MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / gianfar.c
bloba8ceee273e3bd5fab1accf078229531e28d3f1fd
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * Gianfar: AKA Lambda Draconis, "Dragon"
19 * RA 11 31 24.2
20 * Dec +69 19 52
21 * V 3.84
22 * B-V +1.62
24 * Theory of operation
25 * This driver is designed for the Triple-speed Ethernet
26 * controllers on the Freescale 8540/8560 integrated processors,
27 * as well as the Fast Ethernet Controller on the 8540.
29 * The driver is initialized through OCP. Structures which
30 * define the configuration needed by the board are defined in a
31 * board structure in arch/ppc/platforms (though I do not
32 * discount the possibility that other architectures could one
33 * day be supported. One assumption the driver currently makes
34 * is that the PHY is configured in such a way to advertise all
35 * capabilities. This is a sensible default, and on certain
36 * PHYs, changing this default encounters substantial errata
37 * issues. Future versions may remove this requirement, but for
38 * now, it is best for the firmware to ensure this is the case.
40 * The Gianfar Ethernet Controller uses a ring of buffer
41 * descriptors. The beginning is indicated by a register
42 * pointing to the physical address of the start of the ring.
43 * The end is determined by a "wrap" bit being set in the
44 * last descriptor of the ring.
46 * When a packet is received, the RXF bit in the
47 * IEVENT register is set, triggering an interrupt when the
48 * corresponding bit in the IMASK register is also set (if
49 * interrupt coalescing is active, then the interrupt may not
50 * happen immediately, but will wait until either a set number
51 * of frames or amount of time have passed.). In NAPI, the
52 * interrupt handler will signal there is work to be done, and
53 * exit. Without NAPI, the packet(s) will be handled
54 * immediately. Both methods will start at the last known empty
55 * descriptor, and process every subsequent descriptor until there
56 * are none left with data (NAPI will stop after a set number of
57 * packets to give time to other tasks, but will eventually
58 * process all the packets). The data arrives inside a
59 * pre-allocated skb, and so after the skb is passed up to the
60 * stack, a new skb must be allocated, and the address field in
61 * the buffer descriptor must be updated to indicate this new
62 * skb.
64 * When the kernel requests that a packet be transmitted, the
65 * driver starts where it left off last time, and points the
66 * descriptor at the buffer which was passed in. The driver
67 * then informs the DMA engine that there are packets ready to
68 * be transmitted. Once the controller is finished transmitting
69 * the packet, an interrupt may be triggered (under the same
70 * conditions as for reception, but depending on the TXF bit).
71 * The driver then cleans up the buffer.
74 #include <linux/config.h>
75 #include <linux/kernel.h>
76 #include <linux/sched.h>
77 #include <linux/string.h>
78 #include <linux/errno.h>
79 #include <linux/slab.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/delay.h>
83 #include <linux/netdevice.h>
84 #include <linux/etherdevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/spinlock.h>
87 #include <linux/mm.h>
89 #include <asm/io.h>
90 #include <asm/irq.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/version.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
97 #include "gianfar.h"
98 #include "gianfar_phy.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.1";
114 int startup_gfar(struct net_device *dev);
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs);
126 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
127 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
128 static void gfar_phy_change(void *data);
129 static void gfar_phy_timer(unsigned long data);
130 static void adjust_link(struct net_device *dev);
131 static void init_registers(struct net_device *dev);
132 static int init_phy(struct net_device *dev);
133 static int gfar_probe(struct ocp_device *ocpdev);
134 static void gfar_remove(struct ocp_device *ocpdev);
135 void free_skb_resources(struct gfar_private *priv);
136 static void gfar_set_multi(struct net_device *dev);
137 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
138 #ifdef CONFIG_GFAR_NAPI
139 static int gfar_poll(struct net_device *dev, int *budget);
140 #endif
141 static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_phy_startup_timer(unsigned long data);
145 extern struct ethtool_ops gfar_ethtool_ops;
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
151 /* Called by the ocp code to initialize device data structures
152 * required for bringing up the device
153 * returns 0 on success */
154 static int gfar_probe(struct ocp_device *ocpdev)
156 u32 tempval;
157 struct ocp_device *mdiodev;
158 struct net_device *dev = NULL;
159 struct gfar_private *priv = NULL;
160 struct ocp_gfar_data *einfo;
161 int idx;
162 int err = 0;
163 int dev_ethtool_ops = 0;
165 einfo = (struct ocp_gfar_data *) ocpdev->def->additions;
167 if (einfo == NULL) {
168 printk(KERN_ERR "gfar %d: Missing additional data!\n",
169 ocpdev->def->index);
171 return -ENODEV;
174 /* get a pointer to the register memory which can
175 * configure the PHYs. If it's different from this set,
176 * get the device which has those regs */
177 if ((einfo->phyregidx >= 0) &&
178 (einfo->phyregidx != ocpdev->def->index)) {
179 mdiodev = ocp_find_device(OCP_ANY_ID,
180 OCP_FUNC_GFAR, einfo->phyregidx);
182 /* If the device which holds the MDIO regs isn't
183 * up, wait for it to come up */
184 if (mdiodev == NULL)
185 return -EAGAIN;
186 } else {
187 mdiodev = ocpdev;
190 /* Create an ethernet device instance */
191 dev = alloc_etherdev(sizeof (*priv));
193 if (dev == NULL)
194 return -ENOMEM;
196 priv = netdev_priv(dev);
198 /* Set the info in the priv to the current info */
199 priv->einfo = einfo;
201 /* get a pointer to the register memory */
202 priv->regs = (struct gfar *)
203 ioremap(ocpdev->def->paddr, sizeof (struct gfar));
205 if (priv->regs == NULL) {
206 err = -ENOMEM;
207 goto regs_fail;
210 /* Set the PHY base address */
211 priv->phyregs = (struct gfar *)
212 ioremap(mdiodev->def->paddr, sizeof (struct gfar));
214 if (priv->phyregs == NULL) {
215 err = -ENOMEM;
216 goto phy_regs_fail;
219 spin_lock_init(&priv->lock);
221 ocp_set_drvdata(ocpdev, dev);
223 /* Stop the DMA engine now, in case it was running before */
224 /* (The firmware could have used it, and left it running). */
225 /* To do this, we write Graceful Receive Stop and Graceful */
226 /* Transmit Stop, and then wait until the corresponding bits */
227 /* in IEVENT indicate the stops have completed. */
228 tempval = gfar_read(&priv->regs->dmactrl);
229 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
230 gfar_write(&priv->regs->dmactrl, tempval);
232 tempval = gfar_read(&priv->regs->dmactrl);
233 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
234 gfar_write(&priv->regs->dmactrl, tempval);
236 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
237 cpu_relax();
239 /* Reset MAC layer */
240 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
242 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
243 gfar_write(&priv->regs->maccfg1, tempval);
245 /* Initialize MACCFG2. */
246 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
248 /* Initialize ECNTRL */
249 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
251 /* Copy the station address into the dev structure, */
252 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
254 /* Set the dev->base_addr to the gfar reg region */
255 dev->base_addr = (unsigned long) (priv->regs);
257 SET_MODULE_OWNER(dev);
258 SET_NETDEV_DEV(dev, &ocpdev->dev);
260 /* Fill in the dev structure */
261 dev->open = gfar_enet_open;
262 dev->hard_start_xmit = gfar_start_xmit;
263 dev->tx_timeout = gfar_timeout;
264 dev->watchdog_timeo = TX_TIMEOUT;
265 #ifdef CONFIG_GFAR_NAPI
266 dev->poll = gfar_poll;
267 dev->weight = GFAR_DEV_WEIGHT;
268 #endif
269 dev->stop = gfar_close;
270 dev->get_stats = gfar_get_stats;
271 dev->change_mtu = gfar_change_mtu;
272 dev->mtu = 1500;
273 dev->set_multicast_list = gfar_set_multi;
275 /* Index into the array of possible ethtool
276 * ops to catch all 4 possibilities */
277 if((priv->einfo->flags & GFAR_HAS_RMON) == 0)
278 dev_ethtool_ops += 1;
280 if((priv->einfo->flags & GFAR_HAS_COALESCE) == 0)
281 dev_ethtool_ops += 2;
283 dev->ethtool_ops = gfar_op_array[dev_ethtool_ops];
285 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
286 #ifdef CONFIG_GFAR_BUFSTASH
287 priv->rx_stash_size = STASH_LENGTH;
288 #endif
289 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
290 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
292 priv->txcoalescing = DEFAULT_TX_COALESCE;
293 priv->txcount = DEFAULT_TXCOUNT;
294 priv->txtime = DEFAULT_TXTIME;
295 priv->rxcoalescing = DEFAULT_RX_COALESCE;
296 priv->rxcount = DEFAULT_RXCOUNT;
297 priv->rxtime = DEFAULT_RXTIME;
299 err = register_netdev(dev);
301 if (err) {
302 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
303 dev->name);
304 goto register_fail;
307 /* Print out the device info */
308 printk(KERN_INFO DEVICE_NAME, dev->name);
309 for (idx = 0; idx < 6; idx++)
310 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
311 printk("\n");
313 /* Even more device info helps when determining which kernel */
314 /* provided which set of benchmarks. Since this is global for all */
315 /* devices, we only print it once */
316 #ifdef CONFIG_GFAR_NAPI
317 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
318 #else
319 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
320 #endif
321 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
322 dev->name, priv->rx_ring_size, priv->tx_ring_size);
324 return 0;
326 register_fail:
327 iounmap((void *) priv->phyregs);
328 phy_regs_fail:
329 iounmap((void *) priv->regs);
330 regs_fail:
331 free_netdev(dev);
332 return -ENOMEM;
335 static void gfar_remove(struct ocp_device *ocpdev)
337 struct net_device *dev = ocp_get_drvdata(ocpdev);
338 struct gfar_private *priv = netdev_priv(dev);
340 ocp_set_drvdata(ocpdev, NULL);
342 iounmap((void *) priv->regs);
343 iounmap((void *) priv->phyregs);
344 free_netdev(dev);
347 /* Configure the PHY for dev.
348 * returns 0 if success. -1 if failure
350 static int init_phy(struct net_device *dev)
352 struct gfar_private *priv = netdev_priv(dev);
353 struct phy_info *curphy;
354 unsigned int timeout = PHY_INIT_TIMEOUT;
355 struct gfar *phyregs = priv->phyregs;
356 struct gfar_mii_info *mii_info;
357 int err;
359 priv->oldlink = 0;
360 priv->oldspeed = 0;
361 priv->oldduplex = -1;
363 mii_info = kmalloc(sizeof(struct gfar_mii_info),
364 GFP_KERNEL);
366 if(NULL == mii_info) {
367 printk(KERN_ERR "%s: Could not allocate mii_info\n",
368 dev->name);
369 return -ENOMEM;
372 mii_info->speed = SPEED_1000;
373 mii_info->duplex = DUPLEX_FULL;
374 mii_info->pause = 0;
375 mii_info->link = 1;
377 mii_info->advertising = (ADVERTISED_10baseT_Half |
378 ADVERTISED_10baseT_Full |
379 ADVERTISED_100baseT_Half |
380 ADVERTISED_100baseT_Full |
381 ADVERTISED_1000baseT_Full);
382 mii_info->autoneg = 1;
384 mii_info->mii_id = priv->einfo->phyid;
386 mii_info->dev = dev;
388 mii_info->mdio_read = &read_phy_reg;
389 mii_info->mdio_write = &write_phy_reg;
391 priv->mii_info = mii_info;
393 /* Reset the management interface */
394 gfar_write(&phyregs->miimcfg, MIIMCFG_RESET);
396 /* Setup the MII Mgmt clock speed */
397 gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE);
399 /* Wait until the bus is free */
400 while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) &&
401 timeout--)
402 cpu_relax();
404 if(timeout <= 0) {
405 printk(KERN_ERR "%s: The MII Bus is stuck!\n",
406 dev->name);
407 err = -1;
408 goto bus_fail;
411 /* get info for this PHY */
412 curphy = get_phy_info(priv->mii_info);
414 if (curphy == NULL) {
415 printk(KERN_ERR "%s: No PHY found\n", dev->name);
416 err = -1;
417 goto no_phy;
420 mii_info->phyinfo = curphy;
422 /* Run the commands which initialize the PHY */
423 if(curphy->init) {
424 err = curphy->init(priv->mii_info);
426 if (err)
427 goto phy_init_fail;
430 return 0;
432 phy_init_fail:
433 no_phy:
434 bus_fail:
435 kfree(mii_info);
437 return err;
440 static void init_registers(struct net_device *dev)
442 struct gfar_private *priv = netdev_priv(dev);
444 /* Clear IEVENT */
445 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
447 /* Initialize IMASK */
448 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
450 /* Init hash registers to zero */
451 gfar_write(&priv->regs->iaddr0, 0);
452 gfar_write(&priv->regs->iaddr1, 0);
453 gfar_write(&priv->regs->iaddr2, 0);
454 gfar_write(&priv->regs->iaddr3, 0);
455 gfar_write(&priv->regs->iaddr4, 0);
456 gfar_write(&priv->regs->iaddr5, 0);
457 gfar_write(&priv->regs->iaddr6, 0);
458 gfar_write(&priv->regs->iaddr7, 0);
460 gfar_write(&priv->regs->gaddr0, 0);
461 gfar_write(&priv->regs->gaddr1, 0);
462 gfar_write(&priv->regs->gaddr2, 0);
463 gfar_write(&priv->regs->gaddr3, 0);
464 gfar_write(&priv->regs->gaddr4, 0);
465 gfar_write(&priv->regs->gaddr5, 0);
466 gfar_write(&priv->regs->gaddr6, 0);
467 gfar_write(&priv->regs->gaddr7, 0);
469 /* Zero out rctrl */
470 gfar_write(&priv->regs->rctrl, 0x00000000);
472 /* Zero out the rmon mib registers if it has them */
473 if (priv->einfo->flags & GFAR_HAS_RMON) {
474 memset((void *) &(priv->regs->rmon), 0,
475 sizeof (struct rmon_mib));
477 /* Mask off the CAM interrupts */
478 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
479 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
482 /* Initialize the max receive buffer length */
483 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
485 #ifdef CONFIG_GFAR_BUFSTASH
486 /* If we are stashing buffers, we need to set the
487 * extraction length to the size of the buffer */
488 gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16);
489 #endif
491 /* Initialize the Minimum Frame Length Register */
492 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
494 /* Setup Attributes so that snooping is on for rx */
495 gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS);
496 gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS);
498 /* Assign the TBI an address which won't conflict with the PHYs */
499 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
502 void stop_gfar(struct net_device *dev)
504 struct gfar_private *priv = netdev_priv(dev);
505 struct gfar *regs = priv->regs;
506 unsigned long flags;
507 u32 tempval;
509 /* Lock it down */
510 spin_lock_irqsave(&priv->lock, flags);
512 /* Tell the kernel the link is down */
513 priv->mii_info->link = 0;
514 adjust_link(dev);
516 /* Mask all interrupts */
517 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
519 /* Clear all interrupts */
520 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
522 /* Stop the DMA, and wait for it to stop */
523 tempval = gfar_read(&priv->regs->dmactrl);
524 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
525 != (DMACTRL_GRS | DMACTRL_GTS)) {
526 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
527 gfar_write(&priv->regs->dmactrl, tempval);
529 while (!(gfar_read(&priv->regs->ievent) &
530 (IEVENT_GRSC | IEVENT_GTSC)))
531 cpu_relax();
534 /* Disable Rx and Tx */
535 tempval = gfar_read(&regs->maccfg1);
536 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
537 gfar_write(&regs->maccfg1, tempval);
539 if (priv->einfo->flags & GFAR_HAS_PHY_INTR) {
540 /* Clear any pending interrupts */
541 mii_clear_phy_interrupt(priv->mii_info);
543 /* Disable PHY Interrupts */
544 mii_configure_phy_interrupt(priv->mii_info,
545 MII_INTERRUPT_DISABLED);
548 spin_unlock_irqrestore(&priv->lock, flags);
550 /* Free the IRQs */
551 if (priv->einfo->flags & GFAR_HAS_MULTI_INTR) {
552 free_irq(priv->einfo->interruptError, dev);
553 free_irq(priv->einfo->interruptTransmit, dev);
554 free_irq(priv->einfo->interruptReceive, dev);
555 } else {
556 free_irq(priv->einfo->interruptTransmit, dev);
559 if (priv->einfo->flags & GFAR_HAS_PHY_INTR) {
560 free_irq(priv->einfo->interruptPHY, dev);
561 } else {
562 del_timer_sync(&priv->phy_info_timer);
565 free_skb_resources(priv);
567 dma_free_coherent(NULL,
568 sizeof(struct txbd8)*priv->tx_ring_size
569 + sizeof(struct rxbd8)*priv->rx_ring_size,
570 priv->tx_bd_base,
571 gfar_read(&regs->tbase));
574 /* If there are any tx skbs or rx skbs still around, free them.
575 * Then free tx_skbuff and rx_skbuff */
576 void free_skb_resources(struct gfar_private *priv)
578 struct rxbd8 *rxbdp;
579 struct txbd8 *txbdp;
580 int i;
582 /* Go through all the buffer descriptors and free their data buffers */
583 txbdp = priv->tx_bd_base;
585 for (i = 0; i < priv->tx_ring_size; i++) {
587 if (priv->tx_skbuff[i]) {
588 dma_unmap_single(NULL, txbdp->bufPtr,
589 txbdp->length,
590 DMA_TO_DEVICE);
591 dev_kfree_skb_any(priv->tx_skbuff[i]);
592 priv->tx_skbuff[i] = NULL;
596 kfree(priv->tx_skbuff);
598 rxbdp = priv->rx_bd_base;
600 /* rx_skbuff is not guaranteed to be allocated, so only
601 * free it and its contents if it is allocated */
602 if(priv->rx_skbuff != NULL) {
603 for (i = 0; i < priv->rx_ring_size; i++) {
604 if (priv->rx_skbuff[i]) {
605 dma_unmap_single(NULL, rxbdp->bufPtr,
606 priv->rx_buffer_size
607 + RXBUF_ALIGNMENT,
608 DMA_FROM_DEVICE);
610 dev_kfree_skb_any(priv->rx_skbuff[i]);
611 priv->rx_skbuff[i] = NULL;
614 rxbdp->status = 0;
615 rxbdp->length = 0;
616 rxbdp->bufPtr = 0;
618 rxbdp++;
621 kfree(priv->rx_skbuff);
625 /* Bring the controller up and running */
626 int startup_gfar(struct net_device *dev)
628 struct txbd8 *txbdp;
629 struct rxbd8 *rxbdp;
630 dma_addr_t addr;
631 unsigned long vaddr;
632 int i;
633 struct gfar_private *priv = netdev_priv(dev);
634 struct gfar *regs = priv->regs;
635 u32 tempval;
636 int err = 0;
638 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
640 /* Allocate memory for the buffer descriptors */
641 vaddr = (unsigned long) dma_alloc_coherent(NULL,
642 sizeof (struct txbd8) * priv->tx_ring_size +
643 sizeof (struct rxbd8) * priv->rx_ring_size,
644 &addr, GFP_KERNEL);
646 if (vaddr == 0) {
647 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
648 dev->name);
649 return -ENOMEM;
652 priv->tx_bd_base = (struct txbd8 *) vaddr;
654 /* enet DMA only understands physical addresses */
655 gfar_write(&regs->tbase, addr);
657 /* Start the rx descriptor ring where the tx ring leaves off */
658 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
659 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
660 priv->rx_bd_base = (struct rxbd8 *) vaddr;
661 gfar_write(&regs->rbase, addr);
663 /* Setup the skbuff rings */
664 priv->tx_skbuff =
665 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
666 priv->tx_ring_size, GFP_KERNEL);
668 if (priv->tx_skbuff == NULL) {
669 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
670 dev->name);
671 err = -ENOMEM;
672 goto tx_skb_fail;
675 for (i = 0; i < priv->tx_ring_size; i++)
676 priv->tx_skbuff[i] = NULL;
678 priv->rx_skbuff =
679 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
680 priv->rx_ring_size, GFP_KERNEL);
682 if (priv->rx_skbuff == NULL) {
683 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
684 dev->name);
685 err = -ENOMEM;
686 goto rx_skb_fail;
689 for (i = 0; i < priv->rx_ring_size; i++)
690 priv->rx_skbuff[i] = NULL;
692 /* Initialize some variables in our dev structure */
693 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
694 priv->cur_rx = priv->rx_bd_base;
695 priv->skb_curtx = priv->skb_dirtytx = 0;
696 priv->skb_currx = 0;
698 /* Initialize Transmit Descriptor Ring */
699 txbdp = priv->tx_bd_base;
700 for (i = 0; i < priv->tx_ring_size; i++) {
701 txbdp->status = 0;
702 txbdp->length = 0;
703 txbdp->bufPtr = 0;
704 txbdp++;
707 /* Set the last descriptor in the ring to indicate wrap */
708 txbdp--;
709 txbdp->status |= TXBD_WRAP;
711 rxbdp = priv->rx_bd_base;
712 for (i = 0; i < priv->rx_ring_size; i++) {
713 struct sk_buff *skb = NULL;
715 rxbdp->status = 0;
717 skb = gfar_new_skb(dev, rxbdp);
719 priv->rx_skbuff[i] = skb;
721 rxbdp++;
724 /* Set the last descriptor in the ring to wrap */
725 rxbdp--;
726 rxbdp->status |= RXBD_WRAP;
728 /* If the device has multiple interrupts, register for
729 * them. Otherwise, only register for the one */
730 if (priv->einfo->flags & GFAR_HAS_MULTI_INTR) {
731 /* Install our interrupt handlers for Error,
732 * Transmit, and Receive */
733 if (request_irq(priv->einfo->interruptError, gfar_error,
734 0, "enet_error", dev) < 0) {
735 printk(KERN_ERR "%s: Can't get IRQ %d\n",
736 dev->name, priv->einfo->interruptError);
738 err = -1;
739 goto err_irq_fail;
742 if (request_irq(priv->einfo->interruptTransmit, gfar_transmit,
743 0, "enet_tx", dev) < 0) {
744 printk(KERN_ERR "%s: Can't get IRQ %d\n",
745 dev->name, priv->einfo->interruptTransmit);
747 err = -1;
749 goto tx_irq_fail;
752 if (request_irq(priv->einfo->interruptReceive, gfar_receive,
753 0, "enet_rx", dev) < 0) {
754 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
755 dev->name, priv->einfo->interruptReceive);
757 err = -1;
758 goto rx_irq_fail;
760 } else {
761 if (request_irq(priv->einfo->interruptTransmit, gfar_interrupt,
762 0, "gfar_interrupt", dev) < 0) {
763 printk(KERN_ERR "%s: Can't get IRQ %d\n",
764 dev->name, priv->einfo->interruptError);
766 err = -1;
767 goto err_irq_fail;
771 /* Set up the PHY change work queue */
772 INIT_WORK(&priv->tq, gfar_phy_change, dev);
774 init_timer(&priv->phy_info_timer);
775 priv->phy_info_timer.function = &gfar_phy_startup_timer;
776 priv->phy_info_timer.data = (unsigned long) priv->mii_info;
777 mod_timer(&priv->phy_info_timer, jiffies + HZ);
779 /* Configure the coalescing support */
780 if (priv->txcoalescing)
781 gfar_write(&regs->txic,
782 mk_ic_value(priv->txcount, priv->txtime));
783 else
784 gfar_write(&regs->txic, 0);
786 if (priv->rxcoalescing)
787 gfar_write(&regs->rxic,
788 mk_ic_value(priv->rxcount, priv->rxtime));
789 else
790 gfar_write(&regs->rxic, 0);
792 init_waitqueue_head(&priv->rxcleanupq);
794 /* Enable Rx and Tx in MACCFG1 */
795 tempval = gfar_read(&regs->maccfg1);
796 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
797 gfar_write(&regs->maccfg1, tempval);
799 /* Initialize DMACTRL to have WWR and WOP */
800 tempval = gfar_read(&priv->regs->dmactrl);
801 tempval |= DMACTRL_INIT_SETTINGS;
802 gfar_write(&priv->regs->dmactrl, tempval);
804 /* Clear THLT, so that the DMA starts polling now */
805 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
807 /* Make sure we aren't stopped */
808 tempval = gfar_read(&priv->regs->dmactrl);
809 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
810 gfar_write(&priv->regs->dmactrl, tempval);
812 /* Unmask the interrupts we look for */
813 gfar_write(&regs->imask, IMASK_DEFAULT);
815 return 0;
817 rx_irq_fail:
818 free_irq(priv->einfo->interruptTransmit, dev);
819 tx_irq_fail:
820 free_irq(priv->einfo->interruptError, dev);
821 err_irq_fail:
822 rx_skb_fail:
823 free_skb_resources(priv);
824 tx_skb_fail:
825 dma_free_coherent(NULL,
826 sizeof(struct txbd8)*priv->tx_ring_size
827 + sizeof(struct rxbd8)*priv->rx_ring_size,
828 priv->tx_bd_base,
829 gfar_read(&regs->tbase));
831 if (priv->mii_info->phyinfo->close)
832 priv->mii_info->phyinfo->close(priv->mii_info);
834 kfree(priv->mii_info);
836 return err;
839 /* Called when something needs to use the ethernet device */
840 /* Returns 0 for success. */
841 static int gfar_enet_open(struct net_device *dev)
843 int err;
845 /* Initialize a bunch of registers */
846 init_registers(dev);
848 gfar_set_mac_address(dev);
850 err = init_phy(dev);
852 if(err)
853 return err;
855 err = startup_gfar(dev);
857 netif_start_queue(dev);
859 return err;
862 /* This is called by the kernel when a frame is ready for transmission. */
863 /* It is pointed to by the dev->hard_start_xmit function pointer */
864 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
866 struct gfar_private *priv = netdev_priv(dev);
867 struct txbd8 *txbdp;
869 /* Update transmit stats */
870 priv->stats.tx_bytes += skb->len;
872 /* Lock priv now */
873 spin_lock_irq(&priv->lock);
875 /* Point at the first free tx descriptor */
876 txbdp = priv->cur_tx;
878 /* Clear all but the WRAP status flags */
879 txbdp->status &= TXBD_WRAP;
881 /* Set buffer length and pointer */
882 txbdp->length = skb->len;
883 txbdp->bufPtr = dma_map_single(NULL, skb->data,
884 skb->len, DMA_TO_DEVICE);
886 /* Save the skb pointer so we can free it later */
887 priv->tx_skbuff[priv->skb_curtx] = skb;
889 /* Update the current skb pointer (wrapping if this was the last) */
890 priv->skb_curtx =
891 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
893 /* Flag the BD as interrupt-causing */
894 txbdp->status |= TXBD_INTERRUPT;
896 /* Flag the BD as ready to go, last in frame, and */
897 /* in need of CRC */
898 txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
900 dev->trans_start = jiffies;
902 /* If this was the last BD in the ring, the next one */
903 /* is at the beginning of the ring */
904 if (txbdp->status & TXBD_WRAP)
905 txbdp = priv->tx_bd_base;
906 else
907 txbdp++;
909 /* If the next BD still needs to be cleaned up, then the bds
910 are full. We need to tell the kernel to stop sending us stuff. */
911 if (txbdp == priv->dirty_tx) {
912 netif_stop_queue(dev);
914 priv->stats.tx_fifo_errors++;
917 /* Update the current txbd to the next one */
918 priv->cur_tx = txbdp;
920 /* Tell the DMA to go go go */
921 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
923 /* Unlock priv */
924 spin_unlock_irq(&priv->lock);
926 return 0;
929 /* Stops the kernel queue, and halts the controller */
930 static int gfar_close(struct net_device *dev)
932 struct gfar_private *priv = netdev_priv(dev);
933 stop_gfar(dev);
935 /* Shutdown the PHY */
936 if (priv->mii_info->phyinfo->close)
937 priv->mii_info->phyinfo->close(priv->mii_info);
939 kfree(priv->mii_info);
941 netif_stop_queue(dev);
943 return 0;
946 /* returns a net_device_stats structure pointer */
947 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
949 struct gfar_private *priv = netdev_priv(dev);
951 return &(priv->stats);
954 /* Changes the mac address if the controller is not running. */
955 int gfar_set_mac_address(struct net_device *dev)
957 struct gfar_private *priv = netdev_priv(dev);
958 int i;
959 char tmpbuf[MAC_ADDR_LEN];
960 u32 tempval;
962 /* Now copy it into the mac registers backwards, cuz */
963 /* little endian is silly */
964 for (i = 0; i < MAC_ADDR_LEN; i++)
965 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i];
967 gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf)));
969 tempval = *((u32 *) (tmpbuf + 4));
971 gfar_write(&priv->regs->macstnaddr2, tempval);
973 return 0;
977 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
979 int tempsize, tempval;
980 struct gfar_private *priv = netdev_priv(dev);
981 int oldsize = priv->rx_buffer_size;
982 int frame_size = new_mtu + 18;
984 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
985 printk(KERN_ERR "%s: Invalid MTU setting\n", dev->name);
986 return -EINVAL;
989 tempsize =
990 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
991 INCREMENTAL_BUFFER_SIZE;
993 /* Only stop and start the controller if it isn't already
994 * stopped */
995 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
996 stop_gfar(dev);
998 priv->rx_buffer_size = tempsize;
1000 dev->mtu = new_mtu;
1002 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1003 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1005 /* If the mtu is larger than the max size for standard
1006 * ethernet frames (ie, a jumbo frame), then set maccfg2
1007 * to allow huge frames, and to check the length */
1008 tempval = gfar_read(&priv->regs->maccfg2);
1010 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1011 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1012 else
1013 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1015 gfar_write(&priv->regs->maccfg2, tempval);
1017 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1018 startup_gfar(dev);
1020 return 0;
1023 /* gfar_timeout gets called when a packet has not been
1024 * transmitted after a set amount of time.
1025 * For now, assume that clearing out all the structures, and
1026 * starting over will fix the problem. */
1027 static void gfar_timeout(struct net_device *dev)
1029 struct gfar_private *priv = netdev_priv(dev);
1031 priv->stats.tx_errors++;
1033 if (dev->flags & IFF_UP) {
1034 stop_gfar(dev);
1035 startup_gfar(dev);
1038 netif_schedule(dev);
1041 /* Interrupt Handler for Transmit complete */
1042 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1044 struct net_device *dev = (struct net_device *) dev_id;
1045 struct gfar_private *priv = netdev_priv(dev);
1046 struct txbd8 *bdp;
1048 /* Clear IEVENT */
1049 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1051 /* Lock priv */
1052 spin_lock(&priv->lock);
1053 bdp = priv->dirty_tx;
1054 while ((bdp->status & TXBD_READY) == 0) {
1055 /* If dirty_tx and cur_tx are the same, then either the */
1056 /* ring is empty or full now (it could only be full in the beginning, */
1057 /* obviously). If it is empty, we are done. */
1058 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1059 break;
1061 priv->stats.tx_packets++;
1063 /* Deferred means some collisions occurred during transmit, */
1064 /* but we eventually sent the packet. */
1065 if (bdp->status & TXBD_DEF)
1066 priv->stats.collisions++;
1068 /* Free the sk buffer associated with this TxBD */
1069 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1070 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1071 priv->skb_dirtytx =
1072 (priv->skb_dirtytx +
1073 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1075 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1076 if (bdp->status & TXBD_WRAP)
1077 bdp = priv->tx_bd_base;
1078 else
1079 bdp++;
1081 /* Move dirty_tx to be the next bd */
1082 priv->dirty_tx = bdp;
1084 /* We freed a buffer, so now we can restart transmission */
1085 if (netif_queue_stopped(dev))
1086 netif_wake_queue(dev);
1087 } /* while ((bdp->status & TXBD_READY) == 0) */
1089 /* If we are coalescing the interrupts, reset the timer */
1090 /* Otherwise, clear it */
1091 if (priv->txcoalescing)
1092 gfar_write(&priv->regs->txic,
1093 mk_ic_value(priv->txcount, priv->txtime));
1094 else
1095 gfar_write(&priv->regs->txic, 0);
1097 spin_unlock(&priv->lock);
1099 return IRQ_HANDLED;
1102 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1104 struct gfar_private *priv = netdev_priv(dev);
1105 struct sk_buff *skb = NULL;
1106 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1108 /* We have to allocate the skb, so keep trying till we succeed */
1109 while ((!skb) && timeout--)
1110 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1112 if (skb == NULL)
1113 return NULL;
1115 /* We need the data buffer to be aligned properly. We will reserve
1116 * as many bytes as needed to align the data properly
1118 skb_reserve(skb,
1119 RXBUF_ALIGNMENT -
1120 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1)));
1122 skb->dev = dev;
1124 bdp->bufPtr = dma_map_single(NULL, skb->data,
1125 priv->rx_buffer_size + RXBUF_ALIGNMENT,
1126 DMA_FROM_DEVICE);
1128 bdp->length = 0;
1130 /* Mark the buffer empty */
1131 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1133 return skb;
1136 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1138 struct net_device_stats *stats = &priv->stats;
1139 struct gfar_extra_stats *estats = &priv->extra_stats;
1141 /* If the packet was truncated, none of the other errors
1142 * matter */
1143 if (status & RXBD_TRUNCATED) {
1144 stats->rx_length_errors++;
1146 estats->rx_trunc++;
1148 return;
1150 /* Count the errors, if there were any */
1151 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1152 stats->rx_length_errors++;
1154 if (status & RXBD_LARGE)
1155 estats->rx_large++;
1156 else
1157 estats->rx_short++;
1159 if (status & RXBD_NONOCTET) {
1160 stats->rx_frame_errors++;
1161 estats->rx_nonoctet++;
1163 if (status & RXBD_CRCERR) {
1164 estats->rx_crcerr++;
1165 stats->rx_crc_errors++;
1167 if (status & RXBD_OVERRUN) {
1168 estats->rx_overrun++;
1169 stats->rx_crc_errors++;
1173 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1175 struct net_device *dev = (struct net_device *) dev_id;
1176 struct gfar_private *priv = netdev_priv(dev);
1178 #ifdef CONFIG_GFAR_NAPI
1179 u32 tempval;
1180 #endif
1182 /* Clear IEVENT, so rx interrupt isn't called again
1183 * because of this interrupt */
1184 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1186 /* support NAPI */
1187 #ifdef CONFIG_GFAR_NAPI
1188 if (netif_rx_schedule_prep(dev)) {
1189 tempval = gfar_read(&priv->regs->imask);
1190 tempval &= IMASK_RX_DISABLED;
1191 gfar_write(&priv->regs->imask, tempval);
1193 __netif_rx_schedule(dev);
1194 } else {
1195 #ifdef VERBOSE_GFAR_ERRORS
1196 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1197 dev->name, gfar_read(priv->regs->ievent),
1198 gfar_read(priv->regs->imask));
1199 #endif
1201 #else
1203 spin_lock(&priv->lock);
1204 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1206 /* If we are coalescing interrupts, update the timer */
1207 /* Otherwise, clear it */
1208 if (priv->rxcoalescing)
1209 gfar_write(&priv->regs->rxic,
1210 mk_ic_value(priv->rxcount, priv->rxtime));
1211 else
1212 gfar_write(&priv->regs->rxic, 0);
1214 /* Just in case we need to wake the ring param changer */
1215 priv->rxclean = 1;
1217 spin_unlock(&priv->lock);
1218 #endif
1220 return IRQ_HANDLED;
1224 /* gfar_process_frame() -- handle one incoming packet if skb
1225 * isn't NULL. */
1226 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1227 int length)
1229 struct gfar_private *priv = netdev_priv(dev);
1231 if (skb == NULL) {
1232 #ifdef BRIEF_GFAR_ERRORS
1233 printk(KERN_WARNING "%s: Missing skb!!.\n",
1234 dev->name);
1235 #endif
1236 priv->stats.rx_dropped++;
1237 priv->extra_stats.rx_skbmissing++;
1238 } else {
1239 /* Prep the skb for the packet */
1240 skb_put(skb, length);
1242 /* Tell the skb what kind of packet this is */
1243 skb->protocol = eth_type_trans(skb, dev);
1245 /* Send the packet up the stack */
1246 if (RECEIVE(skb) == NET_RX_DROP) {
1247 priv->extra_stats.kernel_dropped++;
1251 return 0;
1254 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1255 * until the budget/quota has been reached. Returns the number
1256 * of frames handled
1258 static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1260 struct rxbd8 *bdp;
1261 struct sk_buff *skb;
1262 u16 pkt_len;
1263 int howmany = 0;
1264 struct gfar_private *priv = netdev_priv(dev);
1266 /* Get the first full descriptor */
1267 bdp = priv->cur_rx;
1269 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1270 skb = priv->rx_skbuff[priv->skb_currx];
1272 if (!(bdp->status &
1273 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1274 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1275 /* Increment the number of packets */
1276 priv->stats.rx_packets++;
1277 howmany++;
1279 /* Remove the FCS from the packet length */
1280 pkt_len = bdp->length - 4;
1282 gfar_process_frame(dev, skb, pkt_len);
1284 priv->stats.rx_bytes += pkt_len;
1285 } else {
1286 count_errors(bdp->status, priv);
1288 if (skb)
1289 dev_kfree_skb_any(skb);
1291 priv->rx_skbuff[priv->skb_currx] = NULL;
1294 dev->last_rx = jiffies;
1296 /* Clear the status flags for this buffer */
1297 bdp->status &= ~RXBD_STATS;
1299 /* Add another skb for the future */
1300 skb = gfar_new_skb(dev, bdp);
1301 priv->rx_skbuff[priv->skb_currx] = skb;
1303 /* Update to the next pointer */
1304 if (bdp->status & RXBD_WRAP)
1305 bdp = priv->rx_bd_base;
1306 else
1307 bdp++;
1309 /* update to point at the next skb */
1310 priv->skb_currx =
1311 (priv->skb_currx +
1312 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1316 /* Update the current rxbd pointer to be the next one */
1317 priv->cur_rx = bdp;
1319 /* If no packets have arrived since the
1320 * last one we processed, clear the IEVENT RX and
1321 * BSY bits so that another interrupt won't be
1322 * generated when we set IMASK */
1323 if (bdp->status & RXBD_EMPTY)
1324 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1326 return howmany;
1329 #ifdef CONFIG_GFAR_NAPI
1330 static int gfar_poll(struct net_device *dev, int *budget)
1332 int howmany;
1333 struct gfar_private *priv = netdev_priv(dev);
1334 int rx_work_limit = *budget;
1336 if (rx_work_limit > dev->quota)
1337 rx_work_limit = dev->quota;
1339 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1341 dev->quota -= howmany;
1342 rx_work_limit -= howmany;
1343 *budget -= howmany;
1345 if (rx_work_limit >= 0) {
1346 netif_rx_complete(dev);
1348 /* Clear the halt bit in RSTAT */
1349 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1351 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1353 /* If we are coalescing interrupts, update the timer */
1354 /* Otherwise, clear it */
1355 if (priv->rxcoalescing)
1356 gfar_write(&priv->regs->rxic,
1357 mk_ic_value(priv->rxcount, priv->rxtime));
1358 else
1359 gfar_write(&priv->regs->rxic, 0);
1361 /* Signal to the ring size changer that it's safe to go */
1362 priv->rxclean = 1;
1365 return (rx_work_limit < 0) ? 1 : 0;
1367 #endif
1369 /* The interrupt handler for devices with one interrupt */
1370 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1372 struct net_device *dev = dev_id;
1373 struct gfar_private *priv = netdev_priv(dev);
1375 /* Save ievent for future reference */
1376 u32 events = gfar_read(&priv->regs->ievent);
1378 /* Clear IEVENT */
1379 gfar_write(&priv->regs->ievent, events);
1381 /* Check for reception */
1382 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1383 gfar_receive(irq, dev_id, regs);
1385 /* Check for transmit completion */
1386 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1387 gfar_transmit(irq, dev_id, regs);
1389 /* Update error statistics */
1390 if (events & IEVENT_TXE) {
1391 priv->stats.tx_errors++;
1393 if (events & IEVENT_LC)
1394 priv->stats.tx_window_errors++;
1395 if (events & IEVENT_CRL)
1396 priv->stats.tx_aborted_errors++;
1397 if (events & IEVENT_XFUN) {
1398 #ifdef VERBOSE_GFAR_ERRORS
1399 printk(KERN_WARNING "%s: tx underrun. dropped packet\n",
1400 dev->name);
1401 #endif
1402 priv->stats.tx_dropped++;
1403 priv->extra_stats.tx_underrun++;
1405 /* Reactivate the Tx Queues */
1406 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1409 if (events & IEVENT_BSY) {
1410 priv->stats.rx_errors++;
1411 priv->extra_stats.rx_bsy++;
1413 gfar_receive(irq, dev_id, regs);
1415 #ifndef CONFIG_GFAR_NAPI
1416 /* Clear the halt bit in RSTAT */
1417 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1418 #endif
1420 #ifdef VERBOSE_GFAR_ERRORS
1421 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name,
1422 gfar_read(priv->regs->rstat));
1423 #endif
1425 if (events & IEVENT_BABR) {
1426 priv->stats.rx_errors++;
1427 priv->extra_stats.rx_babr++;
1429 #ifdef VERBOSE_GFAR_ERRORS
1430 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1431 #endif
1433 if (events & IEVENT_EBERR) {
1434 priv->extra_stats.eberr++;
1435 #ifdef VERBOSE_GFAR_ERRORS
1436 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1437 #endif
1439 if (events & IEVENT_RXC) {
1440 #ifdef VERBOSE_GFAR_ERRORS
1441 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1442 #endif
1445 if (events & IEVENT_BABT) {
1446 priv->extra_stats.tx_babt++;
1447 #ifdef VERBOSE_GFAR_ERRORS
1448 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1449 #endif
1452 return IRQ_HANDLED;
1455 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1457 struct net_device *dev = (struct net_device *) dev_id;
1458 struct gfar_private *priv = netdev_priv(dev);
1460 /* Clear the interrupt */
1461 mii_clear_phy_interrupt(priv->mii_info);
1463 /* Disable PHY interrupts */
1464 mii_configure_phy_interrupt(priv->mii_info,
1465 MII_INTERRUPT_DISABLED);
1467 /* Schedule the phy change */
1468 schedule_work(&priv->tq);
1470 return IRQ_HANDLED;
1473 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1474 static void gfar_phy_change(void *data)
1476 struct net_device *dev = (struct net_device *) data;
1477 struct gfar_private *priv = netdev_priv(dev);
1478 int result = 0;
1480 /* Delay to give the PHY a chance to change the
1481 * register state */
1482 msleep(1);
1484 /* Update the link, speed, duplex */
1485 result = priv->mii_info->phyinfo->read_status(priv->mii_info);
1487 /* Adjust the known status as long as the link
1488 * isn't still coming up */
1489 if((0 == result) || (priv->mii_info->link == 0))
1490 adjust_link(dev);
1492 /* Reenable interrupts, if needed */
1493 if (priv->einfo->flags & GFAR_HAS_PHY_INTR)
1494 mii_configure_phy_interrupt(priv->mii_info,
1495 MII_INTERRUPT_ENABLED);
1498 /* Called every so often on systems that don't interrupt
1499 * the core for PHY changes */
1500 static void gfar_phy_timer(unsigned long data)
1502 struct net_device *dev = (struct net_device *) data;
1503 struct gfar_private *priv = netdev_priv(dev);
1505 schedule_work(&priv->tq);
1507 mod_timer(&priv->phy_info_timer, jiffies +
1508 GFAR_PHY_CHANGE_TIME * HZ);
1511 /* Keep trying aneg for some time
1512 * If, after GFAR_AN_TIMEOUT seconds, it has not
1513 * finished, we switch to forced.
1514 * Either way, once the process has completed, we either
1515 * request the interrupt, or switch the timer over to
1516 * using gfar_phy_timer to check status */
1517 static void gfar_phy_startup_timer(unsigned long data)
1519 int result;
1520 static int secondary = GFAR_AN_TIMEOUT;
1521 struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data;
1522 struct gfar_private *priv = netdev_priv(mii_info->dev);
1524 /* Configure the Auto-negotiation */
1525 result = mii_info->phyinfo->config_aneg(mii_info);
1527 /* If autonegotiation failed to start, and
1528 * we haven't timed out, reset the timer, and return */
1529 if (result && secondary--) {
1530 mod_timer(&priv->phy_info_timer, jiffies + HZ);
1531 return;
1532 } else if (result) {
1533 /* Couldn't start autonegotiation.
1534 * Try switching to forced */
1535 mii_info->autoneg = 0;
1536 result = mii_info->phyinfo->config_aneg(mii_info);
1538 /* Forcing failed! Give up */
1539 if(result) {
1540 printk(KERN_ERR "%s: Forcing failed!\n",
1541 mii_info->dev->name);
1542 return;
1546 /* Kill the timer so it can be restarted */
1547 del_timer_sync(&priv->phy_info_timer);
1549 /* Grab the PHY interrupt, if necessary/possible */
1550 if (priv->einfo->flags & GFAR_HAS_PHY_INTR) {
1551 if (request_irq(priv->einfo->interruptPHY,
1552 phy_interrupt,
1553 SA_SHIRQ,
1554 "phy_interrupt",
1555 mii_info->dev) < 0) {
1556 printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n",
1557 mii_info->dev->name,
1558 priv->einfo->interruptPHY);
1559 } else {
1560 mii_configure_phy_interrupt(priv->mii_info,
1561 MII_INTERRUPT_ENABLED);
1562 return;
1566 /* Start the timer again, this time in order to
1567 * handle a change in status */
1568 init_timer(&priv->phy_info_timer);
1569 priv->phy_info_timer.function = &gfar_phy_timer;
1570 priv->phy_info_timer.data = (unsigned long) mii_info->dev;
1571 mod_timer(&priv->phy_info_timer, jiffies +
1572 GFAR_PHY_CHANGE_TIME * HZ);
1575 /* Called every time the controller might need to be made
1576 * aware of new link state. The PHY code conveys this
1577 * information through variables in the priv structure, and this
1578 * function converts those variables into the appropriate
1579 * register values, and can bring down the device if needed.
1581 static void adjust_link(struct net_device *dev)
1583 struct gfar_private *priv = netdev_priv(dev);
1584 struct gfar *regs = priv->regs;
1585 u32 tempval;
1586 struct gfar_mii_info *mii_info = priv->mii_info;
1588 if (mii_info->link) {
1589 /* Now we make sure that we can be in full duplex mode.
1590 * If not, we operate in half-duplex mode. */
1591 if (mii_info->duplex != priv->oldduplex) {
1592 if (!(mii_info->duplex)) {
1593 tempval = gfar_read(&regs->maccfg2);
1594 tempval &= ~(MACCFG2_FULL_DUPLEX);
1595 gfar_write(&regs->maccfg2, tempval);
1597 printk(KERN_INFO "%s: Half Duplex\n",
1598 dev->name);
1599 } else {
1600 tempval = gfar_read(&regs->maccfg2);
1601 tempval |= MACCFG2_FULL_DUPLEX;
1602 gfar_write(&regs->maccfg2, tempval);
1604 printk(KERN_INFO "%s: Full Duplex\n",
1605 dev->name);
1608 priv->oldduplex = mii_info->duplex;
1611 if (mii_info->speed != priv->oldspeed) {
1612 switch (mii_info->speed) {
1613 case 1000:
1614 tempval = gfar_read(&regs->maccfg2);
1615 tempval =
1616 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1617 gfar_write(&regs->maccfg2, tempval);
1618 break;
1619 case 100:
1620 case 10:
1621 tempval = gfar_read(&regs->maccfg2);
1622 tempval =
1623 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1624 gfar_write(&regs->maccfg2, tempval);
1625 break;
1626 default:
1627 printk(KERN_WARNING
1628 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1629 dev->name, mii_info->speed);
1630 break;
1633 printk(KERN_INFO "%s: Speed %dBT\n", dev->name,
1634 mii_info->speed);
1636 priv->oldspeed = mii_info->speed;
1639 if (!priv->oldlink) {
1640 printk(KERN_INFO "%s: Link is up\n", dev->name);
1641 priv->oldlink = 1;
1642 netif_carrier_on(dev);
1643 netif_schedule(dev);
1645 } else {
1646 if (priv->oldlink) {
1647 printk(KERN_INFO "%s: Link is down\n", dev->name);
1648 priv->oldlink = 0;
1649 priv->oldspeed = 0;
1650 priv->oldduplex = -1;
1651 netif_carrier_off(dev);
1657 /* Update the hash table based on the current list of multicast
1658 * addresses we subscribe to. Also, change the promiscuity of
1659 * the device based on the flags (this function is called
1660 * whenever dev->flags is changed */
1661 static void gfar_set_multi(struct net_device *dev)
1663 struct dev_mc_list *mc_ptr;
1664 struct gfar_private *priv = netdev_priv(dev);
1665 struct gfar *regs = priv->regs;
1666 u32 tempval;
1668 if(dev->flags & IFF_PROMISC) {
1669 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1670 dev->name);
1671 /* Set RCTRL to PROM */
1672 tempval = gfar_read(&regs->rctrl);
1673 tempval |= RCTRL_PROM;
1674 gfar_write(&regs->rctrl, tempval);
1675 } else {
1676 /* Set RCTRL to not PROM */
1677 tempval = gfar_read(&regs->rctrl);
1678 tempval &= ~(RCTRL_PROM);
1679 gfar_write(&regs->rctrl, tempval);
1682 if(dev->flags & IFF_ALLMULTI) {
1683 /* Set the hash to rx all multicast frames */
1684 gfar_write(&regs->gaddr0, 0xffffffff);
1685 gfar_write(&regs->gaddr1, 0xffffffff);
1686 gfar_write(&regs->gaddr2, 0xffffffff);
1687 gfar_write(&regs->gaddr3, 0xffffffff);
1688 gfar_write(&regs->gaddr4, 0xffffffff);
1689 gfar_write(&regs->gaddr5, 0xffffffff);
1690 gfar_write(&regs->gaddr6, 0xffffffff);
1691 gfar_write(&regs->gaddr7, 0xffffffff);
1692 } else {
1693 /* zero out the hash */
1694 gfar_write(&regs->gaddr0, 0x0);
1695 gfar_write(&regs->gaddr1, 0x0);
1696 gfar_write(&regs->gaddr2, 0x0);
1697 gfar_write(&regs->gaddr3, 0x0);
1698 gfar_write(&regs->gaddr4, 0x0);
1699 gfar_write(&regs->gaddr5, 0x0);
1700 gfar_write(&regs->gaddr6, 0x0);
1701 gfar_write(&regs->gaddr7, 0x0);
1703 if(dev->mc_count == 0)
1704 return;
1706 /* Parse the list, and set the appropriate bits */
1707 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1708 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1712 return;
1715 /* Set the appropriate hash bit for the given addr */
1716 /* The algorithm works like so:
1717 * 1) Take the Destination Address (ie the multicast address), and
1718 * do a CRC on it (little endian), and reverse the bits of the
1719 * result.
1720 * 2) Use the 8 most significant bits as a hash into a 256-entry
1721 * table. The table is controlled through 8 32-bit registers:
1722 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1723 * gaddr7. This means that the 3 most significant bits in the
1724 * hash index which gaddr register to use, and the 5 other bits
1725 * indicate which bit (assuming an IBM numbering scheme, which
1726 * for PowerPC (tm) is usually the case) in the register holds
1727 * the entry. */
1728 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1730 u32 tempval;
1731 struct gfar_private *priv = netdev_priv(dev);
1732 struct gfar *regs = priv->regs;
1733 u32 *hash = &regs->gaddr0;
1734 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1735 u8 whichreg = ((result >> 29) & 0x7);
1736 u8 whichbit = ((result >> 24) & 0x1f);
1737 u32 value = (1 << (31-whichbit));
1739 tempval = gfar_read(&hash[whichreg]);
1740 tempval |= value;
1741 gfar_write(&hash[whichreg], tempval);
1743 return;
1746 /* GFAR error interrupt handler */
1747 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1749 struct net_device *dev = dev_id;
1750 struct gfar_private *priv = netdev_priv(dev);
1752 /* Save ievent for future reference */
1753 u32 events = gfar_read(&priv->regs->ievent);
1755 /* Clear IEVENT */
1756 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1758 /* Hmm... */
1759 #if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS)
1760 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1761 dev->name, events, gfar_read(priv->regs->imask));
1762 #endif
1764 /* Update the error counters */
1765 if (events & IEVENT_TXE) {
1766 priv->stats.tx_errors++;
1768 if (events & IEVENT_LC)
1769 priv->stats.tx_window_errors++;
1770 if (events & IEVENT_CRL)
1771 priv->stats.tx_aborted_errors++;
1772 if (events & IEVENT_XFUN) {
1773 #ifdef VERBOSE_GFAR_ERRORS
1774 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1775 dev->name);
1776 #endif
1777 priv->stats.tx_dropped++;
1778 priv->extra_stats.tx_underrun++;
1780 /* Reactivate the Tx Queues */
1781 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1783 #ifdef VERBOSE_GFAR_ERRORS
1784 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1785 #endif
1787 if (events & IEVENT_BSY) {
1788 priv->stats.rx_errors++;
1789 priv->extra_stats.rx_bsy++;
1791 gfar_receive(irq, dev_id, regs);
1793 #ifndef CONFIG_GFAR_NAPI
1794 /* Clear the halt bit in RSTAT */
1795 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1796 #endif
1798 #ifdef VERBOSE_GFAR_ERRORS
1799 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name,
1800 gfar_read(priv->regs->rstat));
1801 #endif
1803 if (events & IEVENT_BABR) {
1804 priv->stats.rx_errors++;
1805 priv->extra_stats.rx_babr++;
1807 #ifdef VERBOSE_GFAR_ERRORS
1808 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1809 #endif
1811 if (events & IEVENT_EBERR) {
1812 priv->extra_stats.eberr++;
1813 #ifdef VERBOSE_GFAR_ERRORS
1814 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1815 #endif
1817 if (events & IEVENT_RXC)
1818 #ifdef VERBOSE_GFAR_ERRORS
1819 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1820 #endif
1822 if (events & IEVENT_BABT) {
1823 priv->extra_stats.tx_babt++;
1824 #ifdef VERBOSE_GFAR_ERRORS
1825 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1826 #endif
1828 return IRQ_HANDLED;
1831 /* Structure for a device driver */
1832 static struct ocp_device_id gfar_ids[] = {
1833 {.vendor = OCP_ANY_ID,.function = OCP_FUNC_GFAR},
1834 {.vendor = OCP_VENDOR_INVALID}
1837 static struct ocp_driver gfar_driver = {
1838 .name = "gianfar",
1839 .id_table = gfar_ids,
1841 .probe = gfar_probe,
1842 .remove = gfar_remove,
1845 static int __init gfar_init(void)
1847 int rc;
1849 rc = ocp_register_driver(&gfar_driver);
1850 if (rc != 0) {
1851 ocp_unregister_driver(&gfar_driver);
1852 return -ENODEV;
1855 return 0;
1858 static void __exit gfar_exit(void)
1860 ocp_unregister_driver(&gfar_driver);
1863 module_init(gfar_init);
1864 module_exit(gfar_exit);