mips32_pracc: jump to 0xff20.0200 if cpu reads wrong addr
[openocd.git] / src / target / mips32_pracc.c
blobd0ecba2fd844ebaee8aceee8c23d647b9e9d7166
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program; if not, write to the *
24 * Free Software Foundation, Inc., *
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
26 ***************************************************************************/
29 * This version has optimized assembly routines for 32 bit operations:
30 * - read word
31 * - write word
32 * - write array of words
34 * One thing to be aware of is that the MIPS32 cpu will execute the
35 * instruction after a branch instruction (one delay slot).
37 * For example:
38 * LW $2, ($5 +10)
39 * B foo
40 * LW $1, ($2 +100)
42 * The LW $1, ($2 +100) instruction is also executed. If this is
43 * not wanted a NOP can be inserted:
45 * LW $2, ($5 +10)
46 * B foo
47 * NOP
48 * LW $1, ($2 +100)
50 * or the code can be changed to:
52 * B foo
53 * LW $2, ($5 +10)
54 * LW $1, ($2 +100)
56 * The original code contained NOPs. I have removed these and moved
57 * the branches.
59 * I also moved the PRACC_STACK to 0xFF204000. This allows
60 * the use of 16 bits offsets to get pointers to the input
61 * and output area relative to the stack. Note that the stack
62 * isn't really a stack (the stack pointer is not 'moving')
63 * but a FIFO simulated in software.
65 * These changes result in a 35% speed increase when programming an
66 * external flash.
68 * More improvement could be gained if the registers do no need
69 * to be preserved but in that case the routines should be aware
70 * OpenOCD is used as a flash programmer or as a debug tool.
72 * Nico Coesel
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
79 #include <helper/time_support.h>
81 #include "mips32.h"
82 #include "mips32_pracc.h"
84 struct mips32_pracc_context {
85 uint32_t *local_iparam;
86 int num_iparam;
87 uint32_t *local_oparam;
88 int num_oparam;
89 const uint32_t *code;
90 int code_len;
91 uint32_t stack[32];
92 int stack_offset;
93 struct mips_ejtag *ejtag_info;
96 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
97 uint32_t start_addr, uint32_t end_addr);
98 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
99 uint32_t start_addr, uint32_t end_addr);
101 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
103 uint32_t ejtag_ctrl;
104 long long then = timeval_ms();
105 int timeout;
106 int retval;
108 /* wait for the PrAcc to become "1" */
109 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
111 while (1) {
112 ejtag_ctrl = ejtag_info->ejtag_ctrl;
113 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
114 if (retval != ERROR_OK)
115 return retval;
117 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
118 break;
120 timeout = timeval_ms() - then;
121 if (timeout > 1000) {
122 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
123 return ERROR_JTAG_DEVICE_ERROR;
127 *ctrl = ejtag_ctrl;
128 return ERROR_OK;
131 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
133 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
134 int offset;
135 uint32_t ejtag_ctrl, data;
137 if ((address >= MIPS32_PRACC_PARAM_IN)
138 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
139 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
140 data = ctx->local_iparam[offset];
141 } else if ((address >= MIPS32_PRACC_PARAM_OUT)
142 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
143 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
144 data = ctx->local_oparam[offset];
145 } else if ((address >= MIPS32_PRACC_TEXT)
146 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
147 offset = (address - MIPS32_PRACC_TEXT) / 4;
148 data = ctx->code[offset];
149 } else if (address == MIPS32_PRACC_STACK) {
150 if (ctx->stack_offset <= 0) {
151 LOG_ERROR("Error: Pracc stack out of bounds");
152 return ERROR_JTAG_DEVICE_ERROR;
154 /* save to our debug stack */
155 data = ctx->stack[--ctx->stack_offset];
156 } else if (address >= 0xFF200000) {
157 /* CPU keeps reading at the end of execution.
158 * If we after 0xF0000000 address range, we can use
159 * one shot jump instruction.
160 * Since this instruction is limited to
161 * 26bit, we need to do some magic to fit it to our needs. */
162 LOG_DEBUG("Reading unexpected address. Jump to 0xFF200200\n");
163 data = MIPS32_J((0x0FFFFFFF & 0xFF200200) >> 2);
164 } else {
165 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
166 return ERROR_JTAG_DEVICE_ERROR;
169 /* Send the data out */
170 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
171 mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
173 /* Clear the access pending bit (let the processor eat!) */
174 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
175 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
176 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
178 return jtag_execute_queue();
181 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
183 uint32_t ejtag_ctrl, data;
184 int offset;
185 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
186 int retval;
188 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
189 retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
190 if (retval != ERROR_OK)
191 return retval;
193 /* Clear access pending bit */
194 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
195 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
196 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
198 retval = jtag_execute_queue();
199 if (retval != ERROR_OK)
200 return retval;
202 if ((address >= MIPS32_PRACC_PARAM_OUT)
203 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
204 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
205 ctx->local_oparam[offset] = data;
206 } else if (address == MIPS32_PRACC_STACK) {
207 if (ctx->stack_offset >= 32) {
208 LOG_ERROR("Error: Pracc stack out of bounds");
209 return ERROR_JTAG_DEVICE_ERROR;
211 /* save data onto our stack */
212 ctx->stack[ctx->stack_offset++] = data;
213 } else {
214 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
215 return ERROR_JTAG_DEVICE_ERROR;
218 return ERROR_OK;
221 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
222 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
224 uint32_t ejtag_ctrl;
225 uint32_t address;
226 struct mips32_pracc_context ctx;
227 int retval;
228 int pass = 0;
230 ctx.local_iparam = param_in;
231 ctx.local_oparam = param_out;
232 ctx.num_iparam = num_param_in;
233 ctx.num_oparam = num_param_out;
234 ctx.code = code;
235 ctx.code_len = code_len;
236 ctx.ejtag_info = ejtag_info;
237 ctx.stack_offset = 0;
239 while (1) {
240 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
241 if (retval != ERROR_OK)
242 return retval;
244 address = 0;
245 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
246 retval = mips_ejtag_drscan_32(ejtag_info, &address);
247 if (retval != ERROR_OK)
248 return retval;
250 /* Check for read or write */
251 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
252 retval = mips32_pracc_exec_write(&ctx, address);
253 if (retval != ERROR_OK)
254 return retval;
255 } else {
256 /* Check to see if its reading at the debug vector. The first pass through
257 * the module is always read at the vector, so the first one we allow. When
258 * the second read from the vector occurs we are done and just exit. */
259 if ((address == MIPS32_PRACC_TEXT) && (pass++))
260 break;
262 retval = mips32_pracc_exec_read(&ctx, address);
263 if (retval != ERROR_OK)
264 return retval;
267 if (cycle == 0)
268 break;
271 /* stack sanity check */
272 if (ctx.stack_offset != 0)
273 LOG_DEBUG("Pracc Stack not zero");
275 return ERROR_OK;
278 inline void pracc_queue_init(struct pracc_queue_info *ctx)
280 ctx->retval = ERROR_OK;
281 ctx->code_count = 0;
282 ctx->store_count = 0;
284 ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
285 if (ctx->pracc_list == NULL) {
286 LOG_ERROR("Out of memory");
287 ctx->retval = ERROR_FAIL;
291 inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
293 ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
294 ctx->pracc_list[ctx->code_count++] = instr;
295 if (addr)
296 ctx->store_count++;
299 inline void pracc_queue_free(struct pracc_queue_info *ctx)
301 if (ctx->code_count > ctx->max_code) /* Only for internal check, will be erased */
302 LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
303 if (ctx->pracc_list != NULL)
304 free(ctx->pracc_list);
307 int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
309 if (ejtag_info->mode == 0)
310 return mips32_pracc_exec(ejtag_info, ctx->code_count, ctx->pracc_list, 0, NULL,
311 ctx->store_count, buf, ctx->code_count - 1);
313 union scan_in {
314 uint8_t scan_96[12];
315 struct {
316 uint8_t ctrl[4];
317 uint8_t data[4];
318 uint8_t addr[4];
319 } scan_32;
321 } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
322 if (scan_in == NULL) {
323 LOG_ERROR("Out of memory");
324 return ERROR_FAIL;
327 unsigned num_clocks =
328 ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
330 uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
331 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
333 int scan_count = 0;
334 for (int i = 0; i != 2 * ctx->code_count; i++) {
335 uint32_t data = 0;
336 if (i & 1u) { /* Check store address from previous instruction, if not the first */
337 if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
338 continue;
339 } else
340 data = ctx->pracc_list[i / 2];
342 jtag_add_clocks(num_clocks);
343 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
346 int retval = jtag_execute_queue(); /* execute queued scans */
347 if (retval != ERROR_OK)
348 goto exit;
350 uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
351 scan_count = 0;
352 for (int i = 0; i != 2 * ctx->code_count; i++) { /* verify every pracc access */
353 uint32_t store_addr = 0;
354 if (i & 1u) { /* Read store addres from previous instruction, if not the first */
355 store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
356 if (i < 2 || 0 == store_addr)
357 continue;
360 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
361 if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
362 LOG_ERROR("Error: access not pending count: %d", scan_count);
363 retval = ERROR_FAIL;
364 goto exit;
367 uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
369 if (store_addr != 0) {
370 if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
371 LOG_ERROR("Not a store/write access, count: %d", scan_count);
372 retval = ERROR_FAIL;
373 goto exit;
375 if (addr != store_addr) {
376 LOG_ERROR("Store address mismatch, read: %x expected: %x count: %d",
377 addr, store_addr, scan_count);
378 retval = ERROR_FAIL;
379 goto exit;
381 int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
382 buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
384 } else {
385 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
386 LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
387 retval = ERROR_FAIL;
388 goto exit;
390 if (addr != fetch_addr) {
391 LOG_ERROR("Fetch addr mismatch, read: %x expected: %x count: %d", addr, fetch_addr, scan_count);
392 retval = ERROR_FAIL;
393 goto exit;
395 fetch_addr += 4;
397 scan_count++;
399 exit:
400 free(scan_in);
401 return retval;
404 int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
406 struct pracc_queue_info ctx = {.max_code = 9};
407 pracc_queue_init(&ctx);
408 if (ctx.retval != ERROR_OK)
409 goto exit;
411 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
412 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
413 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */
414 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
415 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
416 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
417 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 of $8 */
418 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 of $8 */
419 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
420 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
422 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
423 exit:
424 pracc_queue_free(&ctx);
425 return ctx.retval;
428 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
430 if (count == 1 && size == 4)
431 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
433 uint32_t *data = NULL;
434 struct pracc_queue_info ctx = {.max_code = 256 * 3 + 9 + 1}; /* alloc memory for the worst case */
435 pracc_queue_init(&ctx);
436 if (ctx.retval != ERROR_OK)
437 goto exit;
439 if (size != 4) {
440 data = malloc(256 * sizeof(uint32_t));
441 if (data == NULL) {
442 LOG_ERROR("Out of memory");
443 goto exit;
447 uint32_t *buf32 = buf;
448 uint16_t *buf16 = buf;
449 uint8_t *buf8 = buf;
451 while (count) {
452 ctx.code_count = 0;
453 ctx.store_count = 0;
454 int this_round_count = (count > 256) ? 256 : count;
455 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
457 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */
458 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
459 pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */
461 for (int i = 0; i != this_round_count; i++) { /* Main code loop */
462 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
463 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */
464 pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
465 last_upper_base_addr = upper_base_addr;
468 if (size == 4)
469 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */
470 else if (size == 2)
471 pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
472 else
473 pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));
475 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
476 MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */
477 addr += size;
479 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
480 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
481 pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9))); /* restore upper 16 bits of reg 9 */
482 pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9))); /* restore lower 16 bits of reg 9 */
484 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
485 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
487 if (size == 4) {
488 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
489 if (ctx.retval != ERROR_OK)
490 goto exit;
491 buf32 += this_round_count;
492 } else {
493 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
494 if (ctx.retval != ERROR_OK)
495 goto exit;
497 uint32_t *data_p = data;
498 for (int i = 0; i != this_round_count; i++) {
499 if (size == 2)
500 *buf16++ = *data_p++;
501 else
502 *buf8++ = *data_p++;
505 count -= this_round_count;
507 exit:
508 pracc_queue_free(&ctx);
509 if (data != NULL)
510 free(data);
511 return ctx.retval;
514 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
516 struct pracc_queue_info ctx = {.max_code = 8};
517 pracc_queue_init(&ctx);
518 if (ctx.retval != ERROR_OK)
519 goto exit;
521 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
522 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
523 pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel); /* move COP0 [cp0_reg select] to $8 */
524 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
525 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
526 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
527 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
528 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
529 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
531 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
532 exit:
533 pracc_queue_free(&ctx);
534 return ctx.retval;
537 * Note that our input parametes cp0_reg and cp0_sel
538 * are numbers (not gprs) which make part of mfc0 instruction opcode.
540 * These are not fix, but can be different for each mips32_cp0_read() function call,
541 * and that is why we must insert them directly into opcode,
542 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
543 * and put them into the gprs later from MIPS32_PRACC_STACK
544 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
545 * but plain (immediate) number.
547 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
548 * In order to insert our parameters, we must change rd and funct fields.
550 * code[2] |= (cp0_reg << 11) | cp0_sel; change rd and funct of MIPS32_R_INST macro
554 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
556 struct pracc_queue_info ctx = {.max_code = 6};
557 pracc_queue_init(&ctx);
558 if (ctx.retval != ERROR_OK)
559 goto exit;
561 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
562 pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val))); /* Load val to $15 */
563 pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val)));
565 pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel); /* write cp0 reg / sel */
567 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
568 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
570 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
571 exit:
572 pracc_queue_free(&ctx);
573 return ctx.retval;
576 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
577 * In order to insert our parameters, we must change rd and funct fields.
578 * code[3] |= (cp0_reg << 11) | cp0_sel; change rd and funct fields of MIPS32_R_INST macro
583 * \b mips32_pracc_sync_cache
585 * Synchronize Caches to Make Instruction Writes Effective
586 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
587 * Document Number: MD00086, Revision 2.00, June 9, 2003)
589 * When the instruction stream is written, the SYNCI instruction should be used
590 * in conjunction with other instructions to make the newly-written instructions effective.
592 * Explanation :
593 * A program that loads another program into memory is actually writing the D- side cache.
594 * The instructions it has loaded can't be executed until they reach the I-cache.
596 * After the instructions have been written, the loader should arrange
597 * to write back any containing D-cache line and invalidate any locations
598 * already in the I-cache.
600 * You can do that with cache instructions, but those instructions are only available in kernel mode,
601 * and a loader writing instructions for the use of its own process need not be privileged software.
603 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
604 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
605 * That is, it arranges a D-cache write-back and an I-cache invalidate.
607 * To employ synci at user level, you need to know the size of a cache line,
608 * and that can be obtained with a rdhwr SYNCI_Step
609 * from one of the standard “hardware registers”.
611 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
612 uint32_t start_addr, uint32_t end_addr)
614 static const uint32_t code[] = {
615 /* start: */
616 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
617 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
618 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
619 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
620 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
621 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
622 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
624 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
625 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
626 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
627 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
629 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
630 MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */
631 MIPS32_NOP,
632 /* synci_loop : */
633 MIPS32_SYNCI(0, 9), /* synci 0($9) */
634 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
635 MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */
636 MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
637 MIPS32_SYNC,
638 /* end: */
639 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
640 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
641 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
642 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
643 MIPS32_B(NEG16(24)), /* b start */
644 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
647 /* TODO remove array */
648 uint32_t *param_in = malloc(2 * sizeof(uint32_t));
649 int retval;
650 param_in[0] = start_addr;
651 param_in[1] = end_addr;
653 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
655 free(param_in);
657 return retval;
661 * \b mips32_pracc_clean_invalidate_cache
663 * Writeback D$ and Invalidate I$
664 * so that the instructions written can be visible to CPU
666 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
667 uint32_t start_addr, uint32_t end_addr)
669 static const uint32_t code[] = {
670 /* start: */
671 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
672 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
673 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
674 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
675 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
676 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
677 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
679 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
680 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
681 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
682 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
683 MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */
685 /* cache_loop: */
686 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
687 MIPS32_BGTZ(8, 6), /* bgtz $8, end */
688 MIPS32_NOP,
690 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */
691 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */
693 MIPS32_ADDU(9, 9, 11), /* $9 += $11 */
695 MIPS32_B(NEG16(7)), /* b cache_loop */
696 MIPS32_NOP,
697 /* end: */
698 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
699 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
700 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
701 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
702 MIPS32_B(NEG16(25)), /* b start */
703 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
707 * Find cache line size in bytes
709 uint32_t conf;
710 uint32_t dl, clsiz;
712 mips32_cp0_read(ejtag_info, &conf, 16, 1);
713 dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
715 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
716 clsiz = 0x2 << dl;
718 /* TODO remove array */
719 uint32_t *param_in = malloc(3 * sizeof(uint32_t));
720 int retval;
721 param_in[0] = start_addr;
722 param_in[1] = end_addr;
723 param_in[2] = clsiz;
725 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
727 free(param_in);
729 return retval;
732 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
734 struct pracc_queue_info ctx = {.max_code = 128 * 3 + 6 + 1}; /* alloc memory for the worst case */
735 pracc_queue_init(&ctx);
736 if (ctx.retval != ERROR_OK)
737 goto exit;
739 uint32_t *buf32 = buf;
740 uint16_t *buf16 = buf;
741 uint8_t *buf8 = buf;
743 while (count) {
744 ctx.code_count = 0;
745 ctx.store_count = 0;
746 int this_round_count = (count > 128) ? 128 : count;
747 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
749 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */
750 pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */
752 for (int i = 0; i != this_round_count; i++) {
753 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
754 if (last_upper_base_addr != upper_base_addr) {
755 pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/
756 last_upper_base_addr = upper_base_addr;
759 if (size == 4) { /* for word writes check if one half word is 0 and load it accordingly */
760 if (LOWER16(*buf32) == 0)
761 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load only upper value */
762 else if (UPPER16(*buf32) == 0)
763 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32))); /* load only lower */
764 else {
765 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load upper and lower */
766 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32)));
768 pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */
769 buf32++;
771 } else if (size == 2) {
772 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */
773 pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */
774 buf16++;
776 } else {
777 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */
778 pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */
779 buf8++;
781 addr += size;
784 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
785 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
787 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
788 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
790 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
791 if (ctx.retval != ERROR_OK)
792 goto exit;
793 count -= this_round_count;
795 exit:
796 pracc_queue_free(&ctx);
797 return ctx.retval;
800 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
802 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
803 if (retval != ERROR_OK)
804 return retval;
807 * If we are in the cachable regoion and cache is activated,
808 * we must clean D$ + invalidate I$ after we did the write,
809 * so that changes do not continue to live only in D$, but to be
810 * replicated in I$ also (maybe we wrote the istructions)
812 uint32_t conf = 0;
813 int cached = 0;
815 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
816 return retval; /*Nothing to do*/
818 mips32_cp0_read(ejtag_info, &conf, 16, 0);
820 switch (KSEGX(addr)) {
821 case KUSEG:
822 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
823 break;
824 case KSEG0:
825 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
826 break;
827 case KSEG2:
828 case KSEG3:
829 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
830 break;
831 default:
832 /* what ? */
833 break;
837 * Check cachablitiy bits coherency algorithm -
838 * is the region cacheable or uncached.
839 * If cacheable we have to synchronize the cache
841 if (cached == 0x3) {
842 uint32_t start_addr, end_addr;
843 uint32_t rel;
845 start_addr = addr;
846 end_addr = addr + count * size;
848 /** select cache synchronisation mechanism based on Architecture Release */
849 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
850 switch (rel) {
851 case MIPS32_ARCH_REL1:
852 /* MIPS32/64 Release 1 - we must use cache instruction */
853 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
854 break;
855 case MIPS32_ARCH_REL2:
856 /* MIPS32/64 Release 2 - we can use synci instruction */
857 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
858 break;
859 default:
860 /* what ? */
861 break;
865 return retval;
868 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
870 static const uint32_t cp0_write_code[] = {
871 MIPS32_MTC0(1, 12, 0), /* move $1 to status */
872 MIPS32_MTLO(1), /* move $1 to lo */
873 MIPS32_MTHI(1), /* move $1 to hi */
874 MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
875 MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
876 MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
879 struct pracc_queue_info ctx = {.max_code = 37 * 2 + 6 + 1};
880 pracc_queue_init(&ctx);
881 if (ctx.retval != ERROR_OK)
882 goto exit;
884 /* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */
885 for (int i = 2; i < 32; i++) {
886 if (LOWER16((regs[i])) == 0) /* if lower half word is 0, lui instruction only */
887 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
888 else if (UPPER16((regs[i])) == 0) /* if upper half word is 0, ori with $0 only*/
889 pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i]))));
890 else { /* default, load with lui and ori instructions */
891 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
892 pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i]))));
896 for (int i = 0; i != 6; i++) {
897 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32])))); /* load CPO value in $1, with lui and ori */
898 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32]))));
899 pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
902 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */
903 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
904 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
906 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
908 ejtag_info->reg8 = regs[8];
909 ejtag_info->reg9 = regs[9];
910 exit:
911 pracc_queue_free(&ctx);
912 return ctx.retval;
915 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
917 static int cp0_read_code[] = {
918 MIPS32_MFC0(8, 12, 0), /* move status to $8 */
919 MIPS32_MFLO(8), /* move lo to $8 */
920 MIPS32_MFHI(8), /* move hi to $8 */
921 MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */
922 MIPS32_MFC0(8, 13, 0), /* move cause to $8 */
923 MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */
926 struct pracc_queue_info ctx = {.max_code = 48};
927 pracc_queue_init(&ctx);
928 if (ctx.retval != ERROR_OK)
929 goto exit;
931 pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */
932 pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
934 for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
935 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
936 MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));
938 for (int i = 0; i != 6; i++) {
939 pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
940 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
941 MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
943 pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */
944 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
945 MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));
947 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
948 pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
950 if (ejtag_info->mode == 0)
951 ctx.store_count++; /* Needed by legacy code, due to offset from reg0 */
953 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);
955 ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
956 ejtag_info->reg9 = regs[9];
957 exit:
958 pracc_queue_free(&ctx);
959 return ctx.retval;
962 /* fastdata upload/download requires an initialized working area
963 * to load the download code; it should not be called otherwise
964 * fetch order from the fastdata area
965 * 1. start addr
966 * 2. end addr
967 * 3. data ...
969 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
970 int write_t, uint32_t addr, int count, uint32_t *buf)
972 uint32_t handler_code[] = {
973 /* caution when editing, table is modified below */
974 /* r15 points to the start of this code */
975 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
976 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
977 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
978 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
979 /* start of fastdata area in t0 */
980 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
981 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
982 MIPS32_LW(9, 0, 8), /* start addr in t1 */
983 MIPS32_LW(10, 0, 8), /* end addr to t2 */
984 /* loop: */
985 /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
986 /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
987 MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
988 MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
990 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
991 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
992 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
993 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
995 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
996 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
997 MIPS32_JR(15), /* jr start */
998 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
1001 uint32_t jmp_code[] = {
1002 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
1003 /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */
1004 /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
1005 MIPS32_JR(15), /* jump to ram program */
1006 MIPS32_NOP,
1009 int retval, i;
1010 uint32_t val, ejtag_ctrl, address;
1012 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
1013 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1015 if (write_t) {
1016 handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
1017 handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
1018 } else {
1019 handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
1020 handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
1023 /* write program into RAM */
1024 if (write_t != ejtag_info->fast_access_save) {
1025 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
1026 /* save previous operation to speed to any consecutive read/writes */
1027 ejtag_info->fast_access_save = write_t;
1030 LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
1032 jmp_code[1] |= UPPER16(source->address);
1033 jmp_code[2] |= LOWER16(source->address);
1035 for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
1036 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1037 if (retval != ERROR_OK)
1038 return retval;
1040 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
1041 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
1043 /* Clear the access pending bit (let the processor eat!) */
1044 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
1045 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
1046 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
1049 /* wait PrAcc pending bit for FASTDATA write */
1050 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1051 if (retval != ERROR_OK)
1052 return retval;
1054 /* next fetch to dmseg should be in FASTDATA_AREA, check */
1055 address = 0;
1056 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1057 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1058 if (retval != ERROR_OK)
1059 return retval;
1061 if (address != MIPS32_PRACC_FASTDATA_AREA)
1062 return ERROR_FAIL;
1064 /* Send the load start address */
1065 val = addr;
1066 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1067 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1069 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1070 if (retval != ERROR_OK)
1071 return retval;
1073 /* Send the load end address */
1074 val = addr + (count - 1) * 4;
1075 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1076 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1078 unsigned num_clocks = 0; /* like in legacy code */
1079 if (ejtag_info->mode != 0)
1080 num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
1082 for (i = 0; i < count; i++) {
1083 jtag_add_clocks(num_clocks);
1084 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
1085 if (retval != ERROR_OK)
1086 return retval;
1089 retval = jtag_execute_queue();
1090 if (retval != ERROR_OK) {
1091 LOG_ERROR("fastdata load failed");
1092 return retval;
1095 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1096 if (retval != ERROR_OK)
1097 return retval;
1099 address = 0;
1100 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1101 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1102 if (retval != ERROR_OK)
1103 return retval;
1105 if (address != MIPS32_PRACC_TEXT)
1106 LOG_ERROR("mini program did not return to start");
1108 return retval;