60a8a773909129edf126abd8546a4b36c9265b75
[openocd.git] / src / target / target.c
blob60a8a773909129edf126abd8546a4b36c9265b75
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
72 /* targets */
73 extern struct target_type arm7tdmi_target;
74 extern struct target_type arm720t_target;
75 extern struct target_type arm9tdmi_target;
76 extern struct target_type arm920t_target;
77 extern struct target_type arm966e_target;
78 extern struct target_type arm946e_target;
79 extern struct target_type arm926ejs_target;
80 extern struct target_type fa526_target;
81 extern struct target_type feroceon_target;
82 extern struct target_type dragonite_target;
83 extern struct target_type xscale_target;
84 extern struct target_type cortexm3_target;
85 extern struct target_type cortexa8_target;
86 extern struct target_type cortexr4_target;
87 extern struct target_type arm11_target;
88 extern struct target_type mips_m4k_target;
89 extern struct target_type avr_target;
90 extern struct target_type dsp563xx_target;
91 extern struct target_type dsp5680xx_target;
92 extern struct target_type testee_target;
93 extern struct target_type avr32_ap7k_target;
94 extern struct target_type hla_target;
95 extern struct target_type nds32_v2_target;
96 extern struct target_type nds32_v3_target;
97 extern struct target_type nds32_v3m_target;
99 static struct target_type *target_types[] = {
100 &arm7tdmi_target,
101 &arm9tdmi_target,
102 &arm920t_target,
103 &arm720t_target,
104 &arm966e_target,
105 &arm946e_target,
106 &arm926ejs_target,
107 &fa526_target,
108 &feroceon_target,
109 &dragonite_target,
110 &xscale_target,
111 &cortexm3_target,
112 &cortexa8_target,
113 &cortexr4_target,
114 &arm11_target,
115 &mips_m4k_target,
116 &avr_target,
117 &dsp563xx_target,
118 &dsp5680xx_target,
119 &testee_target,
120 &avr32_ap7k_target,
121 &hla_target,
122 &nds32_v2_target,
123 &nds32_v3_target,
124 &nds32_v3m_target,
125 NULL,
128 struct target *all_targets;
129 static struct target_event_callback *target_event_callbacks;
130 static struct target_timer_callback *target_timer_callbacks;
131 static const int polling_interval = 100;
133 static const Jim_Nvp nvp_assert[] = {
134 { .name = "assert", NVP_ASSERT },
135 { .name = "deassert", NVP_DEASSERT },
136 { .name = "T", NVP_ASSERT },
137 { .name = "F", NVP_DEASSERT },
138 { .name = "t", NVP_ASSERT },
139 { .name = "f", NVP_DEASSERT },
140 { .name = NULL, .value = -1 }
143 static const Jim_Nvp nvp_error_target[] = {
144 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
145 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
146 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
147 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
148 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
149 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
150 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
151 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
152 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
153 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
154 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
155 { .value = -1, .name = NULL }
158 static const char *target_strerror_safe(int err)
160 const Jim_Nvp *n;
162 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
163 if (n->name == NULL)
164 return "unknown";
165 else
166 return n->name;
169 static const Jim_Nvp nvp_target_event[] = {
171 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
172 { .value = TARGET_EVENT_HALTED, .name = "halted" },
173 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
174 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
175 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
177 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
178 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
180 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
181 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
182 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
183 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
184 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
185 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
186 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
187 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
188 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
189 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
190 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
191 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
193 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
194 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
196 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
197 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
199 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
200 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
202 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
203 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
205 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
206 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
208 { .name = NULL, .value = -1 }
211 static const Jim_Nvp nvp_target_state[] = {
212 { .name = "unknown", .value = TARGET_UNKNOWN },
213 { .name = "running", .value = TARGET_RUNNING },
214 { .name = "halted", .value = TARGET_HALTED },
215 { .name = "reset", .value = TARGET_RESET },
216 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
217 { .name = NULL, .value = -1 },
220 static const Jim_Nvp nvp_target_debug_reason[] = {
221 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
222 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
223 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
224 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
225 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
226 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
227 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
228 { .name = NULL, .value = -1 },
231 static const Jim_Nvp nvp_target_endian[] = {
232 { .name = "big", .value = TARGET_BIG_ENDIAN },
233 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
234 { .name = "be", .value = TARGET_BIG_ENDIAN },
235 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
236 { .name = NULL, .value = -1 },
239 static const Jim_Nvp nvp_reset_modes[] = {
240 { .name = "unknown", .value = RESET_UNKNOWN },
241 { .name = "run" , .value = RESET_RUN },
242 { .name = "halt" , .value = RESET_HALT },
243 { .name = "init" , .value = RESET_INIT },
244 { .name = NULL , .value = -1 },
247 const char *debug_reason_name(struct target *t)
249 const char *cp;
251 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
252 t->debug_reason)->name;
253 if (!cp) {
254 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
255 cp = "(*BUG*unknown*BUG*)";
257 return cp;
260 const char *target_state_name(struct target *t)
262 const char *cp;
263 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
264 if (!cp) {
265 LOG_ERROR("Invalid target state: %d", (int)(t->state));
266 cp = "(*BUG*unknown*BUG*)";
268 return cp;
271 /* determine the number of the new target */
272 static int new_target_number(void)
274 struct target *t;
275 int x;
277 /* number is 0 based */
278 x = -1;
279 t = all_targets;
280 while (t) {
281 if (x < t->target_number)
282 x = t->target_number;
283 t = t->next;
285 return x + 1;
288 /* read a uint32_t from a buffer in target memory endianness */
289 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
291 if (target->endianness == TARGET_LITTLE_ENDIAN)
292 return le_to_h_u32(buffer);
293 else
294 return be_to_h_u32(buffer);
297 /* read a uint24_t from a buffer in target memory endianness */
298 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
300 if (target->endianness == TARGET_LITTLE_ENDIAN)
301 return le_to_h_u24(buffer);
302 else
303 return be_to_h_u24(buffer);
306 /* read a uint16_t from a buffer in target memory endianness */
307 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
309 if (target->endianness == TARGET_LITTLE_ENDIAN)
310 return le_to_h_u16(buffer);
311 else
312 return be_to_h_u16(buffer);
315 /* read a uint8_t from a buffer in target memory endianness */
316 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
318 return *buffer & 0x0ff;
321 /* write a uint32_t to a buffer in target memory endianness */
322 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
324 if (target->endianness == TARGET_LITTLE_ENDIAN)
325 h_u32_to_le(buffer, value);
326 else
327 h_u32_to_be(buffer, value);
330 /* write a uint24_t to a buffer in target memory endianness */
331 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
333 if (target->endianness == TARGET_LITTLE_ENDIAN)
334 h_u24_to_le(buffer, value);
335 else
336 h_u24_to_be(buffer, value);
339 /* write a uint16_t to a buffer in target memory endianness */
340 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
342 if (target->endianness == TARGET_LITTLE_ENDIAN)
343 h_u16_to_le(buffer, value);
344 else
345 h_u16_to_be(buffer, value);
348 /* write a uint8_t to a buffer in target memory endianness */
349 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
351 *buffer = value;
354 /* write a uint32_t array to a buffer in target memory endianness */
355 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
357 uint32_t i;
358 for (i = 0; i < count; i++)
359 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
362 /* write a uint16_t array to a buffer in target memory endianness */
363 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
365 uint32_t i;
366 for (i = 0; i < count; i++)
367 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
370 /* write a uint32_t array to a buffer in target memory endianness */
371 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
373 uint32_t i;
374 for (i = 0; i < count; i++)
375 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
378 /* write a uint16_t array to a buffer in target memory endianness */
379 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
381 uint32_t i;
382 for (i = 0; i < count; i++)
383 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
386 /* return a pointer to a configured target; id is name or number */
387 struct target *get_target(const char *id)
389 struct target *target;
391 /* try as tcltarget name */
392 for (target = all_targets; target; target = target->next) {
393 if (target_name(target) == NULL)
394 continue;
395 if (strcmp(id, target_name(target)) == 0)
396 return target;
399 /* It's OK to remove this fallback sometime after August 2010 or so */
401 /* no match, try as number */
402 unsigned num;
403 if (parse_uint(id, &num) != ERROR_OK)
404 return NULL;
406 for (target = all_targets; target; target = target->next) {
407 if (target->target_number == (int)num) {
408 LOG_WARNING("use '%s' as target identifier, not '%u'",
409 target_name(target), num);
410 return target;
414 return NULL;
417 /* returns a pointer to the n-th configured target */
418 static struct target *get_target_by_num(int num)
420 struct target *target = all_targets;
422 while (target) {
423 if (target->target_number == num)
424 return target;
425 target = target->next;
428 return NULL;
431 struct target *get_current_target(struct command_context *cmd_ctx)
433 struct target *target = get_target_by_num(cmd_ctx->current_target);
435 if (target == NULL) {
436 LOG_ERROR("BUG: current_target out of bounds");
437 exit(-1);
440 return target;
443 int target_poll(struct target *target)
445 int retval;
447 /* We can't poll until after examine */
448 if (!target_was_examined(target)) {
449 /* Fail silently lest we pollute the log */
450 return ERROR_FAIL;
453 retval = target->type->poll(target);
454 if (retval != ERROR_OK)
455 return retval;
457 if (target->halt_issued) {
458 if (target->state == TARGET_HALTED)
459 target->halt_issued = false;
460 else {
461 long long t = timeval_ms() - target->halt_issued_time;
462 if (t > DEFAULT_HALT_TIMEOUT) {
463 target->halt_issued = false;
464 LOG_INFO("Halt timed out, wake up GDB.");
465 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470 return ERROR_OK;
473 int target_halt(struct target *target)
475 int retval;
476 /* We can't poll until after examine */
477 if (!target_was_examined(target)) {
478 LOG_ERROR("Target not examined yet");
479 return ERROR_FAIL;
482 retval = target->type->halt(target);
483 if (retval != ERROR_OK)
484 return retval;
486 target->halt_issued = true;
487 target->halt_issued_time = timeval_ms();
489 return ERROR_OK;
493 * Make the target (re)start executing using its saved execution
494 * context (possibly with some modifications).
496 * @param target Which target should start executing.
497 * @param current True to use the target's saved program counter instead
498 * of the address parameter
499 * @param address Optionally used as the program counter.
500 * @param handle_breakpoints True iff breakpoints at the resumption PC
501 * should be skipped. (For example, maybe execution was stopped by
502 * such a breakpoint, in which case it would be counterprodutive to
503 * let it re-trigger.
504 * @param debug_execution False if all working areas allocated by OpenOCD
505 * should be released and/or restored to their original contents.
506 * (This would for example be true to run some downloaded "helper"
507 * algorithm code, which resides in one such working buffer and uses
508 * another for data storage.)
510 * @todo Resolve the ambiguity about what the "debug_execution" flag
511 * signifies. For example, Target implementations don't agree on how
512 * it relates to invalidation of the register cache, or to whether
513 * breakpoints and watchpoints should be enabled. (It would seem wrong
514 * to enable breakpoints when running downloaded "helper" algorithms
515 * (debug_execution true), since the breakpoints would be set to match
516 * target firmware being debugged, not the helper algorithm.... and
517 * enabling them could cause such helpers to malfunction (for example,
518 * by overwriting data with a breakpoint instruction. On the other
519 * hand the infrastructure for running such helpers might use this
520 * procedure but rely on hardware breakpoint to detect termination.)
522 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
524 int retval;
526 /* We can't poll until after examine */
527 if (!target_was_examined(target)) {
528 LOG_ERROR("Target not examined yet");
529 return ERROR_FAIL;
532 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
534 /* note that resume *must* be asynchronous. The CPU can halt before
535 * we poll. The CPU can even halt at the current PC as a result of
536 * a software breakpoint being inserted by (a bug?) the application.
538 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
539 if (retval != ERROR_OK)
540 return retval;
542 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
544 return retval;
547 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 char buf[100];
550 int retval;
551 Jim_Nvp *n;
552 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
553 if (n->name == NULL) {
554 LOG_ERROR("invalid reset mode");
555 return ERROR_FAIL;
558 /* disable polling during reset to make reset event scripts
559 * more predictable, i.e. dr/irscan & pathmove in events will
560 * not have JTAG operations injected into the middle of a sequence.
562 bool save_poll = jtag_poll_get_enabled();
564 jtag_poll_set_enabled(false);
566 sprintf(buf, "ocd_process_reset %s", n->name);
567 retval = Jim_Eval(cmd_ctx->interp, buf);
569 jtag_poll_set_enabled(save_poll);
571 if (retval != JIM_OK) {
572 Jim_MakeErrorMessage(cmd_ctx->interp);
573 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
574 return ERROR_FAIL;
577 /* We want any events to be processed before the prompt */
578 retval = target_call_timer_callbacks_now();
580 struct target *target;
581 for (target = all_targets; target; target = target->next)
582 target->type->check_reset(target);
584 return retval;
587 static int identity_virt2phys(struct target *target,
588 uint32_t virtual, uint32_t *physical)
590 *physical = virtual;
591 return ERROR_OK;
594 static int no_mmu(struct target *target, int *enabled)
596 *enabled = 0;
597 return ERROR_OK;
600 static int default_examine(struct target *target)
602 target_set_examined(target);
603 return ERROR_OK;
606 /* no check by default */
607 static int default_check_reset(struct target *target)
609 return ERROR_OK;
612 int target_examine_one(struct target *target)
614 return target->type->examine(target);
617 static int jtag_enable_callback(enum jtag_event event, void *priv)
619 struct target *target = priv;
621 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
622 return ERROR_OK;
624 jtag_unregister_event_callback(jtag_enable_callback, target);
626 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
628 int retval = target_examine_one(target);
629 if (retval != ERROR_OK)
630 return retval;
632 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
634 return retval;
637 /* Targets that correctly implement init + examine, i.e.
638 * no communication with target during init:
640 * XScale
642 int target_examine(void)
644 int retval = ERROR_OK;
645 struct target *target;
647 for (target = all_targets; target; target = target->next) {
648 /* defer examination, but don't skip it */
649 if (!target->tap->enabled) {
650 jtag_register_event_callback(jtag_enable_callback,
651 target);
652 continue;
655 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
657 retval = target_examine_one(target);
658 if (retval != ERROR_OK)
659 return retval;
661 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
663 return retval;
666 const char *target_type_name(struct target *target)
668 return target->type->name;
671 static int target_soft_reset_halt(struct target *target)
673 if (!target_was_examined(target)) {
674 LOG_ERROR("Target not examined yet");
675 return ERROR_FAIL;
677 if (!target->type->soft_reset_halt) {
678 LOG_ERROR("Target %s does not support soft_reset_halt",
679 target_name(target));
680 return ERROR_FAIL;
682 return target->type->soft_reset_halt(target);
686 * Downloads a target-specific native code algorithm to the target,
687 * and executes it. * Note that some targets may need to set up, enable,
688 * and tear down a breakpoint (hard or * soft) to detect algorithm
689 * termination, while others may support lower overhead schemes where
690 * soft breakpoints embedded in the algorithm automatically terminate the
691 * algorithm.
693 * @param target used to run the algorithm
694 * @param arch_info target-specific description of the algorithm.
696 int target_run_algorithm(struct target *target,
697 int num_mem_params, struct mem_param *mem_params,
698 int num_reg_params, struct reg_param *reg_param,
699 uint32_t entry_point, uint32_t exit_point,
700 int timeout_ms, void *arch_info)
702 int retval = ERROR_FAIL;
704 if (!target_was_examined(target)) {
705 LOG_ERROR("Target not examined yet");
706 goto done;
708 if (!target->type->run_algorithm) {
709 LOG_ERROR("Target type '%s' does not support %s",
710 target_type_name(target), __func__);
711 goto done;
714 target->running_alg = true;
715 retval = target->type->run_algorithm(target,
716 num_mem_params, mem_params,
717 num_reg_params, reg_param,
718 entry_point, exit_point, timeout_ms, arch_info);
719 target->running_alg = false;
721 done:
722 return retval;
726 * Downloads a target-specific native code algorithm to the target,
727 * executes and leaves it running.
729 * @param target used to run the algorithm
730 * @param arch_info target-specific description of the algorithm.
732 int target_start_algorithm(struct target *target,
733 int num_mem_params, struct mem_param *mem_params,
734 int num_reg_params, struct reg_param *reg_params,
735 uint32_t entry_point, uint32_t exit_point,
736 void *arch_info)
738 int retval = ERROR_FAIL;
740 if (!target_was_examined(target)) {
741 LOG_ERROR("Target not examined yet");
742 goto done;
744 if (!target->type->start_algorithm) {
745 LOG_ERROR("Target type '%s' does not support %s",
746 target_type_name(target), __func__);
747 goto done;
749 if (target->running_alg) {
750 LOG_ERROR("Target is already running an algorithm");
751 goto done;
754 target->running_alg = true;
755 retval = target->type->start_algorithm(target,
756 num_mem_params, mem_params,
757 num_reg_params, reg_params,
758 entry_point, exit_point, arch_info);
760 done:
761 return retval;
765 * Waits for an algorithm started with target_start_algorithm() to complete.
767 * @param target used to run the algorithm
768 * @param arch_info target-specific description of the algorithm.
770 int target_wait_algorithm(struct target *target,
771 int num_mem_params, struct mem_param *mem_params,
772 int num_reg_params, struct reg_param *reg_params,
773 uint32_t exit_point, int timeout_ms,
774 void *arch_info)
776 int retval = ERROR_FAIL;
778 if (!target->type->wait_algorithm) {
779 LOG_ERROR("Target type '%s' does not support %s",
780 target_type_name(target), __func__);
781 goto done;
783 if (!target->running_alg) {
784 LOG_ERROR("Target is not running an algorithm");
785 goto done;
788 retval = target->type->wait_algorithm(target,
789 num_mem_params, mem_params,
790 num_reg_params, reg_params,
791 exit_point, timeout_ms, arch_info);
792 if (retval != ERROR_TARGET_TIMEOUT)
793 target->running_alg = false;
795 done:
796 return retval;
800 * Executes a target-specific native code algorithm in the target.
801 * It differs from target_run_algorithm in that the algorithm is asynchronous.
802 * Because of this it requires an compliant algorithm:
803 * see contrib/loaders/flash/stm32f1x.S for example.
805 * @param target used to run the algorithm
808 int target_run_flash_async_algorithm(struct target *target,
809 uint8_t *buffer, uint32_t count, int block_size,
810 int num_mem_params, struct mem_param *mem_params,
811 int num_reg_params, struct reg_param *reg_params,
812 uint32_t buffer_start, uint32_t buffer_size,
813 uint32_t entry_point, uint32_t exit_point, void *arch_info)
815 int retval;
816 int timeout = 0;
818 /* Set up working area. First word is write pointer, second word is read pointer,
819 * rest is fifo data area. */
820 uint32_t wp_addr = buffer_start;
821 uint32_t rp_addr = buffer_start + 4;
822 uint32_t fifo_start_addr = buffer_start + 8;
823 uint32_t fifo_end_addr = buffer_start + buffer_size;
825 uint32_t wp = fifo_start_addr;
826 uint32_t rp = fifo_start_addr;
828 /* validate block_size is 2^n */
829 assert(!block_size || !(block_size & (block_size - 1)));
831 retval = target_write_u32(target, wp_addr, wp);
832 if (retval != ERROR_OK)
833 return retval;
834 retval = target_write_u32(target, rp_addr, rp);
835 if (retval != ERROR_OK)
836 return retval;
838 /* Start up algorithm on target and let it idle while writing the first chunk */
839 retval = target_start_algorithm(target, num_mem_params, mem_params,
840 num_reg_params, reg_params,
841 entry_point,
842 exit_point,
843 arch_info);
845 if (retval != ERROR_OK) {
846 LOG_ERROR("error starting target flash write algorithm");
847 return retval;
850 while (count > 0) {
852 retval = target_read_u32(target, rp_addr, &rp);
853 if (retval != ERROR_OK) {
854 LOG_ERROR("failed to get read pointer");
855 break;
858 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
860 if (rp == 0) {
861 LOG_ERROR("flash write algorithm aborted by target");
862 retval = ERROR_FLASH_OPERATION_FAILED;
863 break;
866 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
867 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
868 break;
871 /* Count the number of bytes available in the fifo without
872 * crossing the wrap around. Make sure to not fill it completely,
873 * because that would make wp == rp and that's the empty condition. */
874 uint32_t thisrun_bytes;
875 if (rp > wp)
876 thisrun_bytes = rp - wp - block_size;
877 else if (rp > fifo_start_addr)
878 thisrun_bytes = fifo_end_addr - wp;
879 else
880 thisrun_bytes = fifo_end_addr - wp - block_size;
882 if (thisrun_bytes == 0) {
883 /* Throttle polling a bit if transfer is (much) faster than flash
884 * programming. The exact delay shouldn't matter as long as it's
885 * less than buffer size / flash speed. This is very unlikely to
886 * run when using high latency connections such as USB. */
887 alive_sleep(10);
889 /* to stop an infinite loop on some targets check and increment a timeout
890 * this issue was observed on a stellaris using the new ICDI interface */
891 if (timeout++ >= 500) {
892 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
893 return ERROR_FLASH_OPERATION_FAILED;
895 continue;
898 /* reset our timeout */
899 timeout = 0;
901 /* Limit to the amount of data we actually want to write */
902 if (thisrun_bytes > count * block_size)
903 thisrun_bytes = count * block_size;
905 /* Write data to fifo */
906 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
907 if (retval != ERROR_OK)
908 break;
910 /* Update counters and wrap write pointer */
911 buffer += thisrun_bytes;
912 count -= thisrun_bytes / block_size;
913 wp += thisrun_bytes;
914 if (wp >= fifo_end_addr)
915 wp = fifo_start_addr;
917 /* Store updated write pointer to target */
918 retval = target_write_u32(target, wp_addr, wp);
919 if (retval != ERROR_OK)
920 break;
923 if (retval != ERROR_OK) {
924 /* abort flash write algorithm on target */
925 target_write_u32(target, wp_addr, 0);
928 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
929 num_reg_params, reg_params,
930 exit_point,
931 10000,
932 arch_info);
934 if (retval2 != ERROR_OK) {
935 LOG_ERROR("error waiting for target flash write algorithm");
936 retval = retval2;
939 return retval;
942 int target_read_memory(struct target *target,
943 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
945 if (!target_was_examined(target)) {
946 LOG_ERROR("Target not examined yet");
947 return ERROR_FAIL;
949 return target->type->read_memory(target, address, size, count, buffer);
952 int target_read_phys_memory(struct target *target,
953 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
955 if (!target_was_examined(target)) {
956 LOG_ERROR("Target not examined yet");
957 return ERROR_FAIL;
959 return target->type->read_phys_memory(target, address, size, count, buffer);
962 int target_write_memory(struct target *target,
963 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
965 if (!target_was_examined(target)) {
966 LOG_ERROR("Target not examined yet");
967 return ERROR_FAIL;
969 return target->type->write_memory(target, address, size, count, buffer);
972 int target_write_phys_memory(struct target *target,
973 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
975 if (!target_was_examined(target)) {
976 LOG_ERROR("Target not examined yet");
977 return ERROR_FAIL;
979 return target->type->write_phys_memory(target, address, size, count, buffer);
982 static int target_bulk_write_memory_default(struct target *target,
983 uint32_t address, uint32_t count, const uint8_t *buffer)
985 return target_write_memory(target, address, 4, count, buffer);
988 int target_add_breakpoint(struct target *target,
989 struct breakpoint *breakpoint)
991 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
992 LOG_WARNING("target %s is not halted", target_name(target));
993 return ERROR_TARGET_NOT_HALTED;
995 return target->type->add_breakpoint(target, breakpoint);
998 int target_add_context_breakpoint(struct target *target,
999 struct breakpoint *breakpoint)
1001 if (target->state != TARGET_HALTED) {
1002 LOG_WARNING("target %s is not halted", target_name(target));
1003 return ERROR_TARGET_NOT_HALTED;
1005 return target->type->add_context_breakpoint(target, breakpoint);
1008 int target_add_hybrid_breakpoint(struct target *target,
1009 struct breakpoint *breakpoint)
1011 if (target->state != TARGET_HALTED) {
1012 LOG_WARNING("target %s is not halted", target_name(target));
1013 return ERROR_TARGET_NOT_HALTED;
1015 return target->type->add_hybrid_breakpoint(target, breakpoint);
1018 int target_remove_breakpoint(struct target *target,
1019 struct breakpoint *breakpoint)
1021 return target->type->remove_breakpoint(target, breakpoint);
1024 int target_add_watchpoint(struct target *target,
1025 struct watchpoint *watchpoint)
1027 if (target->state != TARGET_HALTED) {
1028 LOG_WARNING("target %s is not halted", target_name(target));
1029 return ERROR_TARGET_NOT_HALTED;
1031 return target->type->add_watchpoint(target, watchpoint);
1033 int target_remove_watchpoint(struct target *target,
1034 struct watchpoint *watchpoint)
1036 return target->type->remove_watchpoint(target, watchpoint);
1039 int target_get_gdb_reg_list(struct target *target,
1040 struct reg **reg_list[], int *reg_list_size)
1042 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1044 int target_step(struct target *target,
1045 int current, uint32_t address, int handle_breakpoints)
1047 return target->type->step(target, current, address, handle_breakpoints);
1051 * Reset the @c examined flag for the given target.
1052 * Pure paranoia -- targets are zeroed on allocation.
1054 static void target_reset_examined(struct target *target)
1056 target->examined = false;
1059 static int err_read_phys_memory(struct target *target, uint32_t address,
1060 uint32_t size, uint32_t count, uint8_t *buffer)
1062 LOG_ERROR("Not implemented: %s", __func__);
1063 return ERROR_FAIL;
1066 static int err_write_phys_memory(struct target *target, uint32_t address,
1067 uint32_t size, uint32_t count, const uint8_t *buffer)
1069 LOG_ERROR("Not implemented: %s", __func__);
1070 return ERROR_FAIL;
1073 static int handle_target(void *priv);
1075 static int target_init_one(struct command_context *cmd_ctx,
1076 struct target *target)
1078 target_reset_examined(target);
1080 struct target_type *type = target->type;
1081 if (type->examine == NULL)
1082 type->examine = default_examine;
1084 if (type->check_reset == NULL)
1085 type->check_reset = default_check_reset;
1087 assert(type->init_target != NULL);
1089 int retval = type->init_target(cmd_ctx, target);
1090 if (ERROR_OK != retval) {
1091 LOG_ERROR("target '%s' init failed", target_name(target));
1092 return retval;
1095 /* Sanity-check MMU support ... stub in what we must, to help
1096 * implement it in stages, but warn if we need to do so.
1098 if (type->mmu) {
1099 if (type->write_phys_memory == NULL) {
1100 LOG_ERROR("type '%s' is missing write_phys_memory",
1101 type->name);
1102 type->write_phys_memory = err_write_phys_memory;
1104 if (type->read_phys_memory == NULL) {
1105 LOG_ERROR("type '%s' is missing read_phys_memory",
1106 type->name);
1107 type->read_phys_memory = err_read_phys_memory;
1109 if (type->virt2phys == NULL) {
1110 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1111 type->virt2phys = identity_virt2phys;
1113 } else {
1114 /* Make sure no-MMU targets all behave the same: make no
1115 * distinction between physical and virtual addresses, and
1116 * ensure that virt2phys() is always an identity mapping.
1118 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1119 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1121 type->mmu = no_mmu;
1122 type->write_phys_memory = type->write_memory;
1123 type->read_phys_memory = type->read_memory;
1124 type->virt2phys = identity_virt2phys;
1127 if (target->type->read_buffer == NULL)
1128 target->type->read_buffer = target_read_buffer_default;
1130 if (target->type->write_buffer == NULL)
1131 target->type->write_buffer = target_write_buffer_default;
1133 if (target->type->bulk_write_memory == NULL)
1134 target->type->bulk_write_memory = target_bulk_write_memory_default;
1136 return ERROR_OK;
1139 static int target_init(struct command_context *cmd_ctx)
1141 struct target *target;
1142 int retval;
1144 for (target = all_targets; target; target = target->next) {
1145 retval = target_init_one(cmd_ctx, target);
1146 if (ERROR_OK != retval)
1147 return retval;
1150 if (!all_targets)
1151 return ERROR_OK;
1153 retval = target_register_user_commands(cmd_ctx);
1154 if (ERROR_OK != retval)
1155 return retval;
1157 retval = target_register_timer_callback(&handle_target,
1158 polling_interval, 1, cmd_ctx->interp);
1159 if (ERROR_OK != retval)
1160 return retval;
1162 return ERROR_OK;
1165 COMMAND_HANDLER(handle_target_init_command)
1167 int retval;
1169 if (CMD_ARGC != 0)
1170 return ERROR_COMMAND_SYNTAX_ERROR;
1172 static bool target_initialized;
1173 if (target_initialized) {
1174 LOG_INFO("'target init' has already been called");
1175 return ERROR_OK;
1177 target_initialized = true;
1179 retval = command_run_line(CMD_CTX, "init_targets");
1180 if (ERROR_OK != retval)
1181 return retval;
1183 retval = command_run_line(CMD_CTX, "init_board");
1184 if (ERROR_OK != retval)
1185 return retval;
1187 LOG_DEBUG("Initializing targets...");
1188 return target_init(CMD_CTX);
1191 int target_register_event_callback(int (*callback)(struct target *target,
1192 enum target_event event, void *priv), void *priv)
1194 struct target_event_callback **callbacks_p = &target_event_callbacks;
1196 if (callback == NULL)
1197 return ERROR_COMMAND_SYNTAX_ERROR;
1199 if (*callbacks_p) {
1200 while ((*callbacks_p)->next)
1201 callbacks_p = &((*callbacks_p)->next);
1202 callbacks_p = &((*callbacks_p)->next);
1205 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1206 (*callbacks_p)->callback = callback;
1207 (*callbacks_p)->priv = priv;
1208 (*callbacks_p)->next = NULL;
1210 return ERROR_OK;
1213 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1215 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1216 struct timeval now;
1218 if (callback == NULL)
1219 return ERROR_COMMAND_SYNTAX_ERROR;
1221 if (*callbacks_p) {
1222 while ((*callbacks_p)->next)
1223 callbacks_p = &((*callbacks_p)->next);
1224 callbacks_p = &((*callbacks_p)->next);
1227 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1228 (*callbacks_p)->callback = callback;
1229 (*callbacks_p)->periodic = periodic;
1230 (*callbacks_p)->time_ms = time_ms;
1232 gettimeofday(&now, NULL);
1233 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1234 time_ms -= (time_ms % 1000);
1235 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1236 if ((*callbacks_p)->when.tv_usec > 1000000) {
1237 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1238 (*callbacks_p)->when.tv_sec += 1;
1241 (*callbacks_p)->priv = priv;
1242 (*callbacks_p)->next = NULL;
1244 return ERROR_OK;
1247 int target_unregister_event_callback(int (*callback)(struct target *target,
1248 enum target_event event, void *priv), void *priv)
1250 struct target_event_callback **p = &target_event_callbacks;
1251 struct target_event_callback *c = target_event_callbacks;
1253 if (callback == NULL)
1254 return ERROR_COMMAND_SYNTAX_ERROR;
1256 while (c) {
1257 struct target_event_callback *next = c->next;
1258 if ((c->callback == callback) && (c->priv == priv)) {
1259 *p = next;
1260 free(c);
1261 return ERROR_OK;
1262 } else
1263 p = &(c->next);
1264 c = next;
1267 return ERROR_OK;
1270 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1272 struct target_timer_callback **p = &target_timer_callbacks;
1273 struct target_timer_callback *c = target_timer_callbacks;
1275 if (callback == NULL)
1276 return ERROR_COMMAND_SYNTAX_ERROR;
1278 while (c) {
1279 struct target_timer_callback *next = c->next;
1280 if ((c->callback == callback) && (c->priv == priv)) {
1281 *p = next;
1282 free(c);
1283 return ERROR_OK;
1284 } else
1285 p = &(c->next);
1286 c = next;
1289 return ERROR_OK;
1292 int target_call_event_callbacks(struct target *target, enum target_event event)
1294 struct target_event_callback *callback = target_event_callbacks;
1295 struct target_event_callback *next_callback;
1297 if (event == TARGET_EVENT_HALTED) {
1298 /* execute early halted first */
1299 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1302 LOG_DEBUG("target event %i (%s)", event,
1303 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1305 target_handle_event(target, event);
1307 while (callback) {
1308 next_callback = callback->next;
1309 callback->callback(target, event, callback->priv);
1310 callback = next_callback;
1313 return ERROR_OK;
1316 static int target_timer_callback_periodic_restart(
1317 struct target_timer_callback *cb, struct timeval *now)
1319 int time_ms = cb->time_ms;
1320 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1321 time_ms -= (time_ms % 1000);
1322 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1323 if (cb->when.tv_usec > 1000000) {
1324 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1325 cb->when.tv_sec += 1;
1327 return ERROR_OK;
1330 static int target_call_timer_callback(struct target_timer_callback *cb,
1331 struct timeval *now)
1333 cb->callback(cb->priv);
1335 if (cb->periodic)
1336 return target_timer_callback_periodic_restart(cb, now);
1338 return target_unregister_timer_callback(cb->callback, cb->priv);
1341 static int target_call_timer_callbacks_check_time(int checktime)
1343 keep_alive();
1345 struct timeval now;
1346 gettimeofday(&now, NULL);
1348 struct target_timer_callback *callback = target_timer_callbacks;
1349 while (callback) {
1350 /* cleaning up may unregister and free this callback */
1351 struct target_timer_callback *next_callback = callback->next;
1353 bool call_it = callback->callback &&
1354 ((!checktime && callback->periodic) ||
1355 now.tv_sec > callback->when.tv_sec ||
1356 (now.tv_sec == callback->when.tv_sec &&
1357 now.tv_usec >= callback->when.tv_usec));
1359 if (call_it) {
1360 int retval = target_call_timer_callback(callback, &now);
1361 if (retval != ERROR_OK)
1362 return retval;
1365 callback = next_callback;
1368 return ERROR_OK;
1371 int target_call_timer_callbacks(void)
1373 return target_call_timer_callbacks_check_time(1);
1376 /* invoke periodic callbacks immediately */
1377 int target_call_timer_callbacks_now(void)
1379 return target_call_timer_callbacks_check_time(0);
1382 /* Prints the working area layout for debug purposes */
1383 static void print_wa_layout(struct target *target)
1385 struct working_area *c = target->working_areas;
1387 while (c) {
1388 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1389 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1390 c->address, c->address + c->size - 1, c->size);
1391 c = c->next;
1395 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1396 static void target_split_working_area(struct working_area *area, uint32_t size)
1398 assert(area->free); /* Shouldn't split an allocated area */
1399 assert(size <= area->size); /* Caller should guarantee this */
1401 /* Split only if not already the right size */
1402 if (size < area->size) {
1403 struct working_area *new_wa = malloc(sizeof(*new_wa));
1405 if (new_wa == NULL)
1406 return;
1408 new_wa->next = area->next;
1409 new_wa->size = area->size - size;
1410 new_wa->address = area->address + size;
1411 new_wa->backup = NULL;
1412 new_wa->user = NULL;
1413 new_wa->free = true;
1415 area->next = new_wa;
1416 area->size = size;
1418 /* If backup memory was allocated to this area, it has the wrong size
1419 * now so free it and it will be reallocated if/when needed */
1420 if (area->backup) {
1421 free(area->backup);
1422 area->backup = NULL;
1427 /* Merge all adjacent free areas into one */
1428 static void target_merge_working_areas(struct target *target)
1430 struct working_area *c = target->working_areas;
1432 while (c && c->next) {
1433 assert(c->next->address == c->address + c->size); /* This is an invariant */
1435 /* Find two adjacent free areas */
1436 if (c->free && c->next->free) {
1437 /* Merge the last into the first */
1438 c->size += c->next->size;
1440 /* Remove the last */
1441 struct working_area *to_be_freed = c->next;
1442 c->next = c->next->next;
1443 if (to_be_freed->backup)
1444 free(to_be_freed->backup);
1445 free(to_be_freed);
1447 /* If backup memory was allocated to the remaining area, it's has
1448 * the wrong size now */
1449 if (c->backup) {
1450 free(c->backup);
1451 c->backup = NULL;
1453 } else {
1454 c = c->next;
1459 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1461 /* Reevaluate working area address based on MMU state*/
1462 if (target->working_areas == NULL) {
1463 int retval;
1464 int enabled;
1466 retval = target->type->mmu(target, &enabled);
1467 if (retval != ERROR_OK)
1468 return retval;
1470 if (!enabled) {
1471 if (target->working_area_phys_spec) {
1472 LOG_DEBUG("MMU disabled, using physical "
1473 "address for working memory 0x%08"PRIx32,
1474 target->working_area_phys);
1475 target->working_area = target->working_area_phys;
1476 } else {
1477 LOG_ERROR("No working memory available. "
1478 "Specify -work-area-phys to target.");
1479 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1481 } else {
1482 if (target->working_area_virt_spec) {
1483 LOG_DEBUG("MMU enabled, using virtual "
1484 "address for working memory 0x%08"PRIx32,
1485 target->working_area_virt);
1486 target->working_area = target->working_area_virt;
1487 } else {
1488 LOG_ERROR("No working memory available. "
1489 "Specify -work-area-virt to target.");
1490 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1494 /* Set up initial working area on first call */
1495 struct working_area *new_wa = malloc(sizeof(*new_wa));
1496 if (new_wa) {
1497 new_wa->next = NULL;
1498 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1499 new_wa->address = target->working_area;
1500 new_wa->backup = NULL;
1501 new_wa->user = NULL;
1502 new_wa->free = true;
1505 target->working_areas = new_wa;
1508 /* only allocate multiples of 4 byte */
1509 if (size % 4)
1510 size = (size + 3) & (~3UL);
1512 struct working_area *c = target->working_areas;
1514 /* Find the first large enough working area */
1515 while (c) {
1516 if (c->free && c->size >= size)
1517 break;
1518 c = c->next;
1521 if (c == NULL)
1522 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1524 /* Split the working area into the requested size */
1525 target_split_working_area(c, size);
1527 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1529 if (target->backup_working_area) {
1530 if (c->backup == NULL) {
1531 c->backup = malloc(c->size);
1532 if (c->backup == NULL)
1533 return ERROR_FAIL;
1536 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1537 if (retval != ERROR_OK)
1538 return retval;
1541 /* mark as used, and return the new (reused) area */
1542 c->free = false;
1543 *area = c;
1545 /* user pointer */
1546 c->user = area;
1548 print_wa_layout(target);
1550 return ERROR_OK;
1553 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1555 int retval;
1557 retval = target_alloc_working_area_try(target, size, area);
1558 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1559 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1560 return retval;
1564 static int target_restore_working_area(struct target *target, struct working_area *area)
1566 int retval = ERROR_OK;
1568 if (target->backup_working_area && area->backup != NULL) {
1569 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1570 if (retval != ERROR_OK)
1571 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1572 area->size, area->address);
1575 return retval;
1578 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1579 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1581 int retval = ERROR_OK;
1583 if (area->free)
1584 return retval;
1586 if (restore) {
1587 retval = target_restore_working_area(target, area);
1588 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1589 if (retval != ERROR_OK)
1590 return retval;
1593 area->free = true;
1595 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1596 area->size, area->address);
1598 /* mark user pointer invalid */
1599 /* TODO: Is this really safe? It points to some previous caller's memory.
1600 * How could we know that the area pointer is still in that place and not
1601 * some other vital data? What's the purpose of this, anyway? */
1602 *area->user = NULL;
1603 area->user = NULL;
1605 target_merge_working_areas(target);
1607 print_wa_layout(target);
1609 return retval;
1612 int target_free_working_area(struct target *target, struct working_area *area)
1614 return target_free_working_area_restore(target, area, 1);
1617 /* free resources and restore memory, if restoring memory fails,
1618 * free up resources anyway
1620 static void target_free_all_working_areas_restore(struct target *target, int restore)
1622 struct working_area *c = target->working_areas;
1624 LOG_DEBUG("freeing all working areas");
1626 /* Loop through all areas, restoring the allocated ones and marking them as free */
1627 while (c) {
1628 if (!c->free) {
1629 if (restore)
1630 target_restore_working_area(target, c);
1631 c->free = true;
1632 *c->user = NULL; /* Same as above */
1633 c->user = NULL;
1635 c = c->next;
1638 /* Run a merge pass to combine all areas into one */
1639 target_merge_working_areas(target);
1641 print_wa_layout(target);
1644 void target_free_all_working_areas(struct target *target)
1646 target_free_all_working_areas_restore(target, 1);
1649 /* Find the largest number of bytes that can be allocated */
1650 uint32_t target_get_working_area_avail(struct target *target)
1652 struct working_area *c = target->working_areas;
1653 uint32_t max_size = 0;
1655 if (c == NULL)
1656 return target->working_area_size;
1658 while (c) {
1659 if (c->free && max_size < c->size)
1660 max_size = c->size;
1662 c = c->next;
1665 return max_size;
1668 int target_arch_state(struct target *target)
1670 int retval;
1671 if (target == NULL) {
1672 LOG_USER("No target has been configured");
1673 return ERROR_OK;
1676 LOG_USER("target state: %s", target_state_name(target));
1678 if (target->state != TARGET_HALTED)
1679 return ERROR_OK;
1681 retval = target->type->arch_state(target);
1682 return retval;
1685 /* Single aligned words are guaranteed to use 16 or 32 bit access
1686 * mode respectively, otherwise data is handled as quickly as
1687 * possible
1689 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1691 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1692 (int)size, (unsigned)address);
1694 if (!target_was_examined(target)) {
1695 LOG_ERROR("Target not examined yet");
1696 return ERROR_FAIL;
1699 if (size == 0)
1700 return ERROR_OK;
1702 if ((address + size - 1) < address) {
1703 /* GDB can request this when e.g. PC is 0xfffffffc*/
1704 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1705 (unsigned)address,
1706 (unsigned)size);
1707 return ERROR_FAIL;
1710 return target->type->write_buffer(target, address, size, buffer);
1713 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1715 int retval = ERROR_OK;
1717 if (((address % 2) == 0) && (size == 2))
1718 return target_write_memory(target, address, 2, 1, buffer);
1720 /* handle unaligned head bytes */
1721 if (address % 4) {
1722 uint32_t unaligned = 4 - (address % 4);
1724 if (unaligned > size)
1725 unaligned = size;
1727 retval = target_write_memory(target, address, 1, unaligned, buffer);
1728 if (retval != ERROR_OK)
1729 return retval;
1731 buffer += unaligned;
1732 address += unaligned;
1733 size -= unaligned;
1736 /* handle aligned words */
1737 if (size >= 4) {
1738 int aligned = size - (size % 4);
1740 /* use bulk writes above a certain limit. This may have to be changed */
1741 if (aligned > 128) {
1742 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1743 if (retval != ERROR_OK)
1744 return retval;
1745 } else {
1746 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1747 if (retval != ERROR_OK)
1748 return retval;
1751 buffer += aligned;
1752 address += aligned;
1753 size -= aligned;
1756 /* handle tail writes of less than 4 bytes */
1757 if (size > 0) {
1758 retval = target_write_memory(target, address, 1, size, buffer);
1759 if (retval != ERROR_OK)
1760 return retval;
1763 return retval;
1766 /* Single aligned words are guaranteed to use 16 or 32 bit access
1767 * mode respectively, otherwise data is handled as quickly as
1768 * possible
1770 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1772 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1773 (int)size, (unsigned)address);
1775 if (!target_was_examined(target)) {
1776 LOG_ERROR("Target not examined yet");
1777 return ERROR_FAIL;
1780 if (size == 0)
1781 return ERROR_OK;
1783 if ((address + size - 1) < address) {
1784 /* GDB can request this when e.g. PC is 0xfffffffc*/
1785 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1786 address,
1787 size);
1788 return ERROR_FAIL;
1791 return target->type->read_buffer(target, address, size, buffer);
1794 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1796 int retval = ERROR_OK;
1798 if (((address % 2) == 0) && (size == 2))
1799 return target_read_memory(target, address, 2, 1, buffer);
1801 /* handle unaligned head bytes */
1802 if (address % 4) {
1803 uint32_t unaligned = 4 - (address % 4);
1805 if (unaligned > size)
1806 unaligned = size;
1808 retval = target_read_memory(target, address, 1, unaligned, buffer);
1809 if (retval != ERROR_OK)
1810 return retval;
1812 buffer += unaligned;
1813 address += unaligned;
1814 size -= unaligned;
1817 /* handle aligned words */
1818 if (size >= 4) {
1819 int aligned = size - (size % 4);
1821 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1822 if (retval != ERROR_OK)
1823 return retval;
1825 buffer += aligned;
1826 address += aligned;
1827 size -= aligned;
1830 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1831 if (size >= 2) {
1832 int aligned = size - (size % 2);
1833 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1834 if (retval != ERROR_OK)
1835 return retval;
1837 buffer += aligned;
1838 address += aligned;
1839 size -= aligned;
1841 /* handle tail writes of less than 4 bytes */
1842 if (size > 0) {
1843 retval = target_read_memory(target, address, 1, size, buffer);
1844 if (retval != ERROR_OK)
1845 return retval;
1848 return ERROR_OK;
1851 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1853 uint8_t *buffer;
1854 int retval;
1855 uint32_t i;
1856 uint32_t checksum = 0;
1857 if (!target_was_examined(target)) {
1858 LOG_ERROR("Target not examined yet");
1859 return ERROR_FAIL;
1862 retval = target->type->checksum_memory(target, address, size, &checksum);
1863 if (retval != ERROR_OK) {
1864 buffer = malloc(size);
1865 if (buffer == NULL) {
1866 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1867 return ERROR_COMMAND_SYNTAX_ERROR;
1869 retval = target_read_buffer(target, address, size, buffer);
1870 if (retval != ERROR_OK) {
1871 free(buffer);
1872 return retval;
1875 /* convert to target endianness */
1876 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1877 uint32_t target_data;
1878 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1879 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1882 retval = image_calculate_checksum(buffer, size, &checksum);
1883 free(buffer);
1886 *crc = checksum;
1888 return retval;
1891 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1893 int retval;
1894 if (!target_was_examined(target)) {
1895 LOG_ERROR("Target not examined yet");
1896 return ERROR_FAIL;
1899 if (target->type->blank_check_memory == 0)
1900 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1902 retval = target->type->blank_check_memory(target, address, size, blank);
1904 return retval;
1907 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1909 uint8_t value_buf[4];
1910 if (!target_was_examined(target)) {
1911 LOG_ERROR("Target not examined yet");
1912 return ERROR_FAIL;
1915 int retval = target_read_memory(target, address, 4, 1, value_buf);
1917 if (retval == ERROR_OK) {
1918 *value = target_buffer_get_u32(target, value_buf);
1919 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1920 address,
1921 *value);
1922 } else {
1923 *value = 0x0;
1924 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1925 address);
1928 return retval;
1931 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1933 uint8_t value_buf[2];
1934 if (!target_was_examined(target)) {
1935 LOG_ERROR("Target not examined yet");
1936 return ERROR_FAIL;
1939 int retval = target_read_memory(target, address, 2, 1, value_buf);
1941 if (retval == ERROR_OK) {
1942 *value = target_buffer_get_u16(target, value_buf);
1943 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1944 address,
1945 *value);
1946 } else {
1947 *value = 0x0;
1948 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1949 address);
1952 return retval;
1955 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1957 int retval = target_read_memory(target, address, 1, 1, value);
1958 if (!target_was_examined(target)) {
1959 LOG_ERROR("Target not examined yet");
1960 return ERROR_FAIL;
1963 if (retval == ERROR_OK) {
1964 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1965 address,
1966 *value);
1967 } else {
1968 *value = 0x0;
1969 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1970 address);
1973 return retval;
1976 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1978 int retval;
1979 uint8_t value_buf[4];
1980 if (!target_was_examined(target)) {
1981 LOG_ERROR("Target not examined yet");
1982 return ERROR_FAIL;
1985 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1986 address,
1987 value);
1989 target_buffer_set_u32(target, value_buf, value);
1990 retval = target_write_memory(target, address, 4, 1, value_buf);
1991 if (retval != ERROR_OK)
1992 LOG_DEBUG("failed: %i", retval);
1994 return retval;
1997 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1999 int retval;
2000 uint8_t value_buf[2];
2001 if (!target_was_examined(target)) {
2002 LOG_ERROR("Target not examined yet");
2003 return ERROR_FAIL;
2006 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2007 address,
2008 value);
2010 target_buffer_set_u16(target, value_buf, value);
2011 retval = target_write_memory(target, address, 2, 1, value_buf);
2012 if (retval != ERROR_OK)
2013 LOG_DEBUG("failed: %i", retval);
2015 return retval;
2018 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2020 int retval;
2021 if (!target_was_examined(target)) {
2022 LOG_ERROR("Target not examined yet");
2023 return ERROR_FAIL;
2026 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2027 address, value);
2029 retval = target_write_memory(target, address, 1, 1, &value);
2030 if (retval != ERROR_OK)
2031 LOG_DEBUG("failed: %i", retval);
2033 return retval;
2036 static int find_target(struct command_context *cmd_ctx, const char *name)
2038 struct target *target = get_target(name);
2039 if (target == NULL) {
2040 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2041 return ERROR_FAIL;
2043 if (!target->tap->enabled) {
2044 LOG_USER("Target: TAP %s is disabled, "
2045 "can't be the current target\n",
2046 target->tap->dotted_name);
2047 return ERROR_FAIL;
2050 cmd_ctx->current_target = target->target_number;
2051 return ERROR_OK;
2055 COMMAND_HANDLER(handle_targets_command)
2057 int retval = ERROR_OK;
2058 if (CMD_ARGC == 1) {
2059 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2060 if (retval == ERROR_OK) {
2061 /* we're done! */
2062 return retval;
2066 struct target *target = all_targets;
2067 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2068 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2069 while (target) {
2070 const char *state;
2071 char marker = ' ';
2073 if (target->tap->enabled)
2074 state = target_state_name(target);
2075 else
2076 state = "tap-disabled";
2078 if (CMD_CTX->current_target == target->target_number)
2079 marker = '*';
2081 /* keep columns lined up to match the headers above */
2082 command_print(CMD_CTX,
2083 "%2d%c %-18s %-10s %-6s %-18s %s",
2084 target->target_number,
2085 marker,
2086 target_name(target),
2087 target_type_name(target),
2088 Jim_Nvp_value2name_simple(nvp_target_endian,
2089 target->endianness)->name,
2090 target->tap->dotted_name,
2091 state);
2092 target = target->next;
2095 return retval;
2098 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2100 static int powerDropout;
2101 static int srstAsserted;
2103 static int runPowerRestore;
2104 static int runPowerDropout;
2105 static int runSrstAsserted;
2106 static int runSrstDeasserted;
2108 static int sense_handler(void)
2110 static int prevSrstAsserted;
2111 static int prevPowerdropout;
2113 int retval = jtag_power_dropout(&powerDropout);
2114 if (retval != ERROR_OK)
2115 return retval;
2117 int powerRestored;
2118 powerRestored = prevPowerdropout && !powerDropout;
2119 if (powerRestored)
2120 runPowerRestore = 1;
2122 long long current = timeval_ms();
2123 static long long lastPower;
2124 int waitMore = lastPower + 2000 > current;
2125 if (powerDropout && !waitMore) {
2126 runPowerDropout = 1;
2127 lastPower = current;
2130 retval = jtag_srst_asserted(&srstAsserted);
2131 if (retval != ERROR_OK)
2132 return retval;
2134 int srstDeasserted;
2135 srstDeasserted = prevSrstAsserted && !srstAsserted;
2137 static long long lastSrst;
2138 waitMore = lastSrst + 2000 > current;
2139 if (srstDeasserted && !waitMore) {
2140 runSrstDeasserted = 1;
2141 lastSrst = current;
2144 if (!prevSrstAsserted && srstAsserted)
2145 runSrstAsserted = 1;
2147 prevSrstAsserted = srstAsserted;
2148 prevPowerdropout = powerDropout;
2150 if (srstDeasserted || powerRestored) {
2151 /* Other than logging the event we can't do anything here.
2152 * Issuing a reset is a particularly bad idea as we might
2153 * be inside a reset already.
2157 return ERROR_OK;
2160 /* process target state changes */
2161 static int handle_target(void *priv)
2163 Jim_Interp *interp = (Jim_Interp *)priv;
2164 int retval = ERROR_OK;
2166 if (!is_jtag_poll_safe()) {
2167 /* polling is disabled currently */
2168 return ERROR_OK;
2171 /* we do not want to recurse here... */
2172 static int recursive;
2173 if (!recursive) {
2174 recursive = 1;
2175 sense_handler();
2176 /* danger! running these procedures can trigger srst assertions and power dropouts.
2177 * We need to avoid an infinite loop/recursion here and we do that by
2178 * clearing the flags after running these events.
2180 int did_something = 0;
2181 if (runSrstAsserted) {
2182 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2183 Jim_Eval(interp, "srst_asserted");
2184 did_something = 1;
2186 if (runSrstDeasserted) {
2187 Jim_Eval(interp, "srst_deasserted");
2188 did_something = 1;
2190 if (runPowerDropout) {
2191 LOG_INFO("Power dropout detected, running power_dropout proc.");
2192 Jim_Eval(interp, "power_dropout");
2193 did_something = 1;
2195 if (runPowerRestore) {
2196 Jim_Eval(interp, "power_restore");
2197 did_something = 1;
2200 if (did_something) {
2201 /* clear detect flags */
2202 sense_handler();
2205 /* clear action flags */
2207 runSrstAsserted = 0;
2208 runSrstDeasserted = 0;
2209 runPowerRestore = 0;
2210 runPowerDropout = 0;
2212 recursive = 0;
2215 /* Poll targets for state changes unless that's globally disabled.
2216 * Skip targets that are currently disabled.
2218 for (struct target *target = all_targets;
2219 is_jtag_poll_safe() && target;
2220 target = target->next) {
2221 if (!target->tap->enabled)
2222 continue;
2224 if (target->backoff.times > target->backoff.count) {
2225 /* do not poll this time as we failed previously */
2226 target->backoff.count++;
2227 continue;
2229 target->backoff.count = 0;
2231 /* only poll target if we've got power and srst isn't asserted */
2232 if (!powerDropout && !srstAsserted) {
2233 /* polling may fail silently until the target has been examined */
2234 retval = target_poll(target);
2235 if (retval != ERROR_OK) {
2236 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2237 if (target->backoff.times * polling_interval < 5000) {
2238 target->backoff.times *= 2;
2239 target->backoff.times++;
2241 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2242 target_name(target),
2243 target->backoff.times * polling_interval);
2245 /* Tell GDB to halt the debugger. This allows the user to
2246 * run monitor commands to handle the situation.
2248 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2249 return retval;
2251 /* Since we succeeded, we reset backoff count */
2252 if (target->backoff.times > 0)
2253 LOG_USER("Polling target %s succeeded again", target_name(target));
2254 target->backoff.times = 0;
2258 return retval;
2261 COMMAND_HANDLER(handle_reg_command)
2263 struct target *target;
2264 struct reg *reg = NULL;
2265 unsigned count = 0;
2266 char *value;
2268 LOG_DEBUG("-");
2270 target = get_current_target(CMD_CTX);
2272 /* list all available registers for the current target */
2273 if (CMD_ARGC == 0) {
2274 struct reg_cache *cache = target->reg_cache;
2276 count = 0;
2277 while (cache) {
2278 unsigned i;
2280 command_print(CMD_CTX, "===== %s", cache->name);
2282 for (i = 0, reg = cache->reg_list;
2283 i < cache->num_regs;
2284 i++, reg++, count++) {
2285 /* only print cached values if they are valid */
2286 if (reg->valid) {
2287 value = buf_to_str(reg->value,
2288 reg->size, 16);
2289 command_print(CMD_CTX,
2290 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2291 count, reg->name,
2292 reg->size, value,
2293 reg->dirty
2294 ? " (dirty)"
2295 : "");
2296 free(value);
2297 } else {
2298 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2299 count, reg->name,
2300 reg->size) ;
2303 cache = cache->next;
2306 return ERROR_OK;
2309 /* access a single register by its ordinal number */
2310 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2311 unsigned num;
2312 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2314 struct reg_cache *cache = target->reg_cache;
2315 count = 0;
2316 while (cache) {
2317 unsigned i;
2318 for (i = 0; i < cache->num_regs; i++) {
2319 if (count++ == num) {
2320 reg = &cache->reg_list[i];
2321 break;
2324 if (reg)
2325 break;
2326 cache = cache->next;
2329 if (!reg) {
2330 command_print(CMD_CTX, "%i is out of bounds, the current target "
2331 "has only %i registers (0 - %i)", num, count, count - 1);
2332 return ERROR_OK;
2334 } else {
2335 /* access a single register by its name */
2336 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2338 if (!reg) {
2339 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2340 return ERROR_OK;
2344 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2346 /* display a register */
2347 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2348 && (CMD_ARGV[1][0] <= '9')))) {
2349 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2350 reg->valid = 0;
2352 if (reg->valid == 0)
2353 reg->type->get(reg);
2354 value = buf_to_str(reg->value, reg->size, 16);
2355 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2356 free(value);
2357 return ERROR_OK;
2360 /* set register value */
2361 if (CMD_ARGC == 2) {
2362 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2363 if (buf == NULL)
2364 return ERROR_FAIL;
2365 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2367 reg->type->set(reg, buf);
2369 value = buf_to_str(reg->value, reg->size, 16);
2370 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2371 free(value);
2373 free(buf);
2375 return ERROR_OK;
2378 return ERROR_COMMAND_SYNTAX_ERROR;
2381 COMMAND_HANDLER(handle_poll_command)
2383 int retval = ERROR_OK;
2384 struct target *target = get_current_target(CMD_CTX);
2386 if (CMD_ARGC == 0) {
2387 command_print(CMD_CTX, "background polling: %s",
2388 jtag_poll_get_enabled() ? "on" : "off");
2389 command_print(CMD_CTX, "TAP: %s (%s)",
2390 target->tap->dotted_name,
2391 target->tap->enabled ? "enabled" : "disabled");
2392 if (!target->tap->enabled)
2393 return ERROR_OK;
2394 retval = target_poll(target);
2395 if (retval != ERROR_OK)
2396 return retval;
2397 retval = target_arch_state(target);
2398 if (retval != ERROR_OK)
2399 return retval;
2400 } else if (CMD_ARGC == 1) {
2401 bool enable;
2402 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2403 jtag_poll_set_enabled(enable);
2404 } else
2405 return ERROR_COMMAND_SYNTAX_ERROR;
2407 return retval;
2410 COMMAND_HANDLER(handle_wait_halt_command)
2412 if (CMD_ARGC > 1)
2413 return ERROR_COMMAND_SYNTAX_ERROR;
2415 unsigned ms = DEFAULT_HALT_TIMEOUT;
2416 if (1 == CMD_ARGC) {
2417 int retval = parse_uint(CMD_ARGV[0], &ms);
2418 if (ERROR_OK != retval)
2419 return ERROR_COMMAND_SYNTAX_ERROR;
2420 /* convert seconds (given) to milliseconds (needed) */
2421 ms *= 1000;
2424 struct target *target = get_current_target(CMD_CTX);
2425 return target_wait_state(target, TARGET_HALTED, ms);
2428 /* wait for target state to change. The trick here is to have a low
2429 * latency for short waits and not to suck up all the CPU time
2430 * on longer waits.
2432 * After 500ms, keep_alive() is invoked
2434 int target_wait_state(struct target *target, enum target_state state, int ms)
2436 int retval;
2437 long long then = 0, cur;
2438 int once = 1;
2440 for (;;) {
2441 retval = target_poll(target);
2442 if (retval != ERROR_OK)
2443 return retval;
2444 if (target->state == state)
2445 break;
2446 cur = timeval_ms();
2447 if (once) {
2448 once = 0;
2449 then = timeval_ms();
2450 LOG_DEBUG("waiting for target %s...",
2451 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2454 if (cur-then > 500)
2455 keep_alive();
2457 if ((cur-then) > ms) {
2458 LOG_ERROR("timed out while waiting for target %s",
2459 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2460 return ERROR_FAIL;
2464 return ERROR_OK;
2467 COMMAND_HANDLER(handle_halt_command)
2469 LOG_DEBUG("-");
2471 struct target *target = get_current_target(CMD_CTX);
2472 int retval = target_halt(target);
2473 if (ERROR_OK != retval)
2474 return retval;
2476 if (CMD_ARGC == 1) {
2477 unsigned wait_local;
2478 retval = parse_uint(CMD_ARGV[0], &wait_local);
2479 if (ERROR_OK != retval)
2480 return ERROR_COMMAND_SYNTAX_ERROR;
2481 if (!wait_local)
2482 return ERROR_OK;
2485 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2488 COMMAND_HANDLER(handle_soft_reset_halt_command)
2490 struct target *target = get_current_target(CMD_CTX);
2492 LOG_USER("requesting target halt and executing a soft reset");
2494 target_soft_reset_halt(target);
2496 return ERROR_OK;
2499 COMMAND_HANDLER(handle_reset_command)
2501 if (CMD_ARGC > 1)
2502 return ERROR_COMMAND_SYNTAX_ERROR;
2504 enum target_reset_mode reset_mode = RESET_RUN;
2505 if (CMD_ARGC == 1) {
2506 const Jim_Nvp *n;
2507 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2508 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2509 return ERROR_COMMAND_SYNTAX_ERROR;
2510 reset_mode = n->value;
2513 /* reset *all* targets */
2514 return target_process_reset(CMD_CTX, reset_mode);
2518 COMMAND_HANDLER(handle_resume_command)
2520 int current = 1;
2521 if (CMD_ARGC > 1)
2522 return ERROR_COMMAND_SYNTAX_ERROR;
2524 struct target *target = get_current_target(CMD_CTX);
2526 /* with no CMD_ARGV, resume from current pc, addr = 0,
2527 * with one arguments, addr = CMD_ARGV[0],
2528 * handle breakpoints, not debugging */
2529 uint32_t addr = 0;
2530 if (CMD_ARGC == 1) {
2531 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2532 current = 0;
2535 return target_resume(target, current, addr, 1, 0);
2538 COMMAND_HANDLER(handle_step_command)
2540 if (CMD_ARGC > 1)
2541 return ERROR_COMMAND_SYNTAX_ERROR;
2543 LOG_DEBUG("-");
2545 /* with no CMD_ARGV, step from current pc, addr = 0,
2546 * with one argument addr = CMD_ARGV[0],
2547 * handle breakpoints, debugging */
2548 uint32_t addr = 0;
2549 int current_pc = 1;
2550 if (CMD_ARGC == 1) {
2551 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2552 current_pc = 0;
2555 struct target *target = get_current_target(CMD_CTX);
2557 return target->type->step(target, current_pc, addr, 1);
2560 static void handle_md_output(struct command_context *cmd_ctx,
2561 struct target *target, uint32_t address, unsigned size,
2562 unsigned count, const uint8_t *buffer)
2564 const unsigned line_bytecnt = 32;
2565 unsigned line_modulo = line_bytecnt / size;
2567 char output[line_bytecnt * 4 + 1];
2568 unsigned output_len = 0;
2570 const char *value_fmt;
2571 switch (size) {
2572 case 4:
2573 value_fmt = "%8.8x ";
2574 break;
2575 case 2:
2576 value_fmt = "%4.4x ";
2577 break;
2578 case 1:
2579 value_fmt = "%2.2x ";
2580 break;
2581 default:
2582 /* "can't happen", caller checked */
2583 LOG_ERROR("invalid memory read size: %u", size);
2584 return;
2587 for (unsigned i = 0; i < count; i++) {
2588 if (i % line_modulo == 0) {
2589 output_len += snprintf(output + output_len,
2590 sizeof(output) - output_len,
2591 "0x%8.8x: ",
2592 (unsigned)(address + (i*size)));
2595 uint32_t value = 0;
2596 const uint8_t *value_ptr = buffer + i * size;
2597 switch (size) {
2598 case 4:
2599 value = target_buffer_get_u32(target, value_ptr);
2600 break;
2601 case 2:
2602 value = target_buffer_get_u16(target, value_ptr);
2603 break;
2604 case 1:
2605 value = *value_ptr;
2607 output_len += snprintf(output + output_len,
2608 sizeof(output) - output_len,
2609 value_fmt, value);
2611 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2612 command_print(cmd_ctx, "%s", output);
2613 output_len = 0;
2618 COMMAND_HANDLER(handle_md_command)
2620 if (CMD_ARGC < 1)
2621 return ERROR_COMMAND_SYNTAX_ERROR;
2623 unsigned size = 0;
2624 switch (CMD_NAME[2]) {
2625 case 'w':
2626 size = 4;
2627 break;
2628 case 'h':
2629 size = 2;
2630 break;
2631 case 'b':
2632 size = 1;
2633 break;
2634 default:
2635 return ERROR_COMMAND_SYNTAX_ERROR;
2638 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2639 int (*fn)(struct target *target,
2640 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2641 if (physical) {
2642 CMD_ARGC--;
2643 CMD_ARGV++;
2644 fn = target_read_phys_memory;
2645 } else
2646 fn = target_read_memory;
2647 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2648 return ERROR_COMMAND_SYNTAX_ERROR;
2650 uint32_t address;
2651 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2653 unsigned count = 1;
2654 if (CMD_ARGC == 2)
2655 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2657 uint8_t *buffer = calloc(count, size);
2659 struct target *target = get_current_target(CMD_CTX);
2660 int retval = fn(target, address, size, count, buffer);
2661 if (ERROR_OK == retval)
2662 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2664 free(buffer);
2666 return retval;
2669 typedef int (*target_write_fn)(struct target *target,
2670 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2672 static int target_write_memory_fast(struct target *target,
2673 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2675 return target_write_buffer(target, address, size * count, buffer);
2678 static int target_fill_mem(struct target *target,
2679 uint32_t address,
2680 target_write_fn fn,
2681 unsigned data_size,
2682 /* value */
2683 uint32_t b,
2684 /* count */
2685 unsigned c)
2687 /* We have to write in reasonably large chunks to be able
2688 * to fill large memory areas with any sane speed */
2689 const unsigned chunk_size = 16384;
2690 uint8_t *target_buf = malloc(chunk_size * data_size);
2691 if (target_buf == NULL) {
2692 LOG_ERROR("Out of memory");
2693 return ERROR_FAIL;
2696 for (unsigned i = 0; i < chunk_size; i++) {
2697 switch (data_size) {
2698 case 4:
2699 target_buffer_set_u32(target, target_buf + i * data_size, b);
2700 break;
2701 case 2:
2702 target_buffer_set_u16(target, target_buf + i * data_size, b);
2703 break;
2704 case 1:
2705 target_buffer_set_u8(target, target_buf + i * data_size, b);
2706 break;
2707 default:
2708 exit(-1);
2712 int retval = ERROR_OK;
2714 for (unsigned x = 0; x < c; x += chunk_size) {
2715 unsigned current;
2716 current = c - x;
2717 if (current > chunk_size)
2718 current = chunk_size;
2719 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2720 if (retval != ERROR_OK)
2721 break;
2722 /* avoid GDB timeouts */
2723 keep_alive();
2725 free(target_buf);
2727 return retval;
2731 COMMAND_HANDLER(handle_mw_command)
2733 if (CMD_ARGC < 2)
2734 return ERROR_COMMAND_SYNTAX_ERROR;
2735 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2736 target_write_fn fn;
2737 if (physical) {
2738 CMD_ARGC--;
2739 CMD_ARGV++;
2740 fn = target_write_phys_memory;
2741 } else
2742 fn = target_write_memory_fast;
2743 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2744 return ERROR_COMMAND_SYNTAX_ERROR;
2746 uint32_t address;
2747 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2749 uint32_t value;
2750 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2752 unsigned count = 1;
2753 if (CMD_ARGC == 3)
2754 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2756 struct target *target = get_current_target(CMD_CTX);
2757 unsigned wordsize;
2758 switch (CMD_NAME[2]) {
2759 case 'w':
2760 wordsize = 4;
2761 break;
2762 case 'h':
2763 wordsize = 2;
2764 break;
2765 case 'b':
2766 wordsize = 1;
2767 break;
2768 default:
2769 return ERROR_COMMAND_SYNTAX_ERROR;
2772 return target_fill_mem(target, address, fn, wordsize, value, count);
2775 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2776 uint32_t *min_address, uint32_t *max_address)
2778 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2779 return ERROR_COMMAND_SYNTAX_ERROR;
2781 /* a base address isn't always necessary,
2782 * default to 0x0 (i.e. don't relocate) */
2783 if (CMD_ARGC >= 2) {
2784 uint32_t addr;
2785 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2786 image->base_address = addr;
2787 image->base_address_set = 1;
2788 } else
2789 image->base_address_set = 0;
2791 image->start_address_set = 0;
2793 if (CMD_ARGC >= 4)
2794 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2795 if (CMD_ARGC == 5) {
2796 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2797 /* use size (given) to find max (required) */
2798 *max_address += *min_address;
2801 if (*min_address > *max_address)
2802 return ERROR_COMMAND_SYNTAX_ERROR;
2804 return ERROR_OK;
2807 COMMAND_HANDLER(handle_load_image_command)
2809 uint8_t *buffer;
2810 size_t buf_cnt;
2811 uint32_t image_size;
2812 uint32_t min_address = 0;
2813 uint32_t max_address = 0xffffffff;
2814 int i;
2815 struct image image;
2817 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2818 &image, &min_address, &max_address);
2819 if (ERROR_OK != retval)
2820 return retval;
2822 struct target *target = get_current_target(CMD_CTX);
2824 struct duration bench;
2825 duration_start(&bench);
2827 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2828 return ERROR_OK;
2830 image_size = 0x0;
2831 retval = ERROR_OK;
2832 for (i = 0; i < image.num_sections; i++) {
2833 buffer = malloc(image.sections[i].size);
2834 if (buffer == NULL) {
2835 command_print(CMD_CTX,
2836 "error allocating buffer for section (%d bytes)",
2837 (int)(image.sections[i].size));
2838 break;
2841 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2842 if (retval != ERROR_OK) {
2843 free(buffer);
2844 break;
2847 uint32_t offset = 0;
2848 uint32_t length = buf_cnt;
2850 /* DANGER!!! beware of unsigned comparision here!!! */
2852 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2853 (image.sections[i].base_address < max_address)) {
2855 if (image.sections[i].base_address < min_address) {
2856 /* clip addresses below */
2857 offset += min_address-image.sections[i].base_address;
2858 length -= offset;
2861 if (image.sections[i].base_address + buf_cnt > max_address)
2862 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2864 retval = target_write_buffer(target,
2865 image.sections[i].base_address + offset, length, buffer + offset);
2866 if (retval != ERROR_OK) {
2867 free(buffer);
2868 break;
2870 image_size += length;
2871 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2872 (unsigned int)length,
2873 image.sections[i].base_address + offset);
2876 free(buffer);
2879 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2880 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2881 "in %fs (%0.3f KiB/s)", image_size,
2882 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2885 image_close(&image);
2887 return retval;
2891 COMMAND_HANDLER(handle_dump_image_command)
2893 struct fileio fileio;
2894 uint8_t *buffer;
2895 int retval, retvaltemp;
2896 uint32_t address, size;
2897 struct duration bench;
2898 struct target *target = get_current_target(CMD_CTX);
2900 if (CMD_ARGC != 3)
2901 return ERROR_COMMAND_SYNTAX_ERROR;
2903 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2904 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2906 uint32_t buf_size = (size > 4096) ? 4096 : size;
2907 buffer = malloc(buf_size);
2908 if (!buffer)
2909 return ERROR_FAIL;
2911 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2912 if (retval != ERROR_OK) {
2913 free(buffer);
2914 return retval;
2917 duration_start(&bench);
2919 while (size > 0) {
2920 size_t size_written;
2921 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2922 retval = target_read_buffer(target, address, this_run_size, buffer);
2923 if (retval != ERROR_OK)
2924 break;
2926 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2927 if (retval != ERROR_OK)
2928 break;
2930 size -= this_run_size;
2931 address += this_run_size;
2934 free(buffer);
2936 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2937 int filesize;
2938 retval = fileio_size(&fileio, &filesize);
2939 if (retval != ERROR_OK)
2940 return retval;
2941 command_print(CMD_CTX,
2942 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2943 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2946 retvaltemp = fileio_close(&fileio);
2947 if (retvaltemp != ERROR_OK)
2948 return retvaltemp;
2950 return retval;
2953 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2955 uint8_t *buffer;
2956 size_t buf_cnt;
2957 uint32_t image_size;
2958 int i;
2959 int retval;
2960 uint32_t checksum = 0;
2961 uint32_t mem_checksum = 0;
2963 struct image image;
2965 struct target *target = get_current_target(CMD_CTX);
2967 if (CMD_ARGC < 1)
2968 return ERROR_COMMAND_SYNTAX_ERROR;
2970 if (!target) {
2971 LOG_ERROR("no target selected");
2972 return ERROR_FAIL;
2975 struct duration bench;
2976 duration_start(&bench);
2978 if (CMD_ARGC >= 2) {
2979 uint32_t addr;
2980 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2981 image.base_address = addr;
2982 image.base_address_set = 1;
2983 } else {
2984 image.base_address_set = 0;
2985 image.base_address = 0x0;
2988 image.start_address_set = 0;
2990 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2991 if (retval != ERROR_OK)
2992 return retval;
2994 image_size = 0x0;
2995 int diffs = 0;
2996 retval = ERROR_OK;
2997 for (i = 0; i < image.num_sections; i++) {
2998 buffer = malloc(image.sections[i].size);
2999 if (buffer == NULL) {
3000 command_print(CMD_CTX,
3001 "error allocating buffer for section (%d bytes)",
3002 (int)(image.sections[i].size));
3003 break;
3005 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3006 if (retval != ERROR_OK) {
3007 free(buffer);
3008 break;
3011 if (verify) {
3012 /* calculate checksum of image */
3013 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3014 if (retval != ERROR_OK) {
3015 free(buffer);
3016 break;
3019 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3020 if (retval != ERROR_OK) {
3021 free(buffer);
3022 break;
3025 if (checksum != mem_checksum) {
3026 /* failed crc checksum, fall back to a binary compare */
3027 uint8_t *data;
3029 if (diffs == 0)
3030 LOG_ERROR("checksum mismatch - attempting binary compare");
3032 data = (uint8_t *)malloc(buf_cnt);
3034 /* Can we use 32bit word accesses? */
3035 int size = 1;
3036 int count = buf_cnt;
3037 if ((count % 4) == 0) {
3038 size *= 4;
3039 count /= 4;
3041 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3042 if (retval == ERROR_OK) {
3043 uint32_t t;
3044 for (t = 0; t < buf_cnt; t++) {
3045 if (data[t] != buffer[t]) {
3046 command_print(CMD_CTX,
3047 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3048 diffs,
3049 (unsigned)(t + image.sections[i].base_address),
3050 data[t],
3051 buffer[t]);
3052 if (diffs++ >= 127) {
3053 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3054 free(data);
3055 free(buffer);
3056 goto done;
3059 keep_alive();
3062 free(data);
3064 } else {
3065 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3066 image.sections[i].base_address,
3067 buf_cnt);
3070 free(buffer);
3071 image_size += buf_cnt;
3073 if (diffs > 0)
3074 command_print(CMD_CTX, "No more differences found.");
3075 done:
3076 if (diffs > 0)
3077 retval = ERROR_FAIL;
3078 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3079 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3080 "in %fs (%0.3f KiB/s)", image_size,
3081 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3084 image_close(&image);
3086 return retval;
3089 COMMAND_HANDLER(handle_verify_image_command)
3091 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3094 COMMAND_HANDLER(handle_test_image_command)
3096 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3099 static int handle_bp_command_list(struct command_context *cmd_ctx)
3101 struct target *target = get_current_target(cmd_ctx);
3102 struct breakpoint *breakpoint = target->breakpoints;
3103 while (breakpoint) {
3104 if (breakpoint->type == BKPT_SOFT) {
3105 char *buf = buf_to_str(breakpoint->orig_instr,
3106 breakpoint->length, 16);
3107 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3108 breakpoint->address,
3109 breakpoint->length,
3110 breakpoint->set, buf);
3111 free(buf);
3112 } else {
3113 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3114 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3115 breakpoint->asid,
3116 breakpoint->length, breakpoint->set);
3117 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3118 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3119 breakpoint->address,
3120 breakpoint->length, breakpoint->set);
3121 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3122 breakpoint->asid);
3123 } else
3124 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3125 breakpoint->address,
3126 breakpoint->length, breakpoint->set);
3129 breakpoint = breakpoint->next;
3131 return ERROR_OK;
3134 static int handle_bp_command_set(struct command_context *cmd_ctx,
3135 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3137 struct target *target = get_current_target(cmd_ctx);
3139 if (asid == 0) {
3140 int retval = breakpoint_add(target, addr, length, hw);
3141 if (ERROR_OK == retval)
3142 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3143 else {
3144 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3145 return retval;
3147 } else if (addr == 0) {
3148 int retval = context_breakpoint_add(target, asid, length, hw);
3149 if (ERROR_OK == retval)
3150 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3151 else {
3152 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3153 return retval;
3155 } else {
3156 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3157 if (ERROR_OK == retval)
3158 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3159 else {
3160 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3161 return retval;
3164 return ERROR_OK;
3167 COMMAND_HANDLER(handle_bp_command)
3169 uint32_t addr;
3170 uint32_t asid;
3171 uint32_t length;
3172 int hw = BKPT_SOFT;
3174 switch (CMD_ARGC) {
3175 case 0:
3176 return handle_bp_command_list(CMD_CTX);
3178 case 2:
3179 asid = 0;
3180 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3181 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3182 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3184 case 3:
3185 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3186 hw = BKPT_HARD;
3187 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3189 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3191 asid = 0;
3192 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3193 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3194 hw = BKPT_HARD;
3195 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3196 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3197 addr = 0;
3198 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3201 case 4:
3202 hw = BKPT_HARD;
3203 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3204 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3205 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3206 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3208 default:
3209 return ERROR_COMMAND_SYNTAX_ERROR;
3213 COMMAND_HANDLER(handle_rbp_command)
3215 if (CMD_ARGC != 1)
3216 return ERROR_COMMAND_SYNTAX_ERROR;
3218 uint32_t addr;
3219 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3221 struct target *target = get_current_target(CMD_CTX);
3222 breakpoint_remove(target, addr);
3224 return ERROR_OK;
3227 COMMAND_HANDLER(handle_wp_command)
3229 struct target *target = get_current_target(CMD_CTX);
3231 if (CMD_ARGC == 0) {
3232 struct watchpoint *watchpoint = target->watchpoints;
3234 while (watchpoint) {
3235 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3236 ", len: 0x%8.8" PRIx32
3237 ", r/w/a: %i, value: 0x%8.8" PRIx32
3238 ", mask: 0x%8.8" PRIx32,
3239 watchpoint->address,
3240 watchpoint->length,
3241 (int)watchpoint->rw,
3242 watchpoint->value,
3243 watchpoint->mask);
3244 watchpoint = watchpoint->next;
3246 return ERROR_OK;
3249 enum watchpoint_rw type = WPT_ACCESS;
3250 uint32_t addr = 0;
3251 uint32_t length = 0;
3252 uint32_t data_value = 0x0;
3253 uint32_t data_mask = 0xffffffff;
3255 switch (CMD_ARGC) {
3256 case 5:
3257 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3258 /* fall through */
3259 case 4:
3260 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3261 /* fall through */
3262 case 3:
3263 switch (CMD_ARGV[2][0]) {
3264 case 'r':
3265 type = WPT_READ;
3266 break;
3267 case 'w':
3268 type = WPT_WRITE;
3269 break;
3270 case 'a':
3271 type = WPT_ACCESS;
3272 break;
3273 default:
3274 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3275 return ERROR_COMMAND_SYNTAX_ERROR;
3277 /* fall through */
3278 case 2:
3279 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3280 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3281 break;
3283 default:
3284 return ERROR_COMMAND_SYNTAX_ERROR;
3287 int retval = watchpoint_add(target, addr, length, type,
3288 data_value, data_mask);
3289 if (ERROR_OK != retval)
3290 LOG_ERROR("Failure setting watchpoints");
3292 return retval;
3295 COMMAND_HANDLER(handle_rwp_command)
3297 if (CMD_ARGC != 1)
3298 return ERROR_COMMAND_SYNTAX_ERROR;
3300 uint32_t addr;
3301 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3303 struct target *target = get_current_target(CMD_CTX);
3304 watchpoint_remove(target, addr);
3306 return ERROR_OK;
3310 * Translate a virtual address to a physical address.
3312 * The low-level target implementation must have logged a detailed error
3313 * which is forwarded to telnet/GDB session.
3315 COMMAND_HANDLER(handle_virt2phys_command)
3317 if (CMD_ARGC != 1)
3318 return ERROR_COMMAND_SYNTAX_ERROR;
3320 uint32_t va;
3321 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3322 uint32_t pa;
3324 struct target *target = get_current_target(CMD_CTX);
3325 int retval = target->type->virt2phys(target, va, &pa);
3326 if (retval == ERROR_OK)
3327 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3329 return retval;
3332 static void writeData(FILE *f, const void *data, size_t len)
3334 size_t written = fwrite(data, 1, len, f);
3335 if (written != len)
3336 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3339 static void writeLong(FILE *f, int l)
3341 int i;
3342 for (i = 0; i < 4; i++) {
3343 char c = (l >> (i*8))&0xff;
3344 writeData(f, &c, 1);
3349 static void writeString(FILE *f, char *s)
3351 writeData(f, s, strlen(s));
3354 /* Dump a gmon.out histogram file. */
3355 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3357 uint32_t i;
3358 FILE *f = fopen(filename, "w");
3359 if (f == NULL)
3360 return;
3361 writeString(f, "gmon");
3362 writeLong(f, 0x00000001); /* Version */
3363 writeLong(f, 0); /* padding */
3364 writeLong(f, 0); /* padding */
3365 writeLong(f, 0); /* padding */
3367 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3368 writeData(f, &zero, 1);
3370 /* figure out bucket size */
3371 uint32_t min = samples[0];
3372 uint32_t max = samples[0];
3373 for (i = 0; i < sampleNum; i++) {
3374 if (min > samples[i])
3375 min = samples[i];
3376 if (max < samples[i])
3377 max = samples[i];
3380 int addressSpace = (max - min + 1);
3381 assert(addressSpace >= 2);
3383 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3384 uint32_t length = addressSpace;
3385 if (length > maxBuckets)
3386 length = maxBuckets;
3387 int *buckets = malloc(sizeof(int)*length);
3388 if (buckets == NULL) {
3389 fclose(f);
3390 return;
3392 memset(buckets, 0, sizeof(int) * length);
3393 for (i = 0; i < sampleNum; i++) {
3394 uint32_t address = samples[i];
3395 long long a = address - min;
3396 long long b = length - 1;
3397 long long c = addressSpace - 1;
3398 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3399 buckets[index_t]++;
3402 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3403 writeLong(f, min); /* low_pc */
3404 writeLong(f, max); /* high_pc */
3405 writeLong(f, length); /* # of samples */
3406 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3407 writeString(f, "seconds");
3408 for (i = 0; i < (15-strlen("seconds")); i++)
3409 writeData(f, &zero, 1);
3410 writeString(f, "s");
3412 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3414 char *data = malloc(2 * length);
3415 if (data != NULL) {
3416 for (i = 0; i < length; i++) {
3417 int val;
3418 val = buckets[i];
3419 if (val > 65535)
3420 val = 65535;
3421 data[i * 2] = val&0xff;
3422 data[i * 2 + 1] = (val >> 8) & 0xff;
3424 free(buckets);
3425 writeData(f, data, length * 2);
3426 free(data);
3427 } else
3428 free(buckets);
3430 fclose(f);
3433 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3434 * which will be used as a random sampling of PC */
3435 COMMAND_HANDLER(handle_profile_command)
3437 struct target *target = get_current_target(CMD_CTX);
3438 struct timeval timeout, now;
3440 gettimeofday(&timeout, NULL);
3441 if (CMD_ARGC != 2)
3442 return ERROR_COMMAND_SYNTAX_ERROR;
3443 unsigned offset;
3444 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3446 timeval_add_time(&timeout, offset, 0);
3449 * @todo: Some cores let us sample the PC without the
3450 * annoying halt/resume step; for example, ARMv7 PCSR.
3451 * Provide a way to use that more efficient mechanism.
3454 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3456 static const int maxSample = 10000;
3457 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3458 if (samples == NULL)
3459 return ERROR_OK;
3461 int numSamples = 0;
3462 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3463 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3465 int retval = ERROR_OK;
3466 for (;;) {
3467 target_poll(target);
3468 if (target->state == TARGET_HALTED) {
3469 uint32_t t = *((uint32_t *)reg->value);
3470 samples[numSamples++] = t;
3471 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3472 retval = target_resume(target, 1, 0, 0, 0);
3473 target_poll(target);
3474 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3475 } else if (target->state == TARGET_RUNNING) {
3476 /* We want to quickly sample the PC. */
3477 retval = target_halt(target);
3478 if (retval != ERROR_OK) {
3479 free(samples);
3480 return retval;
3482 } else {
3483 command_print(CMD_CTX, "Target not halted or running");
3484 retval = ERROR_OK;
3485 break;
3487 if (retval != ERROR_OK)
3488 break;
3490 gettimeofday(&now, NULL);
3491 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3492 && (now.tv_usec >= timeout.tv_usec))) {
3493 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3494 retval = target_poll(target);
3495 if (retval != ERROR_OK) {
3496 free(samples);
3497 return retval;
3499 if (target->state == TARGET_HALTED) {
3500 /* current pc, addr = 0, do not handle
3501 * breakpoints, not debugging */
3502 target_resume(target, 1, 0, 0, 0);
3504 retval = target_poll(target);
3505 if (retval != ERROR_OK) {
3506 free(samples);
3507 return retval;
3509 writeGmon(samples, numSamples, CMD_ARGV[1]);
3510 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3511 break;
3514 free(samples);
3516 return retval;
3519 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3521 char *namebuf;
3522 Jim_Obj *nameObjPtr, *valObjPtr;
3523 int result;
3525 namebuf = alloc_printf("%s(%d)", varname, idx);
3526 if (!namebuf)
3527 return JIM_ERR;
3529 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3530 valObjPtr = Jim_NewIntObj(interp, val);
3531 if (!nameObjPtr || !valObjPtr) {
3532 free(namebuf);
3533 return JIM_ERR;
3536 Jim_IncrRefCount(nameObjPtr);
3537 Jim_IncrRefCount(valObjPtr);
3538 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3539 Jim_DecrRefCount(interp, nameObjPtr);
3540 Jim_DecrRefCount(interp, valObjPtr);
3541 free(namebuf);
3542 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3543 return result;
3546 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3548 struct command_context *context;
3549 struct target *target;
3551 context = current_command_context(interp);
3552 assert(context != NULL);
3554 target = get_current_target(context);
3555 if (target == NULL) {
3556 LOG_ERROR("mem2array: no current target");
3557 return JIM_ERR;
3560 return target_mem2array(interp, target, argc - 1, argv + 1);
3563 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3565 long l;
3566 uint32_t width;
3567 int len;
3568 uint32_t addr;
3569 uint32_t count;
3570 uint32_t v;
3571 const char *varname;
3572 int n, e, retval;
3573 uint32_t i;
3575 /* argv[1] = name of array to receive the data
3576 * argv[2] = desired width
3577 * argv[3] = memory address
3578 * argv[4] = count of times to read
3580 if (argc != 4) {
3581 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3582 return JIM_ERR;
3584 varname = Jim_GetString(argv[0], &len);
3585 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3587 e = Jim_GetLong(interp, argv[1], &l);
3588 width = l;
3589 if (e != JIM_OK)
3590 return e;
3592 e = Jim_GetLong(interp, argv[2], &l);
3593 addr = l;
3594 if (e != JIM_OK)
3595 return e;
3596 e = Jim_GetLong(interp, argv[3], &l);
3597 len = l;
3598 if (e != JIM_OK)
3599 return e;
3600 switch (width) {
3601 case 8:
3602 width = 1;
3603 break;
3604 case 16:
3605 width = 2;
3606 break;
3607 case 32:
3608 width = 4;
3609 break;
3610 default:
3611 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3612 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3613 return JIM_ERR;
3615 if (len == 0) {
3616 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3617 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3618 return JIM_ERR;
3620 if ((addr + (len * width)) < addr) {
3621 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3622 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3623 return JIM_ERR;
3625 /* absurd transfer size? */
3626 if (len > 65536) {
3627 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3628 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3629 return JIM_ERR;
3632 if ((width == 1) ||
3633 ((width == 2) && ((addr & 1) == 0)) ||
3634 ((width == 4) && ((addr & 3) == 0))) {
3635 /* all is well */
3636 } else {
3637 char buf[100];
3638 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3639 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3640 addr,
3641 width);
3642 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3643 return JIM_ERR;
3646 /* Transfer loop */
3648 /* index counter */
3649 n = 0;
3651 size_t buffersize = 4096;
3652 uint8_t *buffer = malloc(buffersize);
3653 if (buffer == NULL)
3654 return JIM_ERR;
3656 /* assume ok */
3657 e = JIM_OK;
3658 while (len) {
3659 /* Slurp... in buffer size chunks */
3661 count = len; /* in objects.. */
3662 if (count > (buffersize / width))
3663 count = (buffersize / width);
3665 retval = target_read_memory(target, addr, width, count, buffer);
3666 if (retval != ERROR_OK) {
3667 /* BOO !*/
3668 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3669 (unsigned int)addr,
3670 (int)width,
3671 (int)count);
3672 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3673 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3674 e = JIM_ERR;
3675 break;
3676 } else {
3677 v = 0; /* shut up gcc */
3678 for (i = 0; i < count ; i++, n++) {
3679 switch (width) {
3680 case 4:
3681 v = target_buffer_get_u32(target, &buffer[i*width]);
3682 break;
3683 case 2:
3684 v = target_buffer_get_u16(target, &buffer[i*width]);
3685 break;
3686 case 1:
3687 v = buffer[i] & 0x0ff;
3688 break;
3690 new_int_array_element(interp, varname, n, v);
3692 len -= count;
3696 free(buffer);
3698 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3700 return e;
3703 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3705 char *namebuf;
3706 Jim_Obj *nameObjPtr, *valObjPtr;
3707 int result;
3708 long l;
3710 namebuf = alloc_printf("%s(%d)", varname, idx);
3711 if (!namebuf)
3712 return JIM_ERR;
3714 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3715 if (!nameObjPtr) {
3716 free(namebuf);
3717 return JIM_ERR;
3720 Jim_IncrRefCount(nameObjPtr);
3721 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3722 Jim_DecrRefCount(interp, nameObjPtr);
3723 free(namebuf);
3724 if (valObjPtr == NULL)
3725 return JIM_ERR;
3727 result = Jim_GetLong(interp, valObjPtr, &l);
3728 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3729 *val = l;
3730 return result;
3733 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3735 struct command_context *context;
3736 struct target *target;
3738 context = current_command_context(interp);
3739 assert(context != NULL);
3741 target = get_current_target(context);
3742 if (target == NULL) {
3743 LOG_ERROR("array2mem: no current target");
3744 return JIM_ERR;
3747 return target_array2mem(interp, target, argc-1, argv + 1);
3750 static int target_array2mem(Jim_Interp *interp, struct target *target,
3751 int argc, Jim_Obj *const *argv)
3753 long l;
3754 uint32_t width;
3755 int len;
3756 uint32_t addr;
3757 uint32_t count;
3758 uint32_t v;
3759 const char *varname;
3760 int n, e, retval;
3761 uint32_t i;
3763 /* argv[1] = name of array to get the data
3764 * argv[2] = desired width
3765 * argv[3] = memory address
3766 * argv[4] = count to write
3768 if (argc != 4) {
3769 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3770 return JIM_ERR;
3772 varname = Jim_GetString(argv[0], &len);
3773 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3775 e = Jim_GetLong(interp, argv[1], &l);
3776 width = l;
3777 if (e != JIM_OK)
3778 return e;
3780 e = Jim_GetLong(interp, argv[2], &l);
3781 addr = l;
3782 if (e != JIM_OK)
3783 return e;
3784 e = Jim_GetLong(interp, argv[3], &l);
3785 len = l;
3786 if (e != JIM_OK)
3787 return e;
3788 switch (width) {
3789 case 8:
3790 width = 1;
3791 break;
3792 case 16:
3793 width = 2;
3794 break;
3795 case 32:
3796 width = 4;
3797 break;
3798 default:
3799 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3800 Jim_AppendStrings(interp, Jim_GetResult(interp),
3801 "Invalid width param, must be 8/16/32", NULL);
3802 return JIM_ERR;
3804 if (len == 0) {
3805 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3806 Jim_AppendStrings(interp, Jim_GetResult(interp),
3807 "array2mem: zero width read?", NULL);
3808 return JIM_ERR;
3810 if ((addr + (len * width)) < addr) {
3811 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3812 Jim_AppendStrings(interp, Jim_GetResult(interp),
3813 "array2mem: addr + len - wraps to zero?", NULL);
3814 return JIM_ERR;
3816 /* absurd transfer size? */
3817 if (len > 65536) {
3818 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3819 Jim_AppendStrings(interp, Jim_GetResult(interp),
3820 "array2mem: absurd > 64K item request", NULL);
3821 return JIM_ERR;
3824 if ((width == 1) ||
3825 ((width == 2) && ((addr & 1) == 0)) ||
3826 ((width == 4) && ((addr & 3) == 0))) {
3827 /* all is well */
3828 } else {
3829 char buf[100];
3830 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3831 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3832 (unsigned int)addr,
3833 (int)width);
3834 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3835 return JIM_ERR;
3838 /* Transfer loop */
3840 /* index counter */
3841 n = 0;
3842 /* assume ok */
3843 e = JIM_OK;
3845 size_t buffersize = 4096;
3846 uint8_t *buffer = malloc(buffersize);
3847 if (buffer == NULL)
3848 return JIM_ERR;
3850 while (len) {
3851 /* Slurp... in buffer size chunks */
3853 count = len; /* in objects.. */
3854 if (count > (buffersize / width))
3855 count = (buffersize / width);
3857 v = 0; /* shut up gcc */
3858 for (i = 0; i < count; i++, n++) {
3859 get_int_array_element(interp, varname, n, &v);
3860 switch (width) {
3861 case 4:
3862 target_buffer_set_u32(target, &buffer[i * width], v);
3863 break;
3864 case 2:
3865 target_buffer_set_u16(target, &buffer[i * width], v);
3866 break;
3867 case 1:
3868 buffer[i] = v & 0x0ff;
3869 break;
3872 len -= count;
3874 retval = target_write_memory(target, addr, width, count, buffer);
3875 if (retval != ERROR_OK) {
3876 /* BOO !*/
3877 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3878 (unsigned int)addr,
3879 (int)width,
3880 (int)count);
3881 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3882 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3883 e = JIM_ERR;
3884 break;
3888 free(buffer);
3890 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3892 return e;
3895 /* FIX? should we propagate errors here rather than printing them
3896 * and continuing?
3898 void target_handle_event(struct target *target, enum target_event e)
3900 struct target_event_action *teap;
3902 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3903 if (teap->event == e) {
3904 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3905 target->target_number,
3906 target_name(target),
3907 target_type_name(target),
3909 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3910 Jim_GetString(teap->body, NULL));
3911 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3912 Jim_MakeErrorMessage(teap->interp);
3913 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3920 * Returns true only if the target has a handler for the specified event.
3922 bool target_has_event_action(struct target *target, enum target_event event)
3924 struct target_event_action *teap;
3926 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3927 if (teap->event == event)
3928 return true;
3930 return false;
3933 enum target_cfg_param {
3934 TCFG_TYPE,
3935 TCFG_EVENT,
3936 TCFG_WORK_AREA_VIRT,
3937 TCFG_WORK_AREA_PHYS,
3938 TCFG_WORK_AREA_SIZE,
3939 TCFG_WORK_AREA_BACKUP,
3940 TCFG_ENDIAN,
3941 TCFG_VARIANT,
3942 TCFG_COREID,
3943 TCFG_CHAIN_POSITION,
3944 TCFG_DBGBASE,
3945 TCFG_RTOS,
3948 static Jim_Nvp nvp_config_opts[] = {
3949 { .name = "-type", .value = TCFG_TYPE },
3950 { .name = "-event", .value = TCFG_EVENT },
3951 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3952 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3953 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3954 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3955 { .name = "-endian" , .value = TCFG_ENDIAN },
3956 { .name = "-variant", .value = TCFG_VARIANT },
3957 { .name = "-coreid", .value = TCFG_COREID },
3958 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3959 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3960 { .name = "-rtos", .value = TCFG_RTOS },
3961 { .name = NULL, .value = -1 }
3964 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3966 Jim_Nvp *n;
3967 Jim_Obj *o;
3968 jim_wide w;
3969 char *cp;
3970 int e;
3972 /* parse config or cget options ... */
3973 while (goi->argc > 0) {
3974 Jim_SetEmptyResult(goi->interp);
3975 /* Jim_GetOpt_Debug(goi); */
3977 if (target->type->target_jim_configure) {
3978 /* target defines a configure function */
3979 /* target gets first dibs on parameters */
3980 e = (*(target->type->target_jim_configure))(target, goi);
3981 if (e == JIM_OK) {
3982 /* more? */
3983 continue;
3985 if (e == JIM_ERR) {
3986 /* An error */
3987 return e;
3989 /* otherwise we 'continue' below */
3991 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3992 if (e != JIM_OK) {
3993 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3994 return e;
3996 switch (n->value) {
3997 case TCFG_TYPE:
3998 /* not setable */
3999 if (goi->isconfigure) {
4000 Jim_SetResultFormatted(goi->interp,
4001 "not settable: %s", n->name);
4002 return JIM_ERR;
4003 } else {
4004 no_params:
4005 if (goi->argc != 0) {
4006 Jim_WrongNumArgs(goi->interp,
4007 goi->argc, goi->argv,
4008 "NO PARAMS");
4009 return JIM_ERR;
4012 Jim_SetResultString(goi->interp,
4013 target_type_name(target), -1);
4014 /* loop for more */
4015 break;
4016 case TCFG_EVENT:
4017 if (goi->argc == 0) {
4018 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4019 return JIM_ERR;
4022 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4023 if (e != JIM_OK) {
4024 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4025 return e;
4028 if (goi->isconfigure) {
4029 if (goi->argc != 1) {
4030 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4031 return JIM_ERR;
4033 } else {
4034 if (goi->argc != 0) {
4035 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4036 return JIM_ERR;
4041 struct target_event_action *teap;
4043 teap = target->event_action;
4044 /* replace existing? */
4045 while (teap) {
4046 if (teap->event == (enum target_event)n->value)
4047 break;
4048 teap = teap->next;
4051 if (goi->isconfigure) {
4052 bool replace = true;
4053 if (teap == NULL) {
4054 /* create new */
4055 teap = calloc(1, sizeof(*teap));
4056 replace = false;
4058 teap->event = n->value;
4059 teap->interp = goi->interp;
4060 Jim_GetOpt_Obj(goi, &o);
4061 if (teap->body)
4062 Jim_DecrRefCount(teap->interp, teap->body);
4063 teap->body = Jim_DuplicateObj(goi->interp, o);
4065 * FIXME:
4066 * Tcl/TK - "tk events" have a nice feature.
4067 * See the "BIND" command.
4068 * We should support that here.
4069 * You can specify %X and %Y in the event code.
4070 * The idea is: %T - target name.
4071 * The idea is: %N - target number
4072 * The idea is: %E - event name.
4074 Jim_IncrRefCount(teap->body);
4076 if (!replace) {
4077 /* add to head of event list */
4078 teap->next = target->event_action;
4079 target->event_action = teap;
4081 Jim_SetEmptyResult(goi->interp);
4082 } else {
4083 /* get */
4084 if (teap == NULL)
4085 Jim_SetEmptyResult(goi->interp);
4086 else
4087 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4090 /* loop for more */
4091 break;
4093 case TCFG_WORK_AREA_VIRT:
4094 if (goi->isconfigure) {
4095 target_free_all_working_areas(target);
4096 e = Jim_GetOpt_Wide(goi, &w);
4097 if (e != JIM_OK)
4098 return e;
4099 target->working_area_virt = w;
4100 target->working_area_virt_spec = true;
4101 } else {
4102 if (goi->argc != 0)
4103 goto no_params;
4105 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4106 /* loop for more */
4107 break;
4109 case TCFG_WORK_AREA_PHYS:
4110 if (goi->isconfigure) {
4111 target_free_all_working_areas(target);
4112 e = Jim_GetOpt_Wide(goi, &w);
4113 if (e != JIM_OK)
4114 return e;
4115 target->working_area_phys = w;
4116 target->working_area_phys_spec = true;
4117 } else {
4118 if (goi->argc != 0)
4119 goto no_params;
4121 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4122 /* loop for more */
4123 break;
4125 case TCFG_WORK_AREA_SIZE:
4126 if (goi->isconfigure) {
4127 target_free_all_working_areas(target);
4128 e = Jim_GetOpt_Wide(goi, &w);
4129 if (e != JIM_OK)
4130 return e;
4131 target->working_area_size = w;
4132 } else {
4133 if (goi->argc != 0)
4134 goto no_params;
4136 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4137 /* loop for more */
4138 break;
4140 case TCFG_WORK_AREA_BACKUP:
4141 if (goi->isconfigure) {
4142 target_free_all_working_areas(target);
4143 e = Jim_GetOpt_Wide(goi, &w);
4144 if (e != JIM_OK)
4145 return e;
4146 /* make this exactly 1 or 0 */
4147 target->backup_working_area = (!!w);
4148 } else {
4149 if (goi->argc != 0)
4150 goto no_params;
4152 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4153 /* loop for more e*/
4154 break;
4157 case TCFG_ENDIAN:
4158 if (goi->isconfigure) {
4159 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4160 if (e != JIM_OK) {
4161 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4162 return e;
4164 target->endianness = n->value;
4165 } else {
4166 if (goi->argc != 0)
4167 goto no_params;
4169 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4170 if (n->name == NULL) {
4171 target->endianness = TARGET_LITTLE_ENDIAN;
4172 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4174 Jim_SetResultString(goi->interp, n->name, -1);
4175 /* loop for more */
4176 break;
4178 case TCFG_VARIANT:
4179 if (goi->isconfigure) {
4180 if (goi->argc < 1) {
4181 Jim_SetResultFormatted(goi->interp,
4182 "%s ?STRING?",
4183 n->name);
4184 return JIM_ERR;
4186 if (target->variant)
4187 free((void *)(target->variant));
4188 e = Jim_GetOpt_String(goi, &cp, NULL);
4189 if (e != JIM_OK)
4190 return e;
4191 target->variant = strdup(cp);
4192 } else {
4193 if (goi->argc != 0)
4194 goto no_params;
4196 Jim_SetResultString(goi->interp, target->variant, -1);
4197 /* loop for more */
4198 break;
4200 case TCFG_COREID:
4201 if (goi->isconfigure) {
4202 e = Jim_GetOpt_Wide(goi, &w);
4203 if (e != JIM_OK)
4204 return e;
4205 target->coreid = (int32_t)w;
4206 } else {
4207 if (goi->argc != 0)
4208 goto no_params;
4210 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4211 /* loop for more */
4212 break;
4214 case TCFG_CHAIN_POSITION:
4215 if (goi->isconfigure) {
4216 Jim_Obj *o_t;
4217 struct jtag_tap *tap;
4218 target_free_all_working_areas(target);
4219 e = Jim_GetOpt_Obj(goi, &o_t);
4220 if (e != JIM_OK)
4221 return e;
4222 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4223 if (tap == NULL)
4224 return JIM_ERR;
4225 /* make this exactly 1 or 0 */
4226 target->tap = tap;
4227 } else {
4228 if (goi->argc != 0)
4229 goto no_params;
4231 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4232 /* loop for more e*/
4233 break;
4234 case TCFG_DBGBASE:
4235 if (goi->isconfigure) {
4236 e = Jim_GetOpt_Wide(goi, &w);
4237 if (e != JIM_OK)
4238 return e;
4239 target->dbgbase = (uint32_t)w;
4240 target->dbgbase_set = true;
4241 } else {
4242 if (goi->argc != 0)
4243 goto no_params;
4245 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4246 /* loop for more */
4247 break;
4249 case TCFG_RTOS:
4250 /* RTOS */
4252 int result = rtos_create(goi, target);
4253 if (result != JIM_OK)
4254 return result;
4256 /* loop for more */
4257 break;
4259 } /* while (goi->argc) */
4262 /* done - we return */
4263 return JIM_OK;
4266 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4268 Jim_GetOptInfo goi;
4270 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4271 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4272 int need_args = 1 + goi.isconfigure;
4273 if (goi.argc < need_args) {
4274 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4275 goi.isconfigure
4276 ? "missing: -option VALUE ..."
4277 : "missing: -option ...");
4278 return JIM_ERR;
4280 struct target *target = Jim_CmdPrivData(goi.interp);
4281 return target_configure(&goi, target);
4284 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4286 const char *cmd_name = Jim_GetString(argv[0], NULL);
4288 Jim_GetOptInfo goi;
4289 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4291 if (goi.argc < 2 || goi.argc > 4) {
4292 Jim_SetResultFormatted(goi.interp,
4293 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4294 return JIM_ERR;
4297 target_write_fn fn;
4298 fn = target_write_memory_fast;
4300 int e;
4301 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4302 /* consume it */
4303 struct Jim_Obj *obj;
4304 e = Jim_GetOpt_Obj(&goi, &obj);
4305 if (e != JIM_OK)
4306 return e;
4308 fn = target_write_phys_memory;
4311 jim_wide a;
4312 e = Jim_GetOpt_Wide(&goi, &a);
4313 if (e != JIM_OK)
4314 return e;
4316 jim_wide b;
4317 e = Jim_GetOpt_Wide(&goi, &b);
4318 if (e != JIM_OK)
4319 return e;
4321 jim_wide c = 1;
4322 if (goi.argc == 1) {
4323 e = Jim_GetOpt_Wide(&goi, &c);
4324 if (e != JIM_OK)
4325 return e;
4328 /* all args must be consumed */
4329 if (goi.argc != 0)
4330 return JIM_ERR;
4332 struct target *target = Jim_CmdPrivData(goi.interp);
4333 unsigned data_size;
4334 if (strcasecmp(cmd_name, "mww") == 0)
4335 data_size = 4;
4336 else if (strcasecmp(cmd_name, "mwh") == 0)
4337 data_size = 2;
4338 else if (strcasecmp(cmd_name, "mwb") == 0)
4339 data_size = 1;
4340 else {
4341 LOG_ERROR("command '%s' unknown: ", cmd_name);
4342 return JIM_ERR;
4345 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4349 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4351 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4352 * mdh [phys] <address> [<count>] - for 16 bit reads
4353 * mdb [phys] <address> [<count>] - for 8 bit reads
4355 * Count defaults to 1.
4357 * Calls target_read_memory or target_read_phys_memory depending on
4358 * the presence of the "phys" argument
4359 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4360 * to int representation in base16.
4361 * Also outputs read data in a human readable form using command_print
4363 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4364 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4365 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4366 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4367 * on success, with [<count>] number of elements.
4369 * In case of little endian target:
4370 * Example1: "mdw 0x00000000" returns "10123456"
4371 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4372 * Example3: "mdb 0x00000000" returns "56"
4373 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4374 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4376 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4378 const char *cmd_name = Jim_GetString(argv[0], NULL);
4380 Jim_GetOptInfo goi;
4381 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4383 if ((goi.argc < 1) || (goi.argc > 3)) {
4384 Jim_SetResultFormatted(goi.interp,
4385 "usage: %s [phys] <address> [<count>]", cmd_name);
4386 return JIM_ERR;
4389 int (*fn)(struct target *target,
4390 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4391 fn = target_read_memory;
4393 int e;
4394 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4395 /* consume it */
4396 struct Jim_Obj *obj;
4397 e = Jim_GetOpt_Obj(&goi, &obj);
4398 if (e != JIM_OK)
4399 return e;
4401 fn = target_read_phys_memory;
4404 /* Read address parameter */
4405 jim_wide addr;
4406 e = Jim_GetOpt_Wide(&goi, &addr);
4407 if (e != JIM_OK)
4408 return JIM_ERR;
4410 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4411 jim_wide count;
4412 if (goi.argc == 1) {
4413 e = Jim_GetOpt_Wide(&goi, &count);
4414 if (e != JIM_OK)
4415 return JIM_ERR;
4416 } else
4417 count = 1;
4419 /* all args must be consumed */
4420 if (goi.argc != 0)
4421 return JIM_ERR;
4423 jim_wide dwidth = 1; /* shut up gcc */
4424 if (strcasecmp(cmd_name, "mdw") == 0)
4425 dwidth = 4;
4426 else if (strcasecmp(cmd_name, "mdh") == 0)
4427 dwidth = 2;
4428 else if (strcasecmp(cmd_name, "mdb") == 0)
4429 dwidth = 1;
4430 else {
4431 LOG_ERROR("command '%s' unknown: ", cmd_name);
4432 return JIM_ERR;
4435 /* convert count to "bytes" */
4436 int bytes = count * dwidth;
4438 struct target *target = Jim_CmdPrivData(goi.interp);
4439 uint8_t target_buf[32];
4440 jim_wide x, y, z;
4441 while (bytes > 0) {
4442 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4444 /* Try to read out next block */
4445 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4447 if (e != ERROR_OK) {
4448 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4449 return JIM_ERR;
4452 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4453 switch (dwidth) {
4454 case 4:
4455 for (x = 0; x < 16 && x < y; x += 4) {
4456 z = target_buffer_get_u32(target, &(target_buf[x]));
4457 command_print_sameline(NULL, "%08x ", (int)(z));
4459 for (; (x < 16) ; x += 4)
4460 command_print_sameline(NULL, " ");
4461 break;
4462 case 2:
4463 for (x = 0; x < 16 && x < y; x += 2) {
4464 z = target_buffer_get_u16(target, &(target_buf[x]));
4465 command_print_sameline(NULL, "%04x ", (int)(z));
4467 for (; (x < 16) ; x += 2)
4468 command_print_sameline(NULL, " ");
4469 break;
4470 case 1:
4471 default:
4472 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4473 z = target_buffer_get_u8(target, &(target_buf[x]));
4474 command_print_sameline(NULL, "%02x ", (int)(z));
4476 for (; (x < 16) ; x += 1)
4477 command_print_sameline(NULL, " ");
4478 break;
4480 /* ascii-ify the bytes */
4481 for (x = 0 ; x < y ; x++) {
4482 if ((target_buf[x] >= 0x20) &&
4483 (target_buf[x] <= 0x7e)) {
4484 /* good */
4485 } else {
4486 /* smack it */
4487 target_buf[x] = '.';
4490 /* space pad */
4491 while (x < 16) {
4492 target_buf[x] = ' ';
4493 x++;
4495 /* terminate */
4496 target_buf[16] = 0;
4497 /* print - with a newline */
4498 command_print_sameline(NULL, "%s\n", target_buf);
4499 /* NEXT... */
4500 bytes -= 16;
4501 addr += 16;
4503 return JIM_OK;
4506 static int jim_target_mem2array(Jim_Interp *interp,
4507 int argc, Jim_Obj *const *argv)
4509 struct target *target = Jim_CmdPrivData(interp);
4510 return target_mem2array(interp, target, argc - 1, argv + 1);
4513 static int jim_target_array2mem(Jim_Interp *interp,
4514 int argc, Jim_Obj *const *argv)
4516 struct target *target = Jim_CmdPrivData(interp);
4517 return target_array2mem(interp, target, argc - 1, argv + 1);
4520 static int jim_target_tap_disabled(Jim_Interp *interp)
4522 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4523 return JIM_ERR;
4526 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4528 if (argc != 1) {
4529 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4530 return JIM_ERR;
4532 struct target *target = Jim_CmdPrivData(interp);
4533 if (!target->tap->enabled)
4534 return jim_target_tap_disabled(interp);
4536 int e = target->type->examine(target);
4537 if (e != ERROR_OK)
4538 return JIM_ERR;
4539 return JIM_OK;
4542 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4544 if (argc != 1) {
4545 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4546 return JIM_ERR;
4548 struct target *target = Jim_CmdPrivData(interp);
4550 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4551 return JIM_ERR;
4553 return JIM_OK;
4556 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4558 if (argc != 1) {
4559 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4560 return JIM_ERR;
4562 struct target *target = Jim_CmdPrivData(interp);
4563 if (!target->tap->enabled)
4564 return jim_target_tap_disabled(interp);
4566 int e;
4567 if (!(target_was_examined(target)))
4568 e = ERROR_TARGET_NOT_EXAMINED;
4569 else
4570 e = target->type->poll(target);
4571 if (e != ERROR_OK)
4572 return JIM_ERR;
4573 return JIM_OK;
4576 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4578 Jim_GetOptInfo goi;
4579 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4581 if (goi.argc != 2) {
4582 Jim_WrongNumArgs(interp, 0, argv,
4583 "([tT]|[fF]|assert|deassert) BOOL");
4584 return JIM_ERR;
4587 Jim_Nvp *n;
4588 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4589 if (e != JIM_OK) {
4590 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4591 return e;
4593 /* the halt or not param */
4594 jim_wide a;
4595 e = Jim_GetOpt_Wide(&goi, &a);
4596 if (e != JIM_OK)
4597 return e;
4599 struct target *target = Jim_CmdPrivData(goi.interp);
4600 if (!target->tap->enabled)
4601 return jim_target_tap_disabled(interp);
4602 if (!(target_was_examined(target))) {
4603 LOG_ERROR("Target not examined yet");
4604 return ERROR_TARGET_NOT_EXAMINED;
4606 if (!target->type->assert_reset || !target->type->deassert_reset) {
4607 Jim_SetResultFormatted(interp,
4608 "No target-specific reset for %s",
4609 target_name(target));
4610 return JIM_ERR;
4612 /* determine if we should halt or not. */
4613 target->reset_halt = !!a;
4614 /* When this happens - all workareas are invalid. */
4615 target_free_all_working_areas_restore(target, 0);
4617 /* do the assert */
4618 if (n->value == NVP_ASSERT)
4619 e = target->type->assert_reset(target);
4620 else
4621 e = target->type->deassert_reset(target);
4622 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4625 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4627 if (argc != 1) {
4628 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4629 return JIM_ERR;
4631 struct target *target = Jim_CmdPrivData(interp);
4632 if (!target->tap->enabled)
4633 return jim_target_tap_disabled(interp);
4634 int e = target->type->halt(target);
4635 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4638 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4640 Jim_GetOptInfo goi;
4641 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4643 /* params: <name> statename timeoutmsecs */
4644 if (goi.argc != 2) {
4645 const char *cmd_name = Jim_GetString(argv[0], NULL);
4646 Jim_SetResultFormatted(goi.interp,
4647 "%s <state_name> <timeout_in_msec>", cmd_name);
4648 return JIM_ERR;
4651 Jim_Nvp *n;
4652 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4653 if (e != JIM_OK) {
4654 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4655 return e;
4657 jim_wide a;
4658 e = Jim_GetOpt_Wide(&goi, &a);
4659 if (e != JIM_OK)
4660 return e;
4661 struct target *target = Jim_CmdPrivData(interp);
4662 if (!target->tap->enabled)
4663 return jim_target_tap_disabled(interp);
4665 e = target_wait_state(target, n->value, a);
4666 if (e != ERROR_OK) {
4667 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4668 Jim_SetResultFormatted(goi.interp,
4669 "target: %s wait %s fails (%#s) %s",
4670 target_name(target), n->name,
4671 eObj, target_strerror_safe(e));
4672 Jim_FreeNewObj(interp, eObj);
4673 return JIM_ERR;
4675 return JIM_OK;
4677 /* List for human, Events defined for this target.
4678 * scripts/programs should use 'name cget -event NAME'
4680 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4682 struct command_context *cmd_ctx = current_command_context(interp);
4683 assert(cmd_ctx != NULL);
4685 struct target *target = Jim_CmdPrivData(interp);
4686 struct target_event_action *teap = target->event_action;
4687 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4688 target->target_number,
4689 target_name(target));
4690 command_print(cmd_ctx, "%-25s | Body", "Event");
4691 command_print(cmd_ctx, "------------------------- | "
4692 "----------------------------------------");
4693 while (teap) {
4694 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4695 command_print(cmd_ctx, "%-25s | %s",
4696 opt->name, Jim_GetString(teap->body, NULL));
4697 teap = teap->next;
4699 command_print(cmd_ctx, "***END***");
4700 return JIM_OK;
4702 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4704 if (argc != 1) {
4705 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4706 return JIM_ERR;
4708 struct target *target = Jim_CmdPrivData(interp);
4709 Jim_SetResultString(interp, target_state_name(target), -1);
4710 return JIM_OK;
4712 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4714 Jim_GetOptInfo goi;
4715 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4716 if (goi.argc != 1) {
4717 const char *cmd_name = Jim_GetString(argv[0], NULL);
4718 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4719 return JIM_ERR;
4721 Jim_Nvp *n;
4722 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4723 if (e != JIM_OK) {
4724 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4725 return e;
4727 struct target *target = Jim_CmdPrivData(interp);
4728 target_handle_event(target, n->value);
4729 return JIM_OK;
4732 static const struct command_registration target_instance_command_handlers[] = {
4734 .name = "configure",
4735 .mode = COMMAND_CONFIG,
4736 .jim_handler = jim_target_configure,
4737 .help = "configure a new target for use",
4738 .usage = "[target_attribute ...]",
4741 .name = "cget",
4742 .mode = COMMAND_ANY,
4743 .jim_handler = jim_target_configure,
4744 .help = "returns the specified target attribute",
4745 .usage = "target_attribute",
4748 .name = "mww",
4749 .mode = COMMAND_EXEC,
4750 .jim_handler = jim_target_mw,
4751 .help = "Write 32-bit word(s) to target memory",
4752 .usage = "address data [count]",
4755 .name = "mwh",
4756 .mode = COMMAND_EXEC,
4757 .jim_handler = jim_target_mw,
4758 .help = "Write 16-bit half-word(s) to target memory",
4759 .usage = "address data [count]",
4762 .name = "mwb",
4763 .mode = COMMAND_EXEC,
4764 .jim_handler = jim_target_mw,
4765 .help = "Write byte(s) to target memory",
4766 .usage = "address data [count]",
4769 .name = "mdw",
4770 .mode = COMMAND_EXEC,
4771 .jim_handler = jim_target_md,
4772 .help = "Display target memory as 32-bit words",
4773 .usage = "address [count]",
4776 .name = "mdh",
4777 .mode = COMMAND_EXEC,
4778 .jim_handler = jim_target_md,
4779 .help = "Display target memory as 16-bit half-words",
4780 .usage = "address [count]",
4783 .name = "mdb",
4784 .mode = COMMAND_EXEC,
4785 .jim_handler = jim_target_md,
4786 .help = "Display target memory as 8-bit bytes",
4787 .usage = "address [count]",
4790 .name = "array2mem",
4791 .mode = COMMAND_EXEC,
4792 .jim_handler = jim_target_array2mem,
4793 .help = "Writes Tcl array of 8/16/32 bit numbers "
4794 "to target memory",
4795 .usage = "arrayname bitwidth address count",
4798 .name = "mem2array",
4799 .mode = COMMAND_EXEC,
4800 .jim_handler = jim_target_mem2array,
4801 .help = "Loads Tcl array of 8/16/32 bit numbers "
4802 "from target memory",
4803 .usage = "arrayname bitwidth address count",
4806 .name = "eventlist",
4807 .mode = COMMAND_EXEC,
4808 .jim_handler = jim_target_event_list,
4809 .help = "displays a table of events defined for this target",
4812 .name = "curstate",
4813 .mode = COMMAND_EXEC,
4814 .jim_handler = jim_target_current_state,
4815 .help = "displays the current state of this target",
4818 .name = "arp_examine",
4819 .mode = COMMAND_EXEC,
4820 .jim_handler = jim_target_examine,
4821 .help = "used internally for reset processing",
4824 .name = "arp_halt_gdb",
4825 .mode = COMMAND_EXEC,
4826 .jim_handler = jim_target_halt_gdb,
4827 .help = "used internally for reset processing to halt GDB",
4830 .name = "arp_poll",
4831 .mode = COMMAND_EXEC,
4832 .jim_handler = jim_target_poll,
4833 .help = "used internally for reset processing",
4836 .name = "arp_reset",
4837 .mode = COMMAND_EXEC,
4838 .jim_handler = jim_target_reset,
4839 .help = "used internally for reset processing",
4842 .name = "arp_halt",
4843 .mode = COMMAND_EXEC,
4844 .jim_handler = jim_target_halt,
4845 .help = "used internally for reset processing",
4848 .name = "arp_waitstate",
4849 .mode = COMMAND_EXEC,
4850 .jim_handler = jim_target_wait_state,
4851 .help = "used internally for reset processing",
4854 .name = "invoke-event",
4855 .mode = COMMAND_EXEC,
4856 .jim_handler = jim_target_invoke_event,
4857 .help = "invoke handler for specified event",
4858 .usage = "event_name",
4860 COMMAND_REGISTRATION_DONE
4863 static int target_create(Jim_GetOptInfo *goi)
4865 Jim_Obj *new_cmd;
4866 Jim_Cmd *cmd;
4867 const char *cp;
4868 char *cp2;
4869 int e;
4870 int x;
4871 struct target *target;
4872 struct command_context *cmd_ctx;
4874 cmd_ctx = current_command_context(goi->interp);
4875 assert(cmd_ctx != NULL);
4877 if (goi->argc < 3) {
4878 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4879 return JIM_ERR;
4882 /* COMMAND */
4883 Jim_GetOpt_Obj(goi, &new_cmd);
4884 /* does this command exist? */
4885 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4886 if (cmd) {
4887 cp = Jim_GetString(new_cmd, NULL);
4888 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4889 return JIM_ERR;
4892 /* TYPE */
4893 e = Jim_GetOpt_String(goi, &cp2, NULL);
4894 if (e != JIM_OK)
4895 return e;
4896 cp = cp2;
4897 /* now does target type exist */
4898 for (x = 0 ; target_types[x] ; x++) {
4899 if (0 == strcmp(cp, target_types[x]->name)) {
4900 /* found */
4901 break;
4904 /* check for deprecated name */
4905 if (target_types[x]->deprecated_name) {
4906 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4907 /* found */
4908 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4909 break;
4913 if (target_types[x] == NULL) {
4914 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4915 for (x = 0 ; target_types[x] ; x++) {
4916 if (target_types[x + 1]) {
4917 Jim_AppendStrings(goi->interp,
4918 Jim_GetResult(goi->interp),
4919 target_types[x]->name,
4920 ", ", NULL);
4921 } else {
4922 Jim_AppendStrings(goi->interp,
4923 Jim_GetResult(goi->interp),
4924 " or ",
4925 target_types[x]->name, NULL);
4928 return JIM_ERR;
4931 /* Create it */
4932 target = calloc(1, sizeof(struct target));
4933 /* set target number */
4934 target->target_number = new_target_number();
4936 /* allocate memory for each unique target type */
4937 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4939 memcpy(target->type, target_types[x], sizeof(struct target_type));
4941 /* will be set by "-endian" */
4942 target->endianness = TARGET_ENDIAN_UNKNOWN;
4944 /* default to first core, override with -coreid */
4945 target->coreid = 0;
4947 target->working_area = 0x0;
4948 target->working_area_size = 0x0;
4949 target->working_areas = NULL;
4950 target->backup_working_area = 0;
4952 target->state = TARGET_UNKNOWN;
4953 target->debug_reason = DBG_REASON_UNDEFINED;
4954 target->reg_cache = NULL;
4955 target->breakpoints = NULL;
4956 target->watchpoints = NULL;
4957 target->next = NULL;
4958 target->arch_info = NULL;
4960 target->display = 1;
4962 target->halt_issued = false;
4964 /* initialize trace information */
4965 target->trace_info = malloc(sizeof(struct trace));
4966 target->trace_info->num_trace_points = 0;
4967 target->trace_info->trace_points_size = 0;
4968 target->trace_info->trace_points = NULL;
4969 target->trace_info->trace_history_size = 0;
4970 target->trace_info->trace_history = NULL;
4971 target->trace_info->trace_history_pos = 0;
4972 target->trace_info->trace_history_overflowed = 0;
4974 target->dbgmsg = NULL;
4975 target->dbg_msg_enabled = 0;
4977 target->endianness = TARGET_ENDIAN_UNKNOWN;
4979 target->rtos = NULL;
4980 target->rtos_auto_detect = false;
4982 /* Do the rest as "configure" options */
4983 goi->isconfigure = 1;
4984 e = target_configure(goi, target);
4986 if (target->tap == NULL) {
4987 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4988 e = JIM_ERR;
4991 if (e != JIM_OK) {
4992 free(target->type);
4993 free(target);
4994 return e;
4997 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4998 /* default endian to little if not specified */
4999 target->endianness = TARGET_LITTLE_ENDIAN;
5002 /* incase variant is not set */
5003 if (!target->variant)
5004 target->variant = strdup("");
5006 cp = Jim_GetString(new_cmd, NULL);
5007 target->cmd_name = strdup(cp);
5009 /* create the target specific commands */
5010 if (target->type->commands) {
5011 e = register_commands(cmd_ctx, NULL, target->type->commands);
5012 if (ERROR_OK != e)
5013 LOG_ERROR("unable to register '%s' commands", cp);
5015 if (target->type->target_create)
5016 (*(target->type->target_create))(target, goi->interp);
5018 /* append to end of list */
5020 struct target **tpp;
5021 tpp = &(all_targets);
5022 while (*tpp)
5023 tpp = &((*tpp)->next);
5024 *tpp = target;
5027 /* now - create the new target name command */
5028 const struct command_registration target_subcommands[] = {
5030 .chain = target_instance_command_handlers,
5033 .chain = target->type->commands,
5035 COMMAND_REGISTRATION_DONE
5037 const struct command_registration target_commands[] = {
5039 .name = cp,
5040 .mode = COMMAND_ANY,
5041 .help = "target command group",
5042 .usage = "",
5043 .chain = target_subcommands,
5045 COMMAND_REGISTRATION_DONE
5047 e = register_commands(cmd_ctx, NULL, target_commands);
5048 if (ERROR_OK != e)
5049 return JIM_ERR;
5051 struct command *c = command_find_in_context(cmd_ctx, cp);
5052 assert(c);
5053 command_set_handler_data(c, target);
5055 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5058 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5060 if (argc != 1) {
5061 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5062 return JIM_ERR;
5064 struct command_context *cmd_ctx = current_command_context(interp);
5065 assert(cmd_ctx != NULL);
5067 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5068 return JIM_OK;
5071 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5073 if (argc != 1) {
5074 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5075 return JIM_ERR;
5077 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5078 for (unsigned x = 0; NULL != target_types[x]; x++) {
5079 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5080 Jim_NewStringObj(interp, target_types[x]->name, -1));
5082 return JIM_OK;
5085 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5087 if (argc != 1) {
5088 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5089 return JIM_ERR;
5091 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5092 struct target *target = all_targets;
5093 while (target) {
5094 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5095 Jim_NewStringObj(interp, target_name(target), -1));
5096 target = target->next;
5098 return JIM_OK;
5101 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5103 int i;
5104 const char *targetname;
5105 int retval, len;
5106 struct target *target = (struct target *) NULL;
5107 struct target_list *head, *curr, *new;
5108 curr = (struct target_list *) NULL;
5109 head = (struct target_list *) NULL;
5111 retval = 0;
5112 LOG_DEBUG("%d", argc);
5113 /* argv[1] = target to associate in smp
5114 * argv[2] = target to assoicate in smp
5115 * argv[3] ...
5118 for (i = 1; i < argc; i++) {
5120 targetname = Jim_GetString(argv[i], &len);
5121 target = get_target(targetname);
5122 LOG_DEBUG("%s ", targetname);
5123 if (target) {
5124 new = malloc(sizeof(struct target_list));
5125 new->target = target;
5126 new->next = (struct target_list *)NULL;
5127 if (head == (struct target_list *)NULL) {
5128 head = new;
5129 curr = head;
5130 } else {
5131 curr->next = new;
5132 curr = new;
5136 /* now parse the list of cpu and put the target in smp mode*/
5137 curr = head;
5139 while (curr != (struct target_list *)NULL) {
5140 target = curr->target;
5141 target->smp = 1;
5142 target->head = head;
5143 curr = curr->next;
5146 if (target && target->rtos)
5147 retval = rtos_smp_init(head->target);
5149 return retval;
5153 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5155 Jim_GetOptInfo goi;
5156 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5157 if (goi.argc < 3) {
5158 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5159 "<name> <target_type> [<target_options> ...]");
5160 return JIM_ERR;
5162 return target_create(&goi);
5165 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5167 Jim_GetOptInfo goi;
5168 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5170 /* It's OK to remove this mechanism sometime after August 2010 or so */
5171 LOG_WARNING("don't use numbers as target identifiers; use names");
5172 if (goi.argc != 1) {
5173 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5174 return JIM_ERR;
5176 jim_wide w;
5177 int e = Jim_GetOpt_Wide(&goi, &w);
5178 if (e != JIM_OK)
5179 return JIM_ERR;
5181 struct target *target;
5182 for (target = all_targets; NULL != target; target = target->next) {
5183 if (target->target_number != w)
5184 continue;
5186 Jim_SetResultString(goi.interp, target_name(target), -1);
5187 return JIM_OK;
5190 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5191 Jim_SetResultFormatted(goi.interp,
5192 "Target: number %#s does not exist", wObj);
5193 Jim_FreeNewObj(interp, wObj);
5195 return JIM_ERR;
5198 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5200 if (argc != 1) {
5201 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5202 return JIM_ERR;
5204 unsigned count = 0;
5205 struct target *target = all_targets;
5206 while (NULL != target) {
5207 target = target->next;
5208 count++;
5210 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5211 return JIM_OK;
5214 static const struct command_registration target_subcommand_handlers[] = {
5216 .name = "init",
5217 .mode = COMMAND_CONFIG,
5218 .handler = handle_target_init_command,
5219 .help = "initialize targets",
5222 .name = "create",
5223 /* REVISIT this should be COMMAND_CONFIG ... */
5224 .mode = COMMAND_ANY,
5225 .jim_handler = jim_target_create,
5226 .usage = "name type '-chain-position' name [options ...]",
5227 .help = "Creates and selects a new target",
5230 .name = "current",
5231 .mode = COMMAND_ANY,
5232 .jim_handler = jim_target_current,
5233 .help = "Returns the currently selected target",
5236 .name = "types",
5237 .mode = COMMAND_ANY,
5238 .jim_handler = jim_target_types,
5239 .help = "Returns the available target types as "
5240 "a list of strings",
5243 .name = "names",
5244 .mode = COMMAND_ANY,
5245 .jim_handler = jim_target_names,
5246 .help = "Returns the names of all targets as a list of strings",
5249 .name = "number",
5250 .mode = COMMAND_ANY,
5251 .jim_handler = jim_target_number,
5252 .usage = "number",
5253 .help = "Returns the name of the numbered target "
5254 "(DEPRECATED)",
5257 .name = "count",
5258 .mode = COMMAND_ANY,
5259 .jim_handler = jim_target_count,
5260 .help = "Returns the number of targets as an integer "
5261 "(DEPRECATED)",
5264 .name = "smp",
5265 .mode = COMMAND_ANY,
5266 .jim_handler = jim_target_smp,
5267 .usage = "targetname1 targetname2 ...",
5268 .help = "gather several target in a smp list"
5271 COMMAND_REGISTRATION_DONE
5274 struct FastLoad {
5275 uint32_t address;
5276 uint8_t *data;
5277 int length;
5281 static int fastload_num;
5282 static struct FastLoad *fastload;
5284 static void free_fastload(void)
5286 if (fastload != NULL) {
5287 int i;
5288 for (i = 0; i < fastload_num; i++) {
5289 if (fastload[i].data)
5290 free(fastload[i].data);
5292 free(fastload);
5293 fastload = NULL;
5297 COMMAND_HANDLER(handle_fast_load_image_command)
5299 uint8_t *buffer;
5300 size_t buf_cnt;
5301 uint32_t image_size;
5302 uint32_t min_address = 0;
5303 uint32_t max_address = 0xffffffff;
5304 int i;
5306 struct image image;
5308 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5309 &image, &min_address, &max_address);
5310 if (ERROR_OK != retval)
5311 return retval;
5313 struct duration bench;
5314 duration_start(&bench);
5316 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5317 if (retval != ERROR_OK)
5318 return retval;
5320 image_size = 0x0;
5321 retval = ERROR_OK;
5322 fastload_num = image.num_sections;
5323 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5324 if (fastload == NULL) {
5325 command_print(CMD_CTX, "out of memory");
5326 image_close(&image);
5327 return ERROR_FAIL;
5329 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5330 for (i = 0; i < image.num_sections; i++) {
5331 buffer = malloc(image.sections[i].size);
5332 if (buffer == NULL) {
5333 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5334 (int)(image.sections[i].size));
5335 retval = ERROR_FAIL;
5336 break;
5339 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5340 if (retval != ERROR_OK) {
5341 free(buffer);
5342 break;
5345 uint32_t offset = 0;
5346 uint32_t length = buf_cnt;
5348 /* DANGER!!! beware of unsigned comparision here!!! */
5350 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5351 (image.sections[i].base_address < max_address)) {
5352 if (image.sections[i].base_address < min_address) {
5353 /* clip addresses below */
5354 offset += min_address-image.sections[i].base_address;
5355 length -= offset;
5358 if (image.sections[i].base_address + buf_cnt > max_address)
5359 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5361 fastload[i].address = image.sections[i].base_address + offset;
5362 fastload[i].data = malloc(length);
5363 if (fastload[i].data == NULL) {
5364 free(buffer);
5365 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5366 length);
5367 retval = ERROR_FAIL;
5368 break;
5370 memcpy(fastload[i].data, buffer + offset, length);
5371 fastload[i].length = length;
5373 image_size += length;
5374 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5375 (unsigned int)length,
5376 ((unsigned int)(image.sections[i].base_address + offset)));
5379 free(buffer);
5382 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5383 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5384 "in %fs (%0.3f KiB/s)", image_size,
5385 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5387 command_print(CMD_CTX,
5388 "WARNING: image has not been loaded to target!"
5389 "You can issue a 'fast_load' to finish loading.");
5392 image_close(&image);
5394 if (retval != ERROR_OK)
5395 free_fastload();
5397 return retval;
5400 COMMAND_HANDLER(handle_fast_load_command)
5402 if (CMD_ARGC > 0)
5403 return ERROR_COMMAND_SYNTAX_ERROR;
5404 if (fastload == NULL) {
5405 LOG_ERROR("No image in memory");
5406 return ERROR_FAIL;
5408 int i;
5409 int ms = timeval_ms();
5410 int size = 0;
5411 int retval = ERROR_OK;
5412 for (i = 0; i < fastload_num; i++) {
5413 struct target *target = get_current_target(CMD_CTX);
5414 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5415 (unsigned int)(fastload[i].address),
5416 (unsigned int)(fastload[i].length));
5417 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5418 if (retval != ERROR_OK)
5419 break;
5420 size += fastload[i].length;
5422 if (retval == ERROR_OK) {
5423 int after = timeval_ms();
5424 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5426 return retval;
5429 static const struct command_registration target_command_handlers[] = {
5431 .name = "targets",
5432 .handler = handle_targets_command,
5433 .mode = COMMAND_ANY,
5434 .help = "change current default target (one parameter) "
5435 "or prints table of all targets (no parameters)",
5436 .usage = "[target]",
5439 .name = "target",
5440 .mode = COMMAND_CONFIG,
5441 .help = "configure target",
5443 .chain = target_subcommand_handlers,
5445 COMMAND_REGISTRATION_DONE
5448 int target_register_commands(struct command_context *cmd_ctx)
5450 return register_commands(cmd_ctx, NULL, target_command_handlers);
5453 static bool target_reset_nag = true;
5455 bool get_target_reset_nag(void)
5457 return target_reset_nag;
5460 COMMAND_HANDLER(handle_target_reset_nag)
5462 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5463 &target_reset_nag, "Nag after each reset about options to improve "
5464 "performance");
5467 COMMAND_HANDLER(handle_ps_command)
5469 struct target *target = get_current_target(CMD_CTX);
5470 char *display;
5471 if (target->state != TARGET_HALTED) {
5472 LOG_INFO("target not halted !!");
5473 return ERROR_OK;
5476 if ((target->rtos) && (target->rtos->type)
5477 && (target->rtos->type->ps_command)) {
5478 display = target->rtos->type->ps_command(target);
5479 command_print(CMD_CTX, "%s", display);
5480 free(display);
5481 return ERROR_OK;
5482 } else {
5483 LOG_INFO("failed");
5484 return ERROR_TARGET_FAILURE;
5488 static const struct command_registration target_exec_command_handlers[] = {
5490 .name = "fast_load_image",
5491 .handler = handle_fast_load_image_command,
5492 .mode = COMMAND_ANY,
5493 .help = "Load image into server memory for later use by "
5494 "fast_load; primarily for profiling",
5495 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5496 "[min_address [max_length]]",
5499 .name = "fast_load",
5500 .handler = handle_fast_load_command,
5501 .mode = COMMAND_EXEC,
5502 .help = "loads active fast load image to current target "
5503 "- mainly for profiling purposes",
5504 .usage = "",
5507 .name = "profile",
5508 .handler = handle_profile_command,
5509 .mode = COMMAND_EXEC,
5510 .usage = "seconds filename",
5511 .help = "profiling samples the CPU PC",
5513 /** @todo don't register virt2phys() unless target supports it */
5515 .name = "virt2phys",
5516 .handler = handle_virt2phys_command,
5517 .mode = COMMAND_ANY,
5518 .help = "translate a virtual address into a physical address",
5519 .usage = "virtual_address",
5522 .name = "reg",
5523 .handler = handle_reg_command,
5524 .mode = COMMAND_EXEC,
5525 .help = "display or set a register; with no arguments, "
5526 "displays all registers and their values",
5527 .usage = "[(register_name|register_number) [value]]",
5530 .name = "poll",
5531 .handler = handle_poll_command,
5532 .mode = COMMAND_EXEC,
5533 .help = "poll target state; or reconfigure background polling",
5534 .usage = "['on'|'off']",
5537 .name = "wait_halt",
5538 .handler = handle_wait_halt_command,
5539 .mode = COMMAND_EXEC,
5540 .help = "wait up to the specified number of milliseconds "
5541 "(default 5) for a previously requested halt",
5542 .usage = "[milliseconds]",
5545 .name = "halt",
5546 .handler = handle_halt_command,
5547 .mode = COMMAND_EXEC,
5548 .help = "request target to halt, then wait up to the specified"
5549 "number of milliseconds (default 5) for it to complete",
5550 .usage = "[milliseconds]",
5553 .name = "resume",
5554 .handler = handle_resume_command,
5555 .mode = COMMAND_EXEC,
5556 .help = "resume target execution from current PC or address",
5557 .usage = "[address]",
5560 .name = "reset",
5561 .handler = handle_reset_command,
5562 .mode = COMMAND_EXEC,
5563 .usage = "[run|halt|init]",
5564 .help = "Reset all targets into the specified mode."
5565 "Default reset mode is run, if not given.",
5568 .name = "soft_reset_halt",
5569 .handler = handle_soft_reset_halt_command,
5570 .mode = COMMAND_EXEC,
5571 .usage = "",
5572 .help = "halt the target and do a soft reset",
5575 .name = "step",
5576 .handler = handle_step_command,
5577 .mode = COMMAND_EXEC,
5578 .help = "step one instruction from current PC or address",
5579 .usage = "[address]",
5582 .name = "mdw",
5583 .handler = handle_md_command,
5584 .mode = COMMAND_EXEC,
5585 .help = "display memory words",
5586 .usage = "['phys'] address [count]",
5589 .name = "mdh",
5590 .handler = handle_md_command,
5591 .mode = COMMAND_EXEC,
5592 .help = "display memory half-words",
5593 .usage = "['phys'] address [count]",
5596 .name = "mdb",
5597 .handler = handle_md_command,
5598 .mode = COMMAND_EXEC,
5599 .help = "display memory bytes",
5600 .usage = "['phys'] address [count]",
5603 .name = "mww",
5604 .handler = handle_mw_command,
5605 .mode = COMMAND_EXEC,
5606 .help = "write memory word",
5607 .usage = "['phys'] address value [count]",
5610 .name = "mwh",
5611 .handler = handle_mw_command,
5612 .mode = COMMAND_EXEC,
5613 .help = "write memory half-word",
5614 .usage = "['phys'] address value [count]",
5617 .name = "mwb",
5618 .handler = handle_mw_command,
5619 .mode = COMMAND_EXEC,
5620 .help = "write memory byte",
5621 .usage = "['phys'] address value [count]",
5624 .name = "bp",
5625 .handler = handle_bp_command,
5626 .mode = COMMAND_EXEC,
5627 .help = "list or set hardware or software breakpoint",
5628 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5631 .name = "rbp",
5632 .handler = handle_rbp_command,
5633 .mode = COMMAND_EXEC,
5634 .help = "remove breakpoint",
5635 .usage = "address",
5638 .name = "wp",
5639 .handler = handle_wp_command,
5640 .mode = COMMAND_EXEC,
5641 .help = "list (no params) or create watchpoints",
5642 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5645 .name = "rwp",
5646 .handler = handle_rwp_command,
5647 .mode = COMMAND_EXEC,
5648 .help = "remove watchpoint",
5649 .usage = "address",
5652 .name = "load_image",
5653 .handler = handle_load_image_command,
5654 .mode = COMMAND_EXEC,
5655 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5656 "[min_address] [max_length]",
5659 .name = "dump_image",
5660 .handler = handle_dump_image_command,
5661 .mode = COMMAND_EXEC,
5662 .usage = "filename address size",
5665 .name = "verify_image",
5666 .handler = handle_verify_image_command,
5667 .mode = COMMAND_EXEC,
5668 .usage = "filename [offset [type]]",
5671 .name = "test_image",
5672 .handler = handle_test_image_command,
5673 .mode = COMMAND_EXEC,
5674 .usage = "filename [offset [type]]",
5677 .name = "mem2array",
5678 .mode = COMMAND_EXEC,
5679 .jim_handler = jim_mem2array,
5680 .help = "read 8/16/32 bit memory and return as a TCL array "
5681 "for script processing",
5682 .usage = "arrayname bitwidth address count",
5685 .name = "array2mem",
5686 .mode = COMMAND_EXEC,
5687 .jim_handler = jim_array2mem,
5688 .help = "convert a TCL array to memory locations "
5689 "and write the 8/16/32 bit values",
5690 .usage = "arrayname bitwidth address count",
5693 .name = "reset_nag",
5694 .handler = handle_target_reset_nag,
5695 .mode = COMMAND_ANY,
5696 .help = "Nag after each reset about options that could have been "
5697 "enabled to improve performance. ",
5698 .usage = "['enable'|'disable']",
5701 .name = "ps",
5702 .handler = handle_ps_command,
5703 .mode = COMMAND_EXEC,
5704 .help = "list all tasks ",
5705 .usage = " ",
5708 COMMAND_REGISTRATION_DONE
5710 static int target_register_user_commands(struct command_context *cmd_ctx)
5712 int retval = ERROR_OK;
5713 retval = target_request_register_commands(cmd_ctx);
5714 if (retval != ERROR_OK)
5715 return retval;
5717 retval = trace_register_commands(cmd_ctx);
5718 if (retval != ERROR_OK)
5719 return retval;
5722 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);