OSX/iOS: Fix SDK incompatibility.
[luajit-2.0.git] / src / lj_ir.c
blob631b7cbc67d3a8138808caadb2a48ea3c7a03869
1 /*
2 ** SSA IR (Intermediate Representation) emitter.
3 ** Copyright (C) 2005-2023 Mike Pall. See Copyright Notice in luajit.h
4 */
6 #define lj_ir_c
7 #define LUA_CORE
9 /* For pointers to libc/libm functions. */
10 #include <stdio.h>
11 #include <math.h>
13 #include "lj_obj.h"
15 #if LJ_HASJIT
17 #include "lj_gc.h"
18 #include "lj_buf.h"
19 #include "lj_str.h"
20 #include "lj_tab.h"
21 #include "lj_ir.h"
22 #include "lj_jit.h"
23 #include "lj_ircall.h"
24 #include "lj_iropt.h"
25 #include "lj_trace.h"
26 #if LJ_HASFFI
27 #include "lj_ctype.h"
28 #include "lj_cdata.h"
29 #include "lj_carith.h"
30 #endif
31 #include "lj_vm.h"
32 #include "lj_strscan.h"
33 #include "lj_serialize.h"
34 #include "lj_strfmt.h"
35 #include "lj_prng.h"
37 /* Some local macros to save typing. Undef'd at the end. */
38 #define IR(ref) (&J->cur.ir[(ref)])
39 #define fins (&J->fold.ins)
41 /* Pass IR on to next optimization in chain (FOLD). */
42 #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
44 /* -- IR tables ----------------------------------------------------------- */
46 /* IR instruction modes. */
47 LJ_DATADEF const uint8_t lj_ir_mode[IR__MAX+1] = {
48 IRDEF(IRMODE)
52 /* IR type sizes. */
53 LJ_DATADEF const uint8_t lj_ir_type_size[IRT__MAX+1] = {
54 #define IRTSIZE(name, size) size,
55 IRTDEF(IRTSIZE)
56 #undef IRTSIZE
60 /* C call info for CALL* instructions. */
61 LJ_DATADEF const CCallInfo lj_ir_callinfo[] = {
62 #define IRCALLCI(cond, name, nargs, kind, type, flags) \
63 { (ASMFunction)IRCALLCOND_##cond(name), \
64 (nargs)|(CCI_CALL_##kind)|(IRT_##type<<CCI_OTSHIFT)|(flags) },
65 IRCALLDEF(IRCALLCI)
66 #undef IRCALLCI
67 { NULL, 0 }
70 /* -- IR emitter ---------------------------------------------------------- */
72 /* Grow IR buffer at the top. */
73 void LJ_FASTCALL lj_ir_growtop(jit_State *J)
75 IRIns *baseir = J->irbuf + J->irbotlim;
76 MSize szins = J->irtoplim - J->irbotlim;
77 if (szins) {
78 baseir = (IRIns *)lj_mem_realloc(J->L, baseir, szins*sizeof(IRIns),
79 2*szins*sizeof(IRIns));
80 J->irtoplim = J->irbotlim + 2*szins;
81 } else {
82 baseir = (IRIns *)lj_mem_realloc(J->L, NULL, 0, LJ_MIN_IRSZ*sizeof(IRIns));
83 J->irbotlim = REF_BASE - LJ_MIN_IRSZ/4;
84 J->irtoplim = J->irbotlim + LJ_MIN_IRSZ;
86 J->cur.ir = J->irbuf = baseir - J->irbotlim;
89 /* Grow IR buffer at the bottom or shift it up. */
90 static void lj_ir_growbot(jit_State *J)
92 IRIns *baseir = J->irbuf + J->irbotlim;
93 MSize szins = J->irtoplim - J->irbotlim;
94 lj_assertJ(szins != 0, "zero IR size");
95 lj_assertJ(J->cur.nk == J->irbotlim || J->cur.nk-1 == J->irbotlim,
96 "unexpected IR growth");
97 if (J->cur.nins + (szins >> 1) < J->irtoplim) {
98 /* More than half of the buffer is free on top: shift up by a quarter. */
99 MSize ofs = szins >> 2;
100 memmove(baseir + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns));
101 J->irbotlim -= ofs;
102 J->irtoplim -= ofs;
103 J->cur.ir = J->irbuf = baseir - J->irbotlim;
104 } else {
105 /* Double the buffer size, but split the growth amongst top/bottom. */
106 IRIns *newbase = lj_mem_newt(J->L, 2*szins*sizeof(IRIns), IRIns);
107 MSize ofs = szins >= 256 ? 128 : (szins >> 1); /* Limit bottom growth. */
108 memcpy(newbase + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns));
109 lj_mem_free(G(J->L), baseir, szins*sizeof(IRIns));
110 J->irbotlim -= ofs;
111 J->irtoplim = J->irbotlim + 2*szins;
112 J->cur.ir = J->irbuf = newbase - J->irbotlim;
116 /* Emit IR without any optimizations. */
117 TRef LJ_FASTCALL lj_ir_emit(jit_State *J)
119 IRRef ref = lj_ir_nextins(J);
120 IRIns *ir = IR(ref);
121 IROp op = fins->o;
122 ir->prev = J->chain[op];
123 J->chain[op] = (IRRef1)ref;
124 ir->o = op;
125 ir->op1 = fins->op1;
126 ir->op2 = fins->op2;
127 J->guardemit.irt |= fins->t.irt;
128 return TREF(ref, irt_t((ir->t = fins->t)));
131 /* Emit call to a C function. */
132 TRef lj_ir_call(jit_State *J, IRCallID id, ...)
134 const CCallInfo *ci = &lj_ir_callinfo[id];
135 uint32_t n = CCI_NARGS(ci);
136 TRef tr = TREF_NIL;
137 va_list argp;
138 va_start(argp, id);
139 if ((ci->flags & CCI_L)) n--;
140 if (n > 0)
141 tr = va_arg(argp, IRRef);
142 while (n-- > 1)
143 tr = emitir(IRT(IR_CARG, IRT_NIL), tr, va_arg(argp, IRRef));
144 va_end(argp);
145 if (CCI_OP(ci) == IR_CALLS)
146 J->needsnap = 1; /* Need snapshot after call with side effect. */
147 return emitir(CCI_OPTYPE(ci), tr, id);
150 /* Load field of type t from GG_State + offset. Must be 32 bit aligned. */
151 TRef lj_ir_ggfload(jit_State *J, IRType t, uintptr_t ofs)
153 lj_assertJ((ofs & 3) == 0, "unaligned GG_State field offset");
154 ofs >>= 2;
155 lj_assertJ(ofs >= IRFL__MAX && ofs <= 0x3ff,
156 "GG_State field offset breaks 10 bit FOLD key limit");
157 lj_ir_set(J, IRT(IR_FLOAD, t), REF_NIL, ofs);
158 return lj_opt_fold(J);
161 /* -- Interning of constants ---------------------------------------------- */
164 ** IR instructions for constants are kept between J->cur.nk >= ref < REF_BIAS.
165 ** They are chained like all other instructions, but grow downwards.
166 ** The are interned (like strings in the VM) to facilitate reference
167 ** comparisons. The same constant must get the same reference.
170 /* Get ref of next IR constant and optionally grow IR.
171 ** Note: this may invalidate all IRIns *!
173 static LJ_AINLINE IRRef ir_nextk(jit_State *J)
175 IRRef ref = J->cur.nk;
176 if (LJ_UNLIKELY(ref <= J->irbotlim)) lj_ir_growbot(J);
177 J->cur.nk = --ref;
178 return ref;
181 /* Get ref of next 64 bit IR constant and optionally grow IR.
182 ** Note: this may invalidate all IRIns *!
184 static LJ_AINLINE IRRef ir_nextk64(jit_State *J)
186 IRRef ref = J->cur.nk - 2;
187 lj_assertJ(J->state != LJ_TRACE_ASM, "bad JIT state");
188 if (LJ_UNLIKELY(ref < J->irbotlim)) lj_ir_growbot(J);
189 J->cur.nk = ref;
190 return ref;
193 #if LJ_GC64
194 #define ir_nextkgc ir_nextk64
195 #else
196 #define ir_nextkgc ir_nextk
197 #endif
199 /* Intern int32_t constant. */
200 TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k)
202 IRIns *ir, *cir = J->cur.ir;
203 IRRef ref;
204 for (ref = J->chain[IR_KINT]; ref; ref = cir[ref].prev)
205 if (cir[ref].i == k)
206 goto found;
207 ref = ir_nextk(J);
208 ir = IR(ref);
209 ir->i = k;
210 ir->t.irt = IRT_INT;
211 ir->o = IR_KINT;
212 ir->prev = J->chain[IR_KINT];
213 J->chain[IR_KINT] = (IRRef1)ref;
214 found:
215 return TREF(ref, IRT_INT);
218 /* Intern 64 bit constant, given by its 64 bit pattern. */
219 TRef lj_ir_k64(jit_State *J, IROp op, uint64_t u64)
221 IRIns *ir, *cir = J->cur.ir;
222 IRRef ref;
223 IRType t = op == IR_KNUM ? IRT_NUM : IRT_I64;
224 for (ref = J->chain[op]; ref; ref = cir[ref].prev)
225 if (ir_k64(&cir[ref])->u64 == u64)
226 goto found;
227 ref = ir_nextk64(J);
228 ir = IR(ref);
229 ir[1].tv.u64 = u64;
230 ir->t.irt = t;
231 ir->o = op;
232 ir->op12 = 0;
233 ir->prev = J->chain[op];
234 J->chain[op] = (IRRef1)ref;
235 found:
236 return TREF(ref, t);
239 /* Intern FP constant, given by its 64 bit pattern. */
240 TRef lj_ir_knum_u64(jit_State *J, uint64_t u64)
242 return lj_ir_k64(J, IR_KNUM, u64);
245 /* Intern 64 bit integer constant. */
246 TRef lj_ir_kint64(jit_State *J, uint64_t u64)
248 return lj_ir_k64(J, IR_KINT64, u64);
251 /* Check whether a number is int and return it. -0 is NOT considered an int. */
252 static int numistrueint(lua_Number n, int32_t *kp)
254 int32_t k = lj_num2int(n);
255 if (n == (lua_Number)k) {
256 if (kp) *kp = k;
257 if (k == 0) { /* Special check for -0. */
258 TValue tv;
259 setnumV(&tv, n);
260 if (tv.u32.hi != 0)
261 return 0;
263 return 1;
265 return 0;
268 /* Intern number as int32_t constant if possible, otherwise as FP constant. */
269 TRef lj_ir_knumint(jit_State *J, lua_Number n)
271 int32_t k;
272 if (numistrueint(n, &k))
273 return lj_ir_kint(J, k);
274 else
275 return lj_ir_knum(J, n);
278 /* Intern GC object "constant". */
279 TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t)
281 IRIns *ir, *cir = J->cur.ir;
282 IRRef ref;
283 lj_assertJ(!isdead(J2G(J), o), "interning of dead GC object");
284 for (ref = J->chain[IR_KGC]; ref; ref = cir[ref].prev)
285 if (ir_kgc(&cir[ref]) == o)
286 goto found;
287 ref = ir_nextkgc(J);
288 ir = IR(ref);
289 /* NOBARRIER: Current trace is a GC root. */
290 ir->op12 = 0;
291 setgcref(ir[LJ_GC64].gcr, o);
292 ir->t.irt = (uint8_t)t;
293 ir->o = IR_KGC;
294 ir->prev = J->chain[IR_KGC];
295 J->chain[IR_KGC] = (IRRef1)ref;
296 found:
297 return TREF(ref, t);
300 /* Allocate GCtrace constant placeholder (no interning). */
301 TRef lj_ir_ktrace(jit_State *J)
303 IRRef ref = ir_nextkgc(J);
304 IRIns *ir = IR(ref);
305 lj_assertJ(irt_toitype_(IRT_P64) == LJ_TTRACE, "mismatched type mapping");
306 ir->t.irt = IRT_P64;
307 ir->o = LJ_GC64 ? IR_KNUM : IR_KNULL; /* Not IR_KGC yet, but same size. */
308 ir->op12 = 0;
309 ir->prev = 0;
310 return TREF(ref, IRT_P64);
313 /* Intern pointer constant. */
314 TRef lj_ir_kptr_(jit_State *J, IROp op, void *ptr)
316 IRIns *ir, *cir = J->cur.ir;
317 IRRef ref;
318 #if LJ_64 && !LJ_GC64
319 lj_assertJ((void *)(uintptr_t)u32ptr(ptr) == ptr, "out-of-range GC pointer");
320 #endif
321 for (ref = J->chain[op]; ref; ref = cir[ref].prev)
322 if (ir_kptr(&cir[ref]) == ptr)
323 goto found;
324 #if LJ_GC64
325 ref = ir_nextk64(J);
326 #else
327 ref = ir_nextk(J);
328 #endif
329 ir = IR(ref);
330 ir->op12 = 0;
331 setmref(ir[LJ_GC64].ptr, ptr);
332 ir->t.irt = IRT_PGC;
333 ir->o = op;
334 ir->prev = J->chain[op];
335 J->chain[op] = (IRRef1)ref;
336 found:
337 return TREF(ref, IRT_PGC);
340 /* Intern typed NULL constant. */
341 TRef lj_ir_knull(jit_State *J, IRType t)
343 IRIns *ir, *cir = J->cur.ir;
344 IRRef ref;
345 for (ref = J->chain[IR_KNULL]; ref; ref = cir[ref].prev)
346 if (irt_t(cir[ref].t) == t)
347 goto found;
348 ref = ir_nextk(J);
349 ir = IR(ref);
350 ir->i = 0;
351 ir->t.irt = (uint8_t)t;
352 ir->o = IR_KNULL;
353 ir->prev = J->chain[IR_KNULL];
354 J->chain[IR_KNULL] = (IRRef1)ref;
355 found:
356 return TREF(ref, t);
359 /* Intern key slot. */
360 TRef lj_ir_kslot(jit_State *J, TRef key, IRRef slot)
362 IRIns *ir, *cir = J->cur.ir;
363 IRRef2 op12 = IRREF2((IRRef1)key, (IRRef1)slot);
364 IRRef ref;
365 /* Const part is not touched by CSE/DCE, so 0-65535 is ok for IRMlit here. */
366 lj_assertJ(tref_isk(key) && slot == (IRRef)(IRRef1)slot,
367 "out-of-range key/slot");
368 for (ref = J->chain[IR_KSLOT]; ref; ref = cir[ref].prev)
369 if (cir[ref].op12 == op12)
370 goto found;
371 ref = ir_nextk(J);
372 ir = IR(ref);
373 ir->op12 = op12;
374 ir->t.irt = IRT_P32;
375 ir->o = IR_KSLOT;
376 ir->prev = J->chain[IR_KSLOT];
377 J->chain[IR_KSLOT] = (IRRef1)ref;
378 found:
379 return TREF(ref, IRT_P32);
382 /* -- Access to IR constants ---------------------------------------------- */
384 /* Copy value of IR constant. */
385 void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir)
387 UNUSED(L);
388 lj_assertL(ir->o != IR_KSLOT, "unexpected KSLOT"); /* Common mistake. */
389 switch (ir->o) {
390 case IR_KPRI: setpriV(tv, irt_toitype(ir->t)); break;
391 case IR_KINT: setintV(tv, ir->i); break;
392 case IR_KGC: setgcV(L, tv, ir_kgc(ir), irt_toitype(ir->t)); break;
393 case IR_KPTR: case IR_KKPTR:
394 setnumV(tv, (lua_Number)(uintptr_t)ir_kptr(ir));
395 break;
396 case IR_KNULL: setintV(tv, 0); break;
397 case IR_KNUM: setnumV(tv, ir_knum(ir)->n); break;
398 #if LJ_HASFFI
399 case IR_KINT64: {
400 GCcdata *cd = lj_cdata_new_(L, CTID_INT64, 8);
401 *(uint64_t *)cdataptr(cd) = ir_kint64(ir)->u64;
402 setcdataV(L, tv, cd);
403 break;
405 #endif
406 default: lj_assertL(0, "bad IR constant op %d", ir->o); break;
410 /* -- Convert IR operand types -------------------------------------------- */
412 /* Convert from string to number. */
413 TRef LJ_FASTCALL lj_ir_tonumber(jit_State *J, TRef tr)
415 if (!tref_isnumber(tr)) {
416 if (tref_isstr(tr))
417 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
418 else
419 lj_trace_err(J, LJ_TRERR_BADTYPE);
421 return tr;
424 /* Convert from integer or string to number. */
425 TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr)
427 if (!tref_isnum(tr)) {
428 if (tref_isinteger(tr))
429 tr = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT);
430 else if (tref_isstr(tr))
431 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
432 else
433 lj_trace_err(J, LJ_TRERR_BADTYPE);
435 return tr;
438 /* Convert from integer or number to string. */
439 TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr)
441 if (!tref_isstr(tr)) {
442 if (!tref_isnumber(tr))
443 lj_trace_err(J, LJ_TRERR_BADTYPE);
444 tr = emitir(IRT(IR_TOSTR, IRT_STR), tr,
445 tref_isnum(tr) ? IRTOSTR_NUM : IRTOSTR_INT);
447 return tr;
450 /* -- Miscellaneous IR ops ------------------------------------------------ */
452 /* Evaluate numeric comparison. */
453 int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op)
455 switch (op) {
456 case IR_EQ: return (a == b);
457 case IR_NE: return (a != b);
458 case IR_LT: return (a < b);
459 case IR_GE: return (a >= b);
460 case IR_LE: return (a <= b);
461 case IR_GT: return (a > b);
462 case IR_ULT: return !(a >= b);
463 case IR_UGE: return !(a < b);
464 case IR_ULE: return !(a > b);
465 case IR_UGT: return !(a <= b);
466 default: lj_assertX(0, "bad IR op %d", op); return 0;
470 /* Evaluate string comparison. */
471 int lj_ir_strcmp(GCstr *a, GCstr *b, IROp op)
473 int res = lj_str_cmp(a, b);
474 switch (op) {
475 case IR_LT: return (res < 0);
476 case IR_GE: return (res >= 0);
477 case IR_LE: return (res <= 0);
478 case IR_GT: return (res > 0);
479 default: lj_assertX(0, "bad IR op %d", op); return 0;
483 /* Rollback IR to previous state. */
484 void lj_ir_rollback(jit_State *J, IRRef ref)
486 IRRef nins = J->cur.nins;
487 while (nins > ref) {
488 IRIns *ir;
489 nins--;
490 ir = IR(nins);
491 J->chain[ir->o] = ir->prev;
493 J->cur.nins = nins;
496 #undef IR
497 #undef fins
498 #undef emitir
500 #endif