16988b5a212d6b61399338bcc3b261c0e052bb1f
[openocd.git] / src / target / mips32.c
blob16988b5a212d6b61399338bcc3b261c0e052bb1f
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 Øyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
27 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
33 #include "mips32.h"
34 #include "breakpoints.h"
35 #include "algorithm.h"
36 #include "register.h"
38 static char *mips32_core_reg_list[] = {
39 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
40 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
41 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
42 "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
43 "status", "lo", "hi", "badvaddr", "cause", "pc"
46 static const char *mips_isa_strings[] = {
47 "MIPS32", "MIPS16e"
50 static struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] = {
51 {0, NULL, NULL},
52 {1, NULL, NULL},
53 {2, NULL, NULL},
54 {3, NULL, NULL},
55 {4, NULL, NULL},
56 {5, NULL, NULL},
57 {6, NULL, NULL},
58 {7, NULL, NULL},
59 {8, NULL, NULL},
60 {9, NULL, NULL},
61 {10, NULL, NULL},
62 {11, NULL, NULL},
63 {12, NULL, NULL},
64 {13, NULL, NULL},
65 {14, NULL, NULL},
66 {15, NULL, NULL},
67 {16, NULL, NULL},
68 {17, NULL, NULL},
69 {18, NULL, NULL},
70 {19, NULL, NULL},
71 {20, NULL, NULL},
72 {21, NULL, NULL},
73 {22, NULL, NULL},
74 {23, NULL, NULL},
75 {24, NULL, NULL},
76 {25, NULL, NULL},
77 {26, NULL, NULL},
78 {27, NULL, NULL},
79 {28, NULL, NULL},
80 {29, NULL, NULL},
81 {30, NULL, NULL},
82 {31, NULL, NULL},
84 {32, NULL, NULL},
85 {33, NULL, NULL},
86 {34, NULL, NULL},
87 {35, NULL, NULL},
88 {36, NULL, NULL},
89 {37, NULL, NULL},
92 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
93 * we also add 18 unknown registers to handle gdb requests */
95 #define MIPS32NUMFPREGS (34 + 18)
97 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
99 static struct reg mips32_gdb_dummy_fp_reg = {
100 .name = "GDB dummy floating-point register",
101 .value = mips32_gdb_dummy_fp_value,
102 .dirty = 0,
103 .valid = 1,
104 .size = 32,
105 .arch_info = NULL,
108 static int mips32_get_core_reg(struct reg *reg)
110 int retval;
111 struct mips32_core_reg *mips32_reg = reg->arch_info;
112 struct target *target = mips32_reg->target;
113 struct mips32_common *mips32_target = target_to_mips32(target);
115 if (target->state != TARGET_HALTED)
116 return ERROR_TARGET_NOT_HALTED;
118 retval = mips32_target->read_core_reg(target, mips32_reg->num);
120 return retval;
123 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
125 struct mips32_core_reg *mips32_reg = reg->arch_info;
126 struct target *target = mips32_reg->target;
127 uint32_t value = buf_get_u32(buf, 0, 32);
129 if (target->state != TARGET_HALTED)
130 return ERROR_TARGET_NOT_HALTED;
132 buf_set_u32(reg->value, 0, 32, value);
133 reg->dirty = 1;
134 reg->valid = 1;
136 return ERROR_OK;
139 static int mips32_read_core_reg(struct target *target, int num)
141 uint32_t reg_value;
143 /* get pointers to arch-specific information */
144 struct mips32_common *mips32 = target_to_mips32(target);
146 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
147 return ERROR_COMMAND_SYNTAX_ERROR;
149 reg_value = mips32->core_regs[num];
150 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
151 mips32->core_cache->reg_list[num].valid = 1;
152 mips32->core_cache->reg_list[num].dirty = 0;
154 return ERROR_OK;
157 static int mips32_write_core_reg(struct target *target, int num)
159 uint32_t reg_value;
161 /* get pointers to arch-specific information */
162 struct mips32_common *mips32 = target_to_mips32(target);
164 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
165 return ERROR_COMMAND_SYNTAX_ERROR;
167 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
168 mips32->core_regs[num] = reg_value;
169 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
170 mips32->core_cache->reg_list[num].valid = 1;
171 mips32->core_cache->reg_list[num].dirty = 0;
173 return ERROR_OK;
176 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
178 /* get pointers to arch-specific information */
179 struct mips32_common *mips32 = target_to_mips32(target);
180 int i;
182 /* include floating point registers */
183 *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
184 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
186 for (i = 0; i < MIPS32NUMCOREREGS; i++)
187 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
189 /* add dummy floating points regs */
190 for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
191 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
193 return ERROR_OK;
196 int mips32_save_context(struct target *target)
198 int i;
200 /* get pointers to arch-specific information */
201 struct mips32_common *mips32 = target_to_mips32(target);
202 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
204 /* read core registers */
205 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
207 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
208 if (!mips32->core_cache->reg_list[i].valid)
209 mips32->read_core_reg(target, i);
212 return ERROR_OK;
215 int mips32_restore_context(struct target *target)
217 int i;
219 /* get pointers to arch-specific information */
220 struct mips32_common *mips32 = target_to_mips32(target);
221 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
223 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
224 if (mips32->core_cache->reg_list[i].dirty)
225 mips32->write_core_reg(target, i);
228 /* write core regs */
229 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
231 return ERROR_OK;
234 int mips32_arch_state(struct target *target)
236 struct mips32_common *mips32 = target_to_mips32(target);
238 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
239 mips_isa_strings[mips32->isa_mode],
240 debug_reason_name(target),
241 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
243 return ERROR_OK;
246 static const struct reg_arch_type mips32_reg_type = {
247 .get = mips32_get_core_reg,
248 .set = mips32_set_core_reg,
251 struct reg_cache *mips32_build_reg_cache(struct target *target)
253 /* get pointers to arch-specific information */
254 struct mips32_common *mips32 = target_to_mips32(target);
256 int num_regs = MIPS32NUMCOREREGS;
257 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
258 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
259 struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
260 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
261 int i;
263 register_init_dummy(&mips32_gdb_dummy_fp_reg);
265 /* Build the process context cache */
266 cache->name = "mips32 registers";
267 cache->next = NULL;
268 cache->reg_list = reg_list;
269 cache->num_regs = num_regs;
270 (*cache_p) = cache;
271 mips32->core_cache = cache;
273 for (i = 0; i < num_regs; i++) {
274 arch_info[i] = mips32_core_reg_list_arch_info[i];
275 arch_info[i].target = target;
276 arch_info[i].mips32_common = mips32;
277 reg_list[i].name = mips32_core_reg_list[i];
278 reg_list[i].size = 32;
279 reg_list[i].value = calloc(1, 4);
280 reg_list[i].dirty = 0;
281 reg_list[i].valid = 0;
282 reg_list[i].type = &mips32_reg_type;
283 reg_list[i].arch_info = &arch_info[i];
286 return cache;
289 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
291 target->arch_info = mips32;
292 mips32->common_magic = MIPS32_COMMON_MAGIC;
293 mips32->fast_data_area = NULL;
295 /* has breakpoint/watchpint unit been scanned */
296 mips32->bp_scanned = 0;
297 mips32->data_break_list = NULL;
299 mips32->ejtag_info.tap = tap;
300 mips32->read_core_reg = mips32_read_core_reg;
301 mips32->write_core_reg = mips32_write_core_reg;
303 mips32->ejtag_info.scan_delay = 2000000; /* Initial default value */
304 mips32->ejtag_info.mode = 0; /* Initial default value */
306 return ERROR_OK;
309 /* run to exit point. return error if exit point was not reached. */
310 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
311 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
313 uint32_t pc;
314 int retval;
315 /* This code relies on the target specific resume() and poll()->debug_entry()
316 * sequence to write register values to the processor and the read them back */
317 retval = target_resume(target, 0, entry_point, 0, 1);
318 if (retval != ERROR_OK)
319 return retval;
321 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
322 /* If the target fails to halt due to the breakpoint, force a halt */
323 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
324 retval = target_halt(target);
325 if (retval != ERROR_OK)
326 return retval;
327 retval = target_wait_state(target, TARGET_HALTED, 500);
328 if (retval != ERROR_OK)
329 return retval;
330 return ERROR_TARGET_TIMEOUT;
333 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
334 if (exit_point && (pc != exit_point)) {
335 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
336 return ERROR_TARGET_TIMEOUT;
339 return ERROR_OK;
342 int mips32_run_algorithm(struct target *target, int num_mem_params,
343 struct mem_param *mem_params, int num_reg_params,
344 struct reg_param *reg_params, uint32_t entry_point,
345 uint32_t exit_point, int timeout_ms, void *arch_info)
347 struct mips32_common *mips32 = target_to_mips32(target);
348 struct mips32_algorithm *mips32_algorithm_info = arch_info;
349 enum mips32_isa_mode isa_mode = mips32->isa_mode;
351 uint32_t context[MIPS32NUMCOREREGS];
352 int i;
353 int retval = ERROR_OK;
355 LOG_DEBUG("Running algorithm");
357 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
358 * at the exit point */
360 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
361 LOG_ERROR("current target isn't a MIPS32 target");
362 return ERROR_TARGET_INVALID;
365 if (target->state != TARGET_HALTED) {
366 LOG_WARNING("target not halted");
367 return ERROR_TARGET_NOT_HALTED;
370 /* refresh core register cache */
371 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
372 if (!mips32->core_cache->reg_list[i].valid)
373 mips32->read_core_reg(target, i);
374 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
377 for (i = 0; i < num_mem_params; i++) {
378 retval = target_write_buffer(target, mem_params[i].address,
379 mem_params[i].size, mem_params[i].value);
380 if (retval != ERROR_OK)
381 return retval;
384 for (i = 0; i < num_reg_params; i++) {
385 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
387 if (!reg) {
388 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
389 return ERROR_COMMAND_SYNTAX_ERROR;
392 if (reg->size != reg_params[i].size) {
393 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
394 reg_params[i].reg_name);
395 return ERROR_COMMAND_SYNTAX_ERROR;
398 mips32_set_core_reg(reg, reg_params[i].value);
401 mips32->isa_mode = mips32_algorithm_info->isa_mode;
403 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
405 if (retval != ERROR_OK)
406 return retval;
408 for (i = 0; i < num_mem_params; i++) {
409 if (mem_params[i].direction != PARAM_OUT) {
410 retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
411 mem_params[i].value);
412 if (retval != ERROR_OK)
413 return retval;
417 for (i = 0; i < num_reg_params; i++) {
418 if (reg_params[i].direction != PARAM_OUT) {
419 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
420 if (!reg) {
421 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
422 return ERROR_COMMAND_SYNTAX_ERROR;
425 if (reg->size != reg_params[i].size) {
426 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
427 reg_params[i].reg_name);
428 return ERROR_COMMAND_SYNTAX_ERROR;
431 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
435 /* restore everything we saved before */
436 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
437 uint32_t regvalue;
438 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
439 if (regvalue != context[i]) {
440 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
441 mips32->core_cache->reg_list[i].name, context[i]);
442 buf_set_u32(mips32->core_cache->reg_list[i].value,
443 0, 32, context[i]);
444 mips32->core_cache->reg_list[i].valid = 1;
445 mips32->core_cache->reg_list[i].dirty = 1;
449 mips32->isa_mode = isa_mode;
451 return ERROR_OK;
454 int mips32_examine(struct target *target)
456 struct mips32_common *mips32 = target_to_mips32(target);
458 if (!target_was_examined(target)) {
459 target_set_examined(target);
461 /* we will configure later */
462 mips32->bp_scanned = 0;
463 mips32->num_inst_bpoints = 0;
464 mips32->num_data_bpoints = 0;
465 mips32->num_inst_bpoints_avail = 0;
466 mips32->num_data_bpoints_avail = 0;
469 return ERROR_OK;
472 static int mips32_configure_ibs(struct target *target)
474 struct mips32_common *mips32 = target_to_mips32(target);
475 int retval, i;
476 uint32_t bpinfo;
478 /* get number of inst breakpoints */
479 retval = target_read_u32(target, EJTAG_IBS, &bpinfo);
480 if (retval != ERROR_OK)
481 return retval;
483 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
484 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
485 mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
486 sizeof(struct mips32_comparator));
488 for (i = 0; i < mips32->num_inst_bpoints; i++)
489 mips32->inst_break_list[i].reg_address =
490 EJTAG_IBA1 + (0x100 * i);
492 /* clear IBIS reg */
493 retval = target_write_u32(target, EJTAG_IBS, 0);
494 return retval;
497 static int mips32_configure_dbs(struct target *target)
499 struct mips32_common *mips32 = target_to_mips32(target);
500 int retval, i;
501 uint32_t bpinfo;
503 /* get number of data breakpoints */
504 retval = target_read_u32(target, EJTAG_DBS, &bpinfo);
505 if (retval != ERROR_OK)
506 return retval;
508 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
509 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
510 mips32->data_break_list = calloc(mips32->num_data_bpoints,
511 sizeof(struct mips32_comparator));
513 for (i = 0; i < mips32->num_data_bpoints; i++)
514 mips32->data_break_list[i].reg_address =
515 EJTAG_DBA1 + (0x100 * i);
517 /* clear DBIS reg */
518 retval = target_write_u32(target, EJTAG_DBS, 0);
519 return retval;
522 int mips32_configure_break_unit(struct target *target)
524 /* get pointers to arch-specific information */
525 struct mips32_common *mips32 = target_to_mips32(target);
526 int retval;
527 uint32_t dcr;
529 if (mips32->bp_scanned)
530 return ERROR_OK;
532 /* get info about breakpoint support */
533 retval = target_read_u32(target, EJTAG_DCR, &dcr);
534 if (retval != ERROR_OK)
535 return retval;
537 if (dcr & EJTAG_DCR_IB) {
538 retval = mips32_configure_ibs(target);
539 if (retval != ERROR_OK)
540 return retval;
543 if (dcr & EJTAG_DCR_DB) {
544 retval = mips32_configure_dbs(target);
545 if (retval != ERROR_OK)
546 return retval;
549 /* check if target endianness settings matches debug control register */
550 if (((dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
551 (!(dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_BIG_ENDIAN)))
552 LOG_WARNING("DCR endianness settings does not match target settings");
554 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
555 mips32->num_data_bpoints);
557 mips32->bp_scanned = 1;
559 return ERROR_OK;
562 int mips32_enable_interrupts(struct target *target, int enable)
564 int retval;
565 int update = 0;
566 uint32_t dcr;
568 /* read debug control register */
569 retval = target_read_u32(target, EJTAG_DCR, &dcr);
570 if (retval != ERROR_OK)
571 return retval;
573 if (enable) {
574 if (!(dcr & EJTAG_DCR_INTE)) {
575 /* enable interrupts */
576 dcr |= EJTAG_DCR_INTE;
577 update = 1;
579 } else {
580 if (dcr & EJTAG_DCR_INTE) {
581 /* disable interrupts */
582 dcr &= ~EJTAG_DCR_INTE;
583 update = 1;
587 if (update) {
588 retval = target_write_u32(target, EJTAG_DCR, dcr);
589 if (retval != ERROR_OK)
590 return retval;
593 return ERROR_OK;
596 int mips32_checksum_memory(struct target *target, uint32_t address,
597 uint32_t count, uint32_t *checksum)
599 struct working_area *crc_algorithm;
600 struct reg_param reg_params[2];
601 struct mips32_algorithm mips32_info;
602 int retval;
603 uint32_t i;
605 /* see contib/loaders/checksum/mips32.s for src */
607 static const uint32_t mips_crc_code[] = {
608 0x248C0000, /* addiu $t4, $a0, 0 */
609 0x24AA0000, /* addiu $t2, $a1, 0 */
610 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
611 0x10000010, /* beq $zero, $zero, ncomp */
612 0x240B0000, /* addiu $t3, $zero, 0 */
613 /* nbyte: */
614 0x81850000, /* lb $a1, ($t4) */
615 0x218C0001, /* addi $t4, $t4, 1 */
616 0x00052E00, /* sll $a1, $a1, 24 */
617 0x3C0204C1, /* lui $v0, 0x04c1 */
618 0x00852026, /* xor $a0, $a0, $a1 */
619 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
620 0x00003021, /* addu $a2, $zero, $zero */
621 /* loop: */
622 0x00044040, /* sll $t0, $a0, 1 */
623 0x24C60001, /* addiu $a2, $a2, 1 */
624 0x28840000, /* slti $a0, $a0, 0 */
625 0x01074826, /* xor $t1, $t0, $a3 */
626 0x0124400B, /* movn $t0, $t1, $a0 */
627 0x28C30008, /* slti $v1, $a2, 8 */
628 0x1460FFF9, /* bne $v1, $zero, loop */
629 0x01002021, /* addu $a0, $t0, $zero */
630 /* ncomp: */
631 0x154BFFF0, /* bne $t2, $t3, nbyte */
632 0x256B0001, /* addiu $t3, $t3, 1 */
633 0x7000003F, /* sdbbp */
636 /* make sure we have a working area */
637 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
638 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
640 /* convert flash writing code into a buffer in target endianness */
641 for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++)
642 target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]);
644 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
645 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
647 init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
648 buf_set_u32(reg_params[0].value, 0, 32, address);
650 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
651 buf_set_u32(reg_params[1].value, 0, 32, count);
653 int timeout = 20000 * (1 + (count / (1024 * 1024)));
655 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
656 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout,
657 &mips32_info);
658 if (retval != ERROR_OK) {
659 destroy_reg_param(&reg_params[0]);
660 destroy_reg_param(&reg_params[1]);
661 target_free_working_area(target, crc_algorithm);
662 return retval;
665 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
667 destroy_reg_param(&reg_params[0]);
668 destroy_reg_param(&reg_params[1]);
670 target_free_working_area(target, crc_algorithm);
672 return ERROR_OK;
675 /** Checks whether a memory region is zeroed. */
676 int mips32_blank_check_memory(struct target *target,
677 uint32_t address, uint32_t count, uint32_t *blank)
679 struct working_area *erase_check_algorithm;
680 struct reg_param reg_params[3];
681 struct mips32_algorithm mips32_info;
682 int retval;
683 uint32_t i;
685 static const uint32_t erase_check_code[] = {
686 /* nbyte: */
687 0x80880000, /* lb $t0, ($a0) */
688 0x00C83024, /* and $a2, $a2, $t0 */
689 0x24A5FFFF, /* addiu $a1, $a1, -1 */
690 0x14A0FFFC, /* bne $a1, $zero, nbyte */
691 0x24840001, /* addiu $a0, $a0, 1 */
692 0x7000003F /* sdbbp */
695 /* make sure we have a working area */
696 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
697 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
699 /* convert flash writing code into a buffer in target endianness */
700 for (i = 0; i < ARRAY_SIZE(erase_check_code); i++) {
701 target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t),
702 erase_check_code[i]);
705 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
706 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
708 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
709 buf_set_u32(reg_params[0].value, 0, 32, address);
711 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
712 buf_set_u32(reg_params[1].value, 0, 32, count);
714 init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
715 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
717 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
718 erase_check_algorithm->address,
719 erase_check_algorithm->address + (sizeof(erase_check_code)-4),
720 10000, &mips32_info);
721 if (retval != ERROR_OK) {
722 destroy_reg_param(&reg_params[0]);
723 destroy_reg_param(&reg_params[1]);
724 destroy_reg_param(&reg_params[2]);
725 target_free_working_area(target, erase_check_algorithm);
726 return retval;
729 *blank = buf_get_u32(reg_params[2].value, 0, 32);
731 destroy_reg_param(&reg_params[0]);
732 destroy_reg_param(&reg_params[1]);
733 destroy_reg_param(&reg_params[2]);
735 target_free_working_area(target, erase_check_algorithm);
737 return ERROR_OK;
740 static int mips32_verify_pointer(struct command_context *cmd_ctx,
741 struct mips32_common *mips32)
743 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
744 command_print(cmd_ctx, "target is not an MIPS32");
745 return ERROR_TARGET_INVALID;
747 return ERROR_OK;
751 * MIPS32 targets expose command interface
752 * to manipulate CP0 registers
754 COMMAND_HANDLER(mips32_handle_cp0_command)
756 int retval;
757 struct target *target = get_current_target(CMD_CTX);
758 struct mips32_common *mips32 = target_to_mips32(target);
759 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
762 retval = mips32_verify_pointer(CMD_CTX, mips32);
763 if (retval != ERROR_OK)
764 return retval;
766 if (target->state != TARGET_HALTED) {
767 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
768 return ERROR_OK;
771 /* two or more argument, access a single register/select (write if third argument is given) */
772 if (CMD_ARGC < 2)
773 return ERROR_COMMAND_SYNTAX_ERROR;
774 else {
775 uint32_t cp0_reg, cp0_sel;
776 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
777 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
779 if (CMD_ARGC == 2) {
780 uint32_t value;
782 retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
783 if (retval != ERROR_OK) {
784 command_print(CMD_CTX,
785 "couldn't access reg %" PRIi32,
786 cp0_reg);
787 return ERROR_OK;
789 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
790 cp0_reg, cp0_sel, value);
792 } else if (CMD_ARGC == 3) {
793 uint32_t value;
794 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
795 retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
796 if (retval != ERROR_OK) {
797 command_print(CMD_CTX,
798 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
799 cp0_reg, cp0_sel);
800 return ERROR_OK;
802 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
803 cp0_reg, cp0_sel, value);
807 return ERROR_OK;
810 COMMAND_HANDLER(mips32_handle_scan_delay_command)
812 struct target *target = get_current_target(CMD_CTX);
813 struct mips32_common *mips32 = target_to_mips32(target);
814 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
816 if (CMD_ARGC == 1)
817 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], ejtag_info->scan_delay);
818 else if (CMD_ARGC > 1)
819 return ERROR_COMMAND_SYNTAX_ERROR;
821 command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
822 if (ejtag_info->scan_delay >= 2000000) {
823 ejtag_info->mode = 0;
824 command_print(CMD_CTX, "running in legacy mode");
825 } else {
826 ejtag_info->mode = 1;
827 command_print(CMD_CTX, "running in fast queued mode");
830 return ERROR_OK;
833 static const struct command_registration mips32_exec_command_handlers[] = {
835 .name = "cp0",
836 .handler = mips32_handle_cp0_command,
837 .mode = COMMAND_EXEC,
838 .usage = "regnum select [value]",
839 .help = "display/modify cp0 register",
842 .name = "scan_delay",
843 .handler = mips32_handle_scan_delay_command,
844 .mode = COMMAND_ANY,
845 .help = "display/set scan delay in nano seconds",
846 .usage = "[value]",
848 COMMAND_REGISTRATION_DONE
851 const struct command_registration mips32_command_handlers[] = {
853 .name = "mips32",
854 .mode = COMMAND_ANY,
855 .help = "mips32 command group",
856 .usage = "",
857 .chain = mips32_exec_command_handlers,
859 COMMAND_REGISTRATION_DONE