MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / lance.c
blobf04d0a82cf3b847b6e7aacf87a215703b62fbf84
1 /* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2 /*
3 Written/copyright 1993-1998 by Donald Becker.
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
45 static const char version[] = "lance.c:v1.15ac 1999/11/13 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/string.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/netdevice.h>
57 #include <linux/etherdevice.h>
58 #include <linux/skbuff.h>
60 #include <asm/bitops.h>
61 #include <asm/io.h>
62 #include <asm/dma.h>
64 static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
65 static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
66 static int __init do_lance_probe(struct net_device *dev);
69 static struct card {
70 char id_offset14;
71 char id_offset15;
72 } cards[] = {
73 { //"normal"
74 .id_offset14 = 0x57,
75 .id_offset15 = 0x57,
77 { //NI6510EB
78 .id_offset14 = 0x52,
79 .id_offset15 = 0x44,
81 { //Racal InterLan EtherBlaster
82 .id_offset14 = 0x52,
83 .id_offset15 = 0x49,
86 #define NUM_CARDS 3
88 #ifdef LANCE_DEBUG
89 static int lance_debug = LANCE_DEBUG;
90 #else
91 static int lance_debug = 1;
92 #endif
95 Theory of Operation
97 I. Board Compatibility
99 This device driver is designed for the AMD 79C960, the "PCnet-ISA
100 single-chip ethernet controller for ISA". This chip is used in a wide
101 variety of boards from vendors such as Allied Telesis, HP, Kingston,
102 and Boca. This driver is also intended to work with older AMD 7990
103 designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
104 I use the name LANCE to refer to all of the AMD chips, even though it properly
105 refers only to the original 7990.
107 II. Board-specific settings
109 The driver is designed to work the boards that use the faster
110 bus-master mode, rather than in shared memory mode. (Only older designs
111 have on-board buffer memory needed to support the slower shared memory mode.)
113 Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
114 channel. This driver probes the likely base addresses:
115 {0x300, 0x320, 0x340, 0x360}.
116 After the board is found it generates a DMA-timeout interrupt and uses
117 autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
118 of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
119 probed for by enabling each free DMA channel in turn and checking if
120 initialization succeeds.
122 The HP-J2405A board is an exception: with this board it is easy to read the
123 EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
124 _know_ the base address -- that field is for writing the EEPROM.)
126 III. Driver operation
128 IIIa. Ring buffers
129 The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
130 the base and length of the data buffer, along with status bits. The length
131 of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
132 the buffer length (rather than being directly the buffer length) for
133 implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
134 ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
135 needlessly uses extra space and reduces the chance that an upper layer will
136 be able to reorder queued Tx packets based on priority. Decreasing the number
137 of entries makes it more difficult to achieve back-to-back packet transmission
138 and increases the chance that Rx ring will overflow. (Consider the worst case
139 of receiving back-to-back minimum-sized packets.)
141 The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
142 statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
143 avoid the administrative overhead. For the Rx side this avoids dynamically
144 allocating full-sized buffers "just in case", at the expense of a
145 memory-to-memory data copy for each packet received. For most systems this
146 is a good tradeoff: the Rx buffer will always be in low memory, the copy
147 is inexpensive, and it primes the cache for later packet processing. For Tx
148 the buffers are only used when needed as low-memory bounce buffers.
150 IIIB. 16M memory limitations.
151 For the ISA bus master mode all structures used directly by the LANCE,
152 the initialization block, Rx and Tx rings, and data buffers, must be
153 accessible from the ISA bus, i.e. in the lower 16M of real memory.
154 This is a problem for current Linux kernels on >16M machines. The network
155 devices are initialized after memory initialization, and the kernel doles out
156 memory from the top of memory downward. The current solution is to have a
157 special network initialization routine that's called before memory
158 initialization; this will eventually be generalized for all network devices.
159 As mentioned before, low-memory "bounce-buffers" are used when needed.
161 IIIC. Synchronization
162 The driver runs as two independent, single-threaded flows of control. One
163 is the send-packet routine, which enforces single-threaded use by the
164 dev->tbusy flag. The other thread is the interrupt handler, which is single
165 threaded by the hardware and other software.
167 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
168 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
169 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
170 the 'lp->tx_full' flag.
172 The interrupt handler has exclusive control over the Rx ring and records stats
173 from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
174 we can't avoid the interrupt overhead by having the Tx routine reap the Tx
175 stats.) After reaping the stats, it marks the queue entry as empty by setting
176 the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
177 tx_full and tbusy flags.
181 /* Set the number of Tx and Rx buffers, using Log_2(# buffers).
182 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
183 That translates to 4 and 4 (16 == 2^^4).
184 This is a compile-time option for efficiency.
186 #ifndef LANCE_LOG_TX_BUFFERS
187 #define LANCE_LOG_TX_BUFFERS 4
188 #define LANCE_LOG_RX_BUFFERS 4
189 #endif
191 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
192 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
193 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
195 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
196 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
197 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
199 #define PKT_BUF_SZ 1544
201 /* Offsets from base I/O address. */
202 #define LANCE_DATA 0x10
203 #define LANCE_ADDR 0x12
204 #define LANCE_RESET 0x14
205 #define LANCE_BUS_IF 0x16
206 #define LANCE_TOTAL_SIZE 0x18
208 #define TX_TIMEOUT 20
210 /* The LANCE Rx and Tx ring descriptors. */
211 struct lance_rx_head {
212 s32 base;
213 s16 buf_length; /* This length is 2s complement (negative)! */
214 s16 msg_length; /* This length is "normal". */
217 struct lance_tx_head {
218 s32 base;
219 s16 length; /* Length is 2s complement (negative)! */
220 s16 misc;
223 /* The LANCE initialization block, described in databook. */
224 struct lance_init_block {
225 u16 mode; /* Pre-set mode (reg. 15) */
226 u8 phys_addr[6]; /* Physical ethernet address */
227 u32 filter[2]; /* Multicast filter (unused). */
228 /* Receive and transmit ring base, along with extra bits. */
229 u32 rx_ring; /* Tx and Rx ring base pointers */
230 u32 tx_ring;
233 struct lance_private {
234 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
235 struct lance_rx_head rx_ring[RX_RING_SIZE];
236 struct lance_tx_head tx_ring[TX_RING_SIZE];
237 struct lance_init_block init_block;
238 const char *name;
239 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
240 struct sk_buff* tx_skbuff[TX_RING_SIZE];
241 /* The addresses of receive-in-place skbuffs. */
242 struct sk_buff* rx_skbuff[RX_RING_SIZE];
243 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
244 /* Tx low-memory "bounce buffer" address. */
245 char (*tx_bounce_buffs)[PKT_BUF_SZ];
246 int cur_rx, cur_tx; /* The next free ring entry */
247 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
248 int dma;
249 struct net_device_stats stats;
250 unsigned char chip_version; /* See lance_chip_type. */
251 spinlock_t devlock;
254 #define LANCE_MUST_PAD 0x00000001
255 #define LANCE_ENABLE_AUTOSELECT 0x00000002
256 #define LANCE_MUST_REINIT_RING 0x00000004
257 #define LANCE_MUST_UNRESET 0x00000008
258 #define LANCE_HAS_MISSED_FRAME 0x00000010
260 /* A mapping from the chip ID number to the part number and features.
261 These are from the datasheets -- in real life the '970 version
262 reportedly has the same ID as the '965. */
263 static struct lance_chip_type {
264 int id_number;
265 const char *name;
266 int flags;
267 } chip_table[] = {
268 {0x0000, "LANCE 7990", /* Ancient lance chip. */
269 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
270 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
271 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
272 LANCE_HAS_MISSED_FRAME},
273 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
274 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
275 LANCE_HAS_MISSED_FRAME},
276 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
277 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
278 LANCE_HAS_MISSED_FRAME},
279 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
280 it the PCnet32. */
281 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
282 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
283 LANCE_HAS_MISSED_FRAME},
284 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
285 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
286 LANCE_HAS_MISSED_FRAME},
287 {0x0, "PCnet (unknown)",
288 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
289 LANCE_HAS_MISSED_FRAME},
292 enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
295 /* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
296 Assume yes until we know the memory size. */
297 static unsigned char lance_need_isa_bounce_buffers = 1;
299 static int lance_open(struct net_device *dev);
300 static void lance_init_ring(struct net_device *dev, int mode);
301 static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev);
302 static int lance_rx(struct net_device *dev);
303 static irqreturn_t lance_interrupt(int irq, void *dev_id, struct pt_regs *regs);
304 static int lance_close(struct net_device *dev);
305 static struct net_device_stats *lance_get_stats(struct net_device *dev);
306 static void set_multicast_list(struct net_device *dev);
307 static void lance_tx_timeout (struct net_device *dev);
311 static void cleanup_card(struct net_device *dev)
313 struct lance_private *lp = dev->priv;
314 if (dev->dma != 4)
315 free_dma(dev->dma);
316 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
317 kfree(lp->tx_bounce_buffs);
318 kfree((void*)lp->rx_buffs);
319 kfree(lp);
322 #ifdef MODULE
323 #define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
325 static struct net_device *dev_lance[MAX_CARDS];
326 static int io[MAX_CARDS];
327 static int dma[MAX_CARDS];
328 static int irq[MAX_CARDS];
330 MODULE_PARM(io, "1-" __MODULE_STRING(MAX_CARDS) "i");
331 MODULE_PARM(dma, "1-" __MODULE_STRING(MAX_CARDS) "i");
332 MODULE_PARM(irq, "1-" __MODULE_STRING(MAX_CARDS) "i");
333 MODULE_PARM(lance_debug, "i");
334 MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
335 MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
336 MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
337 MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
339 int init_module(void)
341 struct net_device *dev;
342 int this_dev, found = 0;
344 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
345 if (io[this_dev] == 0) {
346 if (this_dev != 0) /* only complain once */
347 break;
348 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
349 return -EPERM;
351 dev = alloc_etherdev(0);
352 if (!dev)
353 break;
354 dev->irq = irq[this_dev];
355 dev->base_addr = io[this_dev];
356 dev->dma = dma[this_dev];
357 if (do_lance_probe(dev) == 0) {
358 if (register_netdev(dev) == 0) {
359 dev_lance[found++] = dev;
360 continue;
362 cleanup_card(dev);
364 free_netdev(dev);
365 break;
367 if (found != 0)
368 return 0;
369 return -ENXIO;
372 void cleanup_module(void)
374 int this_dev;
376 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
377 struct net_device *dev = dev_lance[this_dev];
378 if (dev) {
379 unregister_netdev(dev);
380 cleanup_card(dev);
381 free_netdev(dev);
385 #endif /* MODULE */
386 MODULE_LICENSE("GPL");
389 /* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
390 board probes now that kmalloc() can allocate ISA DMA-able regions.
391 This also allows the LANCE driver to be used as a module.
393 static int __init do_lance_probe(struct net_device *dev)
395 int *port, result;
397 if (high_memory <= phys_to_virt(16*1024*1024))
398 lance_need_isa_bounce_buffers = 0;
400 for (port = lance_portlist; *port; port++) {
401 int ioaddr = *port;
402 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
403 "lance-probe");
405 if (r) {
406 /* Detect the card with minimal I/O reads */
407 char offset14 = inb(ioaddr + 14);
408 int card;
409 for (card = 0; card < NUM_CARDS; ++card)
410 if (cards[card].id_offset14 == offset14)
411 break;
412 if (card < NUM_CARDS) {/*yes, the first byte matches*/
413 char offset15 = inb(ioaddr + 15);
414 for (card = 0; card < NUM_CARDS; ++card)
415 if ((cards[card].id_offset14 == offset14) &&
416 (cards[card].id_offset15 == offset15))
417 break;
419 if (card < NUM_CARDS) { /*Signature OK*/
420 result = lance_probe1(dev, ioaddr, 0, 0);
421 if (!result) {
422 struct lance_private *lp = dev->priv;
423 int ver = lp->chip_version;
425 r->name = chip_table[ver].name;
426 return 0;
429 release_region(ioaddr, LANCE_TOTAL_SIZE);
432 return -ENODEV;
435 #ifndef MODULE
436 struct net_device * __init lance_probe(int unit)
438 struct net_device *dev = alloc_etherdev(0);
439 int err;
441 if (!dev)
442 return ERR_PTR(-ENODEV);
444 sprintf(dev->name, "eth%d", unit);
445 netdev_boot_setup_check(dev);
447 err = do_lance_probe(dev);
448 if (err)
449 goto out;
450 err = register_netdev(dev);
451 if (err)
452 goto out1;
453 return dev;
454 out1:
455 cleanup_card(dev);
456 out:
457 free_netdev(dev);
458 return ERR_PTR(err);
460 #endif
462 static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
464 struct lance_private *lp;
465 long dma_channels; /* Mark spuriously-busy DMA channels */
466 int i, reset_val, lance_version;
467 const char *chipname;
468 /* Flags for specific chips or boards. */
469 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
470 int hp_builtin = 0; /* HP on-board ethernet. */
471 static int did_version; /* Already printed version info. */
472 unsigned long flags;
473 int err = -ENOMEM;
475 /* First we look for special cases.
476 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
477 There are two HP versions, check the BIOS for the configuration port.
478 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
480 if (isa_readw(0x000f0102) == 0x5048) {
481 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
482 int hp_port = (isa_readl(0x000f00f1) & 1) ? 0x499 : 0x99;
483 /* We can have boards other than the built-in! Verify this is on-board. */
484 if ((inb(hp_port) & 0xc0) == 0x80
485 && ioaddr_table[inb(hp_port) & 3] == ioaddr)
486 hp_builtin = hp_port;
488 /* We also recognize the HP Vectra on-board here, but check below. */
489 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00
490 && inb(ioaddr+2) == 0x09);
492 /* Reset the LANCE. */
493 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
495 /* The Un-Reset needed is only needed for the real NE2100, and will
496 confuse the HP board. */
497 if (!hpJ2405A)
498 outw(reset_val, ioaddr+LANCE_RESET);
500 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
501 if (inw(ioaddr+LANCE_DATA) != 0x0004)
502 return -ENODEV;
504 /* Get the version of the chip. */
505 outw(88, ioaddr+LANCE_ADDR);
506 if (inw(ioaddr+LANCE_ADDR) != 88) {
507 lance_version = 0;
508 } else { /* Good, it's a newer chip. */
509 int chip_version = inw(ioaddr+LANCE_DATA);
510 outw(89, ioaddr+LANCE_ADDR);
511 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
512 if (lance_debug > 2)
513 printk(" LANCE chip version is %#x.\n", chip_version);
514 if ((chip_version & 0xfff) != 0x003)
515 return -ENODEV;
516 chip_version = (chip_version >> 12) & 0xffff;
517 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
518 if (chip_table[lance_version].id_number == chip_version)
519 break;
523 /* We can't allocate dev->priv from alloc_etherdev() because it must
524 a ISA DMA-able region. */
525 SET_MODULE_OWNER(dev);
526 chipname = chip_table[lance_version].name;
527 printk("%s: %s at %#3x,", dev->name, chipname, ioaddr);
529 /* There is a 16 byte station address PROM at the base address.
530 The first six bytes are the station address. */
531 for (i = 0; i < 6; i++)
532 printk(" %2.2x", dev->dev_addr[i] = inb(ioaddr + i));
534 dev->base_addr = ioaddr;
535 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
537 lp = kmalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
538 if(lp==NULL)
539 return -ENODEV;
540 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
541 memset(lp, 0, sizeof(*lp));
542 dev->priv = lp;
543 lp->name = chipname;
544 lp->rx_buffs = (unsigned long)kmalloc(PKT_BUF_SZ*RX_RING_SIZE,
545 GFP_DMA | GFP_KERNEL);
546 if (!lp->rx_buffs)
547 goto out_lp;
548 if (lance_need_isa_bounce_buffers) {
549 lp->tx_bounce_buffs = kmalloc(PKT_BUF_SZ*TX_RING_SIZE,
550 GFP_DMA | GFP_KERNEL);
551 if (!lp->tx_bounce_buffs)
552 goto out_rx;
553 } else
554 lp->tx_bounce_buffs = NULL;
556 lp->chip_version = lance_version;
557 spin_lock_init(&lp->devlock);
559 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
560 for (i = 0; i < 6; i++)
561 lp->init_block.phys_addr[i] = dev->dev_addr[i];
562 lp->init_block.filter[0] = 0x00000000;
563 lp->init_block.filter[1] = 0x00000000;
564 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
565 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
567 outw(0x0001, ioaddr+LANCE_ADDR);
568 inw(ioaddr+LANCE_ADDR);
569 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
570 outw(0x0002, ioaddr+LANCE_ADDR);
571 inw(ioaddr+LANCE_ADDR);
572 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
573 outw(0x0000, ioaddr+LANCE_ADDR);
574 inw(ioaddr+LANCE_ADDR);
576 if (irq) { /* Set iff PCI card. */
577 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
578 dev->irq = irq;
579 } else if (hp_builtin) {
580 static const char dma_tbl[4] = {3, 5, 6, 0};
581 static const char irq_tbl[4] = {3, 4, 5, 9};
582 unsigned char port_val = inb(hp_builtin);
583 dev->dma = dma_tbl[(port_val >> 4) & 3];
584 dev->irq = irq_tbl[(port_val >> 2) & 3];
585 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
586 } else if (hpJ2405A) {
587 static const char dma_tbl[4] = {3, 5, 6, 7};
588 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
589 short reset_val = inw(ioaddr+LANCE_RESET);
590 dev->dma = dma_tbl[(reset_val >> 2) & 3];
591 dev->irq = irq_tbl[(reset_val >> 4) & 7];
592 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
593 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
594 short bus_info;
595 outw(8, ioaddr+LANCE_ADDR);
596 bus_info = inw(ioaddr+LANCE_BUS_IF);
597 dev->dma = bus_info & 0x07;
598 dev->irq = (bus_info >> 4) & 0x0F;
599 } else {
600 /* The DMA channel may be passed in PARAM1. */
601 if (dev->mem_start & 0x07)
602 dev->dma = dev->mem_start & 0x07;
605 if (dev->dma == 0) {
606 /* Read the DMA channel status register, so that we can avoid
607 stuck DMA channels in the DMA detection below. */
608 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
609 (inb(DMA2_STAT_REG) & 0xf0);
611 err = -ENODEV;
612 if (dev->irq >= 2)
613 printk(" assigned IRQ %d", dev->irq);
614 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
615 unsigned long irq_mask;
617 /* To auto-IRQ we enable the initialization-done and DMA error
618 interrupts. For ISA boards we get a DMA error, but VLB and PCI
619 boards will work. */
620 irq_mask = probe_irq_on();
622 /* Trigger an initialization just for the interrupt. */
623 outw(0x0041, ioaddr+LANCE_DATA);
625 mdelay(20);
626 dev->irq = probe_irq_off(irq_mask);
627 if (dev->irq)
628 printk(", probed IRQ %d", dev->irq);
629 else {
630 printk(", failed to detect IRQ line.\n");
631 goto out_tx;
634 /* Check for the initialization done bit, 0x0100, which means
635 that we don't need a DMA channel. */
636 if (inw(ioaddr+LANCE_DATA) & 0x0100)
637 dev->dma = 4;
640 if (dev->dma == 4) {
641 printk(", no DMA needed.\n");
642 } else if (dev->dma) {
643 if (request_dma(dev->dma, chipname)) {
644 printk("DMA %d allocation failed.\n", dev->dma);
645 goto out_tx;
646 } else
647 printk(", assigned DMA %d.\n", dev->dma);
648 } else { /* OK, we have to auto-DMA. */
649 for (i = 0; i < 4; i++) {
650 static const char dmas[] = { 5, 6, 7, 3 };
651 int dma = dmas[i];
652 int boguscnt;
654 /* Don't enable a permanently busy DMA channel, or the machine
655 will hang. */
656 if (test_bit(dma, &dma_channels))
657 continue;
658 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
659 if (request_dma(dma, chipname))
660 continue;
662 flags=claim_dma_lock();
663 set_dma_mode(dma, DMA_MODE_CASCADE);
664 enable_dma(dma);
665 release_dma_lock(flags);
667 /* Trigger an initialization. */
668 outw(0x0001, ioaddr+LANCE_DATA);
669 for (boguscnt = 100; boguscnt > 0; --boguscnt)
670 if (inw(ioaddr+LANCE_DATA) & 0x0900)
671 break;
672 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
673 dev->dma = dma;
674 printk(", DMA %d.\n", dev->dma);
675 break;
676 } else {
677 flags=claim_dma_lock();
678 disable_dma(dma);
679 release_dma_lock(flags);
680 free_dma(dma);
683 if (i == 4) { /* Failure: bail. */
684 printk("DMA detection failed.\n");
685 goto out_tx;
689 if (lance_version == 0 && dev->irq == 0) {
690 /* We may auto-IRQ now that we have a DMA channel. */
691 /* Trigger an initialization just for the interrupt. */
692 unsigned long irq_mask;
694 irq_mask = probe_irq_on();
695 outw(0x0041, ioaddr+LANCE_DATA);
697 mdelay(40);
698 dev->irq = probe_irq_off(irq_mask);
699 if (dev->irq == 0) {
700 printk(" Failed to detect the 7990 IRQ line.\n");
701 goto out_dma;
703 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
706 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
707 /* Turn on auto-select of media (10baseT or BNC) so that the user
708 can watch the LEDs even if the board isn't opened. */
709 outw(0x0002, ioaddr+LANCE_ADDR);
710 /* Don't touch 10base2 power bit. */
711 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
714 if (lance_debug > 0 && did_version++ == 0)
715 printk(version);
717 /* The LANCE-specific entries in the device structure. */
718 dev->open = lance_open;
719 dev->hard_start_xmit = lance_start_xmit;
720 dev->stop = lance_close;
721 dev->get_stats = lance_get_stats;
722 dev->set_multicast_list = set_multicast_list;
723 dev->tx_timeout = lance_tx_timeout;
724 dev->watchdog_timeo = TX_TIMEOUT;
726 return 0;
727 out_dma:
728 if (dev->dma != 4)
729 free_dma(dev->dma);
730 out_tx:
731 kfree(lp->tx_bounce_buffs);
732 out_rx:
733 kfree((void*)lp->rx_buffs);
734 out_lp:
735 kfree(lp);
736 return err;
740 static int
741 lance_open(struct net_device *dev)
743 struct lance_private *lp = dev->priv;
744 int ioaddr = dev->base_addr;
745 int i;
747 if (dev->irq == 0 ||
748 request_irq(dev->irq, &lance_interrupt, 0, lp->name, dev)) {
749 return -EAGAIN;
752 /* We used to allocate DMA here, but that was silly.
753 DMA lines can't be shared! We now permanently allocate them. */
755 /* Reset the LANCE */
756 inw(ioaddr+LANCE_RESET);
758 /* The DMA controller is used as a no-operation slave, "cascade mode". */
759 if (dev->dma != 4) {
760 unsigned long flags=claim_dma_lock();
761 enable_dma(dev->dma);
762 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
763 release_dma_lock(flags);
766 /* Un-Reset the LANCE, needed only for the NE2100. */
767 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
768 outw(0, ioaddr+LANCE_RESET);
770 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
771 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
772 outw(0x0002, ioaddr+LANCE_ADDR);
773 /* Only touch autoselect bit. */
774 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
777 if (lance_debug > 1)
778 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
779 dev->name, dev->irq, dev->dma,
780 (u32) isa_virt_to_bus(lp->tx_ring),
781 (u32) isa_virt_to_bus(lp->rx_ring),
782 (u32) isa_virt_to_bus(&lp->init_block));
784 lance_init_ring(dev, GFP_KERNEL);
785 /* Re-initialize the LANCE, and start it when done. */
786 outw(0x0001, ioaddr+LANCE_ADDR);
787 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
788 outw(0x0002, ioaddr+LANCE_ADDR);
789 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
791 outw(0x0004, ioaddr+LANCE_ADDR);
792 outw(0x0915, ioaddr+LANCE_DATA);
794 outw(0x0000, ioaddr+LANCE_ADDR);
795 outw(0x0001, ioaddr+LANCE_DATA);
797 netif_start_queue (dev);
799 i = 0;
800 while (i++ < 100)
801 if (inw(ioaddr+LANCE_DATA) & 0x0100)
802 break;
804 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
805 * reports that doing so triggers a bug in the '974.
807 outw(0x0042, ioaddr+LANCE_DATA);
809 if (lance_debug > 2)
810 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
811 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
813 return 0; /* Always succeed */
816 /* The LANCE has been halted for one reason or another (busmaster memory
817 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
818 etc.). Modern LANCE variants always reload their ring-buffer
819 configuration when restarted, so we must reinitialize our ring
820 context before restarting. As part of this reinitialization,
821 find all packets still on the Tx ring and pretend that they had been
822 sent (in effect, drop the packets on the floor) - the higher-level
823 protocols will time out and retransmit. It'd be better to shuffle
824 these skbs to a temp list and then actually re-Tx them after
825 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
828 static void
829 lance_purge_ring(struct net_device *dev)
831 struct lance_private *lp = dev->priv;
832 int i;
834 /* Free all the skbuffs in the Rx and Tx queues. */
835 for (i = 0; i < RX_RING_SIZE; i++) {
836 struct sk_buff *skb = lp->rx_skbuff[i];
837 lp->rx_skbuff[i] = NULL;
838 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
839 if (skb)
840 dev_kfree_skb_any(skb);
842 for (i = 0; i < TX_RING_SIZE; i++) {
843 if (lp->tx_skbuff[i]) {
844 dev_kfree_skb_any(lp->tx_skbuff[i]);
845 lp->tx_skbuff[i] = NULL;
851 /* Initialize the LANCE Rx and Tx rings. */
852 static void
853 lance_init_ring(struct net_device *dev, int gfp)
855 struct lance_private *lp = dev->priv;
856 int i;
858 lp->cur_rx = lp->cur_tx = 0;
859 lp->dirty_rx = lp->dirty_tx = 0;
861 for (i = 0; i < RX_RING_SIZE; i++) {
862 struct sk_buff *skb;
863 void *rx_buff;
865 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
866 lp->rx_skbuff[i] = skb;
867 if (skb) {
868 skb->dev = dev;
869 rx_buff = skb->tail;
870 } else
871 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
872 if (rx_buff == NULL)
873 lp->rx_ring[i].base = 0;
874 else
875 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
876 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
878 /* The Tx buffer address is filled in as needed, but we do need to clear
879 the upper ownership bit. */
880 for (i = 0; i < TX_RING_SIZE; i++) {
881 lp->tx_skbuff[i] = NULL;
882 lp->tx_ring[i].base = 0;
885 lp->init_block.mode = 0x0000;
886 for (i = 0; i < 6; i++)
887 lp->init_block.phys_addr[i] = dev->dev_addr[i];
888 lp->init_block.filter[0] = 0x00000000;
889 lp->init_block.filter[1] = 0x00000000;
890 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
891 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
894 static void
895 lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
897 struct lance_private *lp = dev->priv;
899 if (must_reinit ||
900 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
901 lance_purge_ring(dev);
902 lance_init_ring(dev, GFP_ATOMIC);
904 outw(0x0000, dev->base_addr + LANCE_ADDR);
905 outw(csr0_bits, dev->base_addr + LANCE_DATA);
909 static void lance_tx_timeout (struct net_device *dev)
911 struct lance_private *lp = (struct lance_private *) dev->priv;
912 int ioaddr = dev->base_addr;
914 outw (0, ioaddr + LANCE_ADDR);
915 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
916 dev->name, inw (ioaddr + LANCE_DATA));
917 outw (0x0004, ioaddr + LANCE_DATA);
918 lp->stats.tx_errors++;
919 #ifndef final_version
920 if (lance_debug > 3) {
921 int i;
922 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
923 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
924 lp->cur_rx);
925 for (i = 0; i < RX_RING_SIZE; i++)
926 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
927 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
928 lp->rx_ring[i].msg_length);
929 for (i = 0; i < TX_RING_SIZE; i++)
930 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
931 lp->tx_ring[i].base, -lp->tx_ring[i].length,
932 lp->tx_ring[i].misc);
933 printk ("\n");
935 #endif
936 lance_restart (dev, 0x0043, 1);
938 dev->trans_start = jiffies;
939 netif_wake_queue (dev);
943 static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev)
945 struct lance_private *lp = dev->priv;
946 int ioaddr = dev->base_addr;
947 int entry;
948 unsigned long flags;
950 spin_lock_irqsave(&lp->devlock, flags);
952 if (lance_debug > 3) {
953 outw(0x0000, ioaddr+LANCE_ADDR);
954 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
955 inw(ioaddr+LANCE_DATA));
956 outw(0x0000, ioaddr+LANCE_DATA);
959 /* Fill in a Tx ring entry */
961 /* Mask to ring buffer boundary. */
962 entry = lp->cur_tx & TX_RING_MOD_MASK;
964 /* Caution: the write order is important here, set the base address
965 with the "ownership" bits last. */
967 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
968 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
969 if (skb->len < ETH_ZLEN) {
970 skb = skb_padto(skb, ETH_ZLEN);
971 if (skb == NULL)
972 goto out;
973 lp->tx_ring[entry].length = -ETH_ZLEN;
975 else
976 lp->tx_ring[entry].length = -skb->len;
977 } else
978 lp->tx_ring[entry].length = -skb->len;
980 lp->tx_ring[entry].misc = 0x0000;
982 lp->stats.tx_bytes += skb->len;
984 /* If any part of this buffer is >16M we must copy it to a low-memory
985 buffer. */
986 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
987 if (lance_debug > 5)
988 printk("%s: bouncing a high-memory packet (%#x).\n",
989 dev->name, (u32)isa_virt_to_bus(skb->data));
990 memcpy(&lp->tx_bounce_buffs[entry], skb->data, skb->len);
991 lp->tx_ring[entry].base =
992 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
993 dev_kfree_skb(skb);
994 } else {
995 lp->tx_skbuff[entry] = skb;
996 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
998 lp->cur_tx++;
1000 /* Trigger an immediate send poll. */
1001 outw(0x0000, ioaddr+LANCE_ADDR);
1002 outw(0x0048, ioaddr+LANCE_DATA);
1004 dev->trans_start = jiffies;
1006 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1007 netif_stop_queue(dev);
1009 out:
1010 spin_unlock_irqrestore(&lp->devlock, flags);
1011 return 0;
1014 /* The LANCE interrupt handler. */
1015 static irqreturn_t
1016 lance_interrupt(int irq, void *dev_id, struct pt_regs * regs)
1018 struct net_device *dev = dev_id;
1019 struct lance_private *lp;
1020 int csr0, ioaddr, boguscnt=10;
1021 int must_restart;
1023 if (dev == NULL) {
1024 printk ("lance_interrupt(): irq %d for unknown device.\n", irq);
1025 return IRQ_NONE;
1028 ioaddr = dev->base_addr;
1029 lp = dev->priv;
1031 spin_lock (&lp->devlock);
1033 outw(0x00, dev->base_addr + LANCE_ADDR);
1034 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600
1035 && --boguscnt >= 0) {
1036 /* Acknowledge all of the current interrupt sources ASAP. */
1037 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1039 must_restart = 0;
1041 if (lance_debug > 5)
1042 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1043 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1045 if (csr0 & 0x0400) /* Rx interrupt */
1046 lance_rx(dev);
1048 if (csr0 & 0x0200) { /* Tx-done interrupt */
1049 int dirty_tx = lp->dirty_tx;
1051 while (dirty_tx < lp->cur_tx) {
1052 int entry = dirty_tx & TX_RING_MOD_MASK;
1053 int status = lp->tx_ring[entry].base;
1055 if (status < 0)
1056 break; /* It still hasn't been Txed */
1058 lp->tx_ring[entry].base = 0;
1060 if (status & 0x40000000) {
1061 /* There was an major error, log it. */
1062 int err_status = lp->tx_ring[entry].misc;
1063 lp->stats.tx_errors++;
1064 if (err_status & 0x0400) lp->stats.tx_aborted_errors++;
1065 if (err_status & 0x0800) lp->stats.tx_carrier_errors++;
1066 if (err_status & 0x1000) lp->stats.tx_window_errors++;
1067 if (err_status & 0x4000) {
1068 /* Ackk! On FIFO errors the Tx unit is turned off! */
1069 lp->stats.tx_fifo_errors++;
1070 /* Remove this verbosity later! */
1071 printk("%s: Tx FIFO error! Status %4.4x.\n",
1072 dev->name, csr0);
1073 /* Restart the chip. */
1074 must_restart = 1;
1076 } else {
1077 if (status & 0x18000000)
1078 lp->stats.collisions++;
1079 lp->stats.tx_packets++;
1082 /* We must free the original skb if it's not a data-only copy
1083 in the bounce buffer. */
1084 if (lp->tx_skbuff[entry]) {
1085 dev_kfree_skb_irq(lp->tx_skbuff[entry]);
1086 lp->tx_skbuff[entry] = NULL;
1088 dirty_tx++;
1091 #ifndef final_version
1092 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1093 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1094 dirty_tx, lp->cur_tx,
1095 netif_queue_stopped(dev) ? "yes" : "no");
1096 dirty_tx += TX_RING_SIZE;
1098 #endif
1100 /* if the ring is no longer full, accept more packets */
1101 if (netif_queue_stopped(dev) &&
1102 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1103 netif_wake_queue (dev);
1105 lp->dirty_tx = dirty_tx;
1108 /* Log misc errors. */
1109 if (csr0 & 0x4000) lp->stats.tx_errors++; /* Tx babble. */
1110 if (csr0 & 0x1000) lp->stats.rx_errors++; /* Missed a Rx frame. */
1111 if (csr0 & 0x0800) {
1112 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1113 dev->name, csr0);
1114 /* Restart the chip. */
1115 must_restart = 1;
1118 if (must_restart) {
1119 /* stop the chip to clear the error condition, then restart */
1120 outw(0x0000, dev->base_addr + LANCE_ADDR);
1121 outw(0x0004, dev->base_addr + LANCE_DATA);
1122 lance_restart(dev, 0x0002, 0);
1126 /* Clear any other interrupt, and set interrupt enable. */
1127 outw(0x0000, dev->base_addr + LANCE_ADDR);
1128 outw(0x7940, dev->base_addr + LANCE_DATA);
1130 if (lance_debug > 4)
1131 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1132 dev->name, inw(ioaddr + LANCE_ADDR),
1133 inw(dev->base_addr + LANCE_DATA));
1135 spin_unlock (&lp->devlock);
1136 return IRQ_HANDLED;
1139 static int
1140 lance_rx(struct net_device *dev)
1142 struct lance_private *lp = dev->priv;
1143 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1144 int i;
1146 /* If we own the next entry, it's a new packet. Send it up. */
1147 while (lp->rx_ring[entry].base >= 0) {
1148 int status = lp->rx_ring[entry].base >> 24;
1150 if (status != 0x03) { /* There was an error. */
1151 /* There is a tricky error noted by John Murphy,
1152 <murf@perftech.com> to Russ Nelson: Even with full-sized
1153 buffers it's possible for a jabber packet to use two
1154 buffers, with only the last correctly noting the error. */
1155 if (status & 0x01) /* Only count a general error at the */
1156 lp->stats.rx_errors++; /* end of a packet.*/
1157 if (status & 0x20) lp->stats.rx_frame_errors++;
1158 if (status & 0x10) lp->stats.rx_over_errors++;
1159 if (status & 0x08) lp->stats.rx_crc_errors++;
1160 if (status & 0x04) lp->stats.rx_fifo_errors++;
1161 lp->rx_ring[entry].base &= 0x03ffffff;
1163 else
1165 /* Malloc up new buffer, compatible with net3. */
1166 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1167 struct sk_buff *skb;
1169 if(pkt_len<60)
1171 printk("%s: Runt packet!\n",dev->name);
1172 lp->stats.rx_errors++;
1174 else
1176 skb = dev_alloc_skb(pkt_len+2);
1177 if (skb == NULL)
1179 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1180 for (i=0; i < RX_RING_SIZE; i++)
1181 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1182 break;
1184 if (i > RX_RING_SIZE -2)
1186 lp->stats.rx_dropped++;
1187 lp->rx_ring[entry].base |= 0x80000000;
1188 lp->cur_rx++;
1190 break;
1192 skb->dev = dev;
1193 skb_reserve(skb,2); /* 16 byte align */
1194 skb_put(skb,pkt_len); /* Make room */
1195 eth_copy_and_sum(skb,
1196 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1197 pkt_len,0);
1198 skb->protocol=eth_type_trans(skb,dev);
1199 netif_rx(skb);
1200 dev->last_rx = jiffies;
1201 lp->stats.rx_packets++;
1202 lp->stats.rx_bytes+=pkt_len;
1205 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1206 of QNX reports that some revs of the 79C965 clear it. */
1207 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1208 lp->rx_ring[entry].base |= 0x80000000;
1209 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1212 /* We should check that at least two ring entries are free. If not,
1213 we should free one and mark stats->rx_dropped++. */
1215 return 0;
1218 static int
1219 lance_close(struct net_device *dev)
1221 int ioaddr = dev->base_addr;
1222 struct lance_private *lp = dev->priv;
1224 netif_stop_queue (dev);
1226 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1227 outw(112, ioaddr+LANCE_ADDR);
1228 lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1230 outw(0, ioaddr+LANCE_ADDR);
1232 if (lance_debug > 1)
1233 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1234 dev->name, inw(ioaddr+LANCE_DATA));
1236 /* We stop the LANCE here -- it occasionally polls
1237 memory if we don't. */
1238 outw(0x0004, ioaddr+LANCE_DATA);
1240 if (dev->dma != 4)
1242 unsigned long flags=claim_dma_lock();
1243 disable_dma(dev->dma);
1244 release_dma_lock(flags);
1246 free_irq(dev->irq, dev);
1248 lance_purge_ring(dev);
1250 return 0;
1253 static struct net_device_stats *lance_get_stats(struct net_device *dev)
1255 struct lance_private *lp = dev->priv;
1257 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1258 short ioaddr = dev->base_addr;
1259 short saved_addr;
1260 unsigned long flags;
1262 spin_lock_irqsave(&lp->devlock, flags);
1263 saved_addr = inw(ioaddr+LANCE_ADDR);
1264 outw(112, ioaddr+LANCE_ADDR);
1265 lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1266 outw(saved_addr, ioaddr+LANCE_ADDR);
1267 spin_unlock_irqrestore(&lp->devlock, flags);
1270 return &lp->stats;
1273 /* Set or clear the multicast filter for this adaptor.
1276 static void set_multicast_list(struct net_device *dev)
1278 short ioaddr = dev->base_addr;
1280 outw(0, ioaddr+LANCE_ADDR);
1281 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1283 if (dev->flags&IFF_PROMISC) {
1284 /* Log any net taps. */
1285 printk("%s: Promiscuous mode enabled.\n", dev->name);
1286 outw(15, ioaddr+LANCE_ADDR);
1287 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1288 } else {
1289 short multicast_table[4];
1290 int i;
1291 int num_addrs=dev->mc_count;
1292 if(dev->flags&IFF_ALLMULTI)
1293 num_addrs=1;
1294 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1295 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1296 for (i = 0; i < 4; i++) {
1297 outw(8 + i, ioaddr+LANCE_ADDR);
1298 outw(multicast_table[i], ioaddr+LANCE_DATA);
1300 outw(15, ioaddr+LANCE_ADDR);
1301 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1304 lance_restart(dev, 0x0142, 0); /* Resume normal operation */