11f39fea881d6b1c43944c8a97236314c38eddf8
[openocd.git] / src / target / mips32.c
blob11f39fea881d6b1c43944c8a97236314c38eddf8
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 Øyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
27 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
33 #include "mips32.h"
34 #include "breakpoints.h"
35 #include "algorithm.h"
36 #include "register.h"
38 static const char *mips_isa_strings[] = {
39 "MIPS32", "MIPS16e"
42 static const struct {
43 unsigned id;
44 const char *name;
45 } mips32_regs[MIPS32NUMCOREREGS] = {
46 { 0, "zero", },
47 { 1, "at", },
48 { 2, "v0", },
49 { 3, "v1", },
50 { 4, "a0", },
51 { 5, "a1", },
52 { 6, "a2", },
53 { 7, "a3", },
54 { 8, "t0", },
55 { 9, "t1", },
56 { 10, "t2", },
57 { 11, "t3", },
58 { 12, "t4", },
59 { 13, "t5", },
60 { 14, "t6", },
61 { 15, "t7", },
62 { 16, "s0", },
63 { 17, "s1", },
64 { 18, "s2", },
65 { 19, "s3", },
66 { 20, "s4", },
67 { 21, "s5", },
68 { 22, "s6", },
69 { 23, "s7", },
70 { 24, "t8", },
71 { 25, "t9", },
72 { 26, "k0", },
73 { 27, "k1", },
74 { 28, "gp", },
75 { 29, "sp", },
76 { 30, "fp", },
77 { 31, "ra", },
79 { 32, "status", },
80 { 33, "lo", },
81 { 34, "hi", },
82 { 35, "badvaddr", },
83 { 36, "cause", },
84 { 37, "pc" },
87 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
88 * we also add 18 unknown registers to handle gdb requests */
90 #define MIPS32NUMFPREGS (34 + 18)
92 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
94 static struct reg mips32_gdb_dummy_fp_reg = {
95 .name = "GDB dummy floating-point register",
96 .value = mips32_gdb_dummy_fp_value,
97 .dirty = 0,
98 .valid = 1,
99 .size = 32,
100 .arch_info = NULL,
103 static int mips32_get_core_reg(struct reg *reg)
105 int retval;
106 struct mips32_core_reg *mips32_reg = reg->arch_info;
107 struct target *target = mips32_reg->target;
108 struct mips32_common *mips32_target = target_to_mips32(target);
110 if (target->state != TARGET_HALTED)
111 return ERROR_TARGET_NOT_HALTED;
113 retval = mips32_target->read_core_reg(target, mips32_reg->num);
115 return retval;
118 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
120 struct mips32_core_reg *mips32_reg = reg->arch_info;
121 struct target *target = mips32_reg->target;
122 uint32_t value = buf_get_u32(buf, 0, 32);
124 if (target->state != TARGET_HALTED)
125 return ERROR_TARGET_NOT_HALTED;
127 buf_set_u32(reg->value, 0, 32, value);
128 reg->dirty = 1;
129 reg->valid = 1;
131 return ERROR_OK;
134 static int mips32_read_core_reg(struct target *target, int num)
136 uint32_t reg_value;
138 /* get pointers to arch-specific information */
139 struct mips32_common *mips32 = target_to_mips32(target);
141 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
142 return ERROR_COMMAND_SYNTAX_ERROR;
144 reg_value = mips32->core_regs[num];
145 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
146 mips32->core_cache->reg_list[num].valid = 1;
147 mips32->core_cache->reg_list[num].dirty = 0;
149 return ERROR_OK;
152 static int mips32_write_core_reg(struct target *target, int num)
154 uint32_t reg_value;
156 /* get pointers to arch-specific information */
157 struct mips32_common *mips32 = target_to_mips32(target);
159 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
160 return ERROR_COMMAND_SYNTAX_ERROR;
162 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
163 mips32->core_regs[num] = reg_value;
164 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
165 mips32->core_cache->reg_list[num].valid = 1;
166 mips32->core_cache->reg_list[num].dirty = 0;
168 return ERROR_OK;
171 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
172 int *reg_list_size, enum target_register_class reg_class)
174 /* get pointers to arch-specific information */
175 struct mips32_common *mips32 = target_to_mips32(target);
176 int i;
178 /* include floating point registers */
179 *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
180 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
182 for (i = 0; i < MIPS32NUMCOREREGS; i++)
183 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
185 /* add dummy floating points regs */
186 for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
187 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
189 return ERROR_OK;
192 int mips32_save_context(struct target *target)
194 int i;
196 /* get pointers to arch-specific information */
197 struct mips32_common *mips32 = target_to_mips32(target);
198 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
200 /* read core registers */
201 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
203 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
204 if (!mips32->core_cache->reg_list[i].valid)
205 mips32->read_core_reg(target, i);
208 return ERROR_OK;
211 int mips32_restore_context(struct target *target)
213 int i;
215 /* get pointers to arch-specific information */
216 struct mips32_common *mips32 = target_to_mips32(target);
217 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
219 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
220 if (mips32->core_cache->reg_list[i].dirty)
221 mips32->write_core_reg(target, i);
224 /* write core regs */
225 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
227 return ERROR_OK;
230 int mips32_arch_state(struct target *target)
232 struct mips32_common *mips32 = target_to_mips32(target);
234 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
235 mips_isa_strings[mips32->isa_mode],
236 debug_reason_name(target),
237 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
239 return ERROR_OK;
242 static const struct reg_arch_type mips32_reg_type = {
243 .get = mips32_get_core_reg,
244 .set = mips32_set_core_reg,
247 struct reg_cache *mips32_build_reg_cache(struct target *target)
249 /* get pointers to arch-specific information */
250 struct mips32_common *mips32 = target_to_mips32(target);
252 int num_regs = MIPS32NUMCOREREGS;
253 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
254 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
255 struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
256 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
257 int i;
259 register_init_dummy(&mips32_gdb_dummy_fp_reg);
261 /* Build the process context cache */
262 cache->name = "mips32 registers";
263 cache->next = NULL;
264 cache->reg_list = reg_list;
265 cache->num_regs = num_regs;
266 (*cache_p) = cache;
267 mips32->core_cache = cache;
269 for (i = 0; i < num_regs; i++) {
270 arch_info[i].num = mips32_regs[i].id;
271 arch_info[i].target = target;
272 arch_info[i].mips32_common = mips32;
274 reg_list[i].name = mips32_regs[i].name;
275 reg_list[i].size = 32;
276 reg_list[i].value = calloc(1, 4);
277 reg_list[i].dirty = 0;
278 reg_list[i].valid = 0;
279 reg_list[i].type = &mips32_reg_type;
280 reg_list[i].arch_info = &arch_info[i];
283 return cache;
286 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
288 target->arch_info = mips32;
289 mips32->common_magic = MIPS32_COMMON_MAGIC;
290 mips32->fast_data_area = NULL;
292 /* has breakpoint/watchpint unit been scanned */
293 mips32->bp_scanned = 0;
294 mips32->data_break_list = NULL;
296 mips32->ejtag_info.tap = tap;
297 mips32->read_core_reg = mips32_read_core_reg;
298 mips32->write_core_reg = mips32_write_core_reg;
300 mips32->ejtag_info.scan_delay = 2000000; /* Initial default value */
301 mips32->ejtag_info.mode = 0; /* Initial default value */
303 return ERROR_OK;
306 /* run to exit point. return error if exit point was not reached. */
307 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
308 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
310 uint32_t pc;
311 int retval;
312 /* This code relies on the target specific resume() and poll()->debug_entry()
313 * sequence to write register values to the processor and the read them back */
314 retval = target_resume(target, 0, entry_point, 0, 1);
315 if (retval != ERROR_OK)
316 return retval;
318 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
319 /* If the target fails to halt due to the breakpoint, force a halt */
320 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
321 retval = target_halt(target);
322 if (retval != ERROR_OK)
323 return retval;
324 retval = target_wait_state(target, TARGET_HALTED, 500);
325 if (retval != ERROR_OK)
326 return retval;
327 return ERROR_TARGET_TIMEOUT;
330 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
331 if (exit_point && (pc != exit_point)) {
332 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
333 return ERROR_TARGET_TIMEOUT;
336 return ERROR_OK;
339 int mips32_run_algorithm(struct target *target, int num_mem_params,
340 struct mem_param *mem_params, int num_reg_params,
341 struct reg_param *reg_params, uint32_t entry_point,
342 uint32_t exit_point, int timeout_ms, void *arch_info)
344 struct mips32_common *mips32 = target_to_mips32(target);
345 struct mips32_algorithm *mips32_algorithm_info = arch_info;
346 enum mips32_isa_mode isa_mode = mips32->isa_mode;
348 uint32_t context[MIPS32NUMCOREREGS];
349 int i;
350 int retval = ERROR_OK;
352 LOG_DEBUG("Running algorithm");
354 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
355 * at the exit point */
357 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
358 LOG_ERROR("current target isn't a MIPS32 target");
359 return ERROR_TARGET_INVALID;
362 if (target->state != TARGET_HALTED) {
363 LOG_WARNING("target not halted");
364 return ERROR_TARGET_NOT_HALTED;
367 /* refresh core register cache */
368 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
369 if (!mips32->core_cache->reg_list[i].valid)
370 mips32->read_core_reg(target, i);
371 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
374 for (i = 0; i < num_mem_params; i++) {
375 retval = target_write_buffer(target, mem_params[i].address,
376 mem_params[i].size, mem_params[i].value);
377 if (retval != ERROR_OK)
378 return retval;
381 for (i = 0; i < num_reg_params; i++) {
382 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
384 if (!reg) {
385 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
386 return ERROR_COMMAND_SYNTAX_ERROR;
389 if (reg->size != reg_params[i].size) {
390 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
391 reg_params[i].reg_name);
392 return ERROR_COMMAND_SYNTAX_ERROR;
395 mips32_set_core_reg(reg, reg_params[i].value);
398 mips32->isa_mode = mips32_algorithm_info->isa_mode;
400 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
402 if (retval != ERROR_OK)
403 return retval;
405 for (i = 0; i < num_mem_params; i++) {
406 if (mem_params[i].direction != PARAM_OUT) {
407 retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
408 mem_params[i].value);
409 if (retval != ERROR_OK)
410 return retval;
414 for (i = 0; i < num_reg_params; i++) {
415 if (reg_params[i].direction != PARAM_OUT) {
416 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
417 if (!reg) {
418 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
419 return ERROR_COMMAND_SYNTAX_ERROR;
422 if (reg->size != reg_params[i].size) {
423 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
424 reg_params[i].reg_name);
425 return ERROR_COMMAND_SYNTAX_ERROR;
428 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
432 /* restore everything we saved before */
433 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
434 uint32_t regvalue;
435 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
436 if (regvalue != context[i]) {
437 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
438 mips32->core_cache->reg_list[i].name, context[i]);
439 buf_set_u32(mips32->core_cache->reg_list[i].value,
440 0, 32, context[i]);
441 mips32->core_cache->reg_list[i].valid = 1;
442 mips32->core_cache->reg_list[i].dirty = 1;
446 mips32->isa_mode = isa_mode;
448 return ERROR_OK;
451 int mips32_examine(struct target *target)
453 struct mips32_common *mips32 = target_to_mips32(target);
455 if (!target_was_examined(target)) {
456 target_set_examined(target);
458 /* we will configure later */
459 mips32->bp_scanned = 0;
460 mips32->num_inst_bpoints = 0;
461 mips32->num_data_bpoints = 0;
462 mips32->num_inst_bpoints_avail = 0;
463 mips32->num_data_bpoints_avail = 0;
466 return ERROR_OK;
469 static int mips32_configure_ibs(struct target *target)
471 struct mips32_common *mips32 = target_to_mips32(target);
472 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
473 int retval, i;
474 uint32_t bpinfo;
476 /* get number of inst breakpoints */
477 retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
478 if (retval != ERROR_OK)
479 return retval;
481 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
482 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
483 mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
484 sizeof(struct mips32_comparator));
486 for (i = 0; i < mips32->num_inst_bpoints; i++)
487 mips32->inst_break_list[i].reg_address =
488 ejtag_info->ejtag_iba0_addr +
489 (ejtag_info->ejtag_iba_step_size * i);
491 /* clear IBIS reg */
492 retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
493 return retval;
496 static int mips32_configure_dbs(struct target *target)
498 struct mips32_common *mips32 = target_to_mips32(target);
499 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
500 int retval, i;
501 uint32_t bpinfo;
503 /* get number of data breakpoints */
504 retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
505 if (retval != ERROR_OK)
506 return retval;
508 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
509 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
510 mips32->data_break_list = calloc(mips32->num_data_bpoints,
511 sizeof(struct mips32_comparator));
513 for (i = 0; i < mips32->num_data_bpoints; i++)
514 mips32->data_break_list[i].reg_address =
515 ejtag_info->ejtag_dba0_addr +
516 (ejtag_info->ejtag_dba_step_size * i);
518 /* clear DBIS reg */
519 retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
520 return retval;
523 int mips32_configure_break_unit(struct target *target)
525 /* get pointers to arch-specific information */
526 struct mips32_common *mips32 = target_to_mips32(target);
527 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
528 int retval;
529 uint32_t dcr;
531 if (mips32->bp_scanned)
532 return ERROR_OK;
534 /* get info about breakpoint support */
535 retval = target_read_u32(target, EJTAG_DCR, &dcr);
536 if (retval != ERROR_OK)
537 return retval;
539 /* EJTAG 2.0 does not specify EJTAG_DCR_IB and EJTAG_DCR_DB bits,
540 * assume IB and DB registers are always present. */
541 if (ejtag_info->ejtag_version == EJTAG_VERSION_20)
542 dcr |= EJTAG_DCR_IB | EJTAG_DCR_DB;
544 if (dcr & EJTAG_DCR_IB) {
545 retval = mips32_configure_ibs(target);
546 if (retval != ERROR_OK)
547 return retval;
550 if (dcr & EJTAG_DCR_DB) {
551 retval = mips32_configure_dbs(target);
552 if (retval != ERROR_OK)
553 return retval;
556 /* check if target endianness settings matches debug control register */
557 if (((dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
558 (!(dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_BIG_ENDIAN)))
559 LOG_WARNING("DCR endianness settings does not match target settings");
561 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
562 mips32->num_data_bpoints);
564 mips32->bp_scanned = 1;
566 return ERROR_OK;
569 int mips32_enable_interrupts(struct target *target, int enable)
571 int retval;
572 int update = 0;
573 uint32_t dcr;
575 /* read debug control register */
576 retval = target_read_u32(target, EJTAG_DCR, &dcr);
577 if (retval != ERROR_OK)
578 return retval;
580 if (enable) {
581 if (!(dcr & EJTAG_DCR_INTE)) {
582 /* enable interrupts */
583 dcr |= EJTAG_DCR_INTE;
584 update = 1;
586 } else {
587 if (dcr & EJTAG_DCR_INTE) {
588 /* disable interrupts */
589 dcr &= ~EJTAG_DCR_INTE;
590 update = 1;
594 if (update) {
595 retval = target_write_u32(target, EJTAG_DCR, dcr);
596 if (retval != ERROR_OK)
597 return retval;
600 return ERROR_OK;
603 int mips32_checksum_memory(struct target *target, uint32_t address,
604 uint32_t count, uint32_t *checksum)
606 struct working_area *crc_algorithm;
607 struct reg_param reg_params[2];
608 struct mips32_algorithm mips32_info;
609 int retval;
610 uint32_t i;
612 /* see contib/loaders/checksum/mips32.s for src */
614 static const uint32_t mips_crc_code[] = {
615 0x248C0000, /* addiu $t4, $a0, 0 */
616 0x24AA0000, /* addiu $t2, $a1, 0 */
617 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
618 0x10000010, /* beq $zero, $zero, ncomp */
619 0x240B0000, /* addiu $t3, $zero, 0 */
620 /* nbyte: */
621 0x81850000, /* lb $a1, ($t4) */
622 0x218C0001, /* addi $t4, $t4, 1 */
623 0x00052E00, /* sll $a1, $a1, 24 */
624 0x3C0204C1, /* lui $v0, 0x04c1 */
625 0x00852026, /* xor $a0, $a0, $a1 */
626 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
627 0x00003021, /* addu $a2, $zero, $zero */
628 /* loop: */
629 0x00044040, /* sll $t0, $a0, 1 */
630 0x24C60001, /* addiu $a2, $a2, 1 */
631 0x28840000, /* slti $a0, $a0, 0 */
632 0x01074826, /* xor $t1, $t0, $a3 */
633 0x0124400B, /* movn $t0, $t1, $a0 */
634 0x28C30008, /* slti $v1, $a2, 8 */
635 0x1460FFF9, /* bne $v1, $zero, loop */
636 0x01002021, /* addu $a0, $t0, $zero */
637 /* ncomp: */
638 0x154BFFF0, /* bne $t2, $t3, nbyte */
639 0x256B0001, /* addiu $t3, $t3, 1 */
640 0x7000003F, /* sdbbp */
643 /* make sure we have a working area */
644 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
645 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
647 /* convert flash writing code into a buffer in target endianness */
648 for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++)
649 target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]);
651 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
652 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
654 init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
655 buf_set_u32(reg_params[0].value, 0, 32, address);
657 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
658 buf_set_u32(reg_params[1].value, 0, 32, count);
660 int timeout = 20000 * (1 + (count / (1024 * 1024)));
662 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
663 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout,
664 &mips32_info);
665 if (retval != ERROR_OK) {
666 destroy_reg_param(&reg_params[0]);
667 destroy_reg_param(&reg_params[1]);
668 target_free_working_area(target, crc_algorithm);
669 return retval;
672 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
674 destroy_reg_param(&reg_params[0]);
675 destroy_reg_param(&reg_params[1]);
677 target_free_working_area(target, crc_algorithm);
679 return ERROR_OK;
682 /** Checks whether a memory region is zeroed. */
683 int mips32_blank_check_memory(struct target *target,
684 uint32_t address, uint32_t count, uint32_t *blank)
686 struct working_area *erase_check_algorithm;
687 struct reg_param reg_params[3];
688 struct mips32_algorithm mips32_info;
689 int retval;
690 uint32_t i;
692 static const uint32_t erase_check_code[] = {
693 /* nbyte: */
694 0x80880000, /* lb $t0, ($a0) */
695 0x00C83024, /* and $a2, $a2, $t0 */
696 0x24A5FFFF, /* addiu $a1, $a1, -1 */
697 0x14A0FFFC, /* bne $a1, $zero, nbyte */
698 0x24840001, /* addiu $a0, $a0, 1 */
699 0x7000003F /* sdbbp */
702 /* make sure we have a working area */
703 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
704 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
706 /* convert flash writing code into a buffer in target endianness */
707 for (i = 0; i < ARRAY_SIZE(erase_check_code); i++) {
708 target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t),
709 erase_check_code[i]);
712 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
713 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
715 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
716 buf_set_u32(reg_params[0].value, 0, 32, address);
718 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
719 buf_set_u32(reg_params[1].value, 0, 32, count);
721 init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
722 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
724 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
725 erase_check_algorithm->address,
726 erase_check_algorithm->address + (sizeof(erase_check_code)-4),
727 10000, &mips32_info);
728 if (retval != ERROR_OK) {
729 destroy_reg_param(&reg_params[0]);
730 destroy_reg_param(&reg_params[1]);
731 destroy_reg_param(&reg_params[2]);
732 target_free_working_area(target, erase_check_algorithm);
733 return retval;
736 *blank = buf_get_u32(reg_params[2].value, 0, 32);
738 destroy_reg_param(&reg_params[0]);
739 destroy_reg_param(&reg_params[1]);
740 destroy_reg_param(&reg_params[2]);
742 target_free_working_area(target, erase_check_algorithm);
744 return ERROR_OK;
747 static int mips32_verify_pointer(struct command_context *cmd_ctx,
748 struct mips32_common *mips32)
750 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
751 command_print(cmd_ctx, "target is not an MIPS32");
752 return ERROR_TARGET_INVALID;
754 return ERROR_OK;
758 * MIPS32 targets expose command interface
759 * to manipulate CP0 registers
761 COMMAND_HANDLER(mips32_handle_cp0_command)
763 int retval;
764 struct target *target = get_current_target(CMD_CTX);
765 struct mips32_common *mips32 = target_to_mips32(target);
766 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
769 retval = mips32_verify_pointer(CMD_CTX, mips32);
770 if (retval != ERROR_OK)
771 return retval;
773 if (target->state != TARGET_HALTED) {
774 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
775 return ERROR_OK;
778 /* two or more argument, access a single register/select (write if third argument is given) */
779 if (CMD_ARGC < 2)
780 return ERROR_COMMAND_SYNTAX_ERROR;
781 else {
782 uint32_t cp0_reg, cp0_sel;
783 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
784 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
786 if (CMD_ARGC == 2) {
787 uint32_t value;
789 retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
790 if (retval != ERROR_OK) {
791 command_print(CMD_CTX,
792 "couldn't access reg %" PRIi32,
793 cp0_reg);
794 return ERROR_OK;
796 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
797 cp0_reg, cp0_sel, value);
799 } else if (CMD_ARGC == 3) {
800 uint32_t value;
801 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
802 retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
803 if (retval != ERROR_OK) {
804 command_print(CMD_CTX,
805 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
806 cp0_reg, cp0_sel);
807 return ERROR_OK;
809 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
810 cp0_reg, cp0_sel, value);
814 return ERROR_OK;
817 COMMAND_HANDLER(mips32_handle_scan_delay_command)
819 struct target *target = get_current_target(CMD_CTX);
820 struct mips32_common *mips32 = target_to_mips32(target);
821 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
823 if (CMD_ARGC == 1)
824 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
825 else if (CMD_ARGC > 1)
826 return ERROR_COMMAND_SYNTAX_ERROR;
828 command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
829 if (ejtag_info->scan_delay >= 2000000) {
830 ejtag_info->mode = 0;
831 command_print(CMD_CTX, "running in legacy mode");
832 } else {
833 ejtag_info->mode = 1;
834 command_print(CMD_CTX, "running in fast queued mode");
837 return ERROR_OK;
840 static const struct command_registration mips32_exec_command_handlers[] = {
842 .name = "cp0",
843 .handler = mips32_handle_cp0_command,
844 .mode = COMMAND_EXEC,
845 .usage = "regnum select [value]",
846 .help = "display/modify cp0 register",
849 .name = "scan_delay",
850 .handler = mips32_handle_scan_delay_command,
851 .mode = COMMAND_ANY,
852 .help = "display/set scan delay in nano seconds",
853 .usage = "[value]",
855 COMMAND_REGISTRATION_DONE
858 const struct command_registration mips32_command_handlers[] = {
860 .name = "mips32",
861 .mode = COMMAND_ANY,
862 .help = "mips32 command group",
863 .usage = "",
864 .chain = mips32_exec_command_handlers,
866 COMMAND_REGISTRATION_DONE