409 bool call_it = callback->callback &&
1410 ((!checktime && callback->periodic) ||
1411 now.tv_sec > callback->when.tv_sec ||
1412 (now.tv_sec == callback->when.tv_sec &&
1413 now.tv_usec >= callback->when.tv_usec));
1415 if (call_it) {
1416 int retval = target_call_timer_callback(callback, &now);
1417 if (retval != ERROR_OK)
1418 return retval;
1421 callback = next_callback;
1424 return ERROR_OK;
1427 int target_call_timer_callbacks(void)
1429 return target_call_timer_callbacks_check_time(1);
1432 /* invoke periodic callbacks immediately */
1433 int target_call_timer_callbacks_now(void)
1435 return target_call_timer_callbacks_check_time(0);
1438 /* Prints the working area layout for debug purposes */
1439 static void print_wa_layout(struct target *target)
1441 struct working_area *c = target->working_areas;
1443 while (c) {
1444 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1445 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1446 c->address, c->address + c->size - 1, c->size);
1447 c = c->next;
1451 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1452 static void target_split_working_area(struct working_area *area, uint32_t size)
1454 assert(area->free); /* Shouldn't split an allocated area */
1455 assert(size <= area->size); /* Caller should guarantee this */
1457 /* Split only if not already the right size */
1458 if (size < area->size) {
1459 struct working_area *new_wa = malloc(sizeof(*new_wa));
1461 if (new_wa == NULL)
1462 return;
1464 new_wa->next = area->next;
1465 new_wa->size = area->size - size;
1466 new_wa->address = area->address + size;
1467 new_wa->backup = NULL;
1468 new_wa->user = NULL;
1469 new_wa->free = true;
1471 area->next = new_wa;
1472 area->size = size;
1474 /* If backup memory was allocated to this area, it has the wrong size
1475 * now so free it and it will be reallocated if/when needed */
1476 if (area->backup) {
1477 free(area->backup);
1478 area->backup = NULL;
1483 /* Merge all adjacent free areas into one */
1484 static void target_merge_working_areas(struct target *target)
1486 struct working_area *c = target->working_areas;
1488 while (c && c->next) {
1489 assert(c->next->address == c->address + c->size); /* This is an invariant */
1491 /* Find two adjacent free areas */
1492 if (c->free && c->next->free) {
1493 /* Merge the last into the first */
1494 c->size += c->next->size;
1496 /* Remove the last */
1497 struct working_area *to_be_freed = c->next;
1498 c->next = c->next->next;
1499 if (to_be_freed->backup)
1500 free(to_be_freed->backup);
1501 free(to_be_freed);
1503 /* If backup memory was allocated to the remaining area, it's has
1504 * the wrong size now */
1505 if (c->backup) {
1506 free(c->backup);
1507 c->backup = NULL;
1509 } else {
1510 c = c->next;
1515 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1517 /* Reevaluate working area address based on MMU state*/
1518 if (target->working_areas == NULL) {
1519 int retval;
1520 int enabled;
1522 retval = target->type->mmu(target, &enabled);
1523 if (retval != ERROR_OK)
1524 return retval;
1526 if (!enabled) {
1527 if (target->working_area_phys_spec) {
1528 LOG_DEBUG("MMU disabled, using physical "
1529 "address for working memory 0x%08"PRIx32,
1530 target->working_area_phys);
1531 target->working_area = target->working_area_phys;
1532 } else {
1533 LOG_ERROR("No working memory available. "
1534 "Specify -work-area-phys to target.");
1535 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1537 } else {
1538 if (target->working_area_virt_spec) {
1539 LOG_DEBUG("MMU enabled, using virtual "
1540 "address for working memory 0x%08"PRIx32,
1541 target->working_area_virt);
1542 target->working_area = target->working_area_virt;
1543 } else {
1544 LOG_ERROR("No working memory available. "
1545 "Specify -work-area-virt to target.");
1546 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1550 /* Set up initial working area on first call */
1551 struct working_area *new_wa = malloc(sizeof(*new_wa));
1552 if (new_wa) {
1553 new_wa->next = NULL;
1554 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1555 new_wa->address = target->working_area;
1556 new_wa->backup = NULL;
1557 new_wa->user = NULL;
1558 new_wa->free = true;
1561 target->working_areas = new_wa;
1564 /* only allocate multiples of 4 byte */
1565 if (size % 4)
1566 size = (size + 3) & (~3UL);
1568 struct working_area *c = target->working_areas;
1570 /* Find the first large enough working area */
1571 while (c) {
1572 if (c->free && c->size >= size)
1573 break;
1574 c = c->next;
1577 if (c == NULL)
1578 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1580 /* Split the working area into the requested size */
1581 target_split_working_area(c, size);
1583 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1585 if (target->backup_working_area) {
1586 if (c->backup == NULL) {
1587 c->backup = malloc(c->size);
1588 if (c->backup == NULL)
1589 return ERROR_FAIL;
1592 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1593 if (retval != ERROR_OK)
1594 return retval;
1597 /* mark as used, and return the new (reused) area */
1598 c->free = false;
1599 *area = c;
1601 /* user pointer */
1602 c->user = area;
1604 print_wa_layout(target);
1606 return ERROR_OK;
1609 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1611 int retval;
1613 retval = target_alloc_working_area_try(target, size, area);
1614 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1615 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1616 return retval;
1620 static int target_restore_working_area(struct target *target, struct working_area *area)
1622 int retval = ERROR_OK;
1624 if (target->backup_working_area && area->backup != NULL) {
1625 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1626 if (retval != ERROR_OK)
1627 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1628 area->size, area->address);
1631 return retval;
1634 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1635 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1637 int retval = ERROR_OK;
1639 if (area->free)
1640 return retval;
1642 if (restore) {
1643 retval = target_restore_working_area(target, area);
1644 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1645 if (retval != ERROR_OK)
1646 return retval;
1649 area->free = true;
1651 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1652 area->size, area->address);
1654 /* mark user pointer invalid */
1655 /* TODO: Is this really safe? It points to some previous caller's memory.
1656 * How could we know that the area pointer is still in that place and not
1657 * some other vital data? What's the purpose of this, anyway? */
1658 *area->user = NULL;
1659 area->user = NULL;
1661 target_merge_working_areas(target);
1663 print_wa_layout(target);
1665 return retval;
1668 int target_free_working_area(struct target *target, struct working_area *area)
1670 return target_free_working_area_restore(target, area, 1);
1673 /* free resources and restore memory, if restoring memory fails,
1674 * free up resources anyway
1676 static void target_free_all_working_areas_restore(struct target *target, int restore)
1678 struct working_area *c = target->working_areas;
1680 LOG_DEBUG("freeing all working areas");
1682 /* Loop through all areas, restoring the allocated ones and marking them as free */
1683 while (c) {
1684 if (!c->free) {
1685 if (restore)
1686 target_restore_working_area(target, c);
1687 c->free = true;
1688 *c->user = NULL; /* Same as above */
1689 c->user = NULL;
1691 c = c->next;
1694 /* Run a merge pass to combine all areas into one */
1695 target_merge_working_areas(target);
1697 print_wa_layout(target);
1700 void target_free_all_working_areas(struct target *target)
1702 target_free_all_working_areas_restore(target, 1);
1705 /* Find the largest number of bytes that can be allocated */
1706 uint32_t target_get_working_area_avail(struct target *target)
1708 struct working_area *c = target->working_areas;
1709 uint32_t max_size = 0;
1711 if (c == NULL)
1712 return target->working_area_size;
1714 while (c) {
1715 if (c->free && max_size < c->size)
1716 max_size = c->size;
1718 c = c->next;
1721 return max_size;
1724 int target_arch_state(struct target *target)
1726 int retval;
1727 if (target == NULL) {
1728 LOG_USER("No target has been configured");
1729 return ERROR_OK;
1732 LOG_USER("target state: %s", target_state_name(target));
1734 if (target->state != TARGET_HALTED)
1735 return ERROR_OK;
1737 retval = target->type->arch_state(target);
1738 return retval;
1741 static int target_get_gdb_fileio_info_default(struct target *target,
1742 struct gdb_fileio_info *fileio_info)
1744 /* If target does not support semi-hosting function, target
1745 has no need to provide .get_gdb_fileio_info callback.
1746 It just return ERROR_FAIL and gdb_server will return "Txx"
1747 as target halted every time. */
1748 return ERROR_FAIL;
1751 static int target_gdb_fileio_end_default(struct target *target,
1752 int retcode, int fileio_errno, bool ctrl_c)
1754 return ERROR_OK;
1757 static int target_profiling_default(struct target *target, uint32_t *samples,
1758 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1760 struct timeval timeout, now;
1762 gettimeofday(&timeout, NULL);
1763 timeval_add_time(&timeout, seconds, 0);
1765 LOG_INFO("Starting profiling. Halting and resuming the"
1766 " target as often as we can...");
1768 uint32_t sample_count = 0;
1769 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1770 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1772 int retval = ERROR_OK;
1773 for (;;) {
1774 target_poll(target);
1775 if (target->state == TARGET_HALTED) {
1776 uint32_t t = *((uint32_t *)reg->value);
1777 samples[sample_count++] = t;
1778 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1779 retval = target_resume(target, 1, 0, 0, 0);
1780 target_poll(target);
1781 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1782 } else if (target->state == TARGET_RUNNING) {
1783 /* We want to quickly sample the PC. */
1784 retval = target_halt(target);
1785 } else {
1786 LOG_INFO("Target not halted or running");
1787 retval = ERROR_OK;
1788 break;
1791 if (retval != ERROR_OK)
1792 break;
1794 gettimeofday(&now, NULL);
1795 if ((sample_count >= max_num_samples) ||
1796 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1797 LOG_INFO("Profiling completed. %d samples.", sample_count);
1798 break;
1802 *num_samples = sample_count;
1803 return retval;
1806 /* Single aligned words are guaranteed to use 16 or 32 bit access
1807 * mode respectively, otherwise data is handled as quickly as
1808 * possible
1810 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1812 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1813 (int)size, (unsigned)address);
1815 if (!target_was_examined(target)) {
1816 LOG_ERROR("Target not examined yet");
1817 return ERROR_FAIL;
1820 if (size == 0)
1821 return ERROR_OK;
1823 if ((address + size - 1) < address) {
1824 /* GDB can request this when e.g. PC is 0xfffffffc*/
1825 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1826 (unsigned)address,
1827 (unsigned)size);
1828 return ERROR_FAIL;
1831 return target->type->write_buffer(target, address, size, buffer);
1834 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1836 uint32_t size;
1838 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1839 * will have something to do with the size we leave to it. */
1840 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1841 if (address & size) {
1842 int retval = target_write_memory(target, address, size, 1, buffer);
1843 if (retval != ERROR_OK)
1844 return retval;
1845 address += size;
1846 count -= size;
1847 buffer += size;
1851 /* Write the data with as large access size as possible. */
1852 for (; size > 0; size /= 2) {
1853 uint32_t aligned = count - count % size;
1854 if (aligned > 0) {
1855 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1856 if (retval != ERROR_OK)
1857 return retval;
1858 address += aligned;
1859 count -= aligned;
1860 buffer += aligned;
1864 return ERROR_OK;
1867 /* Single aligned words are guaranteed to use 16 or 32 bit access
1868 * mode respectively, otherwise data is handled as quickly as
1869 * possible
1871 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1873 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1874 (int)size, (unsigned)address);
1876 if (!target_was_examined(target)) {
1877 LOG_ERROR("Target not examined yet");
1878 return ERROR_FAIL;
1881 if (size == 0)
1882 return ERROR_OK;
1884 if ((address + size - 1) < address) {
1885 /* GDB can request this when e.g. PC is 0xfffffffc*/
1886 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1887 address,
1888 size);
1889 return ERROR_FAIL;
1892 return target->type->read_buffer(target, address, size, buffer);
1895 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1897 uint32_t size;
1899 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1900 * will have something to do with the size we leave to it. */
1901 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1902 if (address & size) {
1903 int retval = target_read_memory(target, address, size, 1, buffer);
1904 if (retval != ERROR_OK)
1905 return retval;
1906 address += size;
1907 count -= size;
1908 buffer += size;
1912 /* Read the data with as large access size as possible. */
1913 for (; size > 0; size /= 2) {
1914 uint32_t aligned = count - count % size;
1915 if (aligned > 0) {
1916 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1917 if (retval != ERROR_OK)
1918 return retval;
1919 address += aligned;
1920 count -= aligned;
1921 buffer += aligned;
1925 return ERROR_OK;
1928 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1930 uint8_t *buffer;
1931 int retval;
1932 uint32_t i;
1933 uint32_t checksum = 0;
1934 if (!target_was_examined(target)) {
1935 LOG_ERROR("Target not examined yet");
1936 return ERROR_FAIL;
1939 retval = target->type->checksum_memory(target, address, size, &checksum);
1940 if (retval != ERROR_OK) {
1941 buffer = malloc(size);
1942 if (buffer == NULL) {
1943 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1944 return ERROR_COMMAND_SYNTAX_ERROR;
1946 retval = target_read_buffer(target, address, size, buffer);
1947 if (retval != ERROR_OK) {
1948 free(buffer);
1949 return retval;
1952 /* convert to target endianness */
1953 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1954 uint32_t target_data;
1955 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1956 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1959 retval = image_calculate_checksum(buffer, size, &checksum);
1960 free(buffer);
1963 *crc = checksum;
1965 return retval;
1968 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1970 int retval;
1971 if (!target_was_examined(target)) {
1972 LOG_ERROR("Target not examined yet");
1973 return ERROR_FAIL;
1976 if (target->type->blank_check_memory == 0)
1977 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1979 retval = target->type->blank_check_memory(target, address, size, blank);
1981 return retval;
1984 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1986 uint8_t value_buf[4];
1987 if (!target_was_examined(target)) {
1988 LOG_ERROR("Target not examined yet");
1989 return ERROR_FAIL;
1992 int retval = target_read_memory(target, address, 4, 1, value_buf);
1994 if (retval == ERROR_OK) {
1995 *value = target_buffer_get_u32(target, value_buf);
1996 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1997 address,
1998 *value);
1999 } else {
2000 *value = 0x0;
2001 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2002 address);
2005 return retval;
2008 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2010 uint8_t value_buf[2];
2011 if (!target_was_examined(target)) {
2012 LOG_ERROR("Target not examined yet");
2013 return ERROR_FAIL;
2016 int retval = target_read_memory(target, address, 2, 1, value_buf);
2018 if (retval == ERROR_OK) {
2019 *value = target_buffer_get_u16(target, value_buf);
2020 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2021 address,
2022 *value);
2023 } else {
2024 *value = 0x0;
2025 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2026 address);
2029 return retval;
2032 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2034 int retval = target_read_memory(target, address, 1, 1, value);
2035 if (!target_was_examined(target)) {
2036 LOG_ERROR("Target not examined yet");
2037 return ERROR_FAIL;
2040 if (retval == ERROR_OK) {
2041 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2042 address,
2043 *value);
2044 } else {
2045 *value = 0x0;
2046 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2047 address);
2050 return retval;
2053 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2055 int retval;
2056 uint8_t value_buf[4];
2057 if (!target_was_examined(target)) {
2058 LOG_ERROR("Target not examined yet");
2059 return ERROR_FAIL;
2062 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063 address,
2064 value);
2066 target_buffer_set_u32(target, value_buf, value);
2067 retval = target_write_memory(target, address, 4, 1, value_buf);
2068 if (retval != ERROR_OK)
2069 LOG_DEBUG("failed: %i", retval);
2071 return retval;
2074 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2076 int retval;
2077 uint8_t value_buf[2];
2078 if (!target_was_examined(target)) {
2079 LOG_ERROR("Target not examined yet");
2080 return ERROR_FAIL;
2083 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2084 address,
2085 value);
2087 target_buffer_set_u16(target, value_buf, value);
2088 retval = target_write_memory(target, address, 2, 1, value_buf);
2089 if (retval != ERROR_OK)
2090 LOG_DEBUG("failed: %i", retval);
2092 return retval;
2095 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2097 int retval;
2098 if (!target_was_examined(target)) {
2099 LOG_ERROR("Target not examined yet");
2100 return ERROR_FAIL;
2103 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2104 address, value);
2106 retval = target_write_memory(target, address, 1, 1, &value);
2107 if (retval != ERROR_OK)
2108 LOG_DEBUG("failed: %i", retval);
2110 return retval;
2113 static int find_target(struct command_context *cmd_ctx, const char *name)
2115 struct target *target = get_target(name);
2116 if (target == NULL) {
2117 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2118 return ERROR_FAIL;
2120 if (!target->tap->enabled) {
2121 LOG_USER("Target: TAP %s is disabled, "
2122 "can't be the current target\n",
2123 target->tap->dotted_name);
2124 return ERROR_FAIL;
2127 cmd_ctx->current_target = target->target_number;
2128 return ERROR_OK;
2132 COMMAND_HANDLER(handle_targets_command)
2134 int retval = ERROR_OK;
2135 if (CMD_ARGC == 1) {
2136 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2137 if (retval == ERROR_OK) {
2138 /* we're done! */
2139 return retval;
2143 struct target *target = all_targets;
2144 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2145 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2146 while (target) {
2147 const char *state;
2148 char marker = ' ';
2150 if (target->tap->enabled)
2151 state = target_state_name(target);
2152 else
2153 state = "tap-disabled";
2155 if (CMD_CTX->current_target == target->target_number)
2156 marker = '*';
2158 /* keep columns lined up to match the headers above */
2159 command_print(CMD_CTX,
2160 "%2d%c %-18s %-10s %-6s %-18s %s",
2161 target->target_number,
2162 marker,
2163 target_name(target),
2164 target_type_name(target),
2165 Jim_Nvp_value2name_simple(nvp_target_endian,
2166 target->endianness)->name,
2167 target->tap->dotted_name,
2168 state);
2169 target = target->next;
2172 return retval;
2175 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2177 static int powerDropout;
2178 static int srstAsserted;
2180 static int runPowerRestore;
2181 static int runPowerDropout;
2182 static int runSrstAsserted;
2183 static int runSrstDeasserted;
2185 static int sense_handler(void)
2187 static int prevSrstAsserted;
2188 static int prevPowerdropout;
2190 int retval = jtag_power_dropout(&powerDropout);
2191 if (retval != ERROR_OK)
2192 return retval;
2194 int powerRestored;
2195 powerRestored = prevPowerdropout && !powerDropout;
2196 if (powerRestored)
2197 runPowerRestore = 1;
2199 long long current = timeval_ms();
2200 static long long lastPower;
2201 int waitMore = lastPower + 2000 > current;
2202 if (powerDropout && !waitMore) {
2203 runPowerDropout = 1;
2204 lastPower = current;
2207 retval = jtag_srst_asserted(&srstAsserted);
2208 if (retval != ERROR_OK)
2209 return retval;
2211 int srstDeasserted;
2212 srstDeasserted = prevSrstAsserted && !srstAsserted;
2214 static long long lastSrst;
2215 waitMore = lastSrst + 2000 > current;
2216 if (srstDeasserted && !waitMore) {
2217 runSrstDeasserted = 1;
2218 lastSrst = current;
2221 if (!prevSrstAsserted && srstAsserted)
2222 runSrstAsserted = 1;
2224 prevSrstAsserted = srstAsserted;
2225 prevPowerdropout = powerDropout;
2227 if (srstDeasserted || powerRestored) {
2228 /* Other than logging the event we can't do anything here.
2229 * Issuing a reset is a particularly bad idea as we might
2230 * be inside a reset already.
2234 return ERROR_OK;
2237 /* process target state changes */
2238 static int handle_target(void *priv)
2240 Jim_Interp *interp = (Jim_Interp *)priv;
2241 int retval = ERROR_OK;
2243 if (!is_jtag_poll_safe()) {
2244 /* polling is disabled currently */
2245 return ERROR_OK;
2248 /* we do not want to recurse here... */
2249 static int recursive;
2250 if (!recursive) {
2251 recursive = 1;
2252 sense_handler();
2253 /* danger! running these procedures can trigger srst assertions and power dropouts.
2254 * We need to avoid an infinite loop/recursion here and we do that by
2255 * clearing the flags after running these events.
2257 int did_something = 0;
2258 if (runSrstAsserted) {
2259 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2260 Jim_Eval(interp, "srst_asserted");
2261 did_something = 1;
2263 if (runSrstDeasserted) {
2264 Jim_Eval(interp, "srst_deasserted");
2265 did_something = 1;
2267 if (runPowerDropout) {
2268 LOG_INFO("Power dropout detected, running power_dropout proc.");
2269 Jim_Eval(interp, "power_dropout");
2270 did_something = 1;
2272 if (runPowerRestore) {
2273 Jim_Eval(interp, "power_restore");
2274 did_something = 1;
2277 if (did_something) {
2278 /* clear detect flags */
2279 sense_handler();
2282 /* clear action flags */
2284 runSrstAsserted = 0;
2285 runSrstDeasserted = 0;
2286 runPowerRestore = 0;
2287 runPowerDropout = 0;
2289 recursive = 0;
2292 /* Poll targets for state changes unless that's globally disabled.
2293 * Skip targets that are currently disabled.
2295 for (struct target *target = all_targets;
2296 is_jtag_poll_safe() && target;
2297 target = target->next) {
2298 if (!target->tap->enabled)
2299 continue;
2301 if (target->backoff.times > target->backoff.count) {
2302 /* do not poll this time as we failed previously */
2303 target->backoff.count++;
2304 continue;
2306 target->backoff.count = 0;
2308 /* only poll target if we've got power and srst isn't asserted */
2309 if (!powerDropout && !srstAsserted) {
2310 /* polling may fail silently until the target has been examined */
2311 retval = target_poll(target);
2312 if (retval != ERROR_OK) {
2313 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2314 if (target->backoff.times * polling_interval < 5000) {
2315 target->backoff.times *= 2;
2316 target->backoff.times++;
2318 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2319 target_name(target),
2320 target->backoff.times * polling_interval);
2322 /* Tell GDB to halt the debugger. This allows the user to
2323 * run monitor commands to handle the situation.
2325 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2326 return retval;
2328 /* Since we succeeded, we reset backoff count */
2329 if (target->backoff.times > 0)
2330 LOG_USER("Polling target %s succeeded again", target_name(target));
2331 target->backoff.times = 0;
2335 return retval;
2338 COMMAND_HANDLER(handle_reg_command)
2340 struct target *target;
2341 struct reg *reg = NULL;
2342 unsigned count = 0;
2343 char *value;
2345 LOG_DEBUG("-");
2347 target = get_current_target(CMD_CTX);
2349 /* list all available registers for the current target */
2350 if (CMD_ARGC == 0) {
2351 struct reg_cache *cache = target->reg_cache;
2353 count = 0;
2354 while (cache) {
2355 unsigned i;
2357 command_print(CMD_CTX, "===== %s", cache->name);
2359 for (i = 0, reg = cache->reg_list;
2360 i < cache->num_regs;
2361 i++, reg++, count++) {
2362 /* only print cached values if they are valid */
2363 if (reg->valid) {
2364 value = buf_to_str(reg->value,
2365 reg->size, 16);
2366 command_print(CMD_CTX,
2367 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2368 count, reg->name,
2369 reg->size, value,
2370 reg->dirty
2371 ? " (dirty)"
2372 : "");
2373 free(value);
2374 } else {
2375 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2376 count, reg->name,
2377 reg->size) ;
2380 cache = cache->next;
2383 return ERROR_OK;
2386 /* access a single register by its ordinal number */
2387 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2388 unsigned num;
2389 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2391 struct reg_cache *cache = target->reg_cache;
2392 count = 0;
2393 while (cache) {
2394 unsigned i;
2395 for (i = 0; i < cache->num_regs; i++) {
2396 if (count++ == num) {
2397 reg = &cache->reg_list[i];
2398 break;
2401 if (reg)
2402 break;
2403 cache = cache->next;
2406 if (!reg) {
2407 command_print(CMD_CTX, "%i is out of bounds, the current target "
2408 "has only %i registers (0 - %i)", num, count, count - 1);
2409 return ERROR_OK;
2411 } else {
2412 /* access a single register by its name */
2413 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2415 if (!reg) {
2416 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2417 return ERROR_OK;
2421 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2423 /* display a register */
2424 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2425 && (CMD_ARGV[1][0] <= '9')))) {
2426 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2427 reg->valid = 0;
2429 if (reg->valid == 0)
2430 reg->type->get(reg);
2431 value = buf_to_str(reg->value, reg->size, 16);
2432 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2433 free(value);
2434 return ERROR_OK;
2437 /* set register value */
2438 if (CMD_ARGC == 2) {
2439 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2440 if (buf == NULL)
2441 return ERROR_FAIL;
2442 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2444 reg->type->set(reg, buf);
2446 value = buf_to_str(reg->value, reg->size, 16);
2447 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2448 free(value);
2450 free(buf);
2452 return ERROR_OK;
2455 return ERROR_COMMAND_SYNTAX_ERROR;
2458 COMMAND_HANDLER(handle_poll_command)
2460 int retval = ERROR_OK;
2461 struct target *target = get_current_target(CMD_CTX);
2463 if (CMD_ARGC == 0) {
2464 command_print(CMD_CTX, "background polling: %s",
2465 jtag_poll_get_enabled() ? "on" : "off");
2466 command_print(CMD_CTX, "TAP: %s (%s)",
2467 target->tap->dotted_name,
2468 target->tap->enabled ? "enabled" : "disabled");
2469 if (!target->tap->enabled)
2470 return ERROR_OK;
2471 retval = target_poll(target);
2472 if (retval != ERROR_OK)
2473 return retval;
2474 retval = target_arch_state(target);
2475 if (retval != ERROR_OK)
2476 return retval;
2477 } else if (CMD_ARGC == 1) {
2478 bool enable;
2479 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2480 jtag_poll_set_enabled(enable);
2481 } else
2482 return ERROR_COMMAND_SYNTAX_ERROR;
2484 return retval;
2487 COMMAND_HANDLER(handle_wait_halt_command)
2489 if (CMD_ARGC > 1)
2490 return ERROR_COMMAND_SYNTAX_ERROR;
2492 unsigned ms = DEFAULT_HALT_TIMEOUT;
2493 if (1 == CMD_ARGC) {
2494 int retval = parse_uint(CMD_ARGV[0], &ms);
2495 if (ERROR_OK != retval)
2496 return ERROR_COMMAND_SYNTAX_ERROR;
2499 struct target *target = get_current_target(CMD_CTX);
2500 return target_wait_state(target, TARGET_HALTED, ms);
2503 /* wait for target state to change. The trick here is to have a low
2504 * latency for short waits and not to suck up all the CPU time
2505 * on longer waits.
2507 * After 500ms, keep_alive() is invoked
2509 int target_wait_state(struct target *target, enum target_state state, int ms)
2511 int retval;
2512 long long then = 0, cur;
2513 int once = 1;
2515 for (;;) {
2516 retval = target_poll(target);
2517 if (retval != ERROR_OK)
2518 return retval;
2519 if (target->state == state)
2520 break;
2521 cur = timeval_ms();
2522 if (once) {
2523 once = 0;
2524 then = timeval_ms();
2525 LOG_DEBUG("waiting for target %s...",
2526 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2529 if (cur-then > 500)
2530 keep_alive();
2532 if ((cur-then) > ms) {
2533 LOG_ERROR("timed out while waiting for target %s",
2534 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2535 return ERROR_FAIL;
2539 return ERROR_OK;
2542 COMMAND_HANDLER(handle_halt_command)
2544 LOG_DEBUG("-");
2546 struct target *target = get_current_target(CMD_CTX);
2547 int retval = target_halt(target);
2548 if (ERROR_OK != retval)
2549 return retval;
2551 if (CMD_ARGC == 1) {
2552 unsigned wait_local;
2553 retval = parse_uint(CMD_ARGV[0], &wait_local);
2554 if (ERROR_OK != retval)
2555 return ERROR_COMMAND_SYNTAX_ERROR;
2556 if (!wait_local)
2557 return ERROR_OK;
2560 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2563 COMMAND_HANDLER(handle_soft_reset_halt_command)
2565 struct target *target = get_current_target(CMD_CTX);
2567 LOG_USER("requesting target halt and executing a soft reset");
2569 target_soft_reset_halt(target);
2571 return ERROR_OK;
2574 COMMAND_HANDLER(handle_reset_command)
2576 if (CMD_ARGC > 1)
2577 return ERROR_COMMAND_SYNTAX_ERROR;
2579 enum target_reset_mode reset_mode = RESET_RUN;
2580 if (CMD_ARGC == 1) {
2581 const Jim_Nvp *n;
2582 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2583 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2584 return ERROR_COMMAND_SYNTAX_ERROR;
2585 reset_mode = n->value;
2588 /* reset *all* targets */
2589 return target_process_reset(CMD_CTX, reset_mode);
2593 COMMAND_HANDLER(handle_resume_command)
2595 int current = 1;
2596 if (CMD_ARGC > 1)
2597 return ERROR_COMMAND_SYNTAX_ERROR;
2599 struct target *target = get_current_target(CMD_CTX);
2601 /* with no CMD_ARGV, resume from current pc, addr = 0,
2602 * with one arguments, addr = CMD_ARGV[0],
2603 * handle breakpoints, not debugging */
2604 uint32_t addr = 0;
2605 if (CMD_ARGC == 1) {
2606 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2607 current = 0;
2610 return target_resume(target, current, addr, 1, 0);
2613 COMMAND_HANDLER(handle_step_command)
2615 if (CMD_ARGC > 1)
2616 return ERROR_COMMAND_SYNTAX_ERROR;
2618 LOG_DEBUG("-");
2620 /* with no CMD_ARGV, step from current pc, addr = 0,
2621 * with one argument addr = CMD_ARGV[0],
2622 * handle breakpoints, debugging */
2623 uint32_t addr = 0;
2624 int current_pc = 1;
2625 if (CMD_ARGC == 1) {
2626 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2627 current_pc = 0;
2630 struct target *target = get_current_target(CMD_CTX);
2632 return target->type->step(target, current_pc, addr, 1);
2635 static void handle_md_output(struct command_context *cmd_ctx,
2636 struct target *target, uint32_t address, unsigned size,
2637 unsigned count, const uint8_t *buffer)
2639 const unsigned line_bytecnt = 32;
2640 unsigned line_modulo = line_bytecnt / size;
2642 char output[line_bytecnt * 4 + 1];
2643 unsigned output_len = 0;
2645 const char *value_fmt;
2646 switch (size) {
2647 case 4:
2648 value_fmt = "%8.8x ";
2649 break;
2650 case 2:
2651 value_fmt = "%4.4x ";
2652 break;
2653 case 1:
2654 value_fmt = "%2.2x ";
2655 break;
2656 default:
2657 /* "can't happen", caller checked */
2658 LOG_ERROR("invalid memory read size: %u", size);
2659 return;
2662 for (unsigned i = 0; i < count; i++) {
2663 if (i % line_modulo == 0) {
2664 output_len += snprintf(output + output_len,
2665 sizeof(output) - output_len,
2666 "0x%8.8x: ",
2667 (unsigned)(address + (i*size)));
2670 uint32_t value = 0;
2671 const uint8_t *value_ptr = buffer + i * size;
2672 switch (size) {
2673 case 4:
2674 value = target_buffer_get_u32(target, value_ptr);
2675 break;
2676 case 2:
2677 value = target_buffer_get_u16(target, value_ptr);
2678 break;
2679 case 1:
2680 value = *value_ptr;
2682 output_len += snprintf(output + output_len,
2683 sizeof(output) - output_len,
2684 value_fmt, value);
2686 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2687 command_print(cmd_ctx, "%s", output);
2688 output_len = 0;
2693 COMMAND_HANDLER(handle_md_command)
2695 if (CMD_ARGC < 1)
2696 return ERROR_COMMAND_SYNTAX_ERROR;
2698 unsigned size = 0;
2699 switch (CMD_NAME[2]) {
2700 case 'w':
2701 size = 4;
2702 break;
2703 case 'h':
2704 size = 2;
2705 break;
2706 case 'b':
2707 size = 1;
2708 break;
2709 default:
2710 return ERROR_COMMAND_SYNTAX_ERROR;
2713 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2714 int (*fn)(struct target *target,
2715 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2716 if (physical) {
2717 CMD_ARGC--;
2718 CMD_ARGV++;
2719 fn = target_read_phys_memory;
2720 } else
2721 fn = target_read_memory;
2722 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2723 return ERROR_COMMAND_SYNTAX_ERROR;
2725 uint32_t address;
2726 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2728 unsigned count = 1;
2729 if (CMD_ARGC == 2)
2730 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2732 uint8_t *buffer = calloc(count, size);
2734 struct target *target = get_current_target(CMD_CTX);
2735 int retval = fn(target, address, size, count, buffer);
2736 if (ERROR_OK == retval)
2737 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2739 free(buffer);
2741 return retval;
2744 typedef int (*target_write_fn)(struct target *target,
2745 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2747 static int target_fill_mem(struct target *target,
2748 uint32_t address,
2749 target_write_fn fn,
2750 unsigned data_size,
2751 /* value */
2752 uint32_t b,
2753 /* count */
2754 unsigned c)
2756 /* We have to write in reasonably large chunks to be able
2757 * to fill large memory areas with any sane speed */
2758 const unsigned chunk_size = 16384;
2759 uint8_t *target_buf = malloc(chunk_size * data_size);
2760 if (target_buf == NULL) {
2761 LOG_ERROR("Out of memory");
2762 return ERROR_FAIL;
2765 for (unsigned i = 0; i < chunk_size; i++) {
2766 switch (data_size) {
2767 case 4:
2768 target_buffer_set_u32(target, target_buf + i * data_size, b);
2769 break;
2770 case 2:
2771 target_buffer_set_u16(target, target_buf + i * data_size, b);
2772 break;
2773 case 1:
2774 target_buffer_set_u8(target, target_buf + i * data_size, b);
2775 break;
2776 default:
2777 exit(-1);
2781 int retval = ERROR_OK;
2783 for (unsigned x = 0; x < c; x += chunk_size) {
2784 unsigned current;
2785 current = c - x;
2786 if (current > chunk_size)
2787 current = chunk_size;
2788 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2789 if (retval != ERROR_OK)
2790 break;
2791 /* avoid GDB timeouts */
2792 keep_alive();
2794 free(target_buf);
2796 return retval;
2800 COMMAND_HANDLER(handle_mw_command)
2802 if (CMD_ARGC < 2)
2803 return ERROR_COMMAND_SYNTAX_ERROR;
2804 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2805 target_write_fn fn;
2806 if (physical) {
2807 CMD_ARGC--;
2808 CMD_ARGV++;
2809 fn = target_write_phys_memory;
2810 } else
2811 fn = target_write_memory;
2812 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2813 return ERROR_COMMAND_SYNTAX_ERROR;
2815 uint32_t address;
2816 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2818 uint32_t value;
2819 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2821 unsigned count = 1;
2822 if (CMD_ARGC == 3)
2823 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2825 struct target *target = get_current_target(CMD_CTX);
2826 unsigned wordsize;
2827 switch (CMD_NAME[2]) {
2828 case 'w':
2829 wordsize = 4;
2830 break;
2831 case 'h':
2832 wordsize = 2;
2833 break;
2834 case 'b':
2835 wordsize = 1;
2836 break;
2837 default:
2838 return ERROR_COMMAND_SYNTAX_ERROR;
2841 return target_fill_mem(target, address, fn, wordsize, value, count);
2844 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2845 uint32_t *min_address, uint32_t *max_address)
2847 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2848 return ERROR_COMMAND_SYNTAX_ERROR;
2850 /* a base address isn't always necessary,
2851 * default to 0x0 (i.e. don't relocate) */
2852 if (CMD_ARGC >= 2) {
2853 uint32_t addr;
2854 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2855 image->base_address = addr;
2856 image->base_address_set = 1;
2857 } else
2858 image->base_address_set = 0;
2860 image->start_address_set = 0;
2862 if (CMD_ARGC >= 4)
2863 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2864 if (CMD_ARGC == 5) {
2865 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2866 /* use size (given) to find max (required) */
2867 *max_address += *min_address;
2870 if (*min_address > *max_address)
2871 return ERROR_COMMAND_SYNTAX_ERROR;
2873 return ERROR_OK;
2876 COMMAND_HANDLER(handle_load_image_command)
2878 uint8_t *buffer;
2879 size_t buf_cnt;
2880 uint32_t image_size;
2881 uint32_t min_address = 0;
2882 uint32_t max_address = 0xffffffff;
2883 int i;
2884 struct image image;
2886 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2887 &image, &min_address, &max_address);
2888 if (ERROR_OK != retval)
2889 return retval;
2891 struct target *target = get_current_target(CMD_CTX);
2893 struct duration bench;
2894 duration_start(&bench);
2896 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2897 return ERROR_OK;
2899 image_size = 0x0;
2900 retval = ERROR_OK;
2901 for (i = 0; i < image.num_sections; i++) {
2902 buffer = malloc(image.sections[i].size);
2903 if (buffer == NULL) {
2904 command_print(CMD_CTX,
2905 "error allocating buffer for section (%d bytes)",
2906 (int)(image.sections[i].size));
2907 break;
2910 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2911 if (retval != ERROR_OK) {
2912 free(buffer);
2913 break;
2916 uint32_t offset = 0;
2917 uint32_t length = buf_cnt;
2919 /* DANGER!!! beware of unsigned comparision here!!! */
2921 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2922 (image.sections[i].base_address < max_address)) {
2924 if (image.sections[i].base_address < min_address) {
2925 /* clip addresses below */
2926 offset += min_address-image.sections[i].base_address;
2927 length -= offset;
2930 if (image.sections[i].base_address + buf_cnt > max_address)
2931 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2933 retval = target_write_buffer(target,
2934 image.sections[i].base_address + offset, length, buffer + offset);
2935 if (retval != ERROR_OK) {
2936 free(buffer);
2937 break;
2939 image_size += length;
2940 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2941 (unsigned int)length,
2942 image.sections[i].base_address + offset);
2945 free(buffer);
2948 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2949 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2950 "in %fs (%0.3f KiB/s)", image_size,
2951 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2954 image_close(&image);
2956 return retval;
2960 COMMAND_HANDLER(handle_dump_image_command)
2962 struct fileio fileio;
2963 uint8_t *buffer;
2964 int retval, retvaltemp;
2965 uint32_t address, size;
2966 struct duration bench;
2967 struct target *target = get_current_target(CMD_CTX);
2969 if (CMD_ARGC != 3)
2970 return ERROR_COMMAND_SYNTAX_ERROR;
2972 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2973 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2975 uint32_t buf_size = (size > 4096) ? 4096 : size;
2976 buffer = malloc(buf_size);
2977 if (!buffer)
2978 return ERROR_FAIL;
2980 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2981 if (retval != ERROR_OK) {
2982 free(buffer);
2983 return retval;
2986 duration_start(&bench);
2988 while (size > 0) {
2989 size_t size_written;
2990 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2991 retval = target_read_buffer(target, address, this_run_size, buffer);
2992 if (retval != ERROR_OK)
2993 break;
2995 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2996 if (retval != ERROR_OK)
2997 break;
2999 size -= this_run_size;
3000 address += this_run_size;
3003 free(buffer);
3005 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3006 int filesize;
3007 retval = fileio_size(&fileio, &filesize);
3008 if (retval != ERROR_OK)
3009 return retval;
3010 command_print(CMD_CTX,
3011 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3012 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3015 retvaltemp = fileio_close(&fileio);
3016 if (retvaltemp != ERROR_OK)
3017 return retvaltemp;
3019 return retval;
3022 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3024 uint8_t *buffer;
3025 size_t buf_cnt;
3026 uint32_t image_size;
3027 int i;
3028 int retval;
3029 uint32_t checksum = 0;
3030 uint32_t mem_checksum = 0;
3032 struct image image;
3034 struct target *target = get_current_target(CMD_CTX);
3036 if (CMD_ARGC < 1)
3037 return ERROR_COMMAND_SYNTAX_ERROR;
3039 if (!target) {
3040 LOG_ERROR("no target selected");
3041 return ERROR_FAIL;
3044 struct duration bench;
3045 duration_start(&bench);
3047 if (CMD_ARGC >= 2) {
3048 uint32_t addr;
3049 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3050 image.base_address = addr;
3051 image.base_address_set = 1;
3052 } else {
3053 image.base_address_set = 0;
3054 image.base_address = 0x0;
3057 image.start_address_set = 0;
3059 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3060 if (retval != ERROR_OK)
3061 return retval;
3063 image_size = 0x0;
3064 int diffs = 0;
3065 retval = ERROR_OK;
3066 for (i = 0; i < image.num_sections; i++) {
3067 buffer = malloc(image.sections[i].size);
3068 if (buffer == NULL) {
3069 command_print(CMD_CTX,
3070 "error allocating buffer for section (%d bytes)",
3071 (int)(image.sections[i].size));
3072 break;
3074 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3075 if (retval != ERROR_OK) {
3076 free(buffer);
3077 break;
3080 if (verify) {
3081 /* calculate checksum of image */
3082 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3083 if (retval != ERROR_OK) {
3084 free(buffer);
3085 break;
3088 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3089 if (retval != ERROR_OK) {
3090 free(buffer);
3091 break;
3094 if (checksum != mem_checksum) {
3095 /* failed crc checksum, fall back to a binary compare */
3096 uint8_t *data;
3098 if (diffs == 0)
3099 LOG_ERROR("checksum mismatch - attempting binary compare");
3101 data = (uint8_t *)malloc(buf_cnt);
3103 /* Can we use 32bit word accesses? */
3104 int size = 1;
3105 int count = buf_cnt;
3106 if ((count % 4) == 0) {
3107 size *= 4;
3108 count /= 4;
3110 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3111 if (retval == ERROR_OK) {
3112 uint32_t t;
3113 for (t = 0; t < buf_cnt; t++) {
3114 if (data[t] != buffer[t]) {
3115 command_print(CMD_CTX,
3116 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3117 diffs,
3118 (unsigned)(t + image.sections[i].base_address),
3119 data[t],
3120 buffer[t]);
3121 if (diffs++ >= 127) {
3122 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3123 free(data);
3124 free(buffer);
3125 goto done;
3128 keep_alive();
3131 free(data);
3133 } else {
3134 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3135 image.sections[i].base_address,
3136 buf_cnt);
3139 free(buffer);
3140 image_size += buf_cnt;
3142 if (diffs > 0)
3143 command_print(CMD_CTX, "No more differences found.");
3144 done:
3145 if (diffs > 0)
3146 retval = ERROR_FAIL;
3147 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3148 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3149 "in %fs (%0.3f KiB/s)", image_size,
3150 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3153 image_close(&image);
3155 return retval;
3158 COMMAND_HANDLER(handle_verify_image_command)
3160 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3163 COMMAND_HANDLER(handle_test_image_command)
3165 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3168 static int handle_bp_command_list(struct command_context *cmd_ctx)
3170 struct target *target = get_current_target(cmd_ctx);
3171 struct breakpoint *breakpoint = target->breakpoints;
3172 while (breakpoint) {
3173 if (breakpoint->type == BKPT_SOFT) {
3174 char *buf = buf_to_str(breakpoint->orig_instr,
3175 breakpoint->length, 16);
3176 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3177 breakpoint->address,
3178 breakpoint->length,
3179 breakpoint->set, buf);
3180 free(buf);
3181 } else {
3182 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3183 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3184 breakpoint->asid,
3185 breakpoint->length, breakpoint->set);
3186 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3187 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3188 breakpoint->address,
3189 breakpoint->length, breakpoint->set);
3190 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3191 breakpoint->asid);
3192 } else
3193 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3194 breakpoint->address,
3195 breakpoint->length, breakpoint->set);
3198 breakpoint = breakpoint->next;
3200 return ERROR_OK;
3203 static int handle_bp_command_set(struct command_context *cmd_ctx,
3204 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3206 struct target *target = get_current_target(cmd_ctx);
3208 if (asid == 0) {
3209 int retval = breakpoint_add(target, addr, length, hw);
3210 if (ERROR_OK == retval)
3211 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3212 else {
3213 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3214 return retval;
3216 } else if (addr == 0) {
3217 int retval = context_breakpoint_add(target, asid, length, hw);
3218 if (ERROR_OK == retval)
3219 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3220 else {
3221 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3222 return retval;
3224 } else {
3225 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3226 if (ERROR_OK == retval)
3227 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3228 else {
3229 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3230 return retval;
3233 return ERROR_OK;
3236 COMMAND_HANDLER(handle_bp_command)
3238 uint32_t addr;
3239 uint32_t asid;
3240 uint32_t length;
3241 int hw = BKPT_SOFT;
3243 switch (CMD_ARGC) {
3244 case 0:
3245 return handle_bp_command_list(CMD_CTX);
3247 case 2:
3248 asid = 0;
3249 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3250 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3251 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3253 case 3:
3254 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3255 hw = BKPT_HARD;
3256 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3258 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3260 asid = 0;
3261 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3262 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3263 hw = BKPT_HARD;
3264 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3265 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3266 addr = 0;
3267 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3270 case 4:
3271 hw = BKPT_HARD;
3272 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3273 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3274 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3275 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3277 default:
3278 return ERROR_COMMAND_SYNTAX_ERROR;
3282 COMMAND_HANDLER(handle_rbp_command)
3284 if (CMD_ARGC != 1)
3285 return ERROR_COMMAND_SYNTAX_ERROR;
3287 uint32_t addr;
3288 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3290 struct target *target = get_current_target(CMD_CTX);
3291 breakpoint_remove(target, addr);
3293 return ERROR_OK;
3296 COMMAND_HANDLER(handle_wp_command)
3298 struct target *target = get_current_target(CMD_CTX);
3300 if (CMD_ARGC == 0) {
3301 struct watchpoint *watchpoint = target->watchpoints;
3303 while (watchpoint) {
3304 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3305 ", len: 0x%8.8" PRIx32
3306 ", r/w/a: %i, value: 0x%8.8" PRIx32
3307 ", mask: 0x%8.8" PRIx32,
3308 watchpoint->address,
3309 watchpoint->length,
3310 (int)watchpoint->rw,
3311 watchpoint->value,
3312 watchpoint->mask);
3313 watchpoint = watchpoint->next;
3315 return ERROR_OK;
3318 enum watchpoint_rw type = WPT_ACCESS;
3319 uint32_t addr = 0;
3320 uint32_t length = 0;
3321 uint32_t data_value = 0x0;
3322 uint32_t data_mask = 0xffffffff;
3324 switch (CMD_ARGC) {
3325 case 5:
3326 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3327 /* fall through */
3328 case 4:
3329 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3330 /* fall through */
3331 case 3:
3332 switch (CMD_ARGV[2][0]) {
3333 case 'r':
3334 type = WPT_READ;
3335 break;
3336 case 'w':
3337 type = WPT_WRITE;
3338 break;
3339 case 'a':
3340 type = WPT_ACCESS;
3341 break;
3342 default:
3343 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3344 return ERROR_COMMAND_SYNTAX_ERROR;
3346 /* fall through */
3347 case 2:
3348 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3349 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3350 break;
3352 default:
3353 return ERROR_COMMAND_SYNTAX_ERROR;
3356 int retval = watchpoint_add(target, addr, length, type,
3357 data_value, data_mask);
3358 if (ERROR_OK != retval)
3359 LOG_ERROR("Failure setting watchpoints");
3361 return retval;
3364 COMMAND_HANDLER(handle_rwp_command)
3366 if (CMD_ARGC != 1)
3367 return ERROR_COMMAND_SYNTAX_ERROR;
3369 uint32_t addr;
3370 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3372 struct target *target = get_current_target(CMD_CTX);
3373 watchpoint_remove(target, addr);
3375 return ERROR_OK;
3379 * Translate a virtual address to a physical address.
3381 * The low-level target implementation must have logged a detailed error
3382 * which is forwarded to telnet/GDB session.
3384 COMMAND_HANDLER(handle_virt2phys_command)
3386 if (CMD_ARGC != 1)
3387 return ERROR_COMMAND_SYNTAX_ERROR;
3389 uint32_t va;
3390 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3391 uint32_t pa;
3393 struct target *target = get_current_target(CMD_CTX);
3394 int retval = target->type->virt2phys(target, va, &pa);
3395 if (retval == ERROR_OK)
3396 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3398 return retval;
3401 static void writeData(FILE *f, const void *data, size_t len)
3403 size_t written = fwrite(data, 1, len, f);
3404 if (written != len)
3405 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3408 static void writeLong(FILE *f, int l)
3410 int i;
3411 for (i = 0; i < 4; i++) {
3412 char c = (l >> (i*8))&0xff;
3413 writeData(f, &c, 1);
3418 static void writeString(FILE *f, char *s)
3420 writeData(f, s, strlen(s));
3423 typedef unsigned char UNIT[2]; /* unit of profiling */
3425 /* Dump a gmon.out histogram file. */
3426 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3427 bool with_range, uint32_t start_address, uint32_t end_address)
3429 uint32_t i;
3430 FILE *f = fopen(filename, "w");
3431 if (f == NULL)
3432 return;
3433 writeString(f, "gmon");
3434 writeLong(f, 0x00000001); /* Version */
3435 writeLong(f, 0); /* padding */
3436 writeLong(f, 0); /* padding */
3437 writeLong(f, 0); /* padding */
3439 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3440 writeData(f, &zero, 1);
3442 /* figure out bucket size */
3443 uint32_t min;
3444 uint32_t max;
3445 if (with_range) {
3446 min = start_address;
3447 max = end_address;
3448 } else {
3449 min = samples[0];
3450 max = samples[0];
3451 for (i = 0; i < sampleNum; i++) {
3452 if (min > samples[i])
3453 min = samples[i];
3454 if (max < samples[i])
3455 max = samples[i];
3458 /* max should be (largest sample + 1)
3459 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3460 max++;
3463 int addressSpace = max - min;
3464 assert(addressSpace >= 2);
3466 /* FIXME: What is the reasonable number of buckets?
3467 * The profiling result will be more accurate if there are enough buckets. */
3468 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3469 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3470 if (numBuckets > maxBuckets)
3471 numBuckets = maxBuckets;
3472 int *buckets = malloc(sizeof(int) * numBuckets);
3473 if (buckets == NULL) {
3474 fclose(f);
3475 return;
3477 memset(buckets, 0, sizeof(int) * numBuckets);
3478 for (i = 0; i < sampleNum; i++) {
3479 uint32_t address = samples[i];
3481 if ((address < min) || (max <= address))
3482 continue;
3484 long long a = address - min;
3485 long long b = numBuckets;
3486 long long c = addressSpace;
3487 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3488 buckets[index_t]++;
3491 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3492 writeLong(f, min); /* low_pc */
3493 writeLong(f, max); /* high_pc */
3494 writeLong(f, numBuckets); /* # of buckets */
3495 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3496 writeString(f, "seconds");
3497 for (i = 0; i < (15-strlen("seconds")); i++)
3498 writeData(f, &zero, 1);
3499 writeString(f, "s");
3501 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3503 char *data = malloc(2 * numBuckets);
3504 if (data != NULL) {
3505 for (i = 0; i < numBuckets; i++) {
3506 int val;
3507 val = buckets[i];
3508 if (val > 65535)
3509 val = 65535;
3510 data[i * 2] = val&0xff;
3511 data[i * 2 + 1] = (val >> 8) & 0xff;
3513 free(buckets);
3514 writeData(f, data, numBuckets * 2);
3515 free(data);
3516 } else
3517 free(buckets);
3519 fclose(f);
3522 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3523 * which will be used as a random sampling of PC */
3524 COMMAND_HANDLER(handle_profile_command)
3526 struct target *target = get_current_target(CMD_CTX);
3528 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3529 return ERROR_COMMAND_SYNTAX_ERROR;
3531 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3532 uint32_t offset;
3533 uint32_t num_of_sampels;
3534 int retval = ERROR_OK;
3535 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3536 if (samples == NULL) {
3537 LOG_ERROR("No memory to store samples.");
3538 return ERROR_FAIL;
3541 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3544 * Some cores let us sample the PC without the
3545 * annoying halt/resume step; for example, ARMv7 PCSR.
3546 * Provide a way to use that more efficient mechanism.
3548 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3549 &num_of_sampels, offset);
3550 if (retval != ERROR_OK) {
3551 free(samples);
3552 return retval;
3555 assert(num_of_sampels <= MAX_PROFILE_SAMPLE_NUM);
3557 retval = target_poll(target);
3558 if (retval != ERROR_OK) {
3559 free(samples);
3560 return retval;
3562 if (target->state == TARGET_RUNNING) {
3563 retval = target_halt(target);
3564 if (retval != ERROR_OK) {
3565 free(samples);
3566 return retval;
3570 retval = target_poll(target);
3571 if (retval != ERROR_OK) {
3572 free(samples);
3573 return retval;
3576 uint32_t start_address = 0;
3577 uint32_t end_address = 0;
3578 bool with_range = false;
3579 if (CMD_ARGC == 4) {
3580 with_range = true;
3581 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], start_address);
3582 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[3], end_address);
3585 write_gmon(samples, num_of_sampels, CMD_ARGV[1],
3586 with_range, start_address, end_address);
3587 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3589 free(samples);
3590 return retval;
3593 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3595 char *namebuf;
3596 Jim_Obj *nameObjPtr, *valObjPtr;
3597 int result;
3599 namebuf = alloc_printf("%s(%d)", varname, idx);
3600 if (!namebuf)
3601 return JIM_ERR;
3603 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3604 valObjPtr = Jim_NewIntObj(interp, val);
3605 if (!nameObjPtr || !valObjPtr) {
3606 free(namebuf);
3607 return JIM_ERR;
3610 Jim_IncrRefCount(nameObjPtr);
3611 Jim_IncrRefCount(valObjPtr);
3612 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3613 Jim_DecrRefCount(interp, nameObjPtr);
3614 Jim_DecrRefCount(interp, valObjPtr);
3615 free(namebuf);
3616 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3617 return result;
3620 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3622 struct command_context *context;
3623 struct target *target;
3625 context = current_command_context(interp);
3626 assert(context != NULL);
3628 target = get_current_target(context);
3629 if (target == NULL) {
3630 LOG_ERROR("mem2array: no current target");
3631 return JIM_ERR;
3634 return target_mem2array(interp, target, argc - 1, argv + 1);
3637 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3639 long l;
3640 uint32_t width;
3641 int len;
3642 uint32_t addr;
3643 uint32_t count;
3644 uint32_t v;
3645 const char *varname;
3646 int n, e, retval;
3647 uint32_t i;
3649 /* argv[1] = name of array to receive the data
3650 * argv[2] = desired width
3651 * argv[3] = memory address
3652 * argv[4] = count of times to read
3654 if (argc != 4) {
3655 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3656 return JIM_ERR;
3658 varname = Jim_GetString(argv[0], &len);
3659 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3661 e = Jim_GetLong(interp, argv[1], &l);
3662 width = l;
3663 if (e != JIM_OK)
3664 return e;
3666 e = Jim_GetLong(interp, argv[2], &l);
3667 addr = l;
3668 if (e != JIM_OK)
3669 return e;
3670 e = Jim_GetLong(interp, argv[3], &l);
3671 len = l;
3672 if (e != JIM_OK)
3673 return e;
3674 switch (width) {
3675 case 8:
3676 width = 1;
3677 break;
3678 case 16:
3679 width = 2;
3680 break;
3681 case 32:
3682 width = 4;
3683 break;
3684 default:
3685 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3686 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3687 return JIM_ERR;
3689 if (len == 0) {
3690 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3691 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3692 return JIM_ERR;
3694 if ((addr + (len * width)) < addr) {
3695 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3696 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3697 return JIM_ERR;
3699 /* absurd transfer size? */
3700 if (len > 65536) {
3701 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3702 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3703 return JIM_ERR;
3706 if ((width == 1) ||
3707 ((width == 2) && ((addr & 1) == 0)) ||
3708 ((width == 4) && ((addr & 3) == 0))) {
3709 /* all is well */
3710 } else {
3711 char buf[100];
3712 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3713 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3714 addr,
3715 width);
3716 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3717 return JIM_ERR;
3720 /* Transfer loop */
3722 /* index counter */
3723 n = 0;
3725 size_t buffersize = 4096;
3726 uint8_t *buffer = malloc(buffersize);
3727 if (buffer == NULL)
3728 return JIM_ERR;
3730 /* assume ok */
3731 e = JIM_OK;
3732 while (len) {
3733 /* Slurp... in buffer size chunks */
3735 count = len; /* in objects.. */
3736 if (count > (buffersize / width))
3737 count = (buffersize / width);
3739 retval = target_read_memory(target, addr, width, count, buffer);
3740 if (retval != ERROR_OK) {
3741 /* BOO !*/
3742 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3743 (unsigned int)addr,
3744 (int)width,
3745 (int)count);
3746 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3747 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3748 e = JIM_ERR;
3749 break;
3750 } else {
3751 v = 0; /* shut up gcc */
3752 for (i = 0; i < count ; i++, n++) {
3753 switch (width) {
3754 case 4:
3755 v = target_buffer_get_u32(target, &buffer[i*width]);
3756 break;
3757 case 2:
3758 v = target_buffer_get_u16(target, &buffer[i*width]);
3759 break;
3760 case 1:
3761 v = buffer[i] & 0x0ff;
3762 break;
3764 new_int_array_element(interp, varname, n, v);
3766 len -= count;
3770 free(buffer);
3772 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3774 return e;
3777 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3779 char *namebuf;
3780 Jim_Obj *nameObjPtr, *valObjPtr;
3781 int result;
3782 long l;
3784 namebuf = alloc_printf("%s(%d)", varname, idx);
3785 if (!namebuf)
3786 return JIM_ERR;
3788 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3789 if (!nameObjPtr) {
3790 free(namebuf);
3791 return JIM_ERR;
3794 Jim_IncrRefCount(nameObjPtr);
3795 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3796 Jim_DecrRefCount(interp, nameObjPtr);
3797 free(namebuf);
3798 if (valObjPtr == NULL)
3799 return JIM_ERR;
3801 result = Jim_GetLong(interp, valObjPtr, &l);
3802 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3803 *val = l;
3804 return result;
3807 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3809 struct command_context *context;
3810 struct target *target;
3812 context = current_command_context(interp);
3813 assert(context != NULL);
3815 target = get_current_target(context);
3816 if (target == NULL) {
3817 LOG_ERROR("array2mem: no current target");
3818 return JIM_ERR;
3821 return target_array2mem(interp, target, argc-1, argv + 1);
3824 static int target_array2mem(Jim_Interp *interp, struct target *target,
3825 int argc, Jim_Obj *const *argv)
3827 long l;
3828 uint32_t width;
3829 int len;
3830 uint32_t addr;
3831 uint32_t count;
3832 uint32_t v;
3833 const char *varname;
3834 int n, e, retval;
3835 uint32_t i;
3837 /* argv[1] = name of array to get the data
3838 * argv[2] = desired width
3839 * argv[3] = memory address
3840 * argv[4] = count to write
3842 if (argc != 4) {
3843 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3844 return JIM_ERR;
3846 varname = Jim_GetString(argv[0], &len);
3847 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3849 e = Jim_GetLong(interp, argv[1], &l);
3850 width = l;
3851 if (e != JIM_OK)
3852 return e;
3854 e = Jim_GetLong(interp, argv[2], &l);
3855 addr = l;
3856 if (e != JIM_OK)
3857 return e;
3858 e = Jim_GetLong(interp, argv[3], &l);
3859 len = l;
3860 if (e != JIM_OK)
3861 return e;
3862 switch (width) {
3863 case 8:
3864 width = 1;
3865 break;
3866 case 16:
3867 width = 2;
3868 break;
3869 case 32:
3870 width = 4;
3871 break;
3872 default:
3873 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3874 Jim_AppendStrings(interp, Jim_GetResult(interp),
3875 "Invalid width param, must be 8/16/32", NULL);
3876 return JIM_ERR;
3878 if (len == 0) {
3879 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3880 Jim_AppendStrings(interp, Jim_GetResult(interp),
3881 "array2mem: zero width read?", NULL);
3882 return JIM_ERR;
3884 if ((addr + (len * width)) < addr) {
3885 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3886 Jim_AppendStrings(interp, Jim_GetResult(interp),
3887 "array2mem: addr + len - wraps to zero?", NULL);
3888 return JIM_ERR;
3890 /* absurd transfer size? */
3891 if (len > 65536) {
3892 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3893 Jim_AppendStrings(interp, Jim_GetResult(interp),
3894 "array2mem: absurd > 64K item request", NULL);
3895 return JIM_ERR;
3898 if ((width == 1) ||
3899 ((width == 2) && ((addr & 1) == 0)) ||
3900 ((width == 4) && ((addr & 3) == 0))) {
3901 /* all is well */
3902 } else {
3903 char buf[100];
3904 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3905 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3906 (unsigned int)addr,
3907 (int)width);
3908 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3909 return JIM_ERR;
3912 /* Transfer loop */
3914 /* index counter */
3915 n = 0;
3916 /* assume ok */
3917 e = JIM_OK;
3919 size_t buffersize = 4096;
3920 uint8_t *buffer = malloc(buffersize);
3921 if (buffer == NULL)
3922 return JIM_ERR;
3924 while (len) {
3925 /* Slurp... in buffer size chunks */
3927 count = len; /* in objects.. */
3928 if (count > (buffersize / width))
3929 count = (buffersize / width);
3931 v = 0; /* shut up gcc */
3932 for (i = 0; i < count; i++, n++) {
3933 get_int_array_element(interp, varname, n, &v);
3934 switch (width) {
3935 case 4:
3936 target_buffer_set_u32(target, &buffer[i * width], v);
3937 break;
3938 case 2:
3939 target_buffer_set_u16(target, &buffer[i * width], v);
3940 break;
3941 case 1:
3942 buffer[i] = v & 0x0ff;
3943 break;
3946 len -= count;
3948 retval = target_write_memory(target, addr, width, count, buffer);
3949 if (retval != ERROR_OK) {
3950 /* BOO !*/
3951 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3952 (unsigned int)addr,
3953 (int)width,
3954 (int)count);
3955 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3956 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3957 e = JIM_ERR;
3958 break;
3962 free(buffer);
3964 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3966 return e;
3969 /* FIX? should we propagate errors here rather than printing them
3970 * and continuing?
3972 void target_handle_event(struct target *target, enum target_event e)
3974 struct target_event_action *teap;
3976 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3977 if (teap->event == e) {
3978 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3979 target->target_number,
3980 target_name(target),
3981 target_type_name(target),
3983 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3984 Jim_GetString(teap->body, NULL));
3985 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3986 Jim_MakeErrorMessage(teap->interp);
3987 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3994 * Returns true only if the target has a handler for the specified event.
3996 bool target_has_event_action(struct target *target, enum target_event event)
3998 struct target_event_action *teap;
4000 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4001 if (teap->event == event)
4002 return true;
4004 return false;
4007 enum target_cfg_param {
4008 TCFG_TYPE,
4009 TCFG_EVENT,
4010 TCFG_WORK_AREA_VIRT,
4011 TCFG_WORK_AREA_PHYS,
4012 TCFG_WORK_AREA_SIZE,
4013 TCFG_WORK_AREA_BACKUP,
4014 TCFG_ENDIAN,
4015 TCFG_VARIANT,
4016 TCFG_COREID,
4017 TCFG_CHAIN_POSITION,
4018 TCFG_DBGBASE,
4019 TCFG_RTOS,
4022 static Jim_Nvp nvp_config_opts[] = {
4023 { .name = "-type", .value = TCFG_TYPE },
4024 { .name = "-event", .value = TCFG_EVENT },
4025 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4026 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4027 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4028 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4029 { .name = "-endian" , .value = TCFG_ENDIAN },
4030 { .name = "-variant", .value = TCFG_VARIANT },
4031 { .name = "-coreid", .value = TCFG_COREID },
4032 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4033 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4034 { .name = "-rtos", .value = TCFG_RTOS },
4035 { .name = NULL, .value = -1 }
4038 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4040 Jim_Nvp *n;
4041 Jim_Obj *o;
4042 jim_wide w;
4043 char *cp;
4044 int e;
4046 /* parse config or cget options ... */
4047 while (goi->argc > 0) {
4048 Jim_SetEmptyResult(goi->interp);
4049 /* Jim_GetOpt_Debug(goi); */
4051 if (target->type->target_jim_configure) {
4052 /* target defines a configure function */
4053 /* target gets first dibs on parameters */
4054 e = (*(target->type->target_jim_configure))(target, goi);
4055 if (e == JIM_OK) {
4056 /* more? */
4057 continue;
4059 if (e == JIM_ERR) {
4060 /* An error */
4061 return e;
4063 /* otherwise we 'continue' below */
4065 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4066 if (e != JIM_OK) {
4067 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4068 return e;
4070 switch (n->value) {
4071 case TCFG_TYPE:
4072 /* not setable */
4073 if (goi->isconfigure) {
4074 Jim_SetResultFormatted(goi->interp,
4075 "not settable: %s", n->name);
4076 return JIM_ERR;
4077 } else {
4078 no_params:
4079 if (goi->argc != 0) {
4080 Jim_WrongNumArgs(goi->interp,
4081 goi->argc, goi->argv,
4082 "NO PARAMS");
4083 return JIM_ERR;
4086 Jim_SetResultString(goi->interp,
4087 target_type_name(target), -1);
4088 /* loop for more */
4089 break;
4090 case TCFG_EVENT:
4091 if (goi->argc == 0) {
4092 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4093 return JIM_ERR;
4096 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4097 if (e != JIM_OK) {
4098 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4099 return e;
4102 if (goi->isconfigure) {
4103 if (goi->argc != 1) {
4104 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4105 return JIM_ERR;
4107 } else {
4108 if (goi->argc != 0) {
4109 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4110 return JIM_ERR;
4115 struct target_event_action *teap;
4117 teap = target->event_action;
4118 /* replace existing? */
4119 while (teap) {
4120 if (teap->event == (enum target_event)n->value)
4121 break;
4122 teap = teap->next;
4125 if (goi->isconfigure) {
4126 bool replace = true;
4127 if (teap == NULL) {
4128 /* create new */
4129 teap = calloc(1, sizeof(*teap));
4130 replace = false;
4132 teap->event = n->value;
4133 teap->interp = goi->interp;
4134 Jim_GetOpt_Obj(goi, &o);
4135 if (teap->body)
4136 Jim_DecrRefCount(teap->interp, teap->body);
4137 teap->body = Jim_DuplicateObj(goi->interp, o);
4139 * FIXME:
4140 * Tcl/TK - "tk events" have a nice feature.
4141 * See the "BIND" command.
4142 * We should support that here.
4143 * You can specify %X and %Y in the event code.
4144 * The idea is: %T - target name.
4145 * The idea is: %N - target number
4146 * The idea is: %E - event name.
4148 Jim_IncrRefCount(teap->body);
4150 if (!replace) {
4151 /* add to head of event list */
4152 teap->next = target->event_action;
4153 target->event_action = teap;
4155 Jim_SetEmptyResult(goi->interp);
4156 } else {
4157 /* get */
4158 if (teap == NULL)
4159 Jim_SetEmptyResult(goi->interp);
4160 else
4161 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4164 /* loop for more */
4165 break;
4167 case TCFG_WORK_AREA_VIRT:
4168 if (goi->isconfigure) {
4169 target_free_all_working_areas(target);
4170 e = Jim_GetOpt_Wide(goi, &w);
4171 if (e != JIM_OK)
4172 return e;
4173 target->working_area_virt = w;
4174 target->working_area_virt_spec = true;
4175 } else {
4176 if (goi->argc != 0)
4177 goto no_params;
4179 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4180 /* loop for more */
4181 break;
4183 case TCFG_WORK_AREA_PHYS:
4184 if (goi->isconfigure) {
4185 target_free_all_working_areas(target);
4186 e = Jim_GetOpt_Wide(goi, &w);
4187 if (e != JIM_OK)
4188 return e;
4189 target->working_area_phys = w;
4190 target->working_area_phys_spec = true;
4191 } else {
4192 if (goi->argc != 0)
4193 goto no_params;
4195 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4196 /* loop for more */
4197 break;
4199 case TCFG_WORK_AREA_SIZE:
4200 if (goi->isconfigure) {
4201 target_free_all_working_areas(target);
4202 e = Jim_GetOpt_Wide(goi, &w);
4203 if (e != JIM_OK)
4204 return e;
4205 target->working_area_size = w;
4206 } else {
4207 if (goi->argc != 0)
4208 goto no_params;
4210 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4211 /* loop for more */
4212 break;
4214 case TCFG_WORK_AREA_BACKUP:
4215 if (goi->isconfigure) {
4216 target_free_all_working_areas(target);
4217 e = Jim_GetOpt_Wide(goi, &w);
4218 if (e != JIM_OK)
4219 return e;
4220 /* make this exactly 1 or 0 */
4221 target->backup_working_area = (!!w);
4222 } else {
4223 if (goi->argc != 0)
4224 goto no_params;
4226 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4227 /* loop for more e*/
4228 break;
4231 case TCFG_ENDIAN:
4232 if (goi->isconfigure) {
4233 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4234 if (e != JIM_OK) {
4235 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4236 return e;
4238 target->endianness = n->value;
4239 } else {
4240 if (goi->argc != 0)
4241 goto no_params;
4243 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4244 if (n->name == NULL) {
4245 target->endianness = TARGET_LITTLE_ENDIAN;
4246 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4248 Jim_SetResultString(goi->interp, n->name, -1);
4249 /* loop for more */
4250 break;
4252 case TCFG_VARIANT:
4253 if (goi->isconfigure) {
4254 if (goi->argc < 1) {
4255 Jim_SetResultFormatted(goi->interp,
4256 "%s ?STRING?",
4257 n->name);
4258 return JIM_ERR;
4260 if (target->variant)
4261 free((void *)(target->variant));
4262 e = Jim_GetOpt_String(goi, &cp, NULL);
4263 if (e != JIM_OK)
4264 return e;
4265 target->variant = strdup(cp);
4266 } else {
4267 if (goi->argc != 0)
4268 goto no_params;
4270 Jim_SetResultString(goi->interp, target->variant, -1);
4271 /* loop for more */
4272 break;
4274 case TCFG_COREID:
4275 if (goi->isconfigure) {
4276 e = Jim_GetOpt_Wide(goi, &w);
4277 if (e != JIM_OK)
4278 return e;
4279 target->coreid = (int32_t)w;
4280 } else {
4281 if (goi->argc != 0)
4282 goto no_params;
4284 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4285 /* loop for more */
4286 break;
4288 case TCFG_CHAIN_POSITION:
4289 if (goi->isconfigure) {
4290 Jim_Obj *o_t;
4291 struct jtag_tap *tap;
4292 target_free_all_working_areas(target);
4293 e = Jim_GetOpt_Obj(goi, &o_t);
4294 if (e != JIM_OK)
4295 return e;
4296 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4297 if (tap == NULL)
4298 return JIM_ERR;
4299 /* make this exactly 1 or 0 */
4300 target->tap = tap;
4301 } else {
4302 if (goi->argc != 0)
4303 goto no_params;
4305 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4306 /* loop for more e*/
4307 break;
4308 case TCFG_DBGBASE:
4309 if (goi->isconfigure) {
4310 e = Jim_GetOpt_Wide(goi, &w);
4311 if (e != JIM_OK)
4312 return e;
4313 target->dbgbase = (uint32_t)w;
4314 target->dbgbase_set = true;
4315 } else {
4316 if (goi->argc != 0)
4317 goto no_params;
4319 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4320 /* loop for more */
4321 break;
4323 case TCFG_RTOS:
4324 /* RTOS */
4326 int result = rtos_create(goi, target);
4327 if (result != JIM_OK)
4328 return result;
4330 /* loop for more */
4331 break;
4333 } /* while (goi->argc) */
4336 /* done - we return */
4337 return JIM_OK;
4340 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4342 Jim_GetOptInfo goi;
4344 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4345 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4346 int need_args = 1 + goi.isconfigure;
4347 if (goi.argc < need_args) {
4348 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4349 goi.isconfigure
4350 ? "missing: -option VALUE ..."
4351 : "missing: -option ...");
4352 return JIM_ERR;
4354 struct target *target = Jim_CmdPrivData(goi.interp);
4355 return target_configure(&goi, target);
4358 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4360 const char *cmd_name = Jim_GetString(argv[0], NULL);
4362 Jim_GetOptInfo goi;
4363 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4365 if (goi.argc < 2 || goi.argc > 4) {
4366 Jim_SetResultFormatted(goi.interp,
4367 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4368 return JIM_ERR;
4371 target_write_fn fn;
4372 fn = target_write_memory;
4374 int e;
4375 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4376 /* consume it */
4377 struct Jim_Obj *obj;
4378 e = Jim_GetOpt_Obj(&goi, &obj);
4379 if (e != JIM_OK)
4380 return e;
4382 fn = target_write_phys_memory;
4385 jim_wide a;
4386 e = Jim_GetOpt_Wide(&goi, &a);
4387 if (e != JIM_OK)
4388 return e;
4390 jim_wide b;
4391 e = Jim_GetOpt_Wide(&goi, &b);
4392 if (e != JIM_OK)
4393 return e;
4395 jim_wide c = 1;
4396 if (goi.argc == 1) {
4397 e = Jim_GetOpt_Wide(&goi, &c);
4398 if (e != JIM_OK)
4399 return e;
4402 /* all args must be consumed */
4403 if (goi.argc != 0)
4404 return JIM_ERR;
4406 struct target *target = Jim_CmdPrivData(goi.interp);
4407 unsigned data_size;
4408 if (strcasecmp(cmd_name, "mww") == 0)
4409 data_size = 4;
4410 else if (strcasecmp(cmd_name, "mwh") == 0)
4411 data_size = 2;
4412 else if (strcasecmp(cmd_name, "mwb") == 0)
4413 data_size = 1;
4414 else {
4415 LOG_ERROR("command '%s' unknown: ", cmd_name);
4416 return JIM_ERR;
4419 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4423 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4425 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4426 * mdh [phys] <address> [<count>] - for 16 bit reads
4427 * mdb [phys] <address> [<count>] - for 8 bit reads
4429 * Count defaults to 1.
4431 * Calls target_read_memory or target_read_phys_memory depending on
4432 * the presence of the "phys" argument
4433 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4434 * to int representation in base16.
4435 * Also outputs read data in a human readable form using command_print
4437 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4438 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4439 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4440 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4441 * on success, with [<count>] number of elements.
4443 * In case of little endian target:
4444 * Example1: "mdw 0x00000000" returns "10123456"
4445 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4446 * Example3: "mdb 0x00000000" returns "56"
4447 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4448 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4450 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4452 const char *cmd_name = Jim_GetString(argv[0], NULL);
4454 Jim_GetOptInfo goi;
4455 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4457 if ((goi.argc < 1) || (goi.argc > 3)) {
4458 Jim_SetResultFormatted(goi.interp,
4459 "usage: %s [phys] <address> [<count>]", cmd_name);
4460 return JIM_ERR;
4463 int (*fn)(struct target *target,
4464 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4465 fn = target_read_memory;
4467 int e;
4468 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4469 /* consume it */
4470 struct Jim_Obj *obj;
4471 e = Jim_GetOpt_Obj(&goi, &obj);
4472 if (e != JIM_OK)
4473 return e;
4475 fn = target_read_phys_memory;
4478 /* Read address parameter */
4479 jim_wide addr;
4480 e = Jim_GetOpt_Wide(&goi, &addr);
4481 if (e != JIM_OK)
4482 return JIM_ERR;
4484 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4485 jim_wide count;
4486 if (goi.argc == 1) {
4487 e = Jim_GetOpt_Wide(&goi, &count);
4488 if (e != JIM_OK)
4489 return JIM_ERR;
4490 } else
4491 count = 1;
4493 /* all args must be consumed */
4494 if (goi.argc != 0)
4495 return JIM_ERR;
4497 jim_wide dwidth = 1; /* shut up gcc */
4498 if (strcasecmp(cmd_name, "mdw") == 0)
4499 dwidth = 4;
4500 else if (strcasecmp(cmd_name, "mdh") == 0)
4501 dwidth = 2;
4502 else if (strcasecmp(cmd_name, "mdb") == 0)
4503 dwidth = 1;
4504 else {
4505 LOG_ERROR("command '%s' unknown: ", cmd_name);
4506 return JIM_ERR;
4509 /* convert count to "bytes" */
4510 int bytes = count * dwidth;
4512 struct target *target = Jim_CmdPrivData(goi.interp);
4513 uint8_t target_buf[32];
4514 jim_wide x, y, z;
4515 while (bytes > 0) {
4516 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4518 /* Try to read out next block */
4519 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4521 if (e != ERROR_OK) {
4522 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4523 return JIM_ERR;
4526 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4527 switch (dwidth) {
4528 case 4:
4529 for (x = 0; x < 16 && x < y; x += 4) {
4530 z = target_buffer_get_u32(target, &(target_buf[x]));
4531 command_print_sameline(NULL, "%08x ", (int)(z));
4533 for (; (x < 16) ; x += 4)
4534 command_print_sameline(NULL, " ");
4535 break;
4536 case 2:
4537 for (x = 0; x < 16 && x < y; x += 2) {
4538 z = target_buffer_get_u16(target, &(target_buf[x]));
4539 command_print_sameline(NULL, "%04x ", (int)(z));
4541 for (; (x < 16) ; x += 2)
4542 command_print_sameline(NULL, " ");
4543 break;
4544 case 1:
4545 default:
4546 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4547 z = target_buffer_get_u8(target, &(target_buf[x]));
4548 command_print_sameline(NULL, "%02x ", (int)(z));
4550 for (; (x < 16) ; x += 1)
4551 command_print_sameline(NULL, " ");
4552 break;
4554 /* ascii-ify the bytes */
4555 for (x = 0 ; x < y ; x++) {
4556 if ((target_buf[x] >= 0x20) &&
4557 (target_buf[x] <= 0x7e)) {
4558 /* good */
4559 } else {
4560 /* smack it */
4561 target_buf[x] = '.';
4564 /* space pad */
4565 while (x < 16) {
4566 target_buf[x] = ' ';
4567 x++;
4569 /* terminate */
4570 target_buf[16] = 0;
4571 /* print - with a newline */
4572 command_print_sameline(NULL, "%s\n", target_buf);
4573 /* NEXT... */
4574 bytes -= 16;
4575 addr += 16;
4577 return JIM_OK;
4580 static int jim_target_mem2array(Jim_Interp *interp,
4581 int argc, Jim_Obj *const *argv)
4583 struct target *target = Jim_CmdPrivData(interp);
4584 return target_mem2array(interp, target, argc - 1, argv + 1);
4587 static int jim_target_array2mem(Jim_Interp *interp,
4588 int argc, Jim_Obj *const *argv)
4590 struct target *target = Jim_CmdPrivData(interp);
4591 return target_array2mem(interp, target, argc - 1, argv + 1);
4594 static int jim_target_tap_disabled(Jim_Interp *interp)
4596 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4597 return JIM_ERR;
4600 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4602 if (argc != 1) {
4603 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4604 return JIM_ERR;
4606 struct target *target = Jim_CmdPrivData(interp);
4607 if (!target->tap->enabled)
4608 return jim_target_tap_disabled(interp);
4610 int e = target->type->examine(target);
4611 if (e != ERROR_OK)
4612 return JIM_ERR;
4613 return JIM_OK;
4616 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4618 if (argc != 1) {
4619 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4620 return JIM_ERR;
4622 struct target *target = Jim_CmdPrivData(interp);
4624 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4625 return JIM_ERR;
4627 return JIM_OK;
4630 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4632 if (argc != 1) {
4633 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4634 return JIM_ERR;
4636 struct target *target = Jim_CmdPrivData(interp);
4637 if (!target->tap->enabled)
4638 return jim_target_tap_disabled(interp);
4640 int e;
4641 if (!(target_was_examined(target)))
4642 e = ERROR_TARGET_NOT_EXAMINED;
4643 else
4644 e = target->type->poll(target);
4645 if (e != ERROR_OK)
4646 return JIM_ERR;
4647 return JIM_OK;
4650 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4652 Jim_GetOptInfo goi;
4653 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4655 if (goi.argc != 2) {
4656 Jim_WrongNumArgs(interp, 0, argv,
4657 "([tT]|[fF]|assert|deassert) BOOL");
4658 return JIM_ERR;
4661 Jim_Nvp *n;
4662 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4663 if (e != JIM_OK) {
4664 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4665 return e;
4667 /* the halt or not param */
4668 jim_wide a;
4669 e = Jim_GetOpt_Wide(&goi, &a);
4670 if (e != JIM_OK)
4671 return e;
4673 struct target *target = Jim_CmdPrivData(goi.interp);
4674 if (!target->tap->enabled)
4675 return jim_target_tap_disabled(interp);
4676 if (!(target_was_examined(target))) {
4677 LOG_ERROR("Target not examined yet");
4678 return ERROR_TARGET_NOT_EXAMINED;
4680 if (!target->type->assert_reset || !target->type->deassert_reset) {
4681 Jim_SetResultFormatted(interp,
4682 "No target-specific reset for %s",
4683 target_name(target));
4684 return JIM_ERR;
4686 /* determine if we should halt or not. */
4687 target->reset_halt = !!a;
4688 /* When this happens - all workareas are invalid. */
4689 target_free_all_working_areas_restore(target, 0);
4691 /* do the assert */
4692 if (n->value == NVP_ASSERT)
4693 e = target->type->assert_reset(target);
4694 else
4695 e = target->type->deassert_reset(target);
4696 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4699 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4701 if (argc != 1) {
4702 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4703 return JIM_ERR;
4705 struct target *target = Jim_CmdPrivData(interp);
4706 if (!target->tap->enabled)
4707 return jim_target_tap_disabled(interp);
4708 int e = target->type->halt(target);
4709 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4712 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4714 Jim_GetOptInfo goi;
4715 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4717 /* params: <name> statename timeoutmsecs */
4718 if (goi.argc != 2) {
4719 const char *cmd_name = Jim_GetString(argv[0], NULL);
4720 Jim_SetResultFormatted(goi.interp,
4721 "%s <state_name> <timeout_in_msec>", cmd_name);
4722 return JIM_ERR;
4725 Jim_Nvp *n;
4726 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4727 if (e != JIM_OK) {
4728 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4729 return e;
4731 jim_wide a;
4732 e = Jim_GetOpt_Wide(&goi, &a);
4733 if (e != JIM_OK)
4734 return e;
4735 struct target *target = Jim_CmdPrivData(interp);
4736 if (!target->tap->enabled)
4737 return jim_target_tap_disabled(interp);
4739 e = target_wait_state(target, n->value, a);
4740 if (e != ERROR_OK) {
4741 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4742 Jim_SetResultFormatted(goi.interp,
4743 "target: %s wait %s fails (%#s) %s",
4744 target_name(target), n->name,
4745 eObj, target_strerror_safe(e));
4746 Jim_FreeNewObj(interp, eObj);
4747 return JIM_ERR;
4749 return JIM_OK;
4751 /* List for human, Events defined for this target.
4752 * scripts/programs should use 'name cget -event NAME'
4754 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4756 struct command_context *cmd_ctx = current_command_context(interp);
4757 assert(cmd_ctx != NULL);
4759 struct target *target = Jim_CmdPrivData(interp);
4760 struct target_event_action *teap = target->event_action;
4761 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4762 target->target_number,
4763 target_name(target));
4764 command_print(cmd_ctx, "%-25s | Body", "Event");
4765 command_print(cmd_ctx, "------------------------- | "
4766 "----------------------------------------");
4767 while (teap) {
4768 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4769 command_print(cmd_ctx, "%-25s | %s",
4770 opt->name, Jim_GetString(teap->body, NULL));
4771 teap = teap->next;
4773 command_print(cmd_ctx, "***END***");
4774 return JIM_OK;
4776 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4778 if (argc != 1) {
4779 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4780 return JIM_ERR;
4782 struct target *target = Jim_CmdPrivData(interp);
4783 Jim_SetResultString(interp, target_state_name(target), -1);
4784 return JIM_OK;
4786 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4788 Jim_GetOptInfo goi;
4789 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4790 if (goi.argc != 1) {
4791 const char *cmd_name = Jim_GetString(argv[0], NULL);
4792 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4793 return JIM_ERR;
4795 Jim_Nvp *n;
4796 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4797 if (e != JIM_OK) {
4798 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4799 return e;
4801 struct target *target = Jim_CmdPrivData(interp);
4802 target_handle_event(target, n->value);
4803 return JIM_OK;
4806 static const struct command_registration target_instance_command_handlers[] = {
4808 .name = "configure",
4809 .mode = COMMAND_CONFIG,
4810 .jim_handler = jim_target_configure,
4811 .help = "configure a new target for use",
4812 .usage = "[target_attribute ...]",
4815 .name = "cget",
4816 .mode = COMMAND_ANY,
4817 .jim_handler = jim_target_configure,
4818 .help = "returns the specified target attribute",
4819 .usage = "target_attribute",
4822 .name = "mww",
4823 .mode = COMMAND_EXEC,
4824 .jim_handler = jim_target_mw,
4825 .help = "Write 32-bit word(s) to target memory",
4826 .usage = "address data [count]",
4829 .name = "mwh",
4830 .mode = COMMAND_EXEC,
4831 .jim_handler = jim_target_mw,
4832 .help = "Write 16-bit half-word(s) to target memory",
4833 .usage = "address data [count]",
4836 .name = "mwb",
4837 .mode = COMMAND_EXEC,
4838 .jim_handler = jim_target_mw,
4839 .help = "Write byte(s) to target memory",
4840 .usage = "address data [count]",
4843 .name = "mdw",
4844 .mode = COMMAND_EXEC,
4845 .jim_handler = jim_target_md,
4846 .help = "Display target memory as 32-bit words",
4847 .usage = "address [count]",
4850 .name = "mdh",
4851 .mode = COMMAND_EXEC,
4852 .jim_handler = jim_target_md,
4853 .help = "Display target memory as 16-bit half-words",
4854 .usage = "address [count]",
4857 .name = "mdb",
4858 .mode = COMMAND_EXEC,
4859 .jim_handler = jim_target_md,
4860 .help = "Display target memory as 8-bit bytes",
4861 .usage = "address [count]",
4864 .name = "array2mem",
4865 .mode = COMMAND_EXEC,
4866 .jim_handler = jim_target_array2mem,
4867 .help = "Writes Tcl array of 8/16/32 bit numbers "
4868 "to target memory",
4869 .usage = "arrayname bitwidth address count",
4872 .name = "mem2array",
4873 .mode = COMMAND_EXEC,
4874 .jim_handler = jim_target_mem2array,
4875 .help = "Loads Tcl array of 8/16/32 bit numbers "
4876 "from target memory",
4877 .usage = "arrayname bitwidth address count",
4880 .name = "eventlist",
4881 .mode = COMMAND_EXEC,
4882 .jim_handler = jim_target_event_list,
4883 .help = "displays a table of events defined for this target",
4886 .name = "curstate",
4887 .mode = COMMAND_EXEC,
4888 .jim_handler = jim_target_current_state,
4889 .help = "displays the current state of this target",
4892 .name = "arp_examine",
4893 .mode = COMMAND_EXEC,
4894 .jim_handler = jim_target_examine,
4895 .help = "used internally for reset processing",
4898 .name = "arp_halt_gdb",
4899 .mode = COMMAND_EXEC,
4900 .jim_handler = jim_target_halt_gdb,
4901 .help = "used internally for reset processing to halt GDB",
4904 .name = "arp_poll",
4905 .mode = COMMAND_EXEC,
4906 .jim_handler = jim_target_poll,
4907 .help = "used internally for reset processing",
4910 .name = "arp_reset",
4911 .mode = COMMAND_EXEC,
4912 .jim_handler = jim_target_reset,
4913 .help = "used internally for reset processing",
4916 .name = "arp_halt",
4917 .mode = COMMAND_EXEC,
4918 .jim_handler = jim_target_halt,
4919 .help = "used internally for reset processing",
4922 .name = "arp_waitstate",
4923 .mode = COMMAND_EXEC,
4924 .jim_handler = jim_target_wait_state,
4925 .help = "used internally for reset processing",
4928 .name = "invoke-event",
4929 .mode = COMMAND_EXEC,
4930 .jim_handler = jim_target_invoke_event,
4931 .help = "invoke handler for specified event",
4932 .usage = "event_name",
4934 COMMAND_REGISTRATION_DONE
4937 static int target_create(Jim_GetOptInfo *goi)
4939 Jim_Obj *new_cmd;
4940 Jim_Cmd *cmd;
4941 const char *cp;
4942 char *cp2;
4943 int e;
4944 int x;
4945 struct target *target;
4946 struct command_context *cmd_ctx;
4948 cmd_ctx = current_command_context(goi->interp);
4949 assert(cmd_ctx != NULL);
4951 if (goi->argc < 3) {
4952 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4953 return JIM_ERR;
4956 /* COMMAND */
4957 Jim_GetOpt_Obj(goi, &new_cmd);
4958 /* does this command exist? */
4959 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4960 if (cmd) {
4961 cp = Jim_GetString(new_cmd, NULL);
4962 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4963 return JIM_ERR;
4966 /* TYPE */
4967 e = Jim_GetOpt_String(goi, &cp2, NULL);
4968 if (e != JIM_OK)
4969 return e;
4970 cp = cp2;
4971 /* now does target type exist */
4972 for (x = 0 ; target_types[x] ; x++) {
4973 if (0 == strcmp(cp, target_types[x]->name)) {
4974 /* found */
4975 break;
4978 /* check for deprecated name */
4979 if (target_types[x]->deprecated_name) {
4980 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4981 /* found */
4982 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4983 break;
4987 if (target_types[x] == NULL) {
4988 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4989 for (x = 0 ; target_types[x] ; x++) {
4990 if (target_types[x + 1]) {
4991 Jim_AppendStrings(goi->interp,
4992 Jim_GetResult(goi->interp),
4993 target_types[x]->name,
4994 ", ", NULL);
4995 } else {
4996 Jim_AppendStrings(goi->interp,
4997 Jim_GetResult(goi->interp),
4998 " or ",
4999 target_types[x]->name, NULL);
5002 return JIM_ERR;
5005 /* Create it */
5006 target = calloc(1, sizeof(struct target));
5007 /* set target number */
5008 target->target_number = new_target_number();
5010 /* allocate memory for each unique target type */
5011 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
5013 memcpy(target->type, target_types[x], sizeof(struct target_type));
5015 /* will be set by "-endian" */
5016 target->endianness = TARGET_ENDIAN_UNKNOWN;
5018 /* default to first core, override with -coreid */
5019 target->coreid = 0;
5021 target->working_area = 0x0;
5022 target->working_area_size = 0x0;
5023 target->working_areas = NULL;
5024 target->backup_working_area = 0;
5026 target->state = TARGET_UNKNOWN;
5027 target->debug_reason = DBG_REASON_UNDEFINED;
5028 target->reg_cache = NULL;
5029 target->breakpoints = NULL;
5030 target->watchpoints = NULL;
5031 target->next = NULL;
5032 target->arch_info = NULL;
5034 target->display = 1;
5036 target->halt_issued = false;
5038 /* initialize trace information */
5039 target->trace_info = malloc(sizeof(struct trace));
5040 target->trace_info->num_trace_points = 0;
5041 target->trace_info->trace_points_size = 0;
5042 target->trace_info->trace_points = NULL;
5043 target->trace_info->trace_history_size = 0;
5044 target->trace_info->trace_history = NULL;
5045 target->trace_info->trace_history_pos = 0;
5046 target->trace_info->trace_history_overflowed = 0;
5048 target->dbgmsg = NULL;
5049 target->dbg_msg_enabled = 0;
5051 target->endianness = TARGET_ENDIAN_UNKNOWN;
5053 target->rtos = NULL;
5054 target->rtos_auto_detect = false;
5056 /* Do the rest as "configure" options */
5057 goi->isconfigure = 1;
5058 e = target_configure(goi, target);
5060 if (target->tap == NULL) {
5061 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5062 e = JIM_ERR;
5065 if (e != JIM_OK) {
5066 free(target->type);
5067 free(target);
5068 return e;
5071 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5072 /* default endian to little if not specified */
5073 target->endianness = TARGET_LITTLE_ENDIAN;
5076 /* incase variant is not set */
5077 if (!target->variant)
5078 target->variant = strdup("");
5080 cp = Jim_GetString(new_cmd, NULL);
5081 target->cmd_name = strdup(cp);
5083 /* create the target specific commands */
5084 if (target->type->commands) {
5085 e = register_commands(cmd_ctx, NULL, target->type->commands);
5086 if (ERROR_OK != e)
5087 LOG_ERROR("unable to register '%s' commands", cp);
5089 if (target->type->target_create)
5090 (*(target->type->target_create))(target, goi->interp);
5092 /* append to end of list */
5094 struct target **tpp;
5095 tpp = &(all_targets);
5096 while (*tpp)
5097 tpp = &((*tpp)->next);
5098 *tpp = target;
5101 /* now - create the new target name command */
5102 const struct command_registration target_subcommands[] = {
5104 .chain = target_instance_command_handlers,
5107 .chain = target->type->commands,
5109 COMMAND_REGISTRATION_DONE
5111 const struct command_registration target_commands[] = {
5113 .name = cp,
5114 .mode = COMMAND_ANY,
5115 .help = "target command group",
5116 .usage = "",
5117 .chain = target_subcommands,
5119 COMMAND_REGISTRATION_DONE
5121 e = register_commands(cmd_ctx, NULL, target_commands);
5122 if (ERROR_OK != e)
5123 return JIM_ERR;
5125 struct command *c = command_find_in_context(cmd_ctx, cp);
5126 assert(c);
5127 command_set_handler_data(c, target);
5129 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5132 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5134 if (argc != 1) {
5135 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5136 return JIM_ERR;
5138 struct command_context *cmd_ctx = current_command_context(interp);
5139 assert(cmd_ctx != NULL);
5141 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5142 return JIM_OK;
5145 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5147 if (argc != 1) {
5148 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5149 return JIM_ERR;
5151 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5152 for (unsigned x = 0; NULL != target_types[x]; x++) {
5153 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5154 Jim_NewStringObj(interp, target_types[x]->name, -1));
5156 return JIM_OK;
5159 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5161 if (argc != 1) {
5162 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5163 return JIM_ERR;
5165 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5166 struct target *target = all_targets;
5167 while (target) {
5168 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5169 Jim_NewStringObj(interp, target_name(target), -1));
5170 target = target->next;
5172 return JIM_OK;
5175 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5177 int i;
5178 const char *targetname;
5179 int retval, len;
5180 struct target *target = (struct target *) NULL;
5181 struct target_list *head, *curr, *new;
5182 curr = (struct target_list *) NULL;
5183 head = (struct target_list *) NULL;
5185 retval = 0;
5186 LOG_DEBUG("%d", argc);
5187 /* argv[1] = target to associate in smp
5188 * argv[2] = target to assoicate in smp
5189 * argv[3] ...
5192 for (i = 1; i < argc; i++) {
5194 targetname = Jim_GetString(argv[i], &len);
5195 target = get_target(targetname);
5196 LOG_DEBUG("%s ", targetname);
5197 if (target) {
5198 new = malloc(sizeof(struct target_list));
5199 new->target = target;
5200 new->next = (struct target_list *)NULL;
5201 if (head == (struct target_list *)NULL) {
5202 head = new;
5203 curr = head;
5204 } else {
5205 curr->next = new;
5206 curr = new;
5210 /* now parse the list of cpu and put the target in smp mode*/
5211 curr = head;
5213 while (curr != (struct target_list *)NULL) {
5214 target = curr->target;
5215 target->smp = 1;
5216 target->head = head;
5217 curr = curr->next;
5220 if (target && target->rtos)
5221 retval = rtos_smp_init(head->target);
5223 return retval;
5227 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5229 Jim_GetOptInfo goi;
5230 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5231 if (goi.argc < 3) {
5232 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5233 "<name> <target_type> [<target_options> ...]");
5234 return JIM_ERR;
5236 return target_create(&goi);
5239 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5241 Jim_GetOptInfo goi;
5242 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5244 /* It's OK to remove this mechanism sometime after August 2010 or so */
5245 LOG_WARNING("don't use numbers as target identifiers; use names");
5246 if (goi.argc != 1) {
5247 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5248 return JIM_ERR;
5250 jim_wide w;
5251 int e = Jim_GetOpt_Wide(&goi, &w);
5252 if (e != JIM_OK)
5253 return JIM_ERR;
5255 struct target *target;
5256 for (target = all_targets; NULL != target; target = target->next) {
5257 if (target->target_number != w)
5258 continue;
5260 Jim_SetResultString(goi.interp, target_name(target), -1);
5261 return JIM_OK;
5264 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5265 Jim_SetResultFormatted(goi.interp,
5266 "Target: number %#s does not exist", wObj);
5267 Jim_FreeNewObj(interp, wObj);
5269 return JIM_ERR;
5272 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5274 if (argc != 1) {
5275 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5276 return JIM_ERR;
5278 unsigned count = 0;
5279 struct target *target = all_targets;
5280 while (NULL != target) {
5281 target = target->next;
5282 count++;
5284 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5285 return JIM_OK;
5288 static const struct command_registration target_subcommand_handlers[] = {
5290 .name = "init",
5291 .mode = COMMAND_CONFIG,
5292 .handler = handle_target_init_command,
5293 .help = "initialize targets",
5296 .name = "create",
5297 /* REVISIT this should be COMMAND_CONFIG ... */
5298 .mode = COMMAND_ANY,
5299 .jim_handler = jim_target_create,
5300 .usage = "name type '-chain-position' name [options ...]",
5301 .help = "Creates and selects a new target",
5304 .name = "current",
5305 .mode = COMMAND_ANY,
5306 .jim_handler = jim_target_current,
5307 .help = "Returns the currently selected target",
5310 .name = "types",
5311 .mode = COMMAND_ANY,
5312 .jim_handler = jim_target_types,
5313 .help = "Returns the available target types as "
5314 "a list of strings",
5317 .name = "names",
5318 .mode = COMMAND_ANY,
5319 .jim_handler = jim_target_names,
5320 .help = "Returns the names of all targets as a list of strings",
5323 .name = "number",
5324 .mode = COMMAND_ANY,
5325 .jim_handler = jim_target_number,
5326 .usage = "number",
5327 .help = "Returns the name of the numbered target "
5328 "(DEPRECATED)",
5331 .name = "count",
5332 .mode = COMMAND_ANY,
5333 .jim_handler = jim_target_count,
5334 .help = "Returns the number of targets as an integer "
5335 "(DEPRECATED)",
5338 .name = "smp",
5339 .mode = COMMAND_ANY,
5340 .jim_handler = jim_target_smp,
5341 .usage = "targetname1 targetname2 ...",
5342 .help = "gather several target in a smp list"
5345 COMMAND_REGISTRATION_DONE
5348 struct FastLoad {
5349 uint32_t address;
5350 uint8_t *data;
5351 int length;
5355 static int fastload_num;
5356 static struct FastLoad *fastload;
5358 static void free_fastload(void)
5360 if (fastload != NULL) {
5361 int i;
5362 for (i = 0; i < fastload_num; i++) {
5363 if (fastload[i].data)
5364 free(fastload[i].data);
5366 free(fastload);
5367 fastload = NULL;
5371 COMMAND_HANDLER(handle_fast_load_image_command)
5373 uint8_t *buffer;
5374 size_t buf_cnt;
5375 uint32_t image_size;
5376 uint32_t min_address = 0;
5377 uint32_t max_address = 0xffffffff;
5378 int i;
5380 struct image image;
5382 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5383 &image, &min_address, &max_address);
5384 if (ERROR_OK != retval)
5385 return retval;
5387 struct duration bench;
5388 duration_start(&bench);
5390 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5391 if (retval != ERROR_OK)
5392 return retval;
5394 image_size = 0x0;
5395 retval = ERROR_OK;
5396 fastload_num = image.num_sections;
5397 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5398 if (fastload == NULL) {
5399 command_print(CMD_CTX, "out of memory");
5400 image_close(&image);
5401 return ERROR_FAIL;
5403 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5404 for (i = 0; i < image.num_sections; i++) {
5405 buffer = malloc(image.sections[i].size);
5406 if (buffer == NULL) {
5407 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5408 (int)(image.sections[i].size));
5409 retval = ERROR_FAIL;
5410 break;
5413 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5414 if (retval != ERROR_OK) {
5415 free(buffer);
5416 break;
5419 uint32_t offset = 0;
5420 uint32_t length = buf_cnt;
5422 /* DANGER!!! beware of unsigned comparision here!!! */
5424 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5425 (image.sections[i].base_address < max_address)) {
5426 if (image.sections[i].base_address < min_address) {
5427 /* clip addresses below */
5428 offset += min_address-image.sections[i].base_address;
5429 length -= offset;
5432 if (image.sections[i].base_address + buf_cnt > max_address)
5433 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5435 fastload[i].address = image.sections[i].base_address + offset;
5436 fastload[i].data = malloc(length);
5437 if (fastload[i].data == NULL) {
5438 free(buffer);
5439 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5440 length);
5441 retval = ERROR_FAIL;
5442 break;
5444 memcpy(fastload[i].data, buffer + offset, length);
5445 fastload[i].length = length;
5447 image_size += length;
5448 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5449 (unsigned int)length,
5450 ((unsigned int)(image.sections[i].base_address + offset)));
5453 free(buffer);
5456 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5457 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5458 "in %fs (%0.3f KiB/s)", image_size,
5459 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5461 command_print(CMD_CTX,
5462 "WARNING: image has not been loaded to target!"
5463 "You can issue a 'fast_load' to finish loading.");
5466 image_close(&image);
5468 if (retval != ERROR_OK)
5469 free_fastload();
5471 return retval;
5474 COMMAND_HANDLER(handle_fast_load_command)
5476 if (CMD_ARGC > 0)
5477 return ERROR_COMMAND_SYNTAX_ERROR;
5478 if (fastload == NULL) {
5479 LOG_ERROR("No image in memory");
5480 return ERROR_FAIL;
5482 int i;
5483 int ms = timeval_ms();
5484 int size = 0;
5485 int retval = ERROR_OK;
5486 for (i = 0; i < fastload_num; i++) {
5487 struct target *target = get_current_target(CMD_CTX);
5488 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5489 (unsigned int)(fastload[i].address),
5490 (unsigned int)(fastload[i].length));
5491 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5492 if (retval != ERROR_OK)
5493 break;
5494 size += fastload[i].length;
5496 if (retval == ERROR_OK) {
5497 int after = timeval_ms();
5498 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5500 return retval;
5503 static const struct command_registration target_command_handlers[] = {
5505 .name = "targets",
5506 .handler = handle_targets_command,
5507 .mode = COMMAND_ANY,
5508 .help = "change current default target (one parameter) "
5509 "or prints table of all targets (no parameters)",
5510 .usage = "[target]",
5513 .name = "target",
5514 .mode = COMMAND_CONFIG,
5515 .help = "configure target",
5517 .chain = target_subcommand_handlers,
5519 COMMAND_REGISTRATION_DONE
5522 int target_register_commands(struct command_context *cmd_ctx)
5524 return register_commands(cmd_ctx, NULL, target_command_handlers);
5527 static bool target_reset_nag = true;
5529 bool get_target_reset_nag(void)
5531 return target_reset_nag;
5534 COMMAND_HANDLER(handle_target_reset_nag)
5536 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5537 &target_reset_nag, "Nag after each reset about options to improve "
5538 "performance");
5541 COMMAND_HANDLER(handle_ps_command)
5543 struct target *target = get_current_target(CMD_CTX);
5544 char *display;
5545 if (target->state != TARGET_HALTED) {
5546 LOG_INFO("target not halted !!");
5547 return ERROR_OK;
5550 if ((target->rtos) && (target->rtos->type)
5551 && (target->rtos->type->ps_command)) {
5552 display = target->rtos->type->ps_command(target);
5553 command_print(CMD_CTX, "%s", display);
5554 free(display);
5555 return ERROR_OK;
5556 } else {
5557 LOG_INFO("failed");
5558 return ERROR_TARGET_FAILURE;
5562 static const struct command_registration target_exec_command_handlers[] = {
5564 .name = "fast_load_image",
5565 .handler = handle_fast_load_image_command,
5566 .mode = COMMAND_ANY,
5567 .help = "Load image into server memory for later use by "
5568 "fast_load; primarily for profiling",
5569 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5570 "[min_address [max_length]]",
5573 .name = "fast_load",
5574 .handler = handle_fast_load_command,
5575 .mode = COMMAND_EXEC,
5576 .help = "loads active fast load image to current target "
5577 "- mainly for profiling purposes",
5578 .usage = "",
5581 .name = "profile",
5582 .handler = handle_profile_command,
5583 .mode = COMMAND_EXEC,
5584 .usage = "seconds filename [start end]",
5585 .help = "profiling samples the CPU PC",
5587 /** @todo don't register virt2phys() unless target supports it */
5589 .name = "virt2phys",
5590 .handler = handle_virt2phys_command,
5591 .mode = COMMAND_ANY,
5592 .help = "translate a virtual address into a physical address",
5593 .usage = "virtual_address",
5596 .name = "reg",
5597 .handler = handle_reg_command,
5598 .mode = COMMAND_EXEC,
5599 .help = "display or set a register; with no arguments, "
5600 "displays all registers and their values",
5601 .usage = "[(register_name|register_number) [value]]",
5604 .name = "poll",
5605 .handler = handle_poll_command,
5606 .mode = COMMAND_EXEC,
5607 .help = "poll target state; or reconfigure background polling",
5608 .usage = "['on'|'off']",
5611 .name = "wait_halt",
5612 .handler = handle_wait_halt_command,
5613 .mode = COMMAND_EXEC,
5614 .help = "wait up to the specified number of milliseconds "
5615 "(default 5000) for a previously requested halt",
5616 .usage = "[milliseconds]",
5619 .name = "halt",
5620 .handler = handle_halt_command,
5621 .mode = COMMAND_EXEC,
5622 .help = "request target to halt, then wait up to the specified"
5623 "number of milliseconds (default 5000) for it to complete",
5624 .usage = "[milliseconds]",
5627 .name = "resume",
5628 .handler = handle_resume_command,
5629 .mode = COMMAND_EXEC,
5630 .help = "resume target execution from current PC or address",
5631 .usage = "[address]",
5634 .name = "reset",
5635 .handler = handle_reset_command,
5636 .mode = COMMAND_EXEC,
5637 .usage = "[run|halt|init]",
5638 .help = "Reset all targets into the specified mode."
5639 "Default reset mode is run, if not given.",
5642 .name = "soft_reset_halt",
5643 .handler = handle_soft_reset_halt_command,
5644 .mode = COMMAND_EXEC,
5645 .usage = "",
5646 .help = "halt the target and do a soft reset",
5649 .name = "step",
5650 .handler = handle_step_command,
5651 .mode = COMMAND_EXEC,
5652 .help = "step one instruction from current PC or address",
5653 .usage = "[address]",
5656 .name = "mdw",
5657 .handler = handle_md_command,
5658 .mode = COMMAND_EXEC,
5659 .help = "display memory words",
5660 .usage = "['phys'] address [count]",
5663 .name = "mdh",
5664 .handler = handle_md_command,
5665 .mode = COMMAND_EXEC,
5666 .help = "display memory half-words",
5667 .usage = "['phys'] address [count]",
5670 .name = "mdb",
5671 .handler = handle_md_command,
5672 .mode = COMMAND_EXEC,
5673 .help = "display memory bytes",
5674 .usage = "['phys'] address [count]",
5677 .name = "mww",
5678 .handler = handle_mw_command,
5679 .mode = COMMAND_EXEC,
5680 .help = "write memory word",
5681 .usage = "['phys'] address value [count]",
5684 .name = "mwh",
5685 .handler = handle_mw_command,
5686 .mode = COMMAND_EXEC,
5687 .help = "write memory half-word",
5688 .usage = "['phys'] address value [count]",
5691 .name = "mwb",
5692 .handler = handle_mw_command,
5693 .mode = COMMAND_EXEC,
5694 .help = "write memory byte",
5695 .usage = "['phys'] address value [count]",
5698 .name = "bp",
5699 .handler = handle_bp_command,
5700 .mode = COMMAND_EXEC,
5701 .help = "list or set hardware or software breakpoint",
5702 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5705 .name = "rbp",
5706 .handler = handle_rbp_command,
5707 .mode = COMMAND_EXEC,
5708 .help = "remove breakpoint",
5709 .usage = "address",
5712 .name = "wp",
5713 .handler = handle_wp_command,
5714 .mode = COMMAND_EXEC,
5715 .help = "list (no params) or create watchpoints",
5716 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5719 .name = "rwp",
5720 .handler = handle_rwp_command,
5721 .mode = COMMAND_EXEC,
5722 .help = "remove watchpoint",
5723 .usage = "address",
5726 .name = "load_image",
5727 .handler = handle_load_image_command,
5728 .mode = COMMAND_EXEC,
5729 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5730 "[min_address] [max_length]",
5733 .name = "dump_image",
5734 .handler = handle_dump_image_command,
5735 .mode = COMMAND_EXEC,
5736 .usage = "filename address size",
5739 .name = "verify_image",
5740 .handler = handle_verify_image_command,
5741 .mode = COMMAND_EXEC,
5742 .usage = "filename [offset [type]]",
5745 .name = "test_image",
5746 .handler = handle_test_image_command,
5747 .mode = COMMAND_EXEC,
5748 .usage = "filename [offset [type]]",
5751 .name = "mem2array",
5752 .mode = COMMAND_EXEC,
5753 .jim_handler = jim_mem2array,
5754 .help = "read 8/16/32 bit memory and return as a TCL array "
5755 "for script processing",
5756 .usage = "arrayname bitwidth address count",
5759 .name = "array2mem",
5760 .mode = COMMAND_EXEC,
5761 .jim_handler = jim_array2mem,
5762 .help = "convert a TCL array to memory locations "
5763 "and write the 8/16/32 bit values",
5764 .usage = "arrayname bitwidth address count",
5767 .name = "reset_nag",
5768 .handler = handle_target_reset_nag,
5769 .mode = COMMAND_ANY,
5770 .help = "Nag after each reset about options that could have been "
5771 "enabled to improve performance. ",
5772 .usage = "['enable'|'disable']",
5775 .name = "ps",
5776 .handler = handle_ps_command,
5777 .mode = COMMAND_EXEC,
5778 .help = "list all tasks ",
5779 .usage = " ",
5782 COMMAND_REGISTRATION_DONE
5784 static int target_register_user_commands(struct command_context *cmd_ctx)
5786 int retval = ERROR_OK;
5787 retval = target_request_register_commands(cmd_ctx);
5788 if (retval != ERROR_OK)
5789 return retval;
5791 retval = trace_register_commands(cmd_ctx);
5792 if (retval != ERROR_OK)
5793 return retval;
5796 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);