kinetis : Add flash sector size detection for K21 MCU.
[openocd.git] / src / flash / nor / kinetis.c
blob6512ce7602d62189f162b5b7e3db1bba60feb863
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
28 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "imp.h"
35 #include <helper/binarybuffer.h>
36 #include <target/algorithm.h>
37 #include <target/armv7m.h>
40 * Implementation Notes
42 * The persistent memories in the Kinetis chip families K10 through
43 * K70 are all manipulated with the Flash Memory Module. Some
44 * variants call this module the FTFE, others call it the FTFL. To
45 * indicate that both are considered here, we use FTFX.
47 * Within the module, according to the chip variant, the persistent
48 * memory is divided into what Freescale terms Program Flash, FlexNVM,
49 * and FlexRAM. All chip variants have Program Flash. Some chip
50 * variants also have FlexNVM and FlexRAM, which always appear
51 * together.
53 * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
54 * each block to a separate bank. Each block size varies by chip and
55 * may be determined by the read-only SIM_FCFG1 register. The sector
56 * size within each bank/block varies by the chip granularity as
57 * described below.
59 * Kinetis offers four different of flash granularities applicable
60 * across the chip families. The granularity is apparently reflected
61 * by at least the reference manual suffix. For example, for chip
62 * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
63 * where the "3" indicates there are four flash blocks with 4kiB
64 * sectors. All possible granularities are indicated below.
66 * The first half of the flash (1 or 2 blocks, depending on the
67 * granularity) is always Program Flash and always starts at address
68 * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
69 * register, determines whether the second half of the flash is also
70 * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
71 * half of flash is Program Flash and is contiguous in the memory map
72 * from the first half. When PFLSH is clear, the second half of flash
73 * is FlexNVM and always starts at address 0x10000000. FlexRAM, which
74 * is also present when PFLSH is clear, always starts at address
75 * 0x14000000.
77 * The Flash Memory Module provides a register set where flash
78 * commands are loaded to perform flash operations like erase and
79 * program. Different commands are available depending on whether
80 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
81 * the commands used are quite consistent between flash blocks, the
82 * parameters they accept differ according to the flash granularity.
83 * Some Kinetis chips have different granularity between Program Flash
84 * and FlexNVM/FlexRAM, so flash command arguments may differ between
85 * blocks in the same chip.
87 * Although not documented as such by Freescale, it appears that bits
88 * 8:7 of the read-only SIM_SDID register reflect the granularity
89 * settings 0..3, so sector sizes and block counts are applicable
90 * according to the following table.
91 * NB. These undocumented bits does not work for all MCUs.
92 * A more reliable way is to detect the particular MCU model from the
93 * SDID field and pick the correct granularity based on that. See
94 * the handling of K21 in kinetis_read_part_info() for an example.
97 const struct {
98 unsigned pflash_sector_size_bytes;
99 unsigned nvm_sector_size_bytes;
100 unsigned num_blocks;
101 } kinetis_flash_params[4] = {
102 { 1<<10, 1<<10, 2 },
103 { 2<<10, 1<<10, 2 },
104 { 2<<10, 2<<10, 2 },
105 { 4<<10, 4<<10, 4 }
108 /* Addressess */
109 #define FLEXRAM 0x14000000
110 #define FTFx_FSTAT 0x40020000
111 #define FTFx_FCNFG 0x40020001
112 #define FTFx_FCCOB3 0x40020004
113 #define FTFx_FPROT3 0x40020010
114 #define SIM_SDID 0x40048024
115 #define SIM_FCFG1 0x4004804c
116 #define SIM_FCFG2 0x40048050
118 /* Commands */
119 #define FTFx_CMD_BLOCKSTAT 0x00
120 #define FTFx_CMD_SECTSTAT 0x01
121 #define FTFx_CMD_LWORDPROG 0x06
122 #define FTFx_CMD_SECTERASE 0x09
123 #define FTFx_CMD_SECTWRITE 0x0b
124 #define FTFx_CMD_SETFLEXRAM 0x81
125 #define FTFx_CMD_MASSERASE 0x44
127 #define KINETIS_SDID_FAMID_MASK 0x00000070
128 #define KINETIS_SDID_FAMID_K10 0x00000000
129 #define KINETIS_SDID_FAMID_K12 0x00000000
130 #define KINETIS_SDID_FAMID_K20 0x00000010
131 #define KINETIS_SDID_FAMID_K22 0x00000010
132 #define KINETIS_SDID_FAMID_K30 0x00000020
133 #define KINETIS_SDID_FAMID_K11 0x00000020
134 #define KINETIS_SDID_FAMID_K61 0x00000020
135 #define KINETIS_SDID_FAMID_K40 0x00000030
136 #define KINETIS_SDID_FAMID_K21 0x00000030
137 #define KINETIS_SDID_FAMID_K60 0x00000040
138 #define KINETIS_SDID_FAMID_K62 0x00000040
139 #define KINETIS_SDID_FAMID_K70 0x00000050
140 #define KINETIS_SDID_FAMID_KW24 0x00000060
142 struct kinetis_flash_bank {
143 unsigned granularity;
144 unsigned bank_ordinal;
145 uint32_t sector_size;
146 uint32_t protection_size;
147 uint32_t klxx;
149 uint32_t sim_sdid;
150 uint32_t sim_fcfg1;
151 uint32_t sim_fcfg2;
153 enum {
154 FC_AUTO = 0,
155 FC_PFLASH,
156 FC_FLEX_NVM,
157 FC_FLEX_RAM,
158 } flash_class;
161 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
163 struct kinetis_flash_bank *bank_info;
165 if (CMD_ARGC < 6)
166 return ERROR_COMMAND_SYNTAX_ERROR;
168 LOG_INFO("add flash_bank kinetis %s", bank->name);
170 bank_info = malloc(sizeof(struct kinetis_flash_bank));
172 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
174 bank->driver_priv = bank_info;
176 return ERROR_OK;
179 /* Kinetis Program-LongWord Microcodes */
180 static const uint8_t kinetis_flash_write_code[] = {
181 /* Params:
182 * r0 - workarea buffer
183 * r1 - target address
184 * r2 - wordcount
185 * Clobbered:
186 * r4 - tmp
187 * r5 - tmp
188 * r6 - tmp
189 * r7 - tmp
192 /* .L1: */
193 /* for(register uint32_t i=0;i<wcount;i++){ */
194 0x04, 0x1C, /* mov r4, r0 */
195 0x00, 0x23, /* mov r3, #0 */
196 /* .L2: */
197 0x0E, 0x1A, /* sub r6, r1, r0 */
198 0xA6, 0x19, /* add r6, r4, r6 */
199 0x93, 0x42, /* cmp r3, r2 */
200 0x16, 0xD0, /* beq .L9 */
201 /* .L5: */
202 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
203 0x0B, 0x4D, /* ldr r5, .L10 */
204 0x2F, 0x78, /* ldrb r7, [r5] */
205 0x7F, 0xB2, /* sxtb r7, r7 */
206 0x00, 0x2F, /* cmp r7, #0 */
207 0xFA, 0xDA, /* bge .L5 */
208 /* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
209 0x70, 0x27, /* mov r7, #112 */
210 0x2F, 0x70, /* strb r7, [r5] */
211 /* FTFx_FCCOB3 = faddr; */
212 0x09, 0x4F, /* ldr r7, .L10+4 */
213 0x3E, 0x60, /* str r6, [r7] */
214 0x06, 0x27, /* mov r7, #6 */
215 /* FTFx_FCCOB0 = 0x06; */
216 0x08, 0x4E, /* ldr r6, .L10+8 */
217 0x37, 0x70, /* strb r7, [r6] */
218 /* FTFx_FCCOB7 = *pLW; */
219 0x80, 0xCC, /* ldmia r4!, {r7} */
220 0x08, 0x4E, /* ldr r6, .L10+12 */
221 0x37, 0x60, /* str r7, [r6] */
222 /* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
223 0x80, 0x27, /* mov r7, #128 */
224 0x2F, 0x70, /* strb r7, [r5] */
225 /* .L4: */
226 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
227 0x2E, 0x78, /* ldrb r6, [r5] */
228 0x77, 0xB2, /* sxtb r7, r6 */
229 0x00, 0x2F, /* cmp r7, #0 */
230 0xFB, 0xDA, /* bge .L4 */
231 0x01, 0x33, /* add r3, r3, #1 */
232 0xE4, 0xE7, /* b .L2 */
233 /* .L9: */
234 0x00, 0xBE, /* bkpt #0 */
235 /* .L10: */
236 0x00, 0x00, 0x02, 0x40, /* .word 1073872896 */
237 0x04, 0x00, 0x02, 0x40, /* .word 1073872900 */
238 0x07, 0x00, 0x02, 0x40, /* .word 1073872903 */
239 0x08, 0x00, 0x02, 0x40, /* .word 1073872904 */
242 /* Program LongWord Block Write */
243 static int kinetis_write_block(struct flash_bank *bank, uint8_t *buffer,
244 uint32_t offset, uint32_t wcount)
246 struct target *target = bank->target;
247 uint32_t buffer_size = 2048; /* Default minimum value */
248 struct working_area *write_algorithm;
249 struct working_area *source;
250 uint32_t address = bank->base + offset;
251 struct reg_param reg_params[3];
252 struct armv7m_algorithm armv7m_info;
253 int retval = ERROR_OK;
255 /* Params:
256 * r0 - workarea buffer
257 * r1 - target address
258 * r2 - wordcount
259 * Clobbered:
260 * r4 - tmp
261 * r5 - tmp
262 * r6 - tmp
263 * r7 - tmp
266 /* Increase buffer_size if needed */
267 if (buffer_size < (target->working_area_size/2))
268 buffer_size = (target->working_area_size/2);
270 LOG_INFO("Kinetis: FLASH Write ...");
272 /* check code alignment */
273 if (offset & 0x1) {
274 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
275 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
278 /* allocate working area with flash programming code */
279 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
280 &write_algorithm) != ERROR_OK) {
281 LOG_WARNING("no working area available, can't do block memory writes");
282 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
285 retval = target_write_buffer(target, write_algorithm->address,
286 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
287 if (retval != ERROR_OK)
288 return retval;
290 /* memory buffer */
291 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
292 buffer_size /= 4;
293 if (buffer_size <= 256) {
294 /* free working area, write algorithm already allocated */
295 target_free_working_area(target, write_algorithm);
297 LOG_WARNING("No large enough working area available, can't do block memory writes");
298 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
302 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
303 armv7m_info.core_mode = ARM_MODE_THREAD;
305 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
306 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* faddr */
307 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
309 /* write code buffer and use Flash programming code within kinetis */
310 /* Set breakpoint to 0 with time-out of 1000 ms */
311 while (wcount > 0) {
312 uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
314 retval = target_write_buffer(target, write_algorithm->address, 8,
315 kinetis_flash_write_code);
316 if (retval != ERROR_OK)
317 break;
319 retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
320 if (retval != ERROR_OK)
321 break;
323 buf_set_u32(reg_params[0].value, 0, 32, source->address);
324 buf_set_u32(reg_params[1].value, 0, 32, address);
325 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
327 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
328 write_algorithm->address, 0, 100000, &armv7m_info);
329 if (retval != ERROR_OK) {
330 LOG_ERROR("Error executing kinetis Flash programming algorithm");
331 retval = ERROR_FLASH_OPERATION_FAILED;
332 break;
335 buffer += thisrun_count * 4;
336 address += thisrun_count * 4;
337 wcount -= thisrun_count;
340 target_free_working_area(target, source);
341 target_free_working_area(target, write_algorithm);
343 destroy_reg_param(&reg_params[0]);
344 destroy_reg_param(&reg_params[1]);
345 destroy_reg_param(&reg_params[2]);
347 return retval;
350 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
352 LOG_WARNING("kinetis_protect not supported yet");
353 /* FIXME: TODO */
355 if (bank->target->state != TARGET_HALTED) {
356 LOG_ERROR("Target not halted");
357 return ERROR_TARGET_NOT_HALTED;
360 return ERROR_FLASH_BANK_INVALID;
363 static int kinetis_protect_check(struct flash_bank *bank)
365 struct kinetis_flash_bank *kinfo = bank->driver_priv;
367 if (bank->target->state != TARGET_HALTED) {
368 LOG_ERROR("Target not halted");
369 return ERROR_TARGET_NOT_HALTED;
372 if (kinfo->flash_class == FC_PFLASH) {
373 int result;
374 uint8_t buffer[4];
375 uint32_t fprot, psec;
376 int i, b;
378 /* read protection register */
379 result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
381 if (result != ERROR_OK)
382 return result;
384 fprot = target_buffer_get_u32(bank->target, buffer);
387 * Every bit protects 1/32 of the full flash (not necessarily
388 * just this bank), but we enforce the bank ordinals for
389 * PFlash to start at zero.
391 b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
392 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
393 if ((fprot >> b) & 1)
394 bank->sectors[i].is_protected = 0;
395 else
396 bank->sectors[i].is_protected = 1;
398 psec += bank->sectors[i].size;
400 if (psec >= kinfo->protection_size) {
401 psec = 0;
402 b++;
405 } else {
406 LOG_ERROR("Protection checks for FlexNVM not yet supported");
407 return ERROR_FLASH_BANK_INVALID;
410 return ERROR_OK;
413 static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
414 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
415 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
416 uint8_t *ftfx_fstat)
418 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
419 fccob7, fccob6, fccob5, fccob4,
420 fccobb, fccoba, fccob9, fccob8};
421 int result, i;
422 uint8_t buffer;
424 /* wait for done */
425 for (i = 0; i < 50; i++) {
426 result =
427 target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
429 if (result != ERROR_OK)
430 return result;
432 if (buffer & 0x80)
433 break;
435 buffer = 0x00;
438 if (buffer != 0x80) {
439 /* reset error flags */
440 buffer = 0x30;
441 result =
442 target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
443 if (result != ERROR_OK)
444 return result;
447 result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
449 if (result != ERROR_OK)
450 return result;
452 /* start command */
453 buffer = 0x80;
454 result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
455 if (result != ERROR_OK)
456 return result;
458 /* wait for done */
459 for (i = 0; i < 240; i++) { /* Need Entire Erase Nemui Changed */
460 result =
461 target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
463 if (result != ERROR_OK)
464 return result;
466 if (*ftfx_fstat & 0x80)
467 break;
470 if ((*ftfx_fstat & 0xf0) != 0x80) {
471 LOG_ERROR
472 ("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
473 *ftfx_fstat, command[3], command[2], command[1], command[0],
474 command[7], command[6], command[5], command[4],
475 command[11], command[10], command[9], command[8]);
476 return ERROR_FLASH_OPERATION_FAILED;
479 return ERROR_OK;
482 static int kinetis_mass_erase(struct flash_bank *bank)
484 int result;
485 uint8_t ftfx_fstat;
487 if (bank->target->state != TARGET_HALTED) {
488 LOG_ERROR("Target not halted");
489 return ERROR_TARGET_NOT_HALTED;
492 /* check if whole bank is blank */
493 LOG_INFO("Kinetis L Series Erase All Blocks");
494 /* set command and sector address */
495 result = kinetis_ftfx_command(bank, FTFx_CMD_MASSERASE, 0,
496 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
497 /* Anyway Result, write unsecure byte */
498 /* if (result != ERROR_OK)
499 return result;*/
501 /* Write to MCU security status unsecure in Flash security byte(Work around) */
502 LOG_INFO("Write to MCU security status unsecure Anyway!");
503 uint8_t padding[4] = {0xFE, 0xFF, 0xFF, 0xFF}; /* Write 0xFFFFFFFE */
505 result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, (bank->base + 0x0000040C),
506 padding[3], padding[2], padding[1], padding[0],
507 0, 0, 0, 0, &ftfx_fstat);
508 if (result != ERROR_OK)
509 return ERROR_FLASH_OPERATION_FAILED;
511 return ERROR_OK;
514 static int kinetis_erase(struct flash_bank *bank, int first, int last)
516 int result, i;
517 struct kinetis_flash_bank *kinfo = bank->driver_priv;
519 if (bank->target->state != TARGET_HALTED) {
520 LOG_ERROR("Target not halted");
521 return ERROR_TARGET_NOT_HALTED;
524 if ((first > bank->num_sectors) || (last > bank->num_sectors))
525 return ERROR_FLASH_OPERATION_FAILED;
527 if ((first == 0) && (last == (bank->num_sectors - 1)) && (kinfo->klxx))
528 return kinetis_mass_erase(bank);
531 * FIXME: TODO: use the 'Erase Flash Block' command if the
532 * requested erase is PFlash or NVM and encompasses the entire
533 * block. Should be quicker.
535 for (i = first; i <= last; i++) {
536 uint8_t ftfx_fstat;
537 /* set command and sector address */
538 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
539 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
541 if (result != ERROR_OK) {
542 LOG_WARNING("erase sector %d failed", i);
543 return ERROR_FLASH_OPERATION_FAILED;
546 bank->sectors[i].is_erased = 1;
549 if (first == 0) {
550 LOG_WARNING
551 ("flash configuration field erased, please reset the device");
554 return ERROR_OK;
557 static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
558 uint32_t offset, uint32_t count)
560 unsigned int i, result, fallback = 0;
561 uint8_t buf[8];
562 uint32_t wc;
563 struct kinetis_flash_bank *kinfo = bank->driver_priv;
564 uint8_t *new_buffer = NULL;
566 if (bank->target->state != TARGET_HALTED) {
567 LOG_ERROR("Target not halted");
568 return ERROR_TARGET_NOT_HALTED;
571 if (kinfo->klxx) {
572 /* fallback to longword write */
573 fallback = 1;
574 LOG_WARNING("Kinetis L Series supports Program Longword execution only.");
575 LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
577 } else if (kinfo->flash_class == FC_FLEX_NVM) {
578 uint8_t ftfx_fstat;
580 LOG_DEBUG("flash write into FlexNVM @%08" PRIX32, offset);
582 /* make flex ram available */
583 result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
585 if (result != ERROR_OK)
586 return ERROR_FLASH_OPERATION_FAILED;
588 /* check if ram ready */
589 result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
591 if (result != ERROR_OK)
592 return result;
594 if (!(buf[0] & (1 << 1))) {
595 /* fallback to longword write */
596 fallback = 1;
598 LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", buf[0]);
600 } else {
601 LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
605 /* program section command */
606 if (fallback == 0) {
608 * Kinetis uses different terms for the granularity of
609 * sector writes, e.g. "phrase" or "128 bits". We use
610 * the generic term "chunk". The largest possible
611 * Kinetis "chunk" is 16 bytes (128 bits).
613 unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
614 /* assume the NVM sector size is half the FlexRAM size */
615 unsigned prog_size_bytes = MIN(kinfo->sector_size,
616 kinetis_flash_params[kinfo->granularity].nvm_sector_size_bytes);
617 for (i = 0; i < count; i += prog_size_bytes) {
618 uint8_t residual_buffer[16];
619 uint8_t ftfx_fstat;
620 uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
621 uint32_t residual_wc = 0;
624 * Assume the word count covers an entire
625 * sector.
627 wc = prog_size_bytes / 4;
630 * If bytes to be programmed are less than the
631 * full sector, then determine the number of
632 * full-words to program, and put together the
633 * residual buffer so that a full "section"
634 * may always be programmed.
636 if ((count - i) < prog_size_bytes) {
637 /* number of bytes to program beyond full section */
638 unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
640 /* number of complete words to copy directly from buffer */
641 wc = (count - i) / 4;
643 /* number of total sections to write, including residual */
644 section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
646 /* any residual bytes delivers a whole residual section */
647 residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
649 /* clear residual buffer then populate residual bytes */
650 (void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
651 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
654 LOG_DEBUG("write section @ %08" PRIX32 " with length %" PRIu32 " bytes",
655 offset + i, (uint32_t)wc*4);
657 /* write data to flexram as whole-words */
658 result = target_write_memory(bank->target, FLEXRAM, 4, wc,
659 buffer + i);
661 if (result != ERROR_OK) {
662 LOG_ERROR("target_write_memory failed");
663 return result;
666 /* write the residual words to the flexram */
667 if (residual_wc) {
668 result = target_write_memory(bank->target,
669 FLEXRAM+4*wc,
670 4, residual_wc,
671 residual_buffer);
673 if (result != ERROR_OK) {
674 LOG_ERROR("target_write_memory failed");
675 return result;
679 /* execute section-write command */
680 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
681 section_count>>8, section_count, 0, 0,
682 0, 0, 0, 0, &ftfx_fstat);
684 if (result != ERROR_OK)
685 return ERROR_FLASH_OPERATION_FAILED;
688 /* program longword command, not supported in "SF3" devices */
689 else if ((kinfo->granularity != 3) || (kinfo->klxx)) {
691 if (count & 0x3) {
692 uint32_t old_count = count;
693 count = (old_count | 3) + 1;
694 new_buffer = malloc(count);
695 if (new_buffer == NULL) {
696 LOG_ERROR("odd number of bytes to write and no memory "
697 "for padding buffer");
698 return ERROR_FAIL;
700 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
701 "and padding with 0xff", old_count, count);
702 memset(buffer, 0xff, count);
703 buffer = memcpy(new_buffer, buffer, old_count);
706 uint32_t words_remaining = count / 4;
708 /* try using a block write */
709 int retval = kinetis_write_block(bank, buffer, offset, words_remaining);
711 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
712 /* if block write failed (no sufficient working area),
713 * we use normal (slow) single word accesses */
714 LOG_WARNING("couldn't use block writes, falling back to single "
715 "memory accesses");
717 for (i = 0; i < count; i += 4) {
718 uint8_t ftfx_fstat;
720 LOG_DEBUG("write longword @ %08" PRIX32, (uint32_t)(offset + i));
722 uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
723 memcpy(padding, buffer + i, MIN(4, count-i));
725 result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
726 padding[3], padding[2], padding[1], padding[0],
727 0, 0, 0, 0, &ftfx_fstat);
729 if (result != ERROR_OK)
730 return ERROR_FLASH_OPERATION_FAILED;
734 } else {
735 LOG_ERROR("Flash write strategy not implemented");
736 return ERROR_FLASH_OPERATION_FAILED;
739 return ERROR_OK;
742 static int kinetis_read_part_info(struct flash_bank *bank)
744 int result, i;
745 uint32_t offset = 0;
746 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
747 uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
748 unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
749 first_nvm_bank = 0, reassign = 0;
750 struct target *target = bank->target;
751 struct kinetis_flash_bank *kinfo = bank->driver_priv;
753 result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
754 if (result != ERROR_OK)
755 return result;
757 /* Kinetis L Series SubFamily Check */
758 kinfo->klxx = 0;
759 i = (kinfo->sim_sdid >> 20) & 0x0F;
760 if (i == 1) {
761 kinfo->klxx = 1;
762 granularity = 0;
763 } else if ((kinfo->sim_sdid & KINETIS_SDID_FAMID_MASK)
764 == KINETIS_SDID_FAMID_K21) {
765 granularity = 2;
766 } else
767 granularity = (kinfo->sim_sdid >> 7) & 0x03;
769 result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
770 if (result != ERROR_OK)
771 return result;
773 result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
774 if (result != ERROR_OK)
775 return result;
776 fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
778 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
779 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
781 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
782 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
783 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
785 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
786 if (!fcfg2_pflsh) {
787 switch (fcfg1_nvmsize) {
788 case 0x03:
789 case 0x07:
790 case 0x09:
791 case 0x0b:
792 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
793 break;
794 case 0x0f:
795 if (granularity == 3)
796 nvm_size = 512<<10;
797 else
798 nvm_size = 256<<10;
799 break;
800 default:
801 nvm_size = 0;
802 break;
805 switch (fcfg1_eesize) {
806 case 0x00:
807 case 0x01:
808 case 0x02:
809 case 0x03:
810 case 0x04:
811 case 0x05:
812 case 0x06:
813 case 0x07:
814 case 0x08:
815 case 0x09:
816 ee_size = (16 << (10 - fcfg1_eesize));
817 break;
818 default:
819 ee_size = 0;
820 break;
824 switch (fcfg1_pfsize) {
825 case 0x03:
826 case 0x05:
827 case 0x07:
828 case 0x09:
829 case 0x0b:
830 case 0x0d:
831 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
832 break;
833 case 0x0f:
834 if (granularity == 3)
835 pf_size = 1024<<10;
836 else if (fcfg2_pflsh)
837 pf_size = 512<<10;
838 else
839 pf_size = 256<<10;
840 break;
841 default:
842 pf_size = 0;
843 break;
846 LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
847 nvm_size, pf_size, ee_size, fcfg2_pflsh);
848 if (kinfo->klxx)
849 num_blocks = 1;
850 else
851 num_blocks = kinetis_flash_params[granularity].num_blocks;
853 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
854 first_nvm_bank = num_pflash_blocks;
855 num_nvm_blocks = num_blocks - num_pflash_blocks;
857 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
858 num_blocks, num_pflash_blocks, num_nvm_blocks);
861 * If the flash class is already assigned, verify the
862 * parameters.
864 if (kinfo->flash_class != FC_AUTO) {
865 if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
866 LOG_WARNING("Flash ordinal/bank number mismatch");
867 reassign = 1;
868 } else if (kinfo->granularity != granularity) {
869 LOG_WARNING("Flash granularity mismatch");
870 reassign = 1;
871 } else {
872 switch (kinfo->flash_class) {
873 case FC_PFLASH:
874 if (kinfo->bank_ordinal >= first_nvm_bank) {
875 LOG_WARNING("Class mismatch, bank %d is not PFlash", bank->bank_number);
876 reassign = 1;
877 } else if (bank->size != (pf_size / num_pflash_blocks)) {
878 LOG_WARNING("PFlash size mismatch");
879 reassign = 1;
880 } else if (bank->base !=
881 (0x00000000 + bank->size * kinfo->bank_ordinal)) {
882 LOG_WARNING("PFlash address range mismatch");
883 reassign = 1;
884 } else if (kinfo->sector_size !=
885 kinetis_flash_params[granularity].pflash_sector_size_bytes) {
886 LOG_WARNING("PFlash sector size mismatch");
887 reassign = 1;
888 } else {
889 LOG_DEBUG("PFlash bank %d already configured okay",
890 kinfo->bank_ordinal);
892 break;
893 case FC_FLEX_NVM:
894 if ((kinfo->bank_ordinal >= num_blocks) ||
895 (kinfo->bank_ordinal < first_nvm_bank)) {
896 LOG_WARNING("Class mismatch, bank %d is not FlexNVM", bank->bank_number);
897 reassign = 1;
898 } else if (bank->size != (nvm_size / num_nvm_blocks)) {
899 LOG_WARNING("FlexNVM size mismatch");
900 reassign = 1;
901 } else if (bank->base !=
902 (0x10000000 + bank->size * kinfo->bank_ordinal)) {
903 LOG_WARNING("FlexNVM address range mismatch");
904 reassign = 1;
905 } else if (kinfo->sector_size !=
906 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
907 LOG_WARNING("FlexNVM sector size mismatch");
908 reassign = 1;
909 } else {
910 LOG_DEBUG("FlexNVM bank %d already configured okay",
911 kinfo->bank_ordinal);
913 break;
914 case FC_FLEX_RAM:
915 if (kinfo->bank_ordinal != num_blocks) {
916 LOG_WARNING("Class mismatch, bank %d is not FlexRAM", bank->bank_number);
917 reassign = 1;
918 } else if (bank->size != ee_size) {
919 LOG_WARNING("FlexRAM size mismatch");
920 reassign = 1;
921 } else if (bank->base != FLEXRAM) {
922 LOG_WARNING("FlexRAM address mismatch");
923 reassign = 1;
924 } else if (kinfo->sector_size !=
925 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
926 LOG_WARNING("FlexRAM sector size mismatch");
927 reassign = 1;
928 } else {
929 LOG_DEBUG("FlexRAM bank %d already configured okay", kinfo->bank_ordinal);
931 break;
933 default:
934 LOG_WARNING("Unknown or inconsistent flash class");
935 reassign = 1;
936 break;
939 } else {
940 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
941 reassign = 1;
944 if (!reassign)
945 return ERROR_OK;
947 kinfo->granularity = granularity;
949 if ((unsigned)bank->bank_number < num_pflash_blocks) {
950 /* pflash, banks start at address zero */
951 kinfo->flash_class = FC_PFLASH;
952 bank->size = (pf_size / num_pflash_blocks);
953 bank->base = 0x00000000 + bank->size * bank->bank_number;
954 kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
955 kinfo->protection_size = pf_size / 32;
956 } else if ((unsigned)bank->bank_number < num_blocks) {
957 /* nvm, banks start at address 0x10000000 */
958 kinfo->flash_class = FC_FLEX_NVM;
959 bank->size = (nvm_size / num_nvm_blocks);
960 bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
961 kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
962 kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
963 } else if ((unsigned)bank->bank_number == num_blocks) {
964 LOG_ERROR("FlexRAM support not yet implemented");
965 return ERROR_FLASH_OPER_UNSUPPORTED;
966 } else {
967 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
968 bank->bank_number, num_blocks);
969 return ERROR_FLASH_BANK_INVALID;
972 if (bank->sectors) {
973 free(bank->sectors);
974 bank->sectors = NULL;
977 bank->num_sectors = bank->size / kinfo->sector_size;
978 assert(bank->num_sectors > 0);
979 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
981 for (i = 0; i < bank->num_sectors; i++) {
982 bank->sectors[i].offset = offset;
983 bank->sectors[i].size = kinfo->sector_size;
984 offset += kinfo->sector_size;
985 bank->sectors[i].is_erased = -1;
986 bank->sectors[i].is_protected = 1;
989 return ERROR_OK;
992 static int kinetis_probe(struct flash_bank *bank)
994 if (bank->target->state != TARGET_HALTED) {
995 LOG_WARNING("Cannot communicate... target not halted.");
996 return ERROR_TARGET_NOT_HALTED;
999 return kinetis_read_part_info(bank);
1002 static int kinetis_auto_probe(struct flash_bank *bank)
1004 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1006 if (kinfo->sim_sdid)
1007 return ERROR_OK;
1009 return kinetis_probe(bank);
1012 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
1014 const char *bank_class_names[] = {
1015 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
1018 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1020 (void) snprintf(buf, buf_size,
1021 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
1022 bank->driver->name, bank_class_names[kinfo->flash_class],
1023 bank->name, bank->base);
1025 return ERROR_OK;
1028 static int kinetis_blank_check(struct flash_bank *bank)
1030 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1032 if (bank->target->state != TARGET_HALTED) {
1033 LOG_ERROR("Target not halted");
1034 return ERROR_TARGET_NOT_HALTED;
1037 if (kinfo->flash_class == FC_PFLASH) {
1038 int result;
1039 uint8_t ftfx_fstat;
1041 /* check if whole bank is blank */
1042 result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
1044 if (result != ERROR_OK)
1045 return result;
1047 if (ftfx_fstat & 0x01) {
1048 /* the whole bank is not erased, check sector-by-sector */
1049 int i;
1050 for (i = 0; i < bank->num_sectors; i++) {
1051 /* normal margin */
1052 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
1053 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
1055 if (result == ERROR_OK) {
1056 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
1057 } else {
1058 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
1059 bank->sectors[i].is_erased = -1;
1062 } else {
1063 /* the whole bank is erased, update all sectors */
1064 int i;
1065 for (i = 0; i < bank->num_sectors; i++)
1066 bank->sectors[i].is_erased = 1;
1068 } else {
1069 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
1070 return ERROR_FLASH_OPERATION_FAILED;
1073 return ERROR_OK;
1076 struct flash_driver kinetis_flash = {
1077 .name = "kinetis",
1078 .flash_bank_command = kinetis_flash_bank_command,
1079 .erase = kinetis_erase,
1080 .protect = kinetis_protect,
1081 .write = kinetis_write,
1082 .read = default_flash_read,
1083 .probe = kinetis_probe,
1084 .auto_probe = kinetis_auto_probe,
1085 .erase_check = kinetis_blank_check,
1086 .protect_check = kinetis_protect_check,
1087 .info = kinetis_info,