MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / fs / jffs2 / nodemgmt.c
blob49127a1f045861324bab8e79570b895b7b1ab4c5
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: nodemgmt.c,v 1.127 2005/09/20 15:49:12 dedekind Exp $
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/compiler.h>
18 #include <linux/sched.h> /* For cond_resched() */
19 #include "nodelist.h"
20 #include "debug.h"
22 /**
23 * jffs2_reserve_space - request physical space to write nodes to flash
24 * @c: superblock info
25 * @minsize: Minimum acceptable size of allocation
26 * @ofs: Returned value of node offset
27 * @len: Returned value of allocation length
28 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
30 * Requests a block of physical space on the flash. Returns zero for success
31 * and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC
32 * or other error if appropriate.
34 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
35 * allocation semaphore, to prevent more than one allocation from being
36 * active at any time. The semaphore is later released by jffs2_commit_allocation()
38 * jffs2_reserve_space() may trigger garbage collection in order to make room
39 * for the requested allocation.
42 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
43 uint32_t *ofs, uint32_t *len, uint32_t sumsize);
45 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs,
46 uint32_t *len, int prio, uint32_t sumsize)
48 int ret = -EAGAIN;
49 int blocksneeded = c->resv_blocks_write;
50 /* align it */
51 minsize = PAD(minsize);
53 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
54 down(&c->alloc_sem);
56 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
58 spin_lock(&c->erase_completion_lock);
60 /* this needs a little more thought (true <tglx> :)) */
61 while(ret == -EAGAIN) {
62 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
63 int ret;
64 uint32_t dirty, avail;
66 /* calculate real dirty size
67 * dirty_size contains blocks on erase_pending_list
68 * those blocks are counted in c->nr_erasing_blocks.
69 * If one block is actually erased, it is not longer counted as dirty_space
70 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
71 * with c->nr_erasing_blocks * c->sector_size again.
72 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
73 * This helps us to force gc and pick eventually a clean block to spread the load.
74 * We add unchecked_size here, as we hopefully will find some space to use.
75 * This will affect the sum only once, as gc first finishes checking
76 * of nodes.
78 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
79 if (dirty < c->nospc_dirty_size) {
80 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
81 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
82 break;
84 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
85 dirty, c->unchecked_size, c->sector_size));
87 spin_unlock(&c->erase_completion_lock);
88 up(&c->alloc_sem);
89 return -ENOSPC;
92 /* Calc possibly available space. Possibly available means that we
93 * don't know, if unchecked size contains obsoleted nodes, which could give us some
94 * more usable space. This will affect the sum only once, as gc first finishes checking
95 * of nodes.
96 + Return -ENOSPC, if the maximum possibly available space is less or equal than
97 * blocksneeded * sector_size.
98 * This blocks endless gc looping on a filesystem, which is nearly full, even if
99 * the check above passes.
101 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
102 if ( (avail / c->sector_size) <= blocksneeded) {
103 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
104 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
105 break;
108 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
109 avail, blocksneeded * c->sector_size));
110 spin_unlock(&c->erase_completion_lock);
111 up(&c->alloc_sem);
112 return -ENOSPC;
115 up(&c->alloc_sem);
117 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
118 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
119 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
120 spin_unlock(&c->erase_completion_lock);
122 ret = jffs2_garbage_collect_pass(c);
123 if (ret)
124 return ret;
126 cond_resched();
128 if (signal_pending(current))
129 return -EINTR;
131 down(&c->alloc_sem);
132 spin_lock(&c->erase_completion_lock);
135 ret = jffs2_do_reserve_space(c, minsize, ofs, len, sumsize);
136 if (ret) {
137 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
140 spin_unlock(&c->erase_completion_lock);
141 if (ret)
142 up(&c->alloc_sem);
143 return ret;
146 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs,
147 uint32_t *len, uint32_t sumsize)
149 int ret = -EAGAIN;
150 minsize = PAD(minsize);
152 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
154 spin_lock(&c->erase_completion_lock);
155 while(ret == -EAGAIN) {
156 ret = jffs2_do_reserve_space(c, minsize, ofs, len, sumsize);
157 if (ret) {
158 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
161 spin_unlock(&c->erase_completion_lock);
162 return ret;
166 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
168 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
171 /* Check, if we have a dirty block now, or if it was dirty already */
172 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
173 c->dirty_size += jeb->wasted_size;
174 c->wasted_size -= jeb->wasted_size;
175 jeb->dirty_size += jeb->wasted_size;
176 jeb->wasted_size = 0;
177 if (VERYDIRTY(c, jeb->dirty_size)) {
178 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
179 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
180 list_add_tail(&jeb->list, &c->very_dirty_list);
181 } else {
182 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
183 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
184 list_add_tail(&jeb->list, &c->dirty_list);
186 } else {
187 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
188 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
189 list_add_tail(&jeb->list, &c->clean_list);
191 c->nextblock = NULL;
195 /* Select a new jeb for nextblock */
197 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
199 struct list_head *next;
201 /* Take the next block off the 'free' list */
203 if (list_empty(&c->free_list)) {
205 if (!c->nr_erasing_blocks &&
206 !list_empty(&c->erasable_list)) {
207 struct jffs2_eraseblock *ejeb;
209 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
210 list_del(&ejeb->list);
211 list_add_tail(&ejeb->list, &c->erase_pending_list);
212 c->nr_erasing_blocks++;
213 jffs2_erase_pending_trigger(c);
214 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
215 ejeb->offset));
218 if (!c->nr_erasing_blocks &&
219 !list_empty(&c->erasable_pending_wbuf_list)) {
220 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
221 /* c->nextblock is NULL, no update to c->nextblock allowed */
222 spin_unlock(&c->erase_completion_lock);
223 jffs2_flush_wbuf_pad(c);
224 spin_lock(&c->erase_completion_lock);
225 /* Have another go. It'll be on the erasable_list now */
226 return -EAGAIN;
229 if (!c->nr_erasing_blocks) {
230 /* Ouch. We're in GC, or we wouldn't have got here.
231 And there's no space left. At all. */
232 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
233 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
234 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
235 return -ENOSPC;
238 spin_unlock(&c->erase_completion_lock);
239 /* Don't wait for it; just erase one right now */
240 jffs2_erase_pending_blocks(c, 1);
241 spin_lock(&c->erase_completion_lock);
243 /* An erase may have failed, decreasing the
244 amount of free space available. So we must
245 restart from the beginning */
246 return -EAGAIN;
249 next = c->free_list.next;
250 list_del(next);
251 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
252 c->nr_free_blocks--;
254 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
256 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
258 return 0;
261 /* Called with alloc sem _and_ erase_completion_lock */
262 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, uint32_t sumsize)
264 struct jffs2_eraseblock *jeb = c->nextblock;
265 uint32_t reserved_size; /* for summary information at the end of the jeb */
266 int ret;
268 restart:
269 reserved_size = 0;
271 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
272 /* NOSUM_SIZE means not to generate summary */
274 if (jeb) {
275 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
276 dbg_summary("minsize=%d , jeb->free=%d ,"
277 "summary->size=%d , sumsize=%d\n",
278 minsize, jeb->free_size,
279 c->summary->sum_size, sumsize);
282 /* Is there enough space for writing out the current node, or we have to
283 write out summary information now, close this jeb and select new nextblock? */
284 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
285 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
287 /* Has summary been disabled for this jeb? */
288 if (jffs2_sum_is_disabled(c->summary)) {
289 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
290 goto restart;
293 /* Writing out the collected summary information */
294 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
295 ret = jffs2_sum_write_sumnode(c);
297 if (ret)
298 return ret;
300 if (jffs2_sum_is_disabled(c->summary)) {
301 /* jffs2_write_sumnode() couldn't write out the summary information
302 diabling summary for this jeb and free the collected information
304 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
305 goto restart;
308 jffs2_close_nextblock(c, jeb);
309 jeb = NULL;
310 /* keep always valid value in reserved_size */
311 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
313 } else {
314 if (jeb && minsize > jeb->free_size) {
315 /* Skip the end of this block and file it as having some dirty space */
316 /* If there's a pending write to it, flush now */
318 if (jffs2_wbuf_dirty(c)) {
319 spin_unlock(&c->erase_completion_lock);
320 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
321 jffs2_flush_wbuf_pad(c);
322 spin_lock(&c->erase_completion_lock);
323 jeb = c->nextblock;
324 goto restart;
327 c->wasted_size += jeb->free_size;
328 c->free_size -= jeb->free_size;
329 jeb->wasted_size += jeb->free_size;
330 jeb->free_size = 0;
332 jffs2_close_nextblock(c, jeb);
333 jeb = NULL;
337 if (!jeb) {
339 ret = jffs2_find_nextblock(c);
340 if (ret)
341 return ret;
343 jeb = c->nextblock;
345 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
346 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
347 goto restart;
350 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
351 enough space */
352 *ofs = jeb->offset + (c->sector_size - jeb->free_size);
353 *len = jeb->free_size - reserved_size;
355 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
356 !jeb->first_node->next_in_ino) {
357 /* Only node in it beforehand was a CLEANMARKER node (we think).
358 So mark it obsolete now that there's going to be another node
359 in the block. This will reduce used_size to zero but We've
360 already set c->nextblock so that jffs2_mark_node_obsolete()
361 won't try to refile it to the dirty_list.
363 spin_unlock(&c->erase_completion_lock);
364 jffs2_mark_node_obsolete(c, jeb->first_node);
365 spin_lock(&c->erase_completion_lock);
368 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs));
369 return 0;
373 * jffs2_add_physical_node_ref - add a physical node reference to the list
374 * @c: superblock info
375 * @new: new node reference to add
376 * @len: length of this physical node
377 * @dirty: dirty flag for new node
379 * Should only be used to report nodes for which space has been allocated
380 * by jffs2_reserve_space.
382 * Must be called with the alloc_sem held.
385 int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new)
387 struct jffs2_eraseblock *jeb;
388 uint32_t len;
390 jeb = &c->blocks[new->flash_offset / c->sector_size];
391 len = ref_totlen(c, jeb, new);
393 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
394 #if 1
395 /* we could get some obsolete nodes after nextblock was refiled
396 in wbuf.c */
397 if ((c->nextblock || !ref_obsolete(new))
398 &&(jeb != c->nextblock || ref_offset(new) != jeb->offset + (c->sector_size - jeb->free_size))) {
399 printk(KERN_WARNING "argh. node added in wrong place\n");
400 jffs2_free_raw_node_ref(new);
401 return -EINVAL;
403 #endif
404 spin_lock(&c->erase_completion_lock);
406 if (!jeb->first_node)
407 jeb->first_node = new;
408 if (jeb->last_node)
409 jeb->last_node->next_phys = new;
410 jeb->last_node = new;
412 jeb->free_size -= len;
413 c->free_size -= len;
414 if (ref_obsolete(new)) {
415 jeb->dirty_size += len;
416 c->dirty_size += len;
417 } else {
418 jeb->used_size += len;
419 c->used_size += len;
422 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
423 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
424 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
425 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
426 if (jffs2_wbuf_dirty(c)) {
427 /* Flush the last write in the block if it's outstanding */
428 spin_unlock(&c->erase_completion_lock);
429 jffs2_flush_wbuf_pad(c);
430 spin_lock(&c->erase_completion_lock);
433 list_add_tail(&jeb->list, &c->clean_list);
434 c->nextblock = NULL;
436 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
437 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
439 spin_unlock(&c->erase_completion_lock);
441 return 0;
445 void jffs2_complete_reservation(struct jffs2_sb_info *c)
447 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
448 jffs2_garbage_collect_trigger(c);
449 up(&c->alloc_sem);
452 static inline int on_list(struct list_head *obj, struct list_head *head)
454 struct list_head *this;
456 list_for_each(this, head) {
457 if (this == obj) {
458 D1(printk("%p is on list at %p\n", obj, head));
459 return 1;
463 return 0;
466 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
468 struct jffs2_eraseblock *jeb;
469 int blocknr;
470 struct jffs2_unknown_node n;
471 int ret, addedsize;
472 size_t retlen;
474 if(!ref) {
475 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
476 return;
478 if (ref_obsolete(ref)) {
479 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
480 return;
482 blocknr = ref->flash_offset / c->sector_size;
483 if (blocknr >= c->nr_blocks) {
484 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
485 BUG();
487 jeb = &c->blocks[blocknr];
489 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
490 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
491 /* Hm. This may confuse static lock analysis. If any of the above
492 three conditions is false, we're going to return from this
493 function without actually obliterating any nodes or freeing
494 any jffs2_raw_node_refs. So we don't need to stop erases from
495 happening, or protect against people holding an obsolete
496 jffs2_raw_node_ref without the erase_completion_lock. */
497 down(&c->erase_free_sem);
500 spin_lock(&c->erase_completion_lock);
502 if (ref_flags(ref) == REF_UNCHECKED) {
503 D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) {
504 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
505 ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
506 BUG();
508 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
509 jeb->unchecked_size -= ref_totlen(c, jeb, ref);
510 c->unchecked_size -= ref_totlen(c, jeb, ref);
511 } else {
512 D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) {
513 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
514 ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
515 BUG();
517 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
518 jeb->used_size -= ref_totlen(c, jeb, ref);
519 c->used_size -= ref_totlen(c, jeb, ref);
522 // Take care, that wasted size is taken into concern
523 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) {
524 D1(printk(KERN_DEBUG "Dirtying\n"));
525 addedsize = ref_totlen(c, jeb, ref);
526 jeb->dirty_size += ref_totlen(c, jeb, ref);
527 c->dirty_size += ref_totlen(c, jeb, ref);
529 /* Convert wasted space to dirty, if not a bad block */
530 if (jeb->wasted_size) {
531 if (on_list(&jeb->list, &c->bad_used_list)) {
532 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
533 jeb->offset));
534 addedsize = 0; /* To fool the refiling code later */
535 } else {
536 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
537 jeb->wasted_size, jeb->offset));
538 addedsize += jeb->wasted_size;
539 jeb->dirty_size += jeb->wasted_size;
540 c->dirty_size += jeb->wasted_size;
541 c->wasted_size -= jeb->wasted_size;
542 jeb->wasted_size = 0;
545 } else {
546 D1(printk(KERN_DEBUG "Wasting\n"));
547 addedsize = 0;
548 jeb->wasted_size += ref_totlen(c, jeb, ref);
549 c->wasted_size += ref_totlen(c, jeb, ref);
551 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
553 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
554 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
556 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
557 /* Flash scanning is in progress. Don't muck about with the block
558 lists because they're not ready yet, and don't actually
559 obliterate nodes that look obsolete. If they weren't
560 marked obsolete on the flash at the time they _became_
561 obsolete, there was probably a reason for that. */
562 spin_unlock(&c->erase_completion_lock);
563 /* We didn't lock the erase_free_sem */
564 return;
567 if (jeb == c->nextblock) {
568 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
569 } else if (!jeb->used_size && !jeb->unchecked_size) {
570 if (jeb == c->gcblock) {
571 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
572 c->gcblock = NULL;
573 } else {
574 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
575 list_del(&jeb->list);
577 if (jffs2_wbuf_dirty(c)) {
578 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
579 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
580 } else {
581 if (jiffies & 127) {
582 /* Most of the time, we just erase it immediately. Otherwise we
583 spend ages scanning it on mount, etc. */
584 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
585 list_add_tail(&jeb->list, &c->erase_pending_list);
586 c->nr_erasing_blocks++;
587 jffs2_erase_pending_trigger(c);
588 } else {
589 /* Sometimes, however, we leave it elsewhere so it doesn't get
590 immediately reused, and we spread the load a bit. */
591 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
592 list_add_tail(&jeb->list, &c->erasable_list);
595 D1(printk(KERN_DEBUG "Done OK\n"));
596 } else if (jeb == c->gcblock) {
597 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
598 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
599 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
600 list_del(&jeb->list);
601 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
602 list_add_tail(&jeb->list, &c->dirty_list);
603 } else if (VERYDIRTY(c, jeb->dirty_size) &&
604 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
605 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
606 list_del(&jeb->list);
607 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
608 list_add_tail(&jeb->list, &c->very_dirty_list);
609 } else {
610 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
611 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
614 spin_unlock(&c->erase_completion_lock);
616 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
617 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
618 /* We didn't lock the erase_free_sem */
619 return;
622 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
623 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
624 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
625 by jffs2_free_all_node_refs() in erase.c. Which is nice. */
627 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
628 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
629 if (ret) {
630 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
631 goto out_erase_sem;
633 if (retlen != sizeof(n)) {
634 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
635 goto out_erase_sem;
637 if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) {
638 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref));
639 goto out_erase_sem;
641 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
642 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
643 goto out_erase_sem;
645 /* XXX FIXME: This is ugly now */
646 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
647 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
648 if (ret) {
649 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
650 goto out_erase_sem;
652 if (retlen != sizeof(n)) {
653 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
654 goto out_erase_sem;
657 /* Nodes which have been marked obsolete no longer need to be
658 associated with any inode. Remove them from the per-inode list.
660 Note we can't do this for NAND at the moment because we need
661 obsolete dirent nodes to stay on the lists, because of the
662 horridness in jffs2_garbage_collect_deletion_dirent(). Also
663 because we delete the inocache, and on NAND we need that to
664 stay around until all the nodes are actually erased, in order
665 to stop us from giving the same inode number to another newly
666 created inode. */
667 if (ref->next_in_ino) {
668 struct jffs2_inode_cache *ic;
669 struct jffs2_raw_node_ref **p;
671 spin_lock(&c->erase_completion_lock);
673 ic = jffs2_raw_ref_to_ic(ref);
674 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
677 *p = ref->next_in_ino;
678 ref->next_in_ino = NULL;
680 if (ic->nodes == (void *)ic && ic->nlink == 0)
681 jffs2_del_ino_cache(c, ic);
683 spin_unlock(&c->erase_completion_lock);
687 /* Merge with the next node in the physical list, if there is one
688 and if it's also obsolete and if it doesn't belong to any inode */
689 if (ref->next_phys && ref_obsolete(ref->next_phys) &&
690 !ref->next_phys->next_in_ino) {
691 struct jffs2_raw_node_ref *n = ref->next_phys;
693 spin_lock(&c->erase_completion_lock);
695 ref->__totlen += n->__totlen;
696 ref->next_phys = n->next_phys;
697 if (jeb->last_node == n) jeb->last_node = ref;
698 if (jeb->gc_node == n) {
699 /* gc will be happy continuing gc on this node */
700 jeb->gc_node=ref;
702 spin_unlock(&c->erase_completion_lock);
704 jffs2_free_raw_node_ref(n);
707 /* Also merge with the previous node in the list, if there is one
708 and that one is obsolete */
709 if (ref != jeb->first_node ) {
710 struct jffs2_raw_node_ref *p = jeb->first_node;
712 spin_lock(&c->erase_completion_lock);
714 while (p->next_phys != ref)
715 p = p->next_phys;
717 if (ref_obsolete(p) && !ref->next_in_ino) {
718 p->__totlen += ref->__totlen;
719 if (jeb->last_node == ref) {
720 jeb->last_node = p;
722 if (jeb->gc_node == ref) {
723 /* gc will be happy continuing gc on this node */
724 jeb->gc_node=p;
726 p->next_phys = ref->next_phys;
727 jffs2_free_raw_node_ref(ref);
729 spin_unlock(&c->erase_completion_lock);
731 out_erase_sem:
732 up(&c->erase_free_sem);
735 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
737 int ret = 0;
738 uint32_t dirty;
740 if (c->unchecked_size) {
741 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
742 c->unchecked_size, c->checked_ino));
743 return 1;
746 /* dirty_size contains blocks on erase_pending_list
747 * those blocks are counted in c->nr_erasing_blocks.
748 * If one block is actually erased, it is not longer counted as dirty_space
749 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
750 * with c->nr_erasing_blocks * c->sector_size again.
751 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
752 * This helps us to force gc and pick eventually a clean block to spread the load.
754 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
756 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
757 (dirty > c->nospc_dirty_size))
758 ret = 1;
760 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
761 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
763 return ret;