MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / ppp_generic.c
bloba5674108721b3dd3ed3585705b96a20a40fb976c
1 /*
2 * Generic PPP layer for Linux.
4 * Copyright 1999-2002 Paul Mackerras.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h. Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
22 * ==FILEVERSION 20020217==
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/kmod.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/devfs_fs_kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/poll.h>
34 #include <linux/ppp_defs.h>
35 #include <linux/filter.h>
36 #include <linux/if_ppp.h>
37 #include <linux/ppp_channel.h>
38 #include <linux/ppp-comp.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/if_arp.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/spinlock.h>
45 #include <linux/smp_lock.h>
46 #include <linux/rwsem.h>
47 #include <linux/stddef.h>
48 #include <linux/device.h>
49 #include <net/slhc_vj.h>
50 #include <asm/atomic.h>
52 #define PPP_VERSION "2.4.2"
55 * Network protocols we support.
57 #define NP_IP 0 /* Internet Protocol V4 */
58 #define NP_IPV6 1 /* Internet Protocol V6 */
59 #define NP_IPX 2 /* IPX protocol */
60 #define NP_AT 3 /* Appletalk protocol */
61 #define NP_MPLS_UC 4 /* MPLS unicast */
62 #define NP_MPLS_MC 5 /* MPLS multicast */
63 #define NUM_NP 6 /* Number of NPs. */
65 #define MPHDRLEN 6 /* multilink protocol header length */
66 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
67 #define MIN_FRAG_SIZE 64
70 * An instance of /dev/ppp can be associated with either a ppp
71 * interface unit or a ppp channel. In both cases, file->private_data
72 * points to one of these.
74 struct ppp_file {
75 enum {
76 INTERFACE=1, CHANNEL
77 } kind;
78 struct sk_buff_head xq; /* pppd transmit queue */
79 struct sk_buff_head rq; /* receive queue for pppd */
80 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
81 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
82 int hdrlen; /* space to leave for headers */
83 int index; /* interface unit / channel number */
84 int dead; /* unit/channel has been shut down */
87 #define PF_TO_X(pf, X) ((X *)((char *)(pf) - offsetof(X, file)))
89 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
90 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
92 #define ROUNDUP(n, x) (((n) + (x) - 1) / (x))
95 * Data structure describing one ppp unit.
96 * A ppp unit corresponds to a ppp network interface device
97 * and represents a multilink bundle.
98 * It can have 0 or more ppp channels connected to it.
100 struct ppp {
101 struct ppp_file file; /* stuff for read/write/poll 0 */
102 struct file *owner; /* file that owns this unit 48 */
103 struct list_head channels; /* list of attached channels 4c */
104 int n_channels; /* how many channels are attached 54 */
105 spinlock_t rlock; /* lock for receive side 58 */
106 spinlock_t wlock; /* lock for transmit side 5c */
107 int mru; /* max receive unit 60 */
108 unsigned int flags; /* control bits 64 */
109 unsigned int xstate; /* transmit state bits 68 */
110 unsigned int rstate; /* receive state bits 6c */
111 int debug; /* debug flags 70 */
112 struct slcompress *vj; /* state for VJ header compression */
113 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
114 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
115 struct compressor *xcomp; /* transmit packet compressor 8c */
116 void *xc_state; /* its internal state 90 */
117 struct compressor *rcomp; /* receive decompressor 94 */
118 void *rc_state; /* its internal state 98 */
119 unsigned long last_xmit; /* jiffies when last pkt sent 9c */
120 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
121 struct net_device *dev; /* network interface device a4 */
122 #ifdef CONFIG_PPP_MULTILINK
123 int nxchan; /* next channel to send something on */
124 u32 nxseq; /* next sequence number to send */
125 int mrru; /* MP: max reconst. receive unit */
126 u32 nextseq; /* MP: seq no of next packet */
127 u32 minseq; /* MP: min of most recent seqnos */
128 struct sk_buff_head mrq; /* MP: receive reconstruction queue */
129 #endif /* CONFIG_PPP_MULTILINK */
130 struct net_device_stats stats; /* statistics */
131 #ifdef CONFIG_PPP_FILTER
132 struct sock_filter *pass_filter; /* filter for packets to pass */
133 struct sock_filter *active_filter;/* filter for pkts to reset idle */
134 unsigned pass_len, active_len;
135 #endif /* CONFIG_PPP_FILTER */
139 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
140 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP.
141 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
142 * Bits in xstate: SC_COMP_RUN
144 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
145 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
146 |SC_COMP_TCP|SC_REJ_COMP_TCP)
149 * Private data structure for each channel.
150 * This includes the data structure used for multilink.
152 struct channel {
153 struct ppp_file file; /* stuff for read/write/poll */
154 struct list_head list; /* link in all/new_channels list */
155 struct ppp_channel *chan; /* public channel data structure */
156 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
157 spinlock_t downl; /* protects `chan', file.xq dequeue */
158 struct ppp *ppp; /* ppp unit we're connected to */
159 struct list_head clist; /* link in list of channels per unit */
160 rwlock_t upl; /* protects `ppp' */
161 #ifdef CONFIG_PPP_MULTILINK
162 u8 avail; /* flag used in multilink stuff */
163 u8 had_frag; /* >= 1 fragments have been sent */
164 u32 lastseq; /* MP: last sequence # received */
165 #endif /* CONFIG_PPP_MULTILINK */
169 * SMP locking issues:
170 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
171 * list and the ppp.n_channels field, you need to take both locks
172 * before you modify them.
173 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
174 * channel.downl.
178 * A cardmap represents a mapping from unsigned integers to pointers,
179 * and provides a fast "find lowest unused number" operation.
180 * It uses a broad (32-way) tree with a bitmap at each level.
181 * It is designed to be space-efficient for small numbers of entries
182 * and time-efficient for large numbers of entries.
184 #define CARDMAP_ORDER 5
185 #define CARDMAP_WIDTH (1U << CARDMAP_ORDER)
186 #define CARDMAP_MASK (CARDMAP_WIDTH - 1)
188 struct cardmap {
189 int shift;
190 unsigned long inuse;
191 struct cardmap *parent;
192 void *ptr[CARDMAP_WIDTH];
194 static void *cardmap_get(struct cardmap *map, unsigned int nr);
195 static void cardmap_set(struct cardmap **map, unsigned int nr, void *ptr);
196 static unsigned int cardmap_find_first_free(struct cardmap *map);
197 static void cardmap_destroy(struct cardmap **map);
200 * all_ppp_sem protects the all_ppp_units mapping.
201 * It also ensures that finding a ppp unit in the all_ppp_units map
202 * and updating its file.refcnt field is atomic.
204 static DECLARE_MUTEX(all_ppp_sem);
205 static struct cardmap *all_ppp_units;
206 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
209 * all_channels_lock protects all_channels and last_channel_index,
210 * and the atomicity of find a channel and updating its file.refcnt
211 * field.
213 static spinlock_t all_channels_lock = SPIN_LOCK_UNLOCKED;
214 static LIST_HEAD(all_channels);
215 static LIST_HEAD(new_channels);
216 static int last_channel_index;
217 static atomic_t channel_count = ATOMIC_INIT(0);
219 /* Get the PPP protocol number from a skb */
220 #define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1])
222 /* We limit the length of ppp->file.rq to this (arbitrary) value */
223 #define PPP_MAX_RQLEN 32
226 * Maximum number of multilink fragments queued up.
227 * This has to be large enough to cope with the maximum latency of
228 * the slowest channel relative to the others. Strictly it should
229 * depend on the number of channels and their characteristics.
231 #define PPP_MP_MAX_QLEN 128
233 /* Multilink header bits. */
234 #define B 0x80 /* this fragment begins a packet */
235 #define E 0x40 /* this fragment ends a packet */
237 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
238 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
239 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
241 /* Prototypes. */
242 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
243 unsigned int cmd, unsigned long arg);
244 static void ppp_xmit_process(struct ppp *ppp);
245 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
246 static void ppp_push(struct ppp *ppp);
247 static void ppp_channel_push(struct channel *pch);
248 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
249 struct channel *pch);
250 static void ppp_receive_error(struct ppp *ppp);
251 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
252 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
253 struct sk_buff *skb);
254 #ifdef CONFIG_PPP_MULTILINK
255 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
256 struct channel *pch);
257 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
259 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
260 #endif /* CONFIG_PPP_MULTILINK */
261 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
262 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
263 static void ppp_ccp_closed(struct ppp *ppp);
264 static struct compressor *find_compressor(int type);
265 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
266 static struct ppp *ppp_create_interface(int unit, int *retp);
267 static void init_ppp_file(struct ppp_file *pf, int kind);
268 static void ppp_shutdown_interface(struct ppp *ppp);
269 static void ppp_destroy_interface(struct ppp *ppp);
270 static struct ppp *ppp_find_unit(int unit);
271 static struct channel *ppp_find_channel(int unit);
272 static int ppp_connect_channel(struct channel *pch, int unit);
273 static int ppp_disconnect_channel(struct channel *pch);
274 static void ppp_destroy_channel(struct channel *pch);
276 static struct class_simple *ppp_class;
278 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
279 static inline int proto_to_npindex(int proto)
281 switch (proto) {
282 case PPP_IP:
283 return NP_IP;
284 case PPP_IPV6:
285 return NP_IPV6;
286 case PPP_IPX:
287 return NP_IPX;
288 case PPP_AT:
289 return NP_AT;
290 case PPP_MPLS_UC:
291 return NP_MPLS_UC;
292 case PPP_MPLS_MC:
293 return NP_MPLS_MC;
295 return -EINVAL;
298 /* Translates an NP index into a PPP protocol number */
299 static const int npindex_to_proto[NUM_NP] = {
300 PPP_IP,
301 PPP_IPV6,
302 PPP_IPX,
303 PPP_AT,
304 PPP_MPLS_UC,
305 PPP_MPLS_MC,
308 /* Translates an ethertype into an NP index */
309 static inline int ethertype_to_npindex(int ethertype)
311 switch (ethertype) {
312 case ETH_P_IP:
313 return NP_IP;
314 case ETH_P_IPV6:
315 return NP_IPV6;
316 case ETH_P_IPX:
317 return NP_IPX;
318 case ETH_P_PPPTALK:
319 case ETH_P_ATALK:
320 return NP_AT;
321 case ETH_P_MPLS_UC:
322 return NP_MPLS_UC;
323 case ETH_P_MPLS_MC:
324 return NP_MPLS_MC;
326 return -1;
329 /* Translates an NP index into an ethertype */
330 static const int npindex_to_ethertype[NUM_NP] = {
331 ETH_P_IP,
332 ETH_P_IPV6,
333 ETH_P_IPX,
334 ETH_P_PPPTALK,
335 ETH_P_MPLS_UC,
336 ETH_P_MPLS_MC,
340 * Locking shorthand.
342 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
343 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
344 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
345 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
346 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
347 ppp_recv_lock(ppp); } while (0)
348 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
349 ppp_xmit_unlock(ppp); } while (0)
352 * /dev/ppp device routines.
353 * The /dev/ppp device is used by pppd to control the ppp unit.
354 * It supports the read, write, ioctl and poll functions.
355 * Open instances of /dev/ppp can be in one of three states:
356 * unattached, attached to a ppp unit, or attached to a ppp channel.
358 static int ppp_open(struct inode *inode, struct file *file)
361 * This could (should?) be enforced by the permissions on /dev/ppp.
363 if (!capable(CAP_NET_ADMIN))
364 return -EPERM;
365 return 0;
368 static int ppp_release(struct inode *inode, struct file *file)
370 struct ppp_file *pf = file->private_data;
371 struct ppp *ppp;
373 if (pf != 0) {
374 file->private_data = NULL;
375 if (pf->kind == INTERFACE) {
376 ppp = PF_TO_PPP(pf);
377 if (file == ppp->owner)
378 ppp_shutdown_interface(ppp);
380 if (atomic_dec_and_test(&pf->refcnt)) {
381 switch (pf->kind) {
382 case INTERFACE:
383 ppp_destroy_interface(PF_TO_PPP(pf));
384 break;
385 case CHANNEL:
386 ppp_destroy_channel(PF_TO_CHANNEL(pf));
387 break;
391 return 0;
394 static ssize_t ppp_read(struct file *file, char __user *buf,
395 size_t count, loff_t *ppos)
397 struct ppp_file *pf = file->private_data;
398 DECLARE_WAITQUEUE(wait, current);
399 ssize_t ret;
400 struct sk_buff *skb = NULL;
402 ret = count;
404 if (pf == 0)
405 return -ENXIO;
406 add_wait_queue(&pf->rwait, &wait);
407 for (;;) {
408 set_current_state(TASK_INTERRUPTIBLE);
409 skb = skb_dequeue(&pf->rq);
410 if (skb)
411 break;
412 ret = 0;
413 if (pf->dead)
414 break;
415 ret = -EAGAIN;
416 if (file->f_flags & O_NONBLOCK)
417 break;
418 ret = -ERESTARTSYS;
419 if (signal_pending(current))
420 break;
421 schedule();
423 set_current_state(TASK_RUNNING);
424 remove_wait_queue(&pf->rwait, &wait);
426 if (skb == 0)
427 goto out;
429 ret = -EOVERFLOW;
430 if (skb->len > count)
431 goto outf;
432 ret = -EFAULT;
433 if (copy_to_user(buf, skb->data, skb->len))
434 goto outf;
435 ret = skb->len;
437 outf:
438 kfree_skb(skb);
439 out:
440 return ret;
443 static ssize_t ppp_write(struct file *file, const char __user *buf,
444 size_t count, loff_t *ppos)
446 struct ppp_file *pf = file->private_data;
447 struct sk_buff *skb;
448 ssize_t ret;
450 if (pf == 0)
451 return -ENXIO;
452 ret = -ENOMEM;
453 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
454 if (skb == 0)
455 goto out;
456 skb_reserve(skb, pf->hdrlen);
457 ret = -EFAULT;
458 if (copy_from_user(skb_put(skb, count), buf, count)) {
459 kfree_skb(skb);
460 goto out;
463 skb_queue_tail(&pf->xq, skb);
465 switch (pf->kind) {
466 case INTERFACE:
467 ppp_xmit_process(PF_TO_PPP(pf));
468 break;
469 case CHANNEL:
470 ppp_channel_push(PF_TO_CHANNEL(pf));
471 break;
474 ret = count;
476 out:
477 return ret;
480 /* No kernel lock - fine */
481 static unsigned int ppp_poll(struct file *file, poll_table *wait)
483 struct ppp_file *pf = file->private_data;
484 unsigned int mask;
486 if (pf == 0)
487 return 0;
488 poll_wait(file, &pf->rwait, wait);
489 mask = POLLOUT | POLLWRNORM;
490 if (skb_peek(&pf->rq) != 0)
491 mask |= POLLIN | POLLRDNORM;
492 if (pf->dead)
493 mask |= POLLHUP;
494 return mask;
497 #ifdef CONFIG_PPP_FILTER
498 static int get_filter(void __user *arg, struct sock_filter **p)
500 struct sock_fprog uprog;
501 struct sock_filter *code = NULL;
502 int len, err;
504 if (copy_from_user(&uprog, arg, sizeof(uprog)))
505 return -EFAULT;
507 if (uprog.len > BPF_MAXINSNS)
508 return -EINVAL;
510 if (!uprog.len) {
511 *p = NULL;
512 return 0;
515 len = uprog.len * sizeof(struct sock_filter);
516 code = kmalloc(len, GFP_KERNEL);
517 if (code == NULL)
518 return -ENOMEM;
520 if (copy_from_user(code, uprog.filter, len)) {
521 kfree(code);
522 return -EFAULT;
525 err = sk_chk_filter(code, uprog.len);
526 if (err) {
527 kfree(code);
528 return err;
531 *p = code;
532 return uprog.len;
534 #endif /* CONFIG_PPP_FILTER */
536 static int ppp_ioctl(struct inode *inode, struct file *file,
537 unsigned int cmd, unsigned long arg)
539 struct ppp_file *pf = file->private_data;
540 struct ppp *ppp;
541 int err = -EFAULT, val, val2, i;
542 struct ppp_idle idle;
543 struct npioctl npi;
544 int unit, cflags;
545 struct slcompress *vj;
546 void __user *argp = (void __user *)arg;
547 int __user *p = argp;
549 if (pf == 0)
550 return ppp_unattached_ioctl(pf, file, cmd, arg);
552 if (cmd == PPPIOCDETACH) {
554 * We have to be careful here... if the file descriptor
555 * has been dup'd, we could have another process in the
556 * middle of a poll using the same file *, so we had
557 * better not free the interface data structures -
558 * instead we fail the ioctl. Even in this case, we
559 * shut down the interface if we are the owner of it.
560 * Actually, we should get rid of PPPIOCDETACH, userland
561 * (i.e. pppd) could achieve the same effect by closing
562 * this fd and reopening /dev/ppp.
564 err = -EINVAL;
565 if (pf->kind == INTERFACE) {
566 ppp = PF_TO_PPP(pf);
567 if (file == ppp->owner)
568 ppp_shutdown_interface(ppp);
570 if (atomic_read(&file->f_count) <= 2) {
571 ppp_release(inode, file);
572 err = 0;
573 } else
574 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n",
575 atomic_read(&file->f_count));
576 return err;
579 if (pf->kind == CHANNEL) {
580 struct channel *pch = PF_TO_CHANNEL(pf);
581 struct ppp_channel *chan;
583 switch (cmd) {
584 case PPPIOCCONNECT:
585 if (get_user(unit, p))
586 break;
587 err = ppp_connect_channel(pch, unit);
588 break;
590 case PPPIOCDISCONN:
591 err = ppp_disconnect_channel(pch);
592 break;
594 default:
595 down_read(&pch->chan_sem);
596 chan = pch->chan;
597 err = -ENOTTY;
598 if (chan && chan->ops->ioctl)
599 err = chan->ops->ioctl(chan, cmd, arg);
600 up_read(&pch->chan_sem);
602 return err;
605 if (pf->kind != INTERFACE) {
606 /* can't happen */
607 printk(KERN_ERR "PPP: not interface or channel??\n");
608 return -EINVAL;
611 ppp = PF_TO_PPP(pf);
612 switch (cmd) {
613 case PPPIOCSMRU:
614 if (get_user(val, p))
615 break;
616 ppp->mru = val;
617 err = 0;
618 break;
620 case PPPIOCSFLAGS:
621 if (get_user(val, p))
622 break;
623 ppp_lock(ppp);
624 cflags = ppp->flags & ~val;
625 ppp->flags = val & SC_FLAG_BITS;
626 ppp_unlock(ppp);
627 if (cflags & SC_CCP_OPEN)
628 ppp_ccp_closed(ppp);
629 err = 0;
630 break;
632 case PPPIOCGFLAGS:
633 val = ppp->flags | ppp->xstate | ppp->rstate;
634 if (put_user(val, p))
635 break;
636 err = 0;
637 break;
639 case PPPIOCSCOMPRESS:
640 err = ppp_set_compress(ppp, arg);
641 break;
643 case PPPIOCGUNIT:
644 if (put_user(ppp->file.index, p))
645 break;
646 err = 0;
647 break;
649 case PPPIOCSDEBUG:
650 if (get_user(val, p))
651 break;
652 ppp->debug = val;
653 err = 0;
654 break;
656 case PPPIOCGDEBUG:
657 if (put_user(ppp->debug, p))
658 break;
659 err = 0;
660 break;
662 case PPPIOCGIDLE:
663 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
664 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
665 if (copy_to_user(argp, &idle, sizeof(idle)))
666 break;
667 err = 0;
668 break;
670 case PPPIOCSMAXCID:
671 if (get_user(val, p))
672 break;
673 val2 = 15;
674 if ((val >> 16) != 0) {
675 val2 = val >> 16;
676 val &= 0xffff;
678 vj = slhc_init(val2+1, val+1);
679 if (vj == 0) {
680 printk(KERN_ERR "PPP: no memory (VJ compressor)\n");
681 err = -ENOMEM;
682 break;
684 ppp_lock(ppp);
685 if (ppp->vj != 0)
686 slhc_free(ppp->vj);
687 ppp->vj = vj;
688 ppp_unlock(ppp);
689 err = 0;
690 break;
692 case PPPIOCGNPMODE:
693 case PPPIOCSNPMODE:
694 if (copy_from_user(&npi, argp, sizeof(npi)))
695 break;
696 err = proto_to_npindex(npi.protocol);
697 if (err < 0)
698 break;
699 i = err;
700 if (cmd == PPPIOCGNPMODE) {
701 err = -EFAULT;
702 npi.mode = ppp->npmode[i];
703 if (copy_to_user(argp, &npi, sizeof(npi)))
704 break;
705 } else {
706 ppp->npmode[i] = npi.mode;
707 /* we may be able to transmit more packets now (??) */
708 netif_wake_queue(ppp->dev);
710 err = 0;
711 break;
713 #ifdef CONFIG_PPP_FILTER
714 case PPPIOCSPASS:
716 struct sock_filter *code;
717 err = get_filter(argp, &code);
718 if (err >= 0) {
719 ppp_lock(ppp);
720 kfree(ppp->pass_filter);
721 ppp->pass_filter = code;
722 ppp->pass_len = err;
723 ppp_unlock(ppp);
724 err = 0;
726 break;
728 case PPPIOCSACTIVE:
730 struct sock_filter *code;
731 err = get_filter(argp, &code);
732 if (err >= 0) {
733 ppp_lock(ppp);
734 kfree(ppp->active_filter);
735 ppp->active_filter = code;
736 ppp->active_len = err;
737 ppp_unlock(ppp);
738 err = 0;
740 break;
742 #endif /* CONFIG_PPP_FILTER */
744 #ifdef CONFIG_PPP_MULTILINK
745 case PPPIOCSMRRU:
746 if (get_user(val, p))
747 break;
748 ppp_recv_lock(ppp);
749 ppp->mrru = val;
750 ppp_recv_unlock(ppp);
751 err = 0;
752 break;
753 #endif /* CONFIG_PPP_MULTILINK */
755 default:
756 err = -ENOTTY;
759 return err;
762 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
763 unsigned int cmd, unsigned long arg)
765 int unit, err = -EFAULT;
766 struct ppp *ppp;
767 struct channel *chan;
768 int __user *p = (int __user *)arg;
770 switch (cmd) {
771 case PPPIOCNEWUNIT:
772 /* Create a new ppp unit */
773 if (get_user(unit, p))
774 break;
775 ppp = ppp_create_interface(unit, &err);
776 if (ppp == 0)
777 break;
778 file->private_data = &ppp->file;
779 ppp->owner = file;
780 err = -EFAULT;
781 if (put_user(ppp->file.index, p))
782 break;
783 err = 0;
784 break;
786 case PPPIOCATTACH:
787 /* Attach to an existing ppp unit */
788 if (get_user(unit, p))
789 break;
790 down(&all_ppp_sem);
791 err = -ENXIO;
792 ppp = ppp_find_unit(unit);
793 if (ppp != 0) {
794 atomic_inc(&ppp->file.refcnt);
795 file->private_data = &ppp->file;
796 err = 0;
798 up(&all_ppp_sem);
799 break;
801 case PPPIOCATTCHAN:
802 if (get_user(unit, p))
803 break;
804 spin_lock_bh(&all_channels_lock);
805 err = -ENXIO;
806 chan = ppp_find_channel(unit);
807 if (chan != 0) {
808 atomic_inc(&chan->file.refcnt);
809 file->private_data = &chan->file;
810 err = 0;
812 spin_unlock_bh(&all_channels_lock);
813 break;
815 default:
816 err = -ENOTTY;
818 return err;
821 static struct file_operations ppp_device_fops = {
822 .owner = THIS_MODULE,
823 .read = ppp_read,
824 .write = ppp_write,
825 .poll = ppp_poll,
826 .ioctl = ppp_ioctl,
827 .open = ppp_open,
828 .release = ppp_release
831 #define PPP_MAJOR 108
833 /* Called at boot time if ppp is compiled into the kernel,
834 or at module load time (from init_module) if compiled as a module. */
835 static int __init ppp_init(void)
837 int err;
839 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n");
840 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
841 if (!err) {
842 ppp_class = class_simple_create(THIS_MODULE, "ppp");
843 if (IS_ERR(ppp_class)) {
844 err = PTR_ERR(ppp_class);
845 goto out_chrdev;
847 class_simple_device_add(ppp_class, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
848 err = devfs_mk_cdev(MKDEV(PPP_MAJOR, 0),
849 S_IFCHR|S_IRUSR|S_IWUSR, "ppp");
850 if (err)
851 goto out_class;
854 out:
855 if (err)
856 printk(KERN_ERR "failed to register PPP device (%d)\n", err);
857 return err;
859 out_class:
860 class_simple_device_remove(MKDEV(PPP_MAJOR,0));
861 class_simple_destroy(ppp_class);
862 out_chrdev:
863 unregister_chrdev(PPP_MAJOR, "ppp");
864 goto out;
868 * Network interface unit routines.
870 static int
871 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
873 struct ppp *ppp = (struct ppp *) dev->priv;
874 int npi, proto;
875 unsigned char *pp;
877 npi = ethertype_to_npindex(ntohs(skb->protocol));
878 if (npi < 0)
879 goto outf;
881 /* Drop, accept or reject the packet */
882 switch (ppp->npmode[npi]) {
883 case NPMODE_PASS:
884 break;
885 case NPMODE_QUEUE:
886 /* it would be nice to have a way to tell the network
887 system to queue this one up for later. */
888 goto outf;
889 case NPMODE_DROP:
890 case NPMODE_ERROR:
891 goto outf;
894 /* Put the 2-byte PPP protocol number on the front,
895 making sure there is room for the address and control fields. */
896 if (skb_headroom(skb) < PPP_HDRLEN) {
897 struct sk_buff *ns;
899 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC);
900 if (ns == 0)
901 goto outf;
902 skb_reserve(ns, dev->hard_header_len);
903 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
904 kfree_skb(skb);
905 skb = ns;
907 pp = skb_push(skb, 2);
908 proto = npindex_to_proto[npi];
909 pp[0] = proto >> 8;
910 pp[1] = proto;
912 netif_stop_queue(dev);
913 skb_queue_tail(&ppp->file.xq, skb);
914 ppp_xmit_process(ppp);
915 return 0;
917 outf:
918 kfree_skb(skb);
919 ++ppp->stats.tx_dropped;
920 return 0;
923 static struct net_device_stats *
924 ppp_net_stats(struct net_device *dev)
926 struct ppp *ppp = (struct ppp *) dev->priv;
928 return &ppp->stats;
931 static int
932 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
934 struct ppp *ppp = dev->priv;
935 int err = -EFAULT;
936 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
937 struct ppp_stats stats;
938 struct ppp_comp_stats cstats;
939 char *vers;
941 switch (cmd) {
942 case SIOCGPPPSTATS:
943 ppp_get_stats(ppp, &stats);
944 if (copy_to_user(addr, &stats, sizeof(stats)))
945 break;
946 err = 0;
947 break;
949 case SIOCGPPPCSTATS:
950 memset(&cstats, 0, sizeof(cstats));
951 if (ppp->xc_state != 0)
952 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
953 if (ppp->rc_state != 0)
954 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
955 if (copy_to_user(addr, &cstats, sizeof(cstats)))
956 break;
957 err = 0;
958 break;
960 case SIOCGPPPVER:
961 vers = PPP_VERSION;
962 if (copy_to_user(addr, vers, strlen(vers) + 1))
963 break;
964 err = 0;
965 break;
967 default:
968 err = -EINVAL;
971 return err;
974 static void ppp_setup(struct net_device *dev)
976 dev->hard_header_len = PPP_HDRLEN;
977 dev->mtu = PPP_MTU;
978 dev->addr_len = 0;
979 dev->tx_queue_len = 3;
980 dev->type = ARPHRD_PPP;
981 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
985 * Transmit-side routines.
989 * Called to do any work queued up on the transmit side
990 * that can now be done.
992 static void
993 ppp_xmit_process(struct ppp *ppp)
995 struct sk_buff *skb;
997 ppp_xmit_lock(ppp);
998 if (ppp->dev != 0) {
999 ppp_push(ppp);
1000 while (ppp->xmit_pending == 0
1001 && (skb = skb_dequeue(&ppp->file.xq)) != 0)
1002 ppp_send_frame(ppp, skb);
1003 /* If there's no work left to do, tell the core net
1004 code that we can accept some more. */
1005 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0)
1006 netif_wake_queue(ppp->dev);
1008 ppp_xmit_unlock(ppp);
1012 * Compress and send a frame.
1013 * The caller should have locked the xmit path,
1014 * and xmit_pending should be 0.
1016 static void
1017 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1019 int proto = PPP_PROTO(skb);
1020 struct sk_buff *new_skb;
1021 int len;
1022 unsigned char *cp;
1024 if (proto < 0x8000) {
1025 #ifdef CONFIG_PPP_FILTER
1026 /* check if we should pass this packet */
1027 /* the filter instructions are constructed assuming
1028 a four-byte PPP header on each packet */
1029 *skb_push(skb, 2) = 1;
1030 if (ppp->pass_filter
1031 && sk_run_filter(skb, ppp->pass_filter,
1032 ppp->pass_len) == 0) {
1033 if (ppp->debug & 1)
1034 printk(KERN_DEBUG "PPP: outbound frame not passed\n");
1035 kfree_skb(skb);
1036 return;
1038 /* if this packet passes the active filter, record the time */
1039 if (!(ppp->active_filter
1040 && sk_run_filter(skb, ppp->active_filter,
1041 ppp->active_len) == 0))
1042 ppp->last_xmit = jiffies;
1043 skb_pull(skb, 2);
1044 #else
1045 /* for data packets, record the time */
1046 ppp->last_xmit = jiffies;
1047 #endif /* CONFIG_PPP_FILTER */
1050 ++ppp->stats.tx_packets;
1051 ppp->stats.tx_bytes += skb->len - 2;
1053 switch (proto) {
1054 case PPP_IP:
1055 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0)
1056 break;
1057 /* try to do VJ TCP header compression */
1058 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1059 GFP_ATOMIC);
1060 if (new_skb == 0) {
1061 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n");
1062 goto drop;
1064 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1065 cp = skb->data + 2;
1066 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1067 new_skb->data + 2, &cp,
1068 !(ppp->flags & SC_NO_TCP_CCID));
1069 if (cp == skb->data + 2) {
1070 /* didn't compress */
1071 kfree_skb(new_skb);
1072 } else {
1073 if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1074 proto = PPP_VJC_COMP;
1075 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1076 } else {
1077 proto = PPP_VJC_UNCOMP;
1078 cp[0] = skb->data[2];
1080 kfree_skb(skb);
1081 skb = new_skb;
1082 cp = skb_put(skb, len + 2);
1083 cp[0] = 0;
1084 cp[1] = proto;
1086 break;
1088 case PPP_CCP:
1089 /* peek at outbound CCP frames */
1090 ppp_ccp_peek(ppp, skb, 0);
1091 break;
1094 /* try to do packet compression */
1095 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0
1096 && proto != PPP_LCP && proto != PPP_CCP) {
1097 new_skb = alloc_skb(ppp->dev->mtu + ppp->dev->hard_header_len,
1098 GFP_ATOMIC);
1099 if (new_skb == 0) {
1100 printk(KERN_ERR "PPP: no memory (comp pkt)\n");
1101 goto drop;
1103 if (ppp->dev->hard_header_len > PPP_HDRLEN)
1104 skb_reserve(new_skb,
1105 ppp->dev->hard_header_len - PPP_HDRLEN);
1107 /* compressor still expects A/C bytes in hdr */
1108 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1109 new_skb->data, skb->len + 2,
1110 ppp->dev->mtu + PPP_HDRLEN);
1111 if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1112 kfree_skb(skb);
1113 skb = new_skb;
1114 skb_put(skb, len);
1115 skb_pull(skb, 2); /* pull off A/C bytes */
1116 } else {
1117 /* didn't compress, or CCP not up yet */
1118 kfree_skb(new_skb);
1123 * If we are waiting for traffic (demand dialling),
1124 * queue it up for pppd to receive.
1126 if (ppp->flags & SC_LOOP_TRAFFIC) {
1127 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1128 goto drop;
1129 skb_queue_tail(&ppp->file.rq, skb);
1130 wake_up_interruptible(&ppp->file.rwait);
1131 return;
1134 ppp->xmit_pending = skb;
1135 ppp_push(ppp);
1136 return;
1138 drop:
1139 kfree_skb(skb);
1140 ++ppp->stats.tx_errors;
1144 * Try to send the frame in xmit_pending.
1145 * The caller should have the xmit path locked.
1147 static void
1148 ppp_push(struct ppp *ppp)
1150 struct list_head *list;
1151 struct channel *pch;
1152 struct sk_buff *skb = ppp->xmit_pending;
1154 if (skb == 0)
1155 return;
1157 list = &ppp->channels;
1158 if (list_empty(list)) {
1159 /* nowhere to send the packet, just drop it */
1160 ppp->xmit_pending = NULL;
1161 kfree_skb(skb);
1162 return;
1165 if ((ppp->flags & SC_MULTILINK) == 0) {
1166 /* not doing multilink: send it down the first channel */
1167 list = list->next;
1168 pch = list_entry(list, struct channel, clist);
1170 spin_lock_bh(&pch->downl);
1171 if (pch->chan) {
1172 if (pch->chan->ops->start_xmit(pch->chan, skb))
1173 ppp->xmit_pending = NULL;
1174 } else {
1175 /* channel got unregistered */
1176 kfree_skb(skb);
1177 ppp->xmit_pending = NULL;
1179 spin_unlock_bh(&pch->downl);
1180 return;
1183 #ifdef CONFIG_PPP_MULTILINK
1184 /* Multilink: fragment the packet over as many links
1185 as can take the packet at the moment. */
1186 if (!ppp_mp_explode(ppp, skb))
1187 return;
1188 #endif /* CONFIG_PPP_MULTILINK */
1190 ppp->xmit_pending = NULL;
1191 kfree_skb(skb);
1194 #ifdef CONFIG_PPP_MULTILINK
1196 * Divide a packet to be transmitted into fragments and
1197 * send them out the individual links.
1199 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1201 int nch, len, fragsize;
1202 int i, bits, hdrlen, mtu;
1203 int flen, fnb;
1204 unsigned char *p, *q;
1205 struct list_head *list;
1206 struct channel *pch;
1207 struct sk_buff *frag;
1208 struct ppp_channel *chan;
1210 nch = 0;
1211 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1212 list = &ppp->channels;
1213 while ((list = list->next) != &ppp->channels) {
1214 pch = list_entry(list, struct channel, clist);
1215 nch += pch->avail = (skb_queue_len(&pch->file.xq) == 0);
1217 * If a channel hasn't had a fragment yet, it has to get
1218 * one before we send any fragments on later channels.
1219 * If it can't take a fragment now, don't give any
1220 * to subsequent channels.
1222 if (!pch->had_frag && !pch->avail) {
1223 while ((list = list->next) != &ppp->channels) {
1224 pch = list_entry(list, struct channel, clist);
1225 pch->avail = 0;
1227 break;
1230 if (nch == 0)
1231 return 0; /* can't take now, leave it in xmit_pending */
1233 /* Do protocol field compression (XXX this should be optional) */
1234 p = skb->data;
1235 len = skb->len;
1236 if (*p == 0) {
1237 ++p;
1238 --len;
1241 /* decide on fragment size */
1242 fragsize = len;
1243 if (nch > 1) {
1244 int maxch = ROUNDUP(len, MIN_FRAG_SIZE);
1245 if (nch > maxch)
1246 nch = maxch;
1247 fragsize = ROUNDUP(fragsize, nch);
1250 /* skip to the channel after the one we last used
1251 and start at that one */
1252 for (i = 0; i < ppp->nxchan; ++i) {
1253 list = list->next;
1254 if (list == &ppp->channels) {
1255 i = 0;
1256 break;
1260 /* create a fragment for each channel */
1261 bits = B;
1262 do {
1263 list = list->next;
1264 if (list == &ppp->channels) {
1265 i = 0;
1266 continue;
1268 pch = list_entry(list, struct channel, clist);
1269 ++i;
1270 if (!pch->avail)
1271 continue;
1273 /* check the channel's mtu and whether it is still attached. */
1274 spin_lock_bh(&pch->downl);
1275 if (pch->chan == 0 || (mtu = pch->chan->mtu) < hdrlen) {
1276 /* can't use this channel */
1277 spin_unlock_bh(&pch->downl);
1278 pch->avail = 0;
1279 if (--nch == 0)
1280 break;
1281 continue;
1285 * We have to create multiple fragments for this channel
1286 * if fragsize is greater than the channel's mtu.
1288 if (fragsize > len)
1289 fragsize = len;
1290 for (flen = fragsize; flen > 0; flen -= fnb) {
1291 fnb = flen;
1292 if (fnb > mtu + 2 - hdrlen)
1293 fnb = mtu + 2 - hdrlen;
1294 if (fnb >= len)
1295 bits |= E;
1296 frag = alloc_skb(fnb + hdrlen, GFP_ATOMIC);
1297 if (frag == 0)
1298 goto noskb;
1299 q = skb_put(frag, fnb + hdrlen);
1300 /* make the MP header */
1301 q[0] = PPP_MP >> 8;
1302 q[1] = PPP_MP;
1303 if (ppp->flags & SC_MP_XSHORTSEQ) {
1304 q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1305 q[3] = ppp->nxseq;
1306 } else {
1307 q[2] = bits;
1308 q[3] = ppp->nxseq >> 16;
1309 q[4] = ppp->nxseq >> 8;
1310 q[5] = ppp->nxseq;
1313 /* copy the data in */
1314 memcpy(q + hdrlen, p, fnb);
1316 /* try to send it down the channel */
1317 chan = pch->chan;
1318 if (!chan->ops->start_xmit(chan, frag))
1319 skb_queue_tail(&pch->file.xq, frag);
1320 pch->had_frag = 1;
1321 p += fnb;
1322 len -= fnb;
1323 ++ppp->nxseq;
1324 bits = 0;
1326 spin_unlock_bh(&pch->downl);
1327 } while (len > 0);
1328 ppp->nxchan = i;
1330 return 1;
1332 noskb:
1333 spin_unlock_bh(&pch->downl);
1334 if (ppp->debug & 1)
1335 printk(KERN_ERR "PPP: no memory (fragment)\n");
1336 ++ppp->stats.tx_errors;
1337 ++ppp->nxseq;
1338 return 1; /* abandon the frame */
1340 #endif /* CONFIG_PPP_MULTILINK */
1343 * Try to send data out on a channel.
1345 static void
1346 ppp_channel_push(struct channel *pch)
1348 struct sk_buff *skb;
1349 struct ppp *ppp;
1351 spin_lock_bh(&pch->downl);
1352 if (pch->chan != 0) {
1353 while (skb_queue_len(&pch->file.xq) > 0) {
1354 skb = skb_dequeue(&pch->file.xq);
1355 if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1356 /* put the packet back and try again later */
1357 skb_queue_head(&pch->file.xq, skb);
1358 break;
1361 } else {
1362 /* channel got deregistered */
1363 skb_queue_purge(&pch->file.xq);
1365 spin_unlock_bh(&pch->downl);
1366 /* see if there is anything from the attached unit to be sent */
1367 if (skb_queue_len(&pch->file.xq) == 0) {
1368 read_lock_bh(&pch->upl);
1369 ppp = pch->ppp;
1370 if (ppp != 0)
1371 ppp_xmit_process(ppp);
1372 read_unlock_bh(&pch->upl);
1377 * Receive-side routines.
1380 /* misuse a few fields of the skb for MP reconstruction */
1381 #define sequence priority
1382 #define BEbits cb[0]
1384 static inline void
1385 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1387 ppp_recv_lock(ppp);
1388 /* ppp->dev == 0 means interface is closing down */
1389 if (ppp->dev != 0)
1390 ppp_receive_frame(ppp, skb, pch);
1391 else
1392 kfree_skb(skb);
1393 ppp_recv_unlock(ppp);
1396 void
1397 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1399 struct channel *pch = chan->ppp;
1400 int proto;
1402 if (pch == 0 || skb->len == 0) {
1403 kfree_skb(skb);
1404 return;
1407 proto = PPP_PROTO(skb);
1408 read_lock_bh(&pch->upl);
1409 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1410 /* put it on the channel queue */
1411 skb_queue_tail(&pch->file.rq, skb);
1412 /* drop old frames if queue too long */
1413 while (pch->file.rq.qlen > PPP_MAX_RQLEN
1414 && (skb = skb_dequeue(&pch->file.rq)) != 0)
1415 kfree_skb(skb);
1416 wake_up_interruptible(&pch->file.rwait);
1417 } else {
1418 ppp_do_recv(pch->ppp, skb, pch);
1420 read_unlock_bh(&pch->upl);
1423 /* Put a 0-length skb in the receive queue as an error indication */
1424 void
1425 ppp_input_error(struct ppp_channel *chan, int code)
1427 struct channel *pch = chan->ppp;
1428 struct sk_buff *skb;
1430 if (pch == 0)
1431 return;
1433 read_lock_bh(&pch->upl);
1434 if (pch->ppp != 0) {
1435 skb = alloc_skb(0, GFP_ATOMIC);
1436 if (skb != 0) {
1437 skb->len = 0; /* probably unnecessary */
1438 skb->cb[0] = code;
1439 ppp_do_recv(pch->ppp, skb, pch);
1442 read_unlock_bh(&pch->upl);
1446 * We come in here to process a received frame.
1447 * The receive side of the ppp unit is locked.
1449 static void
1450 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1452 if (skb->len >= 2) {
1453 #ifdef CONFIG_PPP_MULTILINK
1454 /* XXX do channel-level decompression here */
1455 if (PPP_PROTO(skb) == PPP_MP)
1456 ppp_receive_mp_frame(ppp, skb, pch);
1457 else
1458 #endif /* CONFIG_PPP_MULTILINK */
1459 ppp_receive_nonmp_frame(ppp, skb);
1460 return;
1463 if (skb->len > 0)
1464 /* note: a 0-length skb is used as an error indication */
1465 ++ppp->stats.rx_length_errors;
1467 kfree_skb(skb);
1468 ppp_receive_error(ppp);
1471 static void
1472 ppp_receive_error(struct ppp *ppp)
1474 ++ppp->stats.rx_errors;
1475 if (ppp->vj != 0)
1476 slhc_toss(ppp->vj);
1479 static void
1480 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1482 struct sk_buff *ns;
1483 int proto, len, npi;
1486 * Decompress the frame, if compressed.
1487 * Note that some decompressors need to see uncompressed frames
1488 * that come in as well as compressed frames.
1490 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN)
1491 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1492 skb = ppp_decompress_frame(ppp, skb);
1494 proto = PPP_PROTO(skb);
1495 switch (proto) {
1496 case PPP_VJC_COMP:
1497 /* decompress VJ compressed packets */
1498 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP))
1499 goto err;
1501 if (skb_tailroom(skb) < 124) {
1502 /* copy to a new sk_buff with more tailroom */
1503 ns = dev_alloc_skb(skb->len + 128);
1504 if (ns == 0) {
1505 printk(KERN_ERR"PPP: no memory (VJ decomp)\n");
1506 goto err;
1508 skb_reserve(ns, 2);
1509 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1510 kfree_skb(skb);
1511 skb = ns;
1513 else if (!pskb_may_pull(skb, skb->len))
1514 goto err;
1516 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1517 if (len <= 0) {
1518 printk(KERN_DEBUG "PPP: VJ decompression error\n");
1519 goto err;
1521 len += 2;
1522 if (len > skb->len)
1523 skb_put(skb, len - skb->len);
1524 else if (len < skb->len)
1525 skb_trim(skb, len);
1526 proto = PPP_IP;
1527 break;
1529 case PPP_VJC_UNCOMP:
1530 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP))
1531 goto err;
1533 /* Until we fix the decompressor need to make sure
1534 * data portion is linear.
1536 if (!pskb_may_pull(skb, skb->len))
1537 goto err;
1539 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1540 printk(KERN_ERR "PPP: VJ uncompressed error\n");
1541 goto err;
1543 proto = PPP_IP;
1544 break;
1546 case PPP_CCP:
1547 ppp_ccp_peek(ppp, skb, 1);
1548 break;
1551 ++ppp->stats.rx_packets;
1552 ppp->stats.rx_bytes += skb->len - 2;
1554 npi = proto_to_npindex(proto);
1555 if (npi < 0) {
1556 /* control or unknown frame - pass it to pppd */
1557 skb_queue_tail(&ppp->file.rq, skb);
1558 /* limit queue length by dropping old frames */
1559 while (ppp->file.rq.qlen > PPP_MAX_RQLEN
1560 && (skb = skb_dequeue(&ppp->file.rq)) != 0)
1561 kfree_skb(skb);
1562 /* wake up any process polling or blocking on read */
1563 wake_up_interruptible(&ppp->file.rwait);
1565 } else {
1566 /* network protocol frame - give it to the kernel */
1568 #ifdef CONFIG_PPP_FILTER
1569 /* check if the packet passes the pass and active filters */
1570 /* the filter instructions are constructed assuming
1571 a four-byte PPP header on each packet */
1572 *skb_push(skb, 2) = 0;
1573 if (ppp->pass_filter
1574 && sk_run_filter(skb, ppp->pass_filter,
1575 ppp->pass_len) == 0) {
1576 if (ppp->debug & 1)
1577 printk(KERN_DEBUG "PPP: inbound frame not passed\n");
1578 kfree_skb(skb);
1579 return;
1581 if (!(ppp->active_filter
1582 && sk_run_filter(skb, ppp->active_filter,
1583 ppp->active_len) == 0))
1584 ppp->last_recv = jiffies;
1585 skb_pull(skb, 2);
1586 #else
1587 ppp->last_recv = jiffies;
1588 #endif /* CONFIG_PPP_FILTER */
1590 if ((ppp->dev->flags & IFF_UP) == 0
1591 || ppp->npmode[npi] != NPMODE_PASS) {
1592 kfree_skb(skb);
1593 } else {
1594 skb_pull(skb, 2); /* chop off protocol */
1595 skb->dev = ppp->dev;
1596 skb->protocol = htons(npindex_to_ethertype[npi]);
1597 skb->mac.raw = skb->data;
1598 skb->input_dev = ppp->dev;
1599 netif_rx(skb);
1600 ppp->dev->last_rx = jiffies;
1603 return;
1605 err:
1606 kfree_skb(skb);
1607 ppp_receive_error(ppp);
1610 static struct sk_buff *
1611 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1613 int proto = PPP_PROTO(skb);
1614 struct sk_buff *ns;
1615 int len;
1617 /* Until we fix all the decompressor's need to make sure
1618 * data portion is linear.
1620 if (!pskb_may_pull(skb, skb->len))
1621 goto err;
1623 if (proto == PPP_COMP) {
1624 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN);
1625 if (ns == 0) {
1626 printk(KERN_ERR "ppp_decompress_frame: no memory\n");
1627 goto err;
1629 /* the decompressor still expects the A/C bytes in the hdr */
1630 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1631 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN);
1632 if (len < 0) {
1633 /* Pass the compressed frame to pppd as an
1634 error indication. */
1635 if (len == DECOMP_FATALERROR)
1636 ppp->rstate |= SC_DC_FERROR;
1637 kfree_skb(ns);
1638 goto err;
1641 kfree_skb(skb);
1642 skb = ns;
1643 skb_put(skb, len);
1644 skb_pull(skb, 2); /* pull off the A/C bytes */
1646 } else {
1647 /* Uncompressed frame - pass to decompressor so it
1648 can update its dictionary if necessary. */
1649 if (ppp->rcomp->incomp)
1650 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1651 skb->len + 2);
1654 return skb;
1656 err:
1657 ppp->rstate |= SC_DC_ERROR;
1658 ppp_receive_error(ppp);
1659 return skb;
1662 #ifdef CONFIG_PPP_MULTILINK
1664 * Receive a multilink frame.
1665 * We put it on the reconstruction queue and then pull off
1666 * as many completed frames as we can.
1668 static void
1669 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1671 u32 mask, seq;
1672 struct list_head *l;
1673 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1675 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1676 goto err; /* no good, throw it away */
1678 /* Decode sequence number and begin/end bits */
1679 if (ppp->flags & SC_MP_SHORTSEQ) {
1680 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1681 mask = 0xfff;
1682 } else {
1683 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1684 mask = 0xffffff;
1686 skb->BEbits = skb->data[2];
1687 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
1690 * Do protocol ID decompression on the first fragment of each packet.
1692 if ((skb->BEbits & B) && (skb->data[0] & 1))
1693 *skb_push(skb, 1) = 0;
1696 * Expand sequence number to 32 bits, making it as close
1697 * as possible to ppp->minseq.
1699 seq |= ppp->minseq & ~mask;
1700 if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1701 seq += mask + 1;
1702 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1703 seq -= mask + 1; /* should never happen */
1704 skb->sequence = seq;
1705 pch->lastseq = seq;
1708 * If this packet comes before the next one we were expecting,
1709 * drop it.
1711 if (seq_before(seq, ppp->nextseq)) {
1712 kfree_skb(skb);
1713 ++ppp->stats.rx_dropped;
1714 ppp_receive_error(ppp);
1715 return;
1719 * Reevaluate minseq, the minimum over all channels of the
1720 * last sequence number received on each channel. Because of
1721 * the increasing sequence number rule, we know that any fragment
1722 * before `minseq' which hasn't arrived is never going to arrive.
1723 * The list of channels can't change because we have the receive
1724 * side of the ppp unit locked.
1726 for (l = ppp->channels.next; l != &ppp->channels; l = l->next) {
1727 struct channel *ch = list_entry(l, struct channel, clist);
1728 if (seq_before(ch->lastseq, seq))
1729 seq = ch->lastseq;
1731 if (seq_before(ppp->minseq, seq))
1732 ppp->minseq = seq;
1734 /* Put the fragment on the reconstruction queue */
1735 ppp_mp_insert(ppp, skb);
1737 /* If the queue is getting long, don't wait any longer for packets
1738 before the start of the queue. */
1739 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN
1740 && seq_before(ppp->minseq, ppp->mrq.next->sequence))
1741 ppp->minseq = ppp->mrq.next->sequence;
1743 /* Pull completed packets off the queue and receive them. */
1744 while ((skb = ppp_mp_reconstruct(ppp)) != 0)
1745 ppp_receive_nonmp_frame(ppp, skb);
1747 return;
1749 err:
1750 kfree_skb(skb);
1751 ppp_receive_error(ppp);
1755 * Insert a fragment on the MP reconstruction queue.
1756 * The queue is ordered by increasing sequence number.
1758 static void
1759 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1761 struct sk_buff *p;
1762 struct sk_buff_head *list = &ppp->mrq;
1763 u32 seq = skb->sequence;
1765 /* N.B. we don't need to lock the list lock because we have the
1766 ppp unit receive-side lock. */
1767 for (p = list->next; p != (struct sk_buff *)list; p = p->next)
1768 if (seq_before(seq, p->sequence))
1769 break;
1770 __skb_insert(skb, p->prev, p, list);
1774 * Reconstruct a packet from the MP fragment queue.
1775 * We go through increasing sequence numbers until we find a
1776 * complete packet, or we get to the sequence number for a fragment
1777 * which hasn't arrived but might still do so.
1779 struct sk_buff *
1780 ppp_mp_reconstruct(struct ppp *ppp)
1782 u32 seq = ppp->nextseq;
1783 u32 minseq = ppp->minseq;
1784 struct sk_buff_head *list = &ppp->mrq;
1785 struct sk_buff *p, *next;
1786 struct sk_buff *head, *tail;
1787 struct sk_buff *skb = NULL;
1788 int lost = 0, len = 0;
1790 if (ppp->mrru == 0) /* do nothing until mrru is set */
1791 return NULL;
1792 head = list->next;
1793 tail = NULL;
1794 for (p = head; p != (struct sk_buff *) list; p = next) {
1795 next = p->next;
1796 if (seq_before(p->sequence, seq)) {
1797 /* this can't happen, anyway ignore the skb */
1798 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n",
1799 p->sequence, seq);
1800 head = next;
1801 continue;
1803 if (p->sequence != seq) {
1804 /* Fragment `seq' is missing. If it is after
1805 minseq, it might arrive later, so stop here. */
1806 if (seq_after(seq, minseq))
1807 break;
1808 /* Fragment `seq' is lost, keep going. */
1809 lost = 1;
1810 seq = seq_before(minseq, p->sequence)?
1811 minseq + 1: p->sequence;
1812 next = p;
1813 continue;
1817 * At this point we know that all the fragments from
1818 * ppp->nextseq to seq are either present or lost.
1819 * Also, there are no complete packets in the queue
1820 * that have no missing fragments and end before this
1821 * fragment.
1824 /* B bit set indicates this fragment starts a packet */
1825 if (p->BEbits & B) {
1826 head = p;
1827 lost = 0;
1828 len = 0;
1831 len += p->len;
1833 /* Got a complete packet yet? */
1834 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) {
1835 if (len > ppp->mrru + 2) {
1836 ++ppp->stats.rx_length_errors;
1837 printk(KERN_DEBUG "PPP: reconstructed packet"
1838 " is too long (%d)\n", len);
1839 } else if (p == head) {
1840 /* fragment is complete packet - reuse skb */
1841 tail = p;
1842 skb = skb_get(p);
1843 break;
1844 } else if ((skb = dev_alloc_skb(len)) == NULL) {
1845 ++ppp->stats.rx_missed_errors;
1846 printk(KERN_DEBUG "PPP: no memory for "
1847 "reconstructed packet");
1848 } else {
1849 tail = p;
1850 break;
1852 ppp->nextseq = seq + 1;
1856 * If this is the ending fragment of a packet,
1857 * and we haven't found a complete valid packet yet,
1858 * we can discard up to and including this fragment.
1860 if (p->BEbits & E)
1861 head = next;
1863 ++seq;
1866 /* If we have a complete packet, copy it all into one skb. */
1867 if (tail != NULL) {
1868 /* If we have discarded any fragments,
1869 signal a receive error. */
1870 if (head->sequence != ppp->nextseq) {
1871 if (ppp->debug & 1)
1872 printk(KERN_DEBUG " missed pkts %u..%u\n",
1873 ppp->nextseq, head->sequence-1);
1874 ++ppp->stats.rx_dropped;
1875 ppp_receive_error(ppp);
1878 if (head != tail)
1879 /* copy to a single skb */
1880 for (p = head; p != tail->next; p = p->next)
1881 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len);
1882 ppp->nextseq = tail->sequence + 1;
1883 head = tail->next;
1886 /* Discard all the skbuffs that we have copied the data out of
1887 or that we can't use. */
1888 while ((p = list->next) != head) {
1889 __skb_unlink(p, list);
1890 kfree_skb(p);
1893 return skb;
1895 #endif /* CONFIG_PPP_MULTILINK */
1898 * Channel interface.
1902 * Create a new, unattached ppp channel.
1905 ppp_register_channel(struct ppp_channel *chan)
1907 struct channel *pch;
1909 pch = kmalloc(sizeof(struct channel), GFP_KERNEL);
1910 if (pch == 0)
1911 return -ENOMEM;
1912 memset(pch, 0, sizeof(struct channel));
1913 pch->ppp = NULL;
1914 pch->chan = chan;
1915 chan->ppp = pch;
1916 init_ppp_file(&pch->file, CHANNEL);
1917 pch->file.hdrlen = chan->hdrlen;
1918 #ifdef CONFIG_PPP_MULTILINK
1919 pch->lastseq = -1;
1920 #endif /* CONFIG_PPP_MULTILINK */
1921 init_rwsem(&pch->chan_sem);
1922 spin_lock_init(&pch->downl);
1923 pch->upl = RW_LOCK_UNLOCKED;
1924 spin_lock_bh(&all_channels_lock);
1925 pch->file.index = ++last_channel_index;
1926 list_add(&pch->list, &new_channels);
1927 atomic_inc(&channel_count);
1928 spin_unlock_bh(&all_channels_lock);
1929 return 0;
1933 * Return the index of a channel.
1935 int ppp_channel_index(struct ppp_channel *chan)
1937 struct channel *pch = chan->ppp;
1939 if (pch != 0)
1940 return pch->file.index;
1941 return -1;
1945 * Return the PPP unit number to which a channel is connected.
1947 int ppp_unit_number(struct ppp_channel *chan)
1949 struct channel *pch = chan->ppp;
1950 int unit = -1;
1952 if (pch != 0) {
1953 read_lock_bh(&pch->upl);
1954 if (pch->ppp != 0)
1955 unit = pch->ppp->file.index;
1956 read_unlock_bh(&pch->upl);
1958 return unit;
1962 * Disconnect a channel from the generic layer.
1963 * This must be called in process context.
1965 void
1966 ppp_unregister_channel(struct ppp_channel *chan)
1968 struct channel *pch = chan->ppp;
1970 if (pch == 0)
1971 return; /* should never happen */
1972 chan->ppp = NULL;
1975 * This ensures that we have returned from any calls into the
1976 * the channel's start_xmit or ioctl routine before we proceed.
1978 down_write(&pch->chan_sem);
1979 spin_lock_bh(&pch->downl);
1980 pch->chan = NULL;
1981 spin_unlock_bh(&pch->downl);
1982 up_write(&pch->chan_sem);
1983 ppp_disconnect_channel(pch);
1984 spin_lock_bh(&all_channels_lock);
1985 list_del(&pch->list);
1986 spin_unlock_bh(&all_channels_lock);
1987 pch->file.dead = 1;
1988 wake_up_interruptible(&pch->file.rwait);
1989 if (atomic_dec_and_test(&pch->file.refcnt))
1990 ppp_destroy_channel(pch);
1994 * Callback from a channel when it can accept more to transmit.
1995 * This should be called at BH/softirq level, not interrupt level.
1997 void
1998 ppp_output_wakeup(struct ppp_channel *chan)
2000 struct channel *pch = chan->ppp;
2002 if (pch == 0)
2003 return;
2004 ppp_channel_push(pch);
2008 * Compression control.
2011 /* Process the PPPIOCSCOMPRESS ioctl. */
2012 static int
2013 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2015 int err;
2016 struct compressor *cp, *ocomp;
2017 struct ppp_option_data data;
2018 void *state, *ostate;
2019 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2021 err = -EFAULT;
2022 if (copy_from_user(&data, (void __user *) arg, sizeof(data))
2023 || (data.length <= CCP_MAX_OPTION_LENGTH
2024 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2025 goto out;
2026 err = -EINVAL;
2027 if (data.length > CCP_MAX_OPTION_LENGTH
2028 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2029 goto out;
2031 cp = find_compressor(ccp_option[0]);
2032 #ifdef CONFIG_KMOD
2033 if (cp == 0) {
2034 request_module("ppp-compress-%d", ccp_option[0]);
2035 cp = find_compressor(ccp_option[0]);
2037 #endif /* CONFIG_KMOD */
2038 if (cp == 0)
2039 goto out;
2041 err = -ENOBUFS;
2042 if (data.transmit) {
2043 state = cp->comp_alloc(ccp_option, data.length);
2044 if (state != 0) {
2045 ppp_xmit_lock(ppp);
2046 ppp->xstate &= ~SC_COMP_RUN;
2047 ocomp = ppp->xcomp;
2048 ostate = ppp->xc_state;
2049 ppp->xcomp = cp;
2050 ppp->xc_state = state;
2051 ppp_xmit_unlock(ppp);
2052 if (ostate != 0) {
2053 ocomp->comp_free(ostate);
2054 module_put(ocomp->owner);
2056 err = 0;
2057 } else
2058 module_put(cp->owner);
2060 } else {
2061 state = cp->decomp_alloc(ccp_option, data.length);
2062 if (state != 0) {
2063 ppp_recv_lock(ppp);
2064 ppp->rstate &= ~SC_DECOMP_RUN;
2065 ocomp = ppp->rcomp;
2066 ostate = ppp->rc_state;
2067 ppp->rcomp = cp;
2068 ppp->rc_state = state;
2069 ppp_recv_unlock(ppp);
2070 if (ostate != 0) {
2071 ocomp->decomp_free(ostate);
2072 module_put(ocomp->owner);
2074 err = 0;
2075 } else
2076 module_put(cp->owner);
2079 out:
2080 return err;
2084 * Look at a CCP packet and update our state accordingly.
2085 * We assume the caller has the xmit or recv path locked.
2087 static void
2088 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2090 unsigned char *dp;
2091 int len;
2093 if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2094 return; /* no header */
2095 dp = skb->data + 2;
2097 switch (CCP_CODE(dp)) {
2098 case CCP_CONFREQ:
2100 /* A ConfReq starts negotiation of compression
2101 * in one direction of transmission,
2102 * and hence brings it down...but which way?
2104 * Remember:
2105 * A ConfReq indicates what the sender would like to receive
2107 if(inbound)
2108 /* He is proposing what I should send */
2109 ppp->xstate &= ~SC_COMP_RUN;
2110 else
2111 /* I am proposing to what he should send */
2112 ppp->rstate &= ~SC_DECOMP_RUN;
2114 break;
2116 case CCP_TERMREQ:
2117 case CCP_TERMACK:
2119 * CCP is going down, both directions of transmission
2121 ppp->rstate &= ~SC_DECOMP_RUN;
2122 ppp->xstate &= ~SC_COMP_RUN;
2123 break;
2125 case CCP_CONFACK:
2126 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2127 break;
2128 len = CCP_LENGTH(dp);
2129 if (!pskb_may_pull(skb, len + 2))
2130 return; /* too short */
2131 dp += CCP_HDRLEN;
2132 len -= CCP_HDRLEN;
2133 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2134 break;
2135 if (inbound) {
2136 /* we will start receiving compressed packets */
2137 if (ppp->rc_state == 0)
2138 break;
2139 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2140 ppp->file.index, 0, ppp->mru, ppp->debug)) {
2141 ppp->rstate |= SC_DECOMP_RUN;
2142 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2144 } else {
2145 /* we will soon start sending compressed packets */
2146 if (ppp->xc_state == 0)
2147 break;
2148 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2149 ppp->file.index, 0, ppp->debug))
2150 ppp->xstate |= SC_COMP_RUN;
2152 break;
2154 case CCP_RESETACK:
2155 /* reset the [de]compressor */
2156 if ((ppp->flags & SC_CCP_UP) == 0)
2157 break;
2158 if (inbound) {
2159 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2160 ppp->rcomp->decomp_reset(ppp->rc_state);
2161 ppp->rstate &= ~SC_DC_ERROR;
2163 } else {
2164 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2165 ppp->xcomp->comp_reset(ppp->xc_state);
2167 break;
2171 /* Free up compression resources. */
2172 static void
2173 ppp_ccp_closed(struct ppp *ppp)
2175 void *xstate, *rstate;
2176 struct compressor *xcomp, *rcomp;
2178 ppp_lock(ppp);
2179 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2180 ppp->xstate = 0;
2181 xcomp = ppp->xcomp;
2182 xstate = ppp->xc_state;
2183 ppp->xc_state = NULL;
2184 ppp->rstate = 0;
2185 rcomp = ppp->rcomp;
2186 rstate = ppp->rc_state;
2187 ppp->rc_state = NULL;
2188 ppp_unlock(ppp);
2190 if (xstate) {
2191 xcomp->comp_free(xstate);
2192 module_put(xcomp->owner);
2194 if (rstate) {
2195 rcomp->decomp_free(rstate);
2196 module_put(rcomp->owner);
2200 /* List of compressors. */
2201 static LIST_HEAD(compressor_list);
2202 static spinlock_t compressor_list_lock = SPIN_LOCK_UNLOCKED;
2204 struct compressor_entry {
2205 struct list_head list;
2206 struct compressor *comp;
2209 static struct compressor_entry *
2210 find_comp_entry(int proto)
2212 struct compressor_entry *ce;
2213 struct list_head *list = &compressor_list;
2215 while ((list = list->next) != &compressor_list) {
2216 ce = list_entry(list, struct compressor_entry, list);
2217 if (ce->comp->compress_proto == proto)
2218 return ce;
2220 return NULL;
2223 /* Register a compressor */
2225 ppp_register_compressor(struct compressor *cp)
2227 struct compressor_entry *ce;
2228 int ret;
2229 spin_lock(&compressor_list_lock);
2230 ret = -EEXIST;
2231 if (find_comp_entry(cp->compress_proto) != 0)
2232 goto out;
2233 ret = -ENOMEM;
2234 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2235 if (ce == 0)
2236 goto out;
2237 ret = 0;
2238 ce->comp = cp;
2239 list_add(&ce->list, &compressor_list);
2240 out:
2241 spin_unlock(&compressor_list_lock);
2242 return ret;
2245 /* Unregister a compressor */
2246 void
2247 ppp_unregister_compressor(struct compressor *cp)
2249 struct compressor_entry *ce;
2251 spin_lock(&compressor_list_lock);
2252 ce = find_comp_entry(cp->compress_proto);
2253 if (ce != 0 && ce->comp == cp) {
2254 list_del(&ce->list);
2255 kfree(ce);
2257 spin_unlock(&compressor_list_lock);
2260 /* Find a compressor. */
2261 static struct compressor *
2262 find_compressor(int type)
2264 struct compressor_entry *ce;
2265 struct compressor *cp = NULL;
2267 spin_lock(&compressor_list_lock);
2268 ce = find_comp_entry(type);
2269 if (ce != 0) {
2270 cp = ce->comp;
2271 if (!try_module_get(cp->owner))
2272 cp = NULL;
2274 spin_unlock(&compressor_list_lock);
2275 return cp;
2279 * Miscelleneous stuff.
2282 static void
2283 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2285 struct slcompress *vj = ppp->vj;
2287 memset(st, 0, sizeof(*st));
2288 st->p.ppp_ipackets = ppp->stats.rx_packets;
2289 st->p.ppp_ierrors = ppp->stats.rx_errors;
2290 st->p.ppp_ibytes = ppp->stats.rx_bytes;
2291 st->p.ppp_opackets = ppp->stats.tx_packets;
2292 st->p.ppp_oerrors = ppp->stats.tx_errors;
2293 st->p.ppp_obytes = ppp->stats.tx_bytes;
2294 if (vj == 0)
2295 return;
2296 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2297 st->vj.vjs_compressed = vj->sls_o_compressed;
2298 st->vj.vjs_searches = vj->sls_o_searches;
2299 st->vj.vjs_misses = vj->sls_o_misses;
2300 st->vj.vjs_errorin = vj->sls_i_error;
2301 st->vj.vjs_tossed = vj->sls_i_tossed;
2302 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2303 st->vj.vjs_compressedin = vj->sls_i_compressed;
2307 * Stuff for handling the lists of ppp units and channels
2308 * and for initialization.
2312 * Create a new ppp interface unit. Fails if it can't allocate memory
2313 * or if there is already a unit with the requested number.
2314 * unit == -1 means allocate a new number.
2316 static struct ppp *
2317 ppp_create_interface(int unit, int *retp)
2319 struct ppp *ppp;
2320 struct net_device *dev = NULL;
2321 int ret = -ENOMEM;
2322 int i;
2324 ppp = kmalloc(sizeof(struct ppp), GFP_KERNEL);
2325 if (!ppp)
2326 goto out;
2327 dev = alloc_netdev(0, "", ppp_setup);
2328 if (!dev)
2329 goto out1;
2330 memset(ppp, 0, sizeof(struct ppp));
2332 ppp->mru = PPP_MRU;
2333 init_ppp_file(&ppp->file, INTERFACE);
2334 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
2335 for (i = 0; i < NUM_NP; ++i)
2336 ppp->npmode[i] = NPMODE_PASS;
2337 INIT_LIST_HEAD(&ppp->channels);
2338 spin_lock_init(&ppp->rlock);
2339 spin_lock_init(&ppp->wlock);
2340 #ifdef CONFIG_PPP_MULTILINK
2341 ppp->minseq = -1;
2342 skb_queue_head_init(&ppp->mrq);
2343 #endif /* CONFIG_PPP_MULTILINK */
2344 ppp->dev = dev;
2345 dev->priv = ppp;
2347 dev->hard_start_xmit = ppp_start_xmit;
2348 dev->get_stats = ppp_net_stats;
2349 dev->do_ioctl = ppp_net_ioctl;
2351 ret = -EEXIST;
2352 down(&all_ppp_sem);
2353 if (unit < 0)
2354 unit = cardmap_find_first_free(all_ppp_units);
2355 else if (cardmap_get(all_ppp_units, unit) != NULL)
2356 goto out2; /* unit already exists */
2358 /* Initialize the new ppp unit */
2359 ppp->file.index = unit;
2360 sprintf(dev->name, "ppp%d", unit);
2362 ret = register_netdev(dev);
2363 if (ret != 0) {
2364 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n",
2365 dev->name, ret);
2366 goto out2;
2369 atomic_inc(&ppp_unit_count);
2370 cardmap_set(&all_ppp_units, unit, ppp);
2371 up(&all_ppp_sem);
2372 *retp = 0;
2373 return ppp;
2375 out2:
2376 up(&all_ppp_sem);
2377 free_netdev(dev);
2378 out1:
2379 kfree(ppp);
2380 out:
2381 *retp = ret;
2382 return NULL;
2386 * Initialize a ppp_file structure.
2388 static void
2389 init_ppp_file(struct ppp_file *pf, int kind)
2391 pf->kind = kind;
2392 skb_queue_head_init(&pf->xq);
2393 skb_queue_head_init(&pf->rq);
2394 atomic_set(&pf->refcnt, 1);
2395 init_waitqueue_head(&pf->rwait);
2399 * Take down a ppp interface unit - called when the owning file
2400 * (the one that created the unit) is closed or detached.
2402 static void ppp_shutdown_interface(struct ppp *ppp)
2404 struct net_device *dev;
2406 down(&all_ppp_sem);
2407 ppp_lock(ppp);
2408 dev = ppp->dev;
2409 ppp->dev = NULL;
2410 ppp_unlock(ppp);
2411 /* This will call dev_close() for us. */
2412 if (dev) {
2413 unregister_netdev(dev);
2414 free_netdev(dev);
2416 cardmap_set(&all_ppp_units, ppp->file.index, NULL);
2417 ppp->file.dead = 1;
2418 ppp->owner = NULL;
2419 wake_up_interruptible(&ppp->file.rwait);
2420 up(&all_ppp_sem);
2424 * Free the memory used by a ppp unit. This is only called once
2425 * there are no channels connected to the unit and no file structs
2426 * that reference the unit.
2428 static void ppp_destroy_interface(struct ppp *ppp)
2430 atomic_dec(&ppp_unit_count);
2432 if (!ppp->file.dead || ppp->n_channels) {
2433 /* "can't happen" */
2434 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d "
2435 "n_channels=%d !\n", ppp, ppp->file.dead,
2436 ppp->n_channels);
2437 return;
2440 ppp_ccp_closed(ppp);
2441 if (ppp->vj) {
2442 slhc_free(ppp->vj);
2443 ppp->vj = NULL;
2445 skb_queue_purge(&ppp->file.xq);
2446 skb_queue_purge(&ppp->file.rq);
2447 #ifdef CONFIG_PPP_MULTILINK
2448 skb_queue_purge(&ppp->mrq);
2449 #endif /* CONFIG_PPP_MULTILINK */
2450 #ifdef CONFIG_PPP_FILTER
2451 if (ppp->pass_filter) {
2452 kfree(ppp->pass_filter);
2453 ppp->pass_filter = NULL;
2455 if (ppp->active_filter) {
2456 kfree(ppp->active_filter);
2457 ppp->active_filter = NULL;
2459 #endif /* CONFIG_PPP_FILTER */
2461 kfree(ppp);
2465 * Locate an existing ppp unit.
2466 * The caller should have locked the all_ppp_sem.
2468 static struct ppp *
2469 ppp_find_unit(int unit)
2471 return cardmap_get(all_ppp_units, unit);
2475 * Locate an existing ppp channel.
2476 * The caller should have locked the all_channels_lock.
2477 * First we look in the new_channels list, then in the
2478 * all_channels list. If found in the new_channels list,
2479 * we move it to the all_channels list. This is for speed
2480 * when we have a lot of channels in use.
2482 static struct channel *
2483 ppp_find_channel(int unit)
2485 struct channel *pch;
2486 struct list_head *list;
2488 list = &new_channels;
2489 while ((list = list->next) != &new_channels) {
2490 pch = list_entry(list, struct channel, list);
2491 if (pch->file.index == unit) {
2492 list_del(&pch->list);
2493 list_add(&pch->list, &all_channels);
2494 return pch;
2497 list = &all_channels;
2498 while ((list = list->next) != &all_channels) {
2499 pch = list_entry(list, struct channel, list);
2500 if (pch->file.index == unit)
2501 return pch;
2503 return NULL;
2507 * Connect a PPP channel to a PPP interface unit.
2509 static int
2510 ppp_connect_channel(struct channel *pch, int unit)
2512 struct ppp *ppp;
2513 int ret = -ENXIO;
2514 int hdrlen;
2516 down(&all_ppp_sem);
2517 ppp = ppp_find_unit(unit);
2518 if (ppp == 0)
2519 goto out;
2520 write_lock_bh(&pch->upl);
2521 ret = -EINVAL;
2522 if (pch->ppp != 0)
2523 goto outl;
2525 ppp_lock(ppp);
2526 if (pch->file.hdrlen > ppp->file.hdrlen)
2527 ppp->file.hdrlen = pch->file.hdrlen;
2528 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
2529 if (ppp->dev && hdrlen > ppp->dev->hard_header_len)
2530 ppp->dev->hard_header_len = hdrlen;
2531 list_add_tail(&pch->clist, &ppp->channels);
2532 ++ppp->n_channels;
2533 pch->ppp = ppp;
2534 atomic_inc(&ppp->file.refcnt);
2535 ppp_unlock(ppp);
2536 ret = 0;
2538 outl:
2539 write_unlock_bh(&pch->upl);
2540 out:
2541 up(&all_ppp_sem);
2542 return ret;
2546 * Disconnect a channel from its ppp unit.
2548 static int
2549 ppp_disconnect_channel(struct channel *pch)
2551 struct ppp *ppp;
2552 int err = -EINVAL;
2554 write_lock_bh(&pch->upl);
2555 ppp = pch->ppp;
2556 pch->ppp = NULL;
2557 write_unlock_bh(&pch->upl);
2558 if (ppp != 0) {
2559 /* remove it from the ppp unit's list */
2560 ppp_lock(ppp);
2561 list_del(&pch->clist);
2562 --ppp->n_channels;
2563 ppp_unlock(ppp);
2564 if (atomic_dec_and_test(&ppp->file.refcnt))
2565 ppp_destroy_interface(ppp);
2566 err = 0;
2568 return err;
2572 * Free up the resources used by a ppp channel.
2574 static void ppp_destroy_channel(struct channel *pch)
2576 atomic_dec(&channel_count);
2578 if (!pch->file.dead) {
2579 /* "can't happen" */
2580 printk(KERN_ERR "ppp: destroying undead channel %p !\n",
2581 pch);
2582 return;
2584 skb_queue_purge(&pch->file.xq);
2585 skb_queue_purge(&pch->file.rq);
2586 kfree(pch);
2589 static void __exit ppp_cleanup(void)
2591 /* should never happen */
2592 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2593 printk(KERN_ERR "PPP: removing module but units remain!\n");
2594 cardmap_destroy(&all_ppp_units);
2595 if (unregister_chrdev(PPP_MAJOR, "ppp") != 0)
2596 printk(KERN_ERR "PPP: failed to unregister PPP device\n");
2597 devfs_remove("ppp");
2598 class_simple_device_remove(MKDEV(PPP_MAJOR, 0));
2599 class_simple_destroy(ppp_class);
2603 * Cardmap implementation.
2605 static void *cardmap_get(struct cardmap *map, unsigned int nr)
2607 struct cardmap *p;
2608 int i;
2610 for (p = map; p != NULL; ) {
2611 if ((i = nr >> p->shift) >= CARDMAP_WIDTH)
2612 return NULL;
2613 if (p->shift == 0)
2614 return p->ptr[i];
2615 nr &= ~(CARDMAP_MASK << p->shift);
2616 p = p->ptr[i];
2618 return NULL;
2621 static void cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr)
2623 struct cardmap *p;
2624 int i;
2626 p = *pmap;
2627 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) {
2628 do {
2629 /* need a new top level */
2630 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL);
2631 memset(np, 0, sizeof(*np));
2632 np->ptr[0] = p;
2633 if (p != NULL) {
2634 np->shift = p->shift + CARDMAP_ORDER;
2635 p->parent = np;
2636 } else
2637 np->shift = 0;
2638 p = np;
2639 } while ((nr >> p->shift) >= CARDMAP_WIDTH);
2640 *pmap = p;
2642 while (p->shift > 0) {
2643 i = (nr >> p->shift) & CARDMAP_MASK;
2644 if (p->ptr[i] == NULL) {
2645 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL);
2646 memset(np, 0, sizeof(*np));
2647 np->shift = p->shift - CARDMAP_ORDER;
2648 np->parent = p;
2649 p->ptr[i] = np;
2651 if (ptr == NULL)
2652 clear_bit(i, &p->inuse);
2653 p = p->ptr[i];
2655 i = nr & CARDMAP_MASK;
2656 p->ptr[i] = ptr;
2657 if (ptr != NULL)
2658 set_bit(i, &p->inuse);
2659 else
2660 clear_bit(i, &p->inuse);
2663 static unsigned int cardmap_find_first_free(struct cardmap *map)
2665 struct cardmap *p;
2666 unsigned int nr = 0;
2667 int i;
2669 if ((p = map) == NULL)
2670 return 0;
2671 for (;;) {
2672 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH);
2673 if (i >= CARDMAP_WIDTH) {
2674 if (p->parent == NULL)
2675 return CARDMAP_WIDTH << p->shift;
2676 p = p->parent;
2677 i = (nr >> p->shift) & CARDMAP_MASK;
2678 set_bit(i, &p->inuse);
2679 continue;
2681 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift);
2682 if (p->shift == 0 || p->ptr[i] == NULL)
2683 return nr;
2684 p = p->ptr[i];
2688 static void cardmap_destroy(struct cardmap **pmap)
2690 struct cardmap *p, *np;
2691 int i;
2693 for (p = *pmap; p != NULL; p = np) {
2694 if (p->shift != 0) {
2695 for (i = 0; i < CARDMAP_WIDTH; ++i)
2696 if (p->ptr[i] != NULL)
2697 break;
2698 if (i < CARDMAP_WIDTH) {
2699 np = p->ptr[i];
2700 p->ptr[i] = NULL;
2701 continue;
2704 np = p->parent;
2705 kfree(p);
2707 *pmap = NULL;
2710 /* Module/initialization stuff */
2712 module_init(ppp_init);
2713 module_exit(ppp_cleanup);
2715 EXPORT_SYMBOL(ppp_register_channel);
2716 EXPORT_SYMBOL(ppp_unregister_channel);
2717 EXPORT_SYMBOL(ppp_channel_index);
2718 EXPORT_SYMBOL(ppp_unit_number);
2719 EXPORT_SYMBOL(ppp_input);
2720 EXPORT_SYMBOL(ppp_input_error);
2721 EXPORT_SYMBOL(ppp_output_wakeup);
2722 EXPORT_SYMBOL(ppp_register_compressor);
2723 EXPORT_SYMBOL(ppp_unregister_compressor);
2724 EXPORT_SYMBOL(all_ppp_units); /* for debugging */
2725 EXPORT_SYMBOL(all_channels); /* for debugging */
2726 MODULE_LICENSE("GPL");
2727 MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR);
2728 MODULE_ALIAS("/dev/ppp");