add db.1.85
[nvi.git] / db.1.85 / hash / hash_bigkey.c
blob578314a6455e7895207b595658498737b0d546fb
1 /*-
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_bigkey.c 8.3 (Berkeley) 5/31/94";
39 #endif /* LIBC_SCCS and not lint */
42 * PACKAGE: hash
43 * DESCRIPTION:
44 * Big key/data handling for the hashing package.
46 * ROUTINES:
47 * External
48 * __big_keydata
49 * __big_split
50 * __big_insert
51 * __big_return
52 * __big_delete
53 * __find_last_page
54 * Internal
55 * collect_key
56 * collect_data
59 #include <sys/param.h>
61 #include <errno.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <string.h>
66 #ifdef DEBUG
67 #include <assert.h>
68 #endif
70 #include <db.h>
71 #include "hash.h"
72 #include "page.h"
73 #include "extern.h"
75 static int collect_key __P((HTAB *, BUFHEAD *, int, DBT *, int));
76 static int collect_data __P((HTAB *, BUFHEAD *, int, int));
79 * Big_insert
81 * You need to do an insert and the key/data pair is too big
83 * Returns:
84 * 0 ==> OK
85 *-1 ==> ERROR
87 extern int
88 __big_insert(hashp, bufp, key, val)
89 HTAB *hashp;
90 BUFHEAD *bufp;
91 const DBT *key, *val;
93 register u_int16_t *p;
94 int key_size, n, val_size;
95 u_int16_t space, move_bytes, off;
96 char *cp, *key_data, *val_data;
98 cp = bufp->page; /* Character pointer of p. */
99 p = (u_int16_t *)cp;
101 key_data = (char *)key->data;
102 key_size = key->size;
103 val_data = (char *)val->data;
104 val_size = val->size;
106 /* First move the Key */
107 for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
108 space = FREESPACE(p) - BIGOVERHEAD) {
109 move_bytes = MIN(space, key_size);
110 off = OFFSET(p) - move_bytes;
111 memmove(cp + off, key_data, move_bytes);
112 key_size -= move_bytes;
113 key_data += move_bytes;
114 n = p[0];
115 p[++n] = off;
116 p[0] = ++n;
117 FREESPACE(p) = off - PAGE_META(n);
118 OFFSET(p) = off;
119 p[n] = PARTIAL_KEY;
120 bufp = __add_ovflpage(hashp, bufp);
121 if (!bufp)
122 return (-1);
123 n = p[0];
124 if (!key_size)
125 if (FREESPACE(p)) {
126 move_bytes = MIN(FREESPACE(p), val_size);
127 off = OFFSET(p) - move_bytes;
128 p[n] = off;
129 memmove(cp + off, val_data, move_bytes);
130 val_data += move_bytes;
131 val_size -= move_bytes;
132 p[n - 2] = FULL_KEY_DATA;
133 FREESPACE(p) = FREESPACE(p) - move_bytes;
134 OFFSET(p) = off;
135 } else
136 p[n - 2] = FULL_KEY;
137 p = (u_int16_t *)bufp->page;
138 cp = bufp->page;
139 bufp->flags |= BUF_MOD;
142 /* Now move the data */
143 for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
144 space = FREESPACE(p) - BIGOVERHEAD) {
145 move_bytes = MIN(space, val_size);
147 * Here's the hack to make sure that if the data ends on the
148 * same page as the key ends, FREESPACE is at least one.
150 if (space == val_size && val_size == val->size)
151 move_bytes--;
152 off = OFFSET(p) - move_bytes;
153 memmove(cp + off, val_data, move_bytes);
154 val_size -= move_bytes;
155 val_data += move_bytes;
156 n = p[0];
157 p[++n] = off;
158 p[0] = ++n;
159 FREESPACE(p) = off - PAGE_META(n);
160 OFFSET(p) = off;
161 if (val_size) {
162 p[n] = FULL_KEY;
163 bufp = __add_ovflpage(hashp, bufp);
164 if (!bufp)
165 return (-1);
166 cp = bufp->page;
167 p = (u_int16_t *)cp;
168 } else
169 p[n] = FULL_KEY_DATA;
170 bufp->flags |= BUF_MOD;
172 return (0);
176 * Called when bufp's page contains a partial key (index should be 1)
178 * All pages in the big key/data pair except bufp are freed. We cannot
179 * free bufp because the page pointing to it is lost and we can't get rid
180 * of its pointer.
182 * Returns:
183 * 0 => OK
184 *-1 => ERROR
186 extern int
187 __big_delete(hashp, bufp)
188 HTAB *hashp;
189 BUFHEAD *bufp;
191 register BUFHEAD *last_bfp, *rbufp;
192 u_int16_t *bp, pageno;
193 int key_done, n;
195 rbufp = bufp;
196 last_bfp = NULL;
197 bp = (u_int16_t *)bufp->page;
198 pageno = 0;
199 key_done = 0;
201 while (!key_done || (bp[2] != FULL_KEY_DATA)) {
202 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
203 key_done = 1;
206 * If there is freespace left on a FULL_KEY_DATA page, then
207 * the data is short and fits entirely on this page, and this
208 * is the last page.
210 if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
211 break;
212 pageno = bp[bp[0] - 1];
213 rbufp->flags |= BUF_MOD;
214 rbufp = __get_buf(hashp, pageno, rbufp, 0);
215 if (last_bfp)
216 __free_ovflpage(hashp, last_bfp);
217 last_bfp = rbufp;
218 if (!rbufp)
219 return (-1); /* Error. */
220 bp = (u_int16_t *)rbufp->page;
224 * If we get here then rbufp points to the last page of the big
225 * key/data pair. Bufp points to the first one -- it should now be
226 * empty pointing to the next page after this pair. Can't free it
227 * because we don't have the page pointing to it.
230 /* This is information from the last page of the pair. */
231 n = bp[0];
232 pageno = bp[n - 1];
234 /* Now, bp is the first page of the pair. */
235 bp = (u_int16_t *)bufp->page;
236 if (n > 2) {
237 /* There is an overflow page. */
238 bp[1] = pageno;
239 bp[2] = OVFLPAGE;
240 bufp->ovfl = rbufp->ovfl;
241 } else
242 /* This is the last page. */
243 bufp->ovfl = NULL;
244 n -= 2;
245 bp[0] = n;
246 FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
247 OFFSET(bp) = hashp->BSIZE - 1;
249 bufp->flags |= BUF_MOD;
250 if (rbufp)
251 __free_ovflpage(hashp, rbufp);
252 if (last_bfp != rbufp)
253 __free_ovflpage(hashp, last_bfp);
255 hashp->NKEYS--;
256 return (0);
259 * Returns:
260 * 0 = key not found
261 * -1 = get next overflow page
262 * -2 means key not found and this is big key/data
263 * -3 error
265 extern int
266 __find_bigpair(hashp, bufp, ndx, key, size)
267 HTAB *hashp;
268 BUFHEAD *bufp;
269 int ndx;
270 char *key;
271 int size;
273 register u_int16_t *bp;
274 register char *p;
275 int ksize;
276 u_int16_t bytes;
277 char *kkey;
279 bp = (u_int16_t *)bufp->page;
280 p = bufp->page;
281 ksize = size;
282 kkey = key;
284 for (bytes = hashp->BSIZE - bp[ndx];
285 bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
286 bytes = hashp->BSIZE - bp[ndx]) {
287 if (memcmp(p + bp[ndx], kkey, bytes))
288 return (-2);
289 kkey += bytes;
290 ksize -= bytes;
291 bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
292 if (!bufp)
293 return (-3);
294 p = bufp->page;
295 bp = (u_int16_t *)p;
296 ndx = 1;
299 if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
300 #ifdef HASH_STATISTICS
301 ++hash_collisions;
302 #endif
303 return (-2);
304 } else
305 return (ndx);
309 * Given the buffer pointer of the first overflow page of a big pair,
310 * find the end of the big pair
312 * This will set bpp to the buffer header of the last page of the big pair.
313 * It will return the pageno of the overflow page following the last page
314 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
315 * bucket)
317 extern u_int16_t
318 __find_last_page(hashp, bpp)
319 HTAB *hashp;
320 BUFHEAD **bpp;
322 BUFHEAD *bufp;
323 u_int16_t *bp, pageno;
324 int n;
326 bufp = *bpp;
327 bp = (u_int16_t *)bufp->page;
328 for (;;) {
329 n = bp[0];
332 * This is the last page if: the tag is FULL_KEY_DATA and
333 * either only 2 entries OVFLPAGE marker is explicit there
334 * is freespace on the page.
336 if (bp[2] == FULL_KEY_DATA &&
337 ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
338 break;
340 pageno = bp[n - 1];
341 bufp = __get_buf(hashp, pageno, bufp, 0);
342 if (!bufp)
343 return (0); /* Need to indicate an error! */
344 bp = (u_int16_t *)bufp->page;
347 *bpp = bufp;
348 if (bp[0] > 2)
349 return (bp[3]);
350 else
351 return (0);
355 * Return the data for the key/data pair that begins on this page at this
356 * index (index should always be 1).
358 extern int
359 __big_return(hashp, bufp, ndx, val, set_current)
360 HTAB *hashp;
361 BUFHEAD *bufp;
362 int ndx;
363 DBT *val;
364 int set_current;
366 BUFHEAD *save_p;
367 u_int16_t *bp, len, off, save_addr;
368 char *tp;
370 bp = (u_int16_t *)bufp->page;
371 while (bp[ndx + 1] == PARTIAL_KEY) {
372 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
373 if (!bufp)
374 return (-1);
375 bp = (u_int16_t *)bufp->page;
376 ndx = 1;
379 if (bp[ndx + 1] == FULL_KEY) {
380 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
381 if (!bufp)
382 return (-1);
383 bp = (u_int16_t *)bufp->page;
384 save_p = bufp;
385 save_addr = save_p->addr;
386 off = bp[1];
387 len = 0;
388 } else
389 if (!FREESPACE(bp)) {
391 * This is a hack. We can't distinguish between
392 * FULL_KEY_DATA that contains complete data or
393 * incomplete data, so we require that if the data
394 * is complete, there is at least 1 byte of free
395 * space left.
397 off = bp[bp[0]];
398 len = bp[1] - off;
399 save_p = bufp;
400 save_addr = bufp->addr;
401 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
402 if (!bufp)
403 return (-1);
404 bp = (u_int16_t *)bufp->page;
405 } else {
406 /* The data is all on one page. */
407 tp = (char *)bp;
408 off = bp[bp[0]];
409 val->data = (u_char *)tp + off;
410 val->size = bp[1] - off;
411 if (set_current) {
412 if (bp[0] == 2) { /* No more buckets in
413 * chain */
414 hashp->cpage = NULL;
415 hashp->cbucket++;
416 hashp->cndx = 1;
417 } else {
418 hashp->cpage = __get_buf(hashp,
419 bp[bp[0] - 1], bufp, 0);
420 if (!hashp->cpage)
421 return (-1);
422 hashp->cndx = 1;
423 if (!((u_int16_t *)
424 hashp->cpage->page)[0]) {
425 hashp->cbucket++;
426 hashp->cpage = NULL;
430 return (0);
433 val->size = collect_data(hashp, bufp, (int)len, set_current);
434 if (val->size == -1)
435 return (-1);
436 if (save_p->addr != save_addr) {
437 /* We are pretty short on buffers. */
438 errno = EINVAL; /* OUT OF BUFFERS */
439 return (-1);
441 memmove(hashp->tmp_buf, (save_p->page) + off, len);
442 val->data = (u_char *)hashp->tmp_buf;
443 return (0);
446 * Count how big the total datasize is by recursing through the pages. Then
447 * allocate a buffer and copy the data as you recurse up.
449 static int
450 collect_data(hashp, bufp, len, set)
451 HTAB *hashp;
452 BUFHEAD *bufp;
453 int len, set;
455 register u_int16_t *bp;
456 register char *p;
457 BUFHEAD *xbp;
458 u_int16_t save_addr;
459 int mylen, totlen;
461 p = bufp->page;
462 bp = (u_int16_t *)p;
463 mylen = hashp->BSIZE - bp[1];
464 save_addr = bufp->addr;
466 if (bp[2] == FULL_KEY_DATA) { /* End of Data */
467 totlen = len + mylen;
468 if (hashp->tmp_buf)
469 free(hashp->tmp_buf);
470 if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
471 return (-1);
472 if (set) {
473 hashp->cndx = 1;
474 if (bp[0] == 2) { /* No more buckets in chain */
475 hashp->cpage = NULL;
476 hashp->cbucket++;
477 } else {
478 hashp->cpage =
479 __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
480 if (!hashp->cpage)
481 return (-1);
482 else if (!((u_int16_t *)hashp->cpage->page)[0]) {
483 hashp->cbucket++;
484 hashp->cpage = NULL;
488 } else {
489 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
490 if (!xbp || ((totlen =
491 collect_data(hashp, xbp, len + mylen, set)) < 1))
492 return (-1);
494 if (bufp->addr != save_addr) {
495 errno = EINVAL; /* Out of buffers. */
496 return (-1);
498 memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
499 return (totlen);
503 * Fill in the key and data for this big pair.
505 extern int
506 __big_keydata(hashp, bufp, key, val, set)
507 HTAB *hashp;
508 BUFHEAD *bufp;
509 DBT *key, *val;
510 int set;
512 key->size = collect_key(hashp, bufp, 0, val, set);
513 if (key->size == -1)
514 return (-1);
515 key->data = (u_char *)hashp->tmp_key;
516 return (0);
520 * Count how big the total key size is by recursing through the pages. Then
521 * collect the data, allocate a buffer and copy the key as you recurse up.
523 static int
524 collect_key(hashp, bufp, len, val, set)
525 HTAB *hashp;
526 BUFHEAD *bufp;
527 int len;
528 DBT *val;
529 int set;
531 BUFHEAD *xbp;
532 char *p;
533 int mylen, totlen;
534 u_int16_t *bp, save_addr;
536 p = bufp->page;
537 bp = (u_int16_t *)p;
538 mylen = hashp->BSIZE - bp[1];
540 save_addr = bufp->addr;
541 totlen = len + mylen;
542 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
543 if (hashp->tmp_key != NULL)
544 free(hashp->tmp_key);
545 if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
546 return (-1);
547 if (__big_return(hashp, bufp, 1, val, set))
548 return (-1);
549 } else {
550 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
551 if (!xbp || ((totlen =
552 collect_key(hashp, xbp, totlen, val, set)) < 1))
553 return (-1);
555 if (bufp->addr != save_addr) {
556 errno = EINVAL; /* MIS -- OUT OF BUFFERS */
557 return (-1);
559 memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
560 return (totlen);
564 * Returns:
565 * 0 => OK
566 * -1 => error
568 extern int
569 __big_split(hashp, op, np, big_keyp, addr, obucket, ret)
570 HTAB *hashp;
571 BUFHEAD *op; /* Pointer to where to put keys that go in old bucket */
572 BUFHEAD *np; /* Pointer to new bucket page */
573 /* Pointer to first page containing the big key/data */
574 BUFHEAD *big_keyp;
575 int addr; /* Address of big_keyp */
576 u_int32_t obucket;/* Old Bucket */
577 SPLIT_RETURN *ret;
579 register BUFHEAD *tmpp;
580 register u_int16_t *tp;
581 BUFHEAD *bp;
582 DBT key, val;
583 u_int32_t change;
584 u_int16_t free_space, n, off;
586 bp = big_keyp;
588 /* Now figure out where the big key/data goes */
589 if (__big_keydata(hashp, big_keyp, &key, &val, 0))
590 return (-1);
591 change = (__call_hash(hashp, key.data, key.size) != obucket);
593 if (ret->next_addr = __find_last_page(hashp, &big_keyp)) {
594 if (!(ret->nextp =
595 __get_buf(hashp, ret->next_addr, big_keyp, 0)))
596 return (-1);;
597 } else
598 ret->nextp = NULL;
600 /* Now make one of np/op point to the big key/data pair */
601 #ifdef DEBUG
602 assert(np->ovfl == NULL);
603 #endif
604 if (change)
605 tmpp = np;
606 else
607 tmpp = op;
609 tmpp->flags |= BUF_MOD;
610 #ifdef DEBUG1
611 (void)fprintf(stderr,
612 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
613 (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
614 #endif
615 tmpp->ovfl = bp; /* one of op/np point to big_keyp */
616 tp = (u_int16_t *)tmpp->page;
617 #ifdef DEBUG
618 assert(FREESPACE(tp) >= OVFLSIZE);
619 #endif
620 n = tp[0];
621 off = OFFSET(tp);
622 free_space = FREESPACE(tp);
623 tp[++n] = (u_int16_t)addr;
624 tp[++n] = OVFLPAGE;
625 tp[0] = n;
626 OFFSET(tp) = off;
627 FREESPACE(tp) = free_space - OVFLSIZE;
630 * Finally, set the new and old return values. BIG_KEYP contains a
631 * pointer to the last page of the big key_data pair. Make sure that
632 * big_keyp has no following page (2 elements) or create an empty
633 * following page.
636 ret->newp = np;
637 ret->oldp = op;
639 tp = (u_int16_t *)big_keyp->page;
640 big_keyp->flags |= BUF_MOD;
641 if (tp[0] > 2) {
643 * There may be either one or two offsets on this page. If
644 * there is one, then the overflow page is linked on normally
645 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains
646 * the second offset and needs to get stuffed in after the
647 * next overflow page is added.
649 n = tp[4];
650 free_space = FREESPACE(tp);
651 off = OFFSET(tp);
652 tp[0] -= 2;
653 FREESPACE(tp) = free_space + OVFLSIZE;
654 OFFSET(tp) = off;
655 tmpp = __add_ovflpage(hashp, big_keyp);
656 if (!tmpp)
657 return (-1);
658 tp[4] = n;
659 } else
660 tmpp = big_keyp;
662 if (change)
663 ret->newp = tmpp;
664 else
665 ret->oldp = tmpp;
666 return (0);