MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / mm / slab.c
bloba4e9f5bc53bfabaaaa52bebe3c1c38a251afa5d4
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109 #include <linux/rtmutex.h>
111 #include <asm/uaccess.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 #ifdef CONFIG_DEBUG_SLAB
128 #define DEBUG 1
129 #define STATS 1
130 #define FORCED_DEBUG 1
131 #else
132 #define DEBUG 0
133 #define STATS 0
134 #define FORCED_DEBUG 0
135 #endif
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
142 #endif
144 #ifndef ARCH_KMALLOC_MINALIGN
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
153 #define ARCH_KMALLOC_MINALIGN 0
154 #endif
156 #ifndef ARCH_SLAB_MINALIGN
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_CACHE_DMA | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 #else
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184 #endif
187 * kmem_bufctl_t:
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 typedef unsigned int kmem_bufctl_t;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212 * struct slab
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 struct slab {
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
228 * struct slab_rcu
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
241 * We assume struct slab_rcu can overlay struct slab when destroying.
243 struct slab_rcu {
244 struct rcu_head head;
245 struct kmem_cache *cachep;
246 void *addr;
250 * struct array_cache
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
261 struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
266 spinlock_t lock;
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void *entries[BOOT_CPUCACHE_ENTRIES];
286 * The slab lists for all objects.
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned int free_limit;
294 unsigned int colour_next; /* Per-node cache coloring */
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
303 * Need this for bootstrapping a per node allocator.
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
311 static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
315 static int enable_cpucache(struct kmem_cache *cachep);
316 static void cache_reap(void *unused);
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
322 static __always_inline int index_of(const size_t size)
324 extern void __bad_size(void);
326 if (__builtin_constant_p(size)) {
327 int i = 0;
329 #define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334 #include "linux/kmalloc_sizes.h"
335 #undef CACHE
336 __bad_size();
337 } else
338 __bad_size();
339 return 0;
342 static int slab_early_init = 1;
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
347 static void kmem_list3_init(struct kmem_list3 *parent)
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
354 parent->colour_next = 0;
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
364 } while (0)
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
374 * struct kmem_cache
376 * manages a cache.
379 struct kmem_cache {
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache *array[NR_CPUS];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
387 unsigned int buffer_size;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3 *nodelists[MAX_NUMNODES];
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder;
398 /* force GFP flags, e.g. GFP_DMA */
399 gfp_t gfpflags;
401 size_t colour; /* cache colouring range */
402 unsigned int colour_off; /* colour offset */
403 struct kmem_cache *slabp_cache;
404 unsigned int slab_size;
405 unsigned int dflags; /* dynamic flags */
407 /* constructor func */
408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
410 /* de-constructor func */
411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
441 int obj_offset;
442 int obj_size;
443 #endif
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449 #define BATCHREFILL_LIMIT 16
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
460 #if STATS
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484 #else
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
500 #endif
502 #if DEBUG
505 * memory layout of objects:
506 * 0 : objp
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511 * redzone word.
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
517 static int obj_offset(struct kmem_cache *cachep)
519 return cachep->obj_offset;
522 static int obj_size(struct kmem_cache *cachep)
524 return cachep->obj_size;
527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
537 return (unsigned long *)(objp + cachep->buffer_size -
538 2 * BYTES_PER_WORD);
539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
542 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
548 #else
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556 #endif
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
568 #else
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
571 #endif
574 * Do not go above this order unless 0 objects fit into the slab.
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587 page->lru.next = (struct list_head *)cache;
590 static inline struct kmem_cache *page_get_cache(struct page *page)
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
594 BUG_ON(!PageSlab(page));
595 return (struct kmem_cache *)page->lru.next;
598 static inline void page_set_slab(struct page *page, struct slab *slab)
600 page->lru.prev = (struct list_head *)slab;
603 static inline struct slab *page_get_slab(struct page *page)
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 BUG_ON(!PageSlab(page));
608 return (struct slab *)page->lru.prev;
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
617 static inline struct slab *virt_to_slab(const void *obj)
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
626 return slab->s_mem + cache->buffer_size * idx;
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642 #undef CACHE
644 EXPORT_SYMBOL(malloc_sizes);
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 char *name;
649 char *name_dma;
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 {NULL,}
656 #undef CACHE
659 static struct arraycache_init initarray_cache __initdata =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
669 .buffer_size = sizeof(struct kmem_cache),
670 .name = "kmem_cache",
671 #if DEBUG
672 .obj_size = sizeof(struct kmem_cache),
673 #endif
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
694 static inline void init_lock_keys(void)
697 int q;
698 struct cache_sizes *s = malloc_sizes;
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
724 s++;
727 #else
728 static inline void init_lock_keys(void)
731 #endif
733 /* Guard access to the cache-chain. */
734 static DEFINE_MUTEX(cache_chain_mutex);
735 static struct list_head cache_chain;
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
741 static enum {
742 NONE,
743 PARTIAL_AC,
744 PARTIAL_L3,
745 FULL
746 } g_cpucache_up;
749 * used by boot code to determine if it can use slab based allocator
751 int slab_is_available(void)
753 return g_cpucache_up == FULL;
756 static DEFINE_PER_CPU(struct work_struct, reap_work);
758 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
760 return cachep->array[smp_processor_id()];
763 static inline struct kmem_cache *__find_general_cachep(size_t size,
764 gfp_t gfpflags)
766 struct cache_sizes *csizep = malloc_sizes;
768 #if DEBUG
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
774 #endif
775 while (size > csizep->cs_size)
776 csizep++;
779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
783 if (unlikely(gfpflags & GFP_DMA))
784 return csizep->cs_dmacachep;
785 return csizep->cs_cachep;
788 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
790 return __find_general_cachep(size, gfpflags);
793 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
795 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
799 * Calculate the number of objects and left-over bytes for a given buffer size.
801 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
802 size_t align, int flags, size_t *left_over,
803 unsigned int *num)
805 int nr_objs;
806 size_t mgmt_size;
807 size_t slab_size = PAGE_SIZE << gfporder;
810 * The slab management structure can be either off the slab or
811 * on it. For the latter case, the memory allocated for a
812 * slab is used for:
814 * - The struct slab
815 * - One kmem_bufctl_t for each object
816 * - Padding to respect alignment of @align
817 * - @buffer_size bytes for each object
819 * If the slab management structure is off the slab, then the
820 * alignment will already be calculated into the size. Because
821 * the slabs are all pages aligned, the objects will be at the
822 * correct alignment when allocated.
824 if (flags & CFLGS_OFF_SLAB) {
825 mgmt_size = 0;
826 nr_objs = slab_size / buffer_size;
828 if (nr_objs > SLAB_LIMIT)
829 nr_objs = SLAB_LIMIT;
830 } else {
832 * Ignore padding for the initial guess. The padding
833 * is at most @align-1 bytes, and @buffer_size is at
834 * least @align. In the worst case, this result will
835 * be one greater than the number of objects that fit
836 * into the memory allocation when taking the padding
837 * into account.
839 nr_objs = (slab_size - sizeof(struct slab)) /
840 (buffer_size + sizeof(kmem_bufctl_t));
843 * This calculated number will be either the right
844 * amount, or one greater than what we want.
846 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
847 > slab_size)
848 nr_objs--;
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
853 mgmt_size = slab_mgmt_size(nr_objs, align);
855 *num = nr_objs;
856 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
859 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861 static void __slab_error(const char *function, struct kmem_cache *cachep,
862 char *msg)
864 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
865 function, cachep->name, msg);
866 dump_stack();
869 #ifdef CONFIG_NUMA
871 * Special reaping functions for NUMA systems called from cache_reap().
872 * These take care of doing round robin flushing of alien caches (containing
873 * objects freed on different nodes from which they were allocated) and the
874 * flushing of remote pcps by calling drain_node_pages.
876 static DEFINE_PER_CPU(unsigned long, reap_node);
878 static void init_reap_node(int cpu)
880 int node;
882 node = next_node(cpu_to_node(cpu), node_online_map);
883 if (node == MAX_NUMNODES)
884 node = first_node(node_online_map);
886 per_cpu(reap_node, cpu) = node;
889 static void next_reap_node(void)
891 int node = __get_cpu_var(reap_node);
894 * Also drain per cpu pages on remote zones
896 if (node != numa_node_id())
897 drain_node_pages(node);
899 node = next_node(node, node_online_map);
900 if (unlikely(node >= MAX_NUMNODES))
901 node = first_node(node_online_map);
902 __get_cpu_var(reap_node) = node;
905 #else
906 #define init_reap_node(cpu) do { } while (0)
907 #if 0 // mask by Victor Yu. 02-12-2007
908 #define next_reap_node(void) do { } while (0)
909 #else
910 #define next_reap_node()
911 #endif
912 #endif
915 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
916 * via the workqueue/eventd.
917 * Add the CPU number into the expiration time to minimize the possibility of
918 * the CPUs getting into lockstep and contending for the global cache chain
919 * lock.
921 static void __devinit start_cpu_timer(int cpu)
923 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
926 * When this gets called from do_initcalls via cpucache_init(),
927 * init_workqueues() has already run, so keventd will be setup
928 * at that time.
930 if (keventd_up() && reap_work->func == NULL) {
931 init_reap_node(cpu);
932 INIT_WORK(reap_work, cache_reap, NULL);
933 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
937 static struct array_cache *alloc_arraycache(int node, int entries,
938 int batchcount)
940 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
941 struct array_cache *nc = NULL;
943 nc = kmalloc_node(memsize, GFP_KERNEL, node);
944 if (nc) {
945 nc->avail = 0;
946 nc->limit = entries;
947 nc->batchcount = batchcount;
948 nc->touched = 0;
949 spin_lock_init(&nc->lock);
951 return nc;
955 * Transfer objects in one arraycache to another.
956 * Locking must be handled by the caller.
958 * Return the number of entries transferred.
960 static int transfer_objects(struct array_cache *to,
961 struct array_cache *from, unsigned int max)
963 /* Figure out how many entries to transfer */
964 int nr = min(min(from->avail, max), to->limit - to->avail);
966 if (!nr)
967 return 0;
969 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
970 sizeof(void *) *nr);
972 from->avail -= nr;
973 to->avail += nr;
974 to->touched = 1;
975 return nr;
978 #ifndef CONFIG_NUMA
980 #define drain_alien_cache(cachep, alien) do { } while (0)
981 #define reap_alien(cachep, l3) do { } while (0)
983 static inline struct array_cache **alloc_alien_cache(int node, int limit)
985 return (struct array_cache **)BAD_ALIEN_MAGIC;
988 static inline void free_alien_cache(struct array_cache **ac_ptr)
992 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
994 return 0;
997 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
998 gfp_t flags)
1000 return NULL;
1003 static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1004 gfp_t flags, int nodeid)
1006 return NULL;
1009 #else /* CONFIG_NUMA */
1011 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
1012 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1014 static struct array_cache **alloc_alien_cache(int node, int limit)
1016 struct array_cache **ac_ptr;
1017 int memsize = sizeof(void *) * MAX_NUMNODES;
1018 int i;
1020 if (limit > 1)
1021 limit = 12;
1022 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1023 if (ac_ptr) {
1024 for_each_node(i) {
1025 if (i == node || !node_online(i)) {
1026 ac_ptr[i] = NULL;
1027 continue;
1029 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1030 if (!ac_ptr[i]) {
1031 for (i--; i <= 0; i--)
1032 kfree(ac_ptr[i]);
1033 kfree(ac_ptr);
1034 return NULL;
1038 return ac_ptr;
1041 static void free_alien_cache(struct array_cache **ac_ptr)
1043 int i;
1045 if (!ac_ptr)
1046 return;
1047 for_each_node(i)
1048 kfree(ac_ptr[i]);
1049 kfree(ac_ptr);
1052 static void __drain_alien_cache(struct kmem_cache *cachep,
1053 struct array_cache *ac, int node)
1055 struct kmem_list3 *rl3 = cachep->nodelists[node];
1057 if (ac->avail) {
1058 spin_lock(&rl3->list_lock);
1060 * Stuff objects into the remote nodes shared array first.
1061 * That way we could avoid the overhead of putting the objects
1062 * into the free lists and getting them back later.
1064 if (rl3->shared)
1065 transfer_objects(rl3->shared, ac, ac->limit);
1067 free_block(cachep, ac->entry, ac->avail, node);
1068 ac->avail = 0;
1069 spin_unlock(&rl3->list_lock);
1074 * Called from cache_reap() to regularly drain alien caches round robin.
1076 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1078 int node = __get_cpu_var(reap_node);
1080 if (l3->alien) {
1081 struct array_cache *ac = l3->alien[node];
1083 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1084 __drain_alien_cache(cachep, ac, node);
1085 spin_unlock_irq(&ac->lock);
1090 static void drain_alien_cache(struct kmem_cache *cachep,
1091 struct array_cache **alien)
1093 int i = 0;
1094 struct array_cache *ac;
1095 unsigned long flags;
1097 for_each_online_node(i) {
1098 ac = alien[i];
1099 if (ac) {
1100 spin_lock_irqsave(&ac->lock, flags);
1101 __drain_alien_cache(cachep, ac, i);
1102 spin_unlock_irqrestore(&ac->lock, flags);
1107 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1109 struct slab *slabp = virt_to_slab(objp);
1110 int nodeid = slabp->nodeid;
1111 struct kmem_list3 *l3;
1112 struct array_cache *alien = NULL;
1113 int node;
1115 node = numa_node_id();
1118 * Make sure we are not freeing a object from another node to the array
1119 * cache on this cpu.
1121 if (likely(slabp->nodeid == node))
1122 return 0;
1124 l3 = cachep->nodelists[node];
1125 STATS_INC_NODEFREES(cachep);
1126 if (l3->alien && l3->alien[nodeid]) {
1127 alien = l3->alien[nodeid];
1128 spin_lock(&alien->lock);
1129 if (unlikely(alien->avail == alien->limit)) {
1130 STATS_INC_ACOVERFLOW(cachep);
1131 __drain_alien_cache(cachep, alien, nodeid);
1133 alien->entry[alien->avail++] = objp;
1134 spin_unlock(&alien->lock);
1135 } else {
1136 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1137 free_block(cachep, &objp, 1, nodeid);
1138 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1140 return 1;
1142 #endif
1144 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1145 unsigned long action, void *hcpu)
1147 long cpu = (long)hcpu;
1148 struct kmem_cache *cachep;
1149 struct kmem_list3 *l3 = NULL;
1150 int node = cpu_to_node(cpu);
1151 int memsize = sizeof(struct kmem_list3);
1153 switch (action) {
1154 case CPU_UP_PREPARE:
1155 mutex_lock(&cache_chain_mutex);
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
1160 * kmem_list3 and not this cpu's kmem_list3
1163 list_for_each_entry(cachep, &cache_chain, next) {
1165 * Set up the size64 kmemlist for cpu before we can
1166 * begin anything. Make sure some other cpu on this
1167 * node has not already allocated this
1169 if (!cachep->nodelists[node]) {
1170 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1171 if (!l3)
1172 goto bad;
1173 kmem_list3_init(l3);
1174 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1175 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1178 * The l3s don't come and go as CPUs come and
1179 * go. cache_chain_mutex is sufficient
1180 * protection here.
1182 cachep->nodelists[node] = l3;
1185 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1186 cachep->nodelists[node]->free_limit =
1187 (1 + nr_cpus_node(node)) *
1188 cachep->batchcount + cachep->num;
1189 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1193 * Now we can go ahead with allocating the shared arrays and
1194 * array caches
1196 list_for_each_entry(cachep, &cache_chain, next) {
1197 struct array_cache *nc;
1198 struct array_cache *shared;
1199 struct array_cache **alien;
1201 nc = alloc_arraycache(node, cachep->limit,
1202 cachep->batchcount);
1203 if (!nc)
1204 goto bad;
1205 shared = alloc_arraycache(node,
1206 cachep->shared * cachep->batchcount,
1207 0xbaadf00d);
1208 if (!shared)
1209 goto bad;
1211 alien = alloc_alien_cache(node, cachep->limit);
1212 if (!alien)
1213 goto bad;
1214 cachep->array[cpu] = nc;
1215 l3 = cachep->nodelists[node];
1216 BUG_ON(!l3);
1218 spin_lock_irq(&l3->list_lock);
1219 if (!l3->shared) {
1221 * We are serialised from CPU_DEAD or
1222 * CPU_UP_CANCELLED by the cpucontrol lock
1224 l3->shared = shared;
1225 shared = NULL;
1227 #ifdef CONFIG_NUMA
1228 if (!l3->alien) {
1229 l3->alien = alien;
1230 alien = NULL;
1232 #endif
1233 spin_unlock_irq(&l3->list_lock);
1234 kfree(shared);
1235 free_alien_cache(alien);
1237 mutex_unlock(&cache_chain_mutex);
1238 break;
1239 case CPU_ONLINE:
1240 start_cpu_timer(cpu);
1241 break;
1242 #ifdef CONFIG_HOTPLUG_CPU
1243 case CPU_DEAD:
1245 * Even if all the cpus of a node are down, we don't free the
1246 * kmem_list3 of any cache. This to avoid a race between
1247 * cpu_down, and a kmalloc allocation from another cpu for
1248 * memory from the node of the cpu going down. The list3
1249 * structure is usually allocated from kmem_cache_create() and
1250 * gets destroyed at kmem_cache_destroy().
1252 /* fall thru */
1253 case CPU_UP_CANCELED:
1254 mutex_lock(&cache_chain_mutex);
1255 list_for_each_entry(cachep, &cache_chain, next) {
1256 struct array_cache *nc;
1257 struct array_cache *shared;
1258 struct array_cache **alien;
1259 cpumask_t mask;
1261 mask = node_to_cpumask(node);
1262 /* cpu is dead; no one can alloc from it. */
1263 nc = cachep->array[cpu];
1264 cachep->array[cpu] = NULL;
1265 l3 = cachep->nodelists[node];
1267 if (!l3)
1268 goto free_array_cache;
1270 spin_lock_irq(&l3->list_lock);
1272 /* Free limit for this kmem_list3 */
1273 l3->free_limit -= cachep->batchcount;
1274 if (nc)
1275 free_block(cachep, nc->entry, nc->avail, node);
1277 if (!cpus_empty(mask)) {
1278 spin_unlock_irq(&l3->list_lock);
1279 goto free_array_cache;
1282 shared = l3->shared;
1283 if (shared) {
1284 free_block(cachep, l3->shared->entry,
1285 l3->shared->avail, node);
1286 l3->shared = NULL;
1289 alien = l3->alien;
1290 l3->alien = NULL;
1292 spin_unlock_irq(&l3->list_lock);
1294 kfree(shared);
1295 if (alien) {
1296 drain_alien_cache(cachep, alien);
1297 free_alien_cache(alien);
1299 free_array_cache:
1300 kfree(nc);
1303 * In the previous loop, all the objects were freed to
1304 * the respective cache's slabs, now we can go ahead and
1305 * shrink each nodelist to its limit.
1307 list_for_each_entry(cachep, &cache_chain, next) {
1308 l3 = cachep->nodelists[node];
1309 if (!l3)
1310 continue;
1311 drain_freelist(cachep, l3, l3->free_objects);
1313 mutex_unlock(&cache_chain_mutex);
1314 break;
1315 #endif
1317 return NOTIFY_OK;
1318 bad:
1319 mutex_unlock(&cache_chain_mutex);
1320 return NOTIFY_BAD;
1323 static struct notifier_block __cpuinitdata cpucache_notifier = {
1324 &cpuup_callback, NULL, 0
1328 * swap the static kmem_list3 with kmalloced memory
1330 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1331 int nodeid)
1333 struct kmem_list3 *ptr;
1335 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1336 BUG_ON(!ptr);
1338 local_irq_disable();
1339 memcpy(ptr, list, sizeof(struct kmem_list3));
1341 * Do not assume that spinlocks can be initialized via memcpy:
1343 spin_lock_init(&ptr->list_lock);
1345 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1346 cachep->nodelists[nodeid] = ptr;
1347 local_irq_enable();
1351 * Initialisation. Called after the page allocator have been initialised and
1352 * before smp_init().
1354 void __init kmem_cache_init(void)
1356 size_t left_over;
1357 struct cache_sizes *sizes;
1358 struct cache_names *names;
1359 int i;
1360 int order;
1361 int node;
1363 for (i = 0; i < NUM_INIT_LISTS; i++) {
1364 kmem_list3_init(&initkmem_list3[i]);
1365 if (i < MAX_NUMNODES)
1366 cache_cache.nodelists[i] = NULL;
1370 * Fragmentation resistance on low memory - only use bigger
1371 * page orders on machines with more than 32MB of memory.
1373 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1374 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1376 /* Bootstrap is tricky, because several objects are allocated
1377 * from caches that do not exist yet:
1378 * 1) initialize the cache_cache cache: it contains the struct
1379 * kmem_cache structures of all caches, except cache_cache itself:
1380 * cache_cache is statically allocated.
1381 * Initially an __init data area is used for the head array and the
1382 * kmem_list3 structures, it's replaced with a kmalloc allocated
1383 * array at the end of the bootstrap.
1384 * 2) Create the first kmalloc cache.
1385 * The struct kmem_cache for the new cache is allocated normally.
1386 * An __init data area is used for the head array.
1387 * 3) Create the remaining kmalloc caches, with minimally sized
1388 * head arrays.
1389 * 4) Replace the __init data head arrays for cache_cache and the first
1390 * kmalloc cache with kmalloc allocated arrays.
1391 * 5) Replace the __init data for kmem_list3 for cache_cache and
1392 * the other cache's with kmalloc allocated memory.
1393 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1396 node = numa_node_id();
1398 /* 1) create the cache_cache */
1399 INIT_LIST_HEAD(&cache_chain);
1400 list_add(&cache_cache.next, &cache_chain);
1401 cache_cache.colour_off = cache_line_size();
1402 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1403 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1405 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1406 cache_line_size());
1408 for (order = 0; order < MAX_ORDER; order++) {
1409 cache_estimate(order, cache_cache.buffer_size,
1410 cache_line_size(), 0, &left_over, &cache_cache.num);
1411 if (cache_cache.num)
1412 break;
1414 BUG_ON(!cache_cache.num);
1415 cache_cache.gfporder = order;
1416 cache_cache.colour = left_over / cache_cache.colour_off;
1417 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1418 sizeof(struct slab), cache_line_size());
1420 /* 2+3) create the kmalloc caches */
1421 sizes = malloc_sizes;
1422 names = cache_names;
1425 * Initialize the caches that provide memory for the array cache and the
1426 * kmem_list3 structures first. Without this, further allocations will
1427 * bug.
1430 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1431 sizes[INDEX_AC].cs_size,
1432 ARCH_KMALLOC_MINALIGN,
1433 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1434 NULL, NULL);
1436 if (INDEX_AC != INDEX_L3) {
1437 sizes[INDEX_L3].cs_cachep =
1438 kmem_cache_create(names[INDEX_L3].name,
1439 sizes[INDEX_L3].cs_size,
1440 ARCH_KMALLOC_MINALIGN,
1441 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1442 NULL, NULL);
1445 slab_early_init = 0;
1447 while (sizes->cs_size != ULONG_MAX) {
1449 * For performance, all the general caches are L1 aligned.
1450 * This should be particularly beneficial on SMP boxes, as it
1451 * eliminates "false sharing".
1452 * Note for systems short on memory removing the alignment will
1453 * allow tighter packing of the smaller caches.
1455 if (!sizes->cs_cachep) {
1456 sizes->cs_cachep = kmem_cache_create(names->name,
1457 sizes->cs_size,
1458 ARCH_KMALLOC_MINALIGN,
1459 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1460 NULL, NULL);
1463 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1464 sizes->cs_size,
1465 ARCH_KMALLOC_MINALIGN,
1466 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1467 SLAB_PANIC,
1468 NULL, NULL);
1469 sizes++;
1470 names++;
1472 /* 4) Replace the bootstrap head arrays */
1474 struct array_cache *ptr;
1476 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1478 local_irq_disable();
1479 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1480 memcpy(ptr, cpu_cache_get(&cache_cache),
1481 sizeof(struct arraycache_init));
1483 * Do not assume that spinlocks can be initialized via memcpy:
1485 spin_lock_init(&ptr->lock);
1487 cache_cache.array[smp_processor_id()] = ptr;
1488 local_irq_enable();
1490 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1492 local_irq_disable();
1493 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1494 != &initarray_generic.cache);
1495 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1496 sizeof(struct arraycache_init));
1498 * Do not assume that spinlocks can be initialized via memcpy:
1500 spin_lock_init(&ptr->lock);
1502 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = ptr;
1503 local_irq_enable();
1505 /* 5) Replace the bootstrap kmem_list3's */
1507 int nid;
1509 /* Replace the static kmem_list3 structures for the boot cpu */
1510 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1512 for_each_online_node(nid) {
1513 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1514 &initkmem_list3[SIZE_AC + nid], nid);
1516 if (INDEX_AC != INDEX_L3) {
1517 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1518 &initkmem_list3[SIZE_L3 + nid], nid);
1523 /* 6) resize the head arrays to their final sizes */
1525 struct kmem_cache *cachep;
1526 mutex_lock(&cache_chain_mutex);
1527 list_for_each_entry(cachep, &cache_chain, next)
1528 if (enable_cpucache(cachep))
1529 BUG();
1530 mutex_unlock(&cache_chain_mutex);
1533 /* Annotate slab for lockdep -- annotate the malloc caches */
1534 init_lock_keys();
1537 /* Done! */
1538 g_cpucache_up = FULL;
1541 * Register a cpu startup notifier callback that initializes
1542 * cpu_cache_get for all new cpus
1544 register_cpu_notifier(&cpucache_notifier);
1547 * The reap timers are started later, with a module init call: That part
1548 * of the kernel is not yet operational.
1552 static int __init cpucache_init(void)
1554 int cpu;
1557 * Register the timers that return unneeded pages to the page allocator
1559 for_each_online_cpu(cpu)
1560 start_cpu_timer(cpu);
1561 return 0;
1563 __initcall(cpucache_init);
1566 * Interface to system's page allocator. No need to hold the cache-lock.
1568 * If we requested dmaable memory, we will get it. Even if we
1569 * did not request dmaable memory, we might get it, but that
1570 * would be relatively rare and ignorable.
1572 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1574 struct page *page;
1575 int nr_pages;
1576 int i;
1578 #ifndef CONFIG_MMU
1580 * Nommu uses slab's for process anonymous memory allocations, and thus
1581 * requires __GFP_COMP to properly refcount higher order allocations
1583 flags |= __GFP_COMP;
1584 #endif
1587 * Under NUMA we want memory on the indicated node. We will handle
1588 * the needed fallback ourselves since we want to serve from our
1589 * per node object lists first for other nodes.
1591 flags |= cachep->gfpflags | GFP_THISNODE;
1593 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1594 if (!page)
1595 return NULL;
1597 nr_pages = (1 << cachep->gfporder);
1598 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1599 add_zone_page_state(page_zone(page),
1600 NR_SLAB_RECLAIMABLE, nr_pages);
1601 else
1602 add_zone_page_state(page_zone(page),
1603 NR_SLAB_UNRECLAIMABLE, nr_pages);
1604 for (i = 0; i < nr_pages; i++)
1605 __SetPageSlab(page + i);
1606 return page_address(page);
1610 * Interface to system's page release.
1612 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1614 unsigned long i = (1 << cachep->gfporder);
1615 struct page *page = virt_to_page(addr);
1616 const unsigned long nr_freed = i;
1618 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1619 sub_zone_page_state(page_zone(page),
1620 NR_SLAB_RECLAIMABLE, nr_freed);
1621 else
1622 sub_zone_page_state(page_zone(page),
1623 NR_SLAB_UNRECLAIMABLE, nr_freed);
1624 while (i--) {
1625 BUG_ON(!PageSlab(page));
1626 __ClearPageSlab(page);
1627 page++;
1629 if (current->reclaim_state)
1630 current->reclaim_state->reclaimed_slab += nr_freed;
1631 free_pages((unsigned long)addr, cachep->gfporder);
1634 static void kmem_rcu_free(struct rcu_head *head)
1636 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1637 struct kmem_cache *cachep = slab_rcu->cachep;
1639 kmem_freepages(cachep, slab_rcu->addr);
1640 if (OFF_SLAB(cachep))
1641 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1644 #if DEBUG
1646 #ifdef CONFIG_DEBUG_PAGEALLOC
1647 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1648 unsigned long caller)
1650 int size = obj_size(cachep);
1652 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1654 if (size < 5 * sizeof(unsigned long))
1655 return;
1657 *addr++ = 0x12345678;
1658 *addr++ = caller;
1659 *addr++ = smp_processor_id();
1660 size -= 3 * sizeof(unsigned long);
1662 unsigned long *sptr = &caller;
1663 unsigned long svalue;
1665 while (!kstack_end(sptr)) {
1666 svalue = *sptr++;
1667 if (kernel_text_address(svalue)) {
1668 *addr++ = svalue;
1669 size -= sizeof(unsigned long);
1670 if (size <= sizeof(unsigned long))
1671 break;
1676 *addr++ = 0x87654321;
1678 #endif
1680 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1682 int size = obj_size(cachep);
1683 addr = &((char *)addr)[obj_offset(cachep)];
1685 memset(addr, val, size);
1686 *(unsigned char *)(addr + size - 1) = POISON_END;
1689 static void dump_line(char *data, int offset, int limit)
1691 int i;
1692 unsigned char error = 0;
1693 int bad_count = 0;
1695 printk(KERN_ERR "%03x:", offset);
1696 for (i = 0; i < limit; i++) {
1697 if (data[offset + i] != POISON_FREE) {
1698 error = data[offset + i];
1699 bad_count++;
1701 printk(" %02x", (unsigned char)data[offset + i]);
1703 printk("\n");
1705 if (bad_count == 1) {
1706 error ^= POISON_FREE;
1707 if (!(error & (error - 1))) {
1708 printk(KERN_ERR "Single bit error detected. Probably "
1709 "bad RAM.\n");
1710 #ifdef CONFIG_X86
1711 printk(KERN_ERR "Run memtest86+ or a similar memory "
1712 "test tool.\n");
1713 #else
1714 printk(KERN_ERR "Run a memory test tool.\n");
1715 #endif
1719 #endif
1721 #if DEBUG
1723 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1725 int i, size;
1726 char *realobj;
1728 if (cachep->flags & SLAB_RED_ZONE) {
1729 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1730 *dbg_redzone1(cachep, objp),
1731 *dbg_redzone2(cachep, objp));
1734 if (cachep->flags & SLAB_STORE_USER) {
1735 printk(KERN_ERR "Last user: [<%p>]",
1736 *dbg_userword(cachep, objp));
1737 print_symbol("(%s)",
1738 (unsigned long)*dbg_userword(cachep, objp));
1739 printk("\n");
1741 realobj = (char *)objp + obj_offset(cachep);
1742 size = obj_size(cachep);
1743 for (i = 0; i < size && lines; i += 16, lines--) {
1744 int limit;
1745 limit = 16;
1746 if (i + limit > size)
1747 limit = size - i;
1748 dump_line(realobj, i, limit);
1752 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1754 char *realobj;
1755 int size, i;
1756 int lines = 0;
1758 realobj = (char *)objp + obj_offset(cachep);
1759 size = obj_size(cachep);
1761 for (i = 0; i < size; i++) {
1762 char exp = POISON_FREE;
1763 if (i == size - 1)
1764 exp = POISON_END;
1765 if (realobj[i] != exp) {
1766 int limit;
1767 /* Mismatch ! */
1768 /* Print header */
1769 if (lines == 0) {
1770 printk(KERN_ERR
1771 "Slab corruption: start=%p, len=%d\n",
1772 realobj, size);
1773 print_objinfo(cachep, objp, 0);
1775 /* Hexdump the affected line */
1776 i = (i / 16) * 16;
1777 limit = 16;
1778 if (i + limit > size)
1779 limit = size - i;
1780 dump_line(realobj, i, limit);
1781 i += 16;
1782 lines++;
1783 /* Limit to 5 lines */
1784 if (lines > 5)
1785 break;
1788 if (lines != 0) {
1789 /* Print some data about the neighboring objects, if they
1790 * exist:
1792 struct slab *slabp = virt_to_slab(objp);
1793 unsigned int objnr;
1795 objnr = obj_to_index(cachep, slabp, objp);
1796 if (objnr) {
1797 objp = index_to_obj(cachep, slabp, objnr - 1);
1798 realobj = (char *)objp + obj_offset(cachep);
1799 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1800 realobj, size);
1801 print_objinfo(cachep, objp, 2);
1803 if (objnr + 1 < cachep->num) {
1804 objp = index_to_obj(cachep, slabp, objnr + 1);
1805 realobj = (char *)objp + obj_offset(cachep);
1806 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1807 realobj, size);
1808 print_objinfo(cachep, objp, 2);
1812 #endif
1814 #if DEBUG
1816 * slab_destroy_objs - destroy a slab and its objects
1817 * @cachep: cache pointer being destroyed
1818 * @slabp: slab pointer being destroyed
1820 * Call the registered destructor for each object in a slab that is being
1821 * destroyed.
1823 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1825 int i;
1826 for (i = 0; i < cachep->num; i++) {
1827 void *objp = index_to_obj(cachep, slabp, i);
1829 if (cachep->flags & SLAB_POISON) {
1830 #ifdef CONFIG_DEBUG_PAGEALLOC
1831 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1832 OFF_SLAB(cachep))
1833 kernel_map_pages(virt_to_page(objp),
1834 cachep->buffer_size / PAGE_SIZE, 1);
1835 else
1836 check_poison_obj(cachep, objp);
1837 #else
1838 check_poison_obj(cachep, objp);
1839 #endif
1841 if (cachep->flags & SLAB_RED_ZONE) {
1842 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1843 slab_error(cachep, "start of a freed object "
1844 "was overwritten");
1845 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1846 slab_error(cachep, "end of a freed object "
1847 "was overwritten");
1849 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1850 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1853 #else
1854 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1856 if (cachep->dtor) {
1857 int i;
1858 for (i = 0; i < cachep->num; i++) {
1859 void *objp = index_to_obj(cachep, slabp, i);
1860 (cachep->dtor) (objp, cachep, 0);
1864 #endif
1867 * slab_destroy - destroy and release all objects in a slab
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1871 * Destroy all the objs in a slab, and release the mem back to the system.
1872 * Before calling the slab must have been unlinked from the cache. The
1873 * cache-lock is not held/needed.
1875 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1877 void *addr = slabp->s_mem - slabp->colouroff;
1879 slab_destroy_objs(cachep, slabp);
1880 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1881 struct slab_rcu *slab_rcu;
1883 slab_rcu = (struct slab_rcu *)slabp;
1884 slab_rcu->cachep = cachep;
1885 slab_rcu->addr = addr;
1886 call_rcu(&slab_rcu->head, kmem_rcu_free);
1887 } else {
1888 kmem_freepages(cachep, addr);
1889 if (OFF_SLAB(cachep))
1890 kmem_cache_free(cachep->slabp_cache, slabp);
1895 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1896 * size of kmem_list3.
1898 static void set_up_list3s(struct kmem_cache *cachep, int index)
1900 int node;
1902 for_each_online_node(node) {
1903 cachep->nodelists[node] = &initkmem_list3[index + node];
1904 cachep->nodelists[node]->next_reap = jiffies +
1905 REAPTIMEOUT_LIST3 +
1906 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1910 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1912 int i;
1913 struct kmem_list3 *l3;
1915 for_each_online_cpu(i)
1916 kfree(cachep->array[i]);
1918 /* NUMA: free the list3 structures */
1919 for_each_online_node(i) {
1920 l3 = cachep->nodelists[i];
1921 if (l3) {
1922 kfree(l3->shared);
1923 free_alien_cache(l3->alien);
1924 kfree(l3);
1927 kmem_cache_free(&cache_cache, cachep);
1932 * calculate_slab_order - calculate size (page order) of slabs
1933 * @cachep: pointer to the cache that is being created
1934 * @size: size of objects to be created in this cache.
1935 * @align: required alignment for the objects.
1936 * @flags: slab allocation flags
1938 * Also calculates the number of objects per slab.
1940 * This could be made much more intelligent. For now, try to avoid using
1941 * high order pages for slabs. When the gfp() functions are more friendly
1942 * towards high-order requests, this should be changed.
1944 static size_t calculate_slab_order(struct kmem_cache *cachep,
1945 size_t size, size_t align, unsigned long flags)
1947 unsigned long offslab_limit;
1948 size_t left_over = 0;
1949 int gfporder;
1951 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1952 unsigned int num;
1953 size_t remainder;
1955 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1956 if (!num)
1957 continue;
1959 if (flags & CFLGS_OFF_SLAB) {
1961 * Max number of objs-per-slab for caches which
1962 * use off-slab slabs. Needed to avoid a possible
1963 * looping condition in cache_grow().
1965 offslab_limit = size - sizeof(struct slab);
1966 offslab_limit /= sizeof(kmem_bufctl_t);
1968 if (num > offslab_limit)
1969 break;
1972 /* Found something acceptable - save it away */
1973 cachep->num = num;
1974 cachep->gfporder = gfporder;
1975 left_over = remainder;
1978 * A VFS-reclaimable slab tends to have most allocations
1979 * as GFP_NOFS and we really don't want to have to be allocating
1980 * higher-order pages when we are unable to shrink dcache.
1982 if (flags & SLAB_RECLAIM_ACCOUNT)
1983 break;
1986 * Large number of objects is good, but very large slabs are
1987 * currently bad for the gfp()s.
1989 if (gfporder >= slab_break_gfp_order)
1990 break;
1993 * Acceptable internal fragmentation?
1995 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1996 break;
1998 return left_over;
2001 static int setup_cpu_cache(struct kmem_cache *cachep)
2003 if (g_cpucache_up == FULL)
2004 return enable_cpucache(cachep);
2006 if (g_cpucache_up == NONE) {
2008 * Note: the first kmem_cache_create must create the cache
2009 * that's used by kmalloc(24), otherwise the creation of
2010 * further caches will BUG().
2012 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2015 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2016 * the first cache, then we need to set up all its list3s,
2017 * otherwise the creation of further caches will BUG().
2019 set_up_list3s(cachep, SIZE_AC);
2020 if (INDEX_AC == INDEX_L3)
2021 g_cpucache_up = PARTIAL_L3;
2022 else
2023 g_cpucache_up = PARTIAL_AC;
2024 } else {
2025 cachep->array[smp_processor_id()] =
2026 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2028 if (g_cpucache_up == PARTIAL_AC) {
2029 set_up_list3s(cachep, SIZE_L3);
2030 g_cpucache_up = PARTIAL_L3;
2031 } else {
2032 int node;
2033 for_each_online_node(node) {
2034 cachep->nodelists[node] =
2035 kmalloc_node(sizeof(struct kmem_list3),
2036 GFP_KERNEL, node);
2037 BUG_ON(!cachep->nodelists[node]);
2038 kmem_list3_init(cachep->nodelists[node]);
2042 cachep->nodelists[numa_node_id()]->next_reap =
2043 jiffies + REAPTIMEOUT_LIST3 +
2044 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2046 cpu_cache_get(cachep)->avail = 0;
2047 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2048 cpu_cache_get(cachep)->batchcount = 1;
2049 cpu_cache_get(cachep)->touched = 0;
2050 cachep->batchcount = 1;
2051 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2052 return 0;
2056 * kmem_cache_create - Create a cache.
2057 * @name: A string which is used in /proc/slabinfo to identify this cache.
2058 * @size: The size of objects to be created in this cache.
2059 * @align: The required alignment for the objects.
2060 * @flags: SLAB flags
2061 * @ctor: A constructor for the objects.
2062 * @dtor: A destructor for the objects.
2064 * Returns a ptr to the cache on success, NULL on failure.
2065 * Cannot be called within a int, but can be interrupted.
2066 * The @ctor is run when new pages are allocated by the cache
2067 * and the @dtor is run before the pages are handed back.
2069 * @name must be valid until the cache is destroyed. This implies that
2070 * the module calling this has to destroy the cache before getting unloaded.
2072 * The flags are
2074 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2075 * to catch references to uninitialised memory.
2077 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2078 * for buffer overruns.
2080 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2081 * cacheline. This can be beneficial if you're counting cycles as closely
2082 * as davem.
2084 struct kmem_cache *
2085 kmem_cache_create (const char *name, size_t size, size_t align,
2086 unsigned long flags,
2087 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2088 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2090 size_t left_over, slab_size, ralign;
2091 struct kmem_cache *cachep = NULL, *pc;
2094 * Sanity checks... these are all serious usage bugs.
2096 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2097 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2098 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2099 name);
2100 BUG();
2104 * Prevent CPUs from coming and going.
2105 * lock_cpu_hotplug() nests outside cache_chain_mutex
2107 lock_cpu_hotplug();
2109 mutex_lock(&cache_chain_mutex);
2111 list_for_each_entry(pc, &cache_chain, next) {
2112 mm_segment_t old_fs = get_fs();
2113 char tmp;
2114 int res;
2117 * This happens when the module gets unloaded and doesn't
2118 * destroy its slab cache and no-one else reuses the vmalloc
2119 * area of the module. Print a warning.
2121 set_fs(KERNEL_DS);
2122 res = __get_user(tmp, pc->name);
2123 set_fs(old_fs);
2124 if (res) {
2125 printk("SLAB: cache with size %d has lost its name\n",
2126 pc->buffer_size);
2127 continue;
2130 if (!strcmp(pc->name, name)) {
2131 printk("kmem_cache_create: duplicate cache %s\n", name);
2132 dump_stack();
2133 goto oops;
2137 #if DEBUG
2138 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2139 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2140 /* No constructor, but inital state check requested */
2141 printk(KERN_ERR "%s: No con, but init state check "
2142 "requested - %s\n", __FUNCTION__, name);
2143 flags &= ~SLAB_DEBUG_INITIAL;
2145 #if FORCED_DEBUG
2147 * Enable redzoning and last user accounting, except for caches with
2148 * large objects, if the increased size would increase the object size
2149 * above the next power of two: caches with object sizes just above a
2150 * power of two have a significant amount of internal fragmentation.
2152 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2153 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2154 if (!(flags & SLAB_DESTROY_BY_RCU))
2155 flags |= SLAB_POISON;
2156 #endif
2157 if (flags & SLAB_DESTROY_BY_RCU)
2158 BUG_ON(flags & SLAB_POISON);
2159 #endif
2160 if (flags & SLAB_DESTROY_BY_RCU)
2161 BUG_ON(dtor);
2164 * Always checks flags, a caller might be expecting debug support which
2165 * isn't available.
2167 BUG_ON(flags & ~CREATE_MASK);
2170 * Check that size is in terms of words. This is needed to avoid
2171 * unaligned accesses for some archs when redzoning is used, and makes
2172 * sure any on-slab bufctl's are also correctly aligned.
2174 if (size & (BYTES_PER_WORD - 1)) {
2175 size += (BYTES_PER_WORD - 1);
2176 size &= ~(BYTES_PER_WORD - 1);
2179 /* calculate the final buffer alignment: */
2181 /* 1) arch recommendation: can be overridden for debug */
2182 if (flags & SLAB_HWCACHE_ALIGN) {
2184 * Default alignment: as specified by the arch code. Except if
2185 * an object is really small, then squeeze multiple objects into
2186 * one cacheline.
2188 ralign = cache_line_size();
2189 while (size <= ralign / 2)
2190 ralign /= 2;
2191 } else {
2192 ralign = BYTES_PER_WORD;
2196 * Redzoning and user store require word alignment. Note this will be
2197 * overridden by architecture or caller mandated alignment if either
2198 * is greater than BYTES_PER_WORD.
2200 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2201 ralign = BYTES_PER_WORD;
2203 /* 2) arch mandated alignment: disables debug if necessary */
2204 if (ralign < ARCH_SLAB_MINALIGN) {
2205 ralign = ARCH_SLAB_MINALIGN;
2206 if (ralign > BYTES_PER_WORD)
2207 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2209 /* 3) caller mandated alignment: disables debug if necessary */
2210 if (ralign < align) {
2211 ralign = align;
2212 if (ralign > BYTES_PER_WORD)
2213 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2216 * 4) Store it.
2218 align = ralign;
2220 /* Get cache's description obj. */
2221 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2222 if (!cachep)
2223 goto oops;
2225 #if DEBUG
2226 cachep->obj_size = size;
2229 * Both debugging options require word-alignment which is calculated
2230 * into align above.
2232 if (flags & SLAB_RED_ZONE) {
2233 /* add space for red zone words */
2234 cachep->obj_offset += BYTES_PER_WORD;
2235 size += 2 * BYTES_PER_WORD;
2237 if (flags & SLAB_STORE_USER) {
2238 /* user store requires one word storage behind the end of
2239 * the real object.
2241 size += BYTES_PER_WORD;
2243 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2244 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2245 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2246 cachep->obj_offset += PAGE_SIZE - size;
2247 size = PAGE_SIZE;
2249 #endif
2250 #endif
2253 * Determine if the slab management is 'on' or 'off' slab.
2254 * (bootstrapping cannot cope with offslab caches so don't do
2255 * it too early on.)
2257 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2259 * Size is large, assume best to place the slab management obj
2260 * off-slab (should allow better packing of objs).
2262 flags |= CFLGS_OFF_SLAB;
2264 size = ALIGN(size, align);
2266 left_over = calculate_slab_order(cachep, size, align, flags);
2268 if (!cachep->num) {
2269 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2270 kmem_cache_free(&cache_cache, cachep);
2271 cachep = NULL;
2272 goto oops;
2274 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2275 + sizeof(struct slab), align);
2278 * If the slab has been placed off-slab, and we have enough space then
2279 * move it on-slab. This is at the expense of any extra colouring.
2281 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2282 flags &= ~CFLGS_OFF_SLAB;
2283 left_over -= slab_size;
2286 if (flags & CFLGS_OFF_SLAB) {
2287 /* really off slab. No need for manual alignment */
2288 slab_size =
2289 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2292 cachep->colour_off = cache_line_size();
2293 /* Offset must be a multiple of the alignment. */
2294 if (cachep->colour_off < align)
2295 cachep->colour_off = align;
2296 cachep->colour = left_over / cachep->colour_off;
2297 cachep->slab_size = slab_size;
2298 cachep->flags = flags;
2299 cachep->gfpflags = 0;
2300 if (flags & SLAB_CACHE_DMA)
2301 cachep->gfpflags |= GFP_DMA;
2302 cachep->buffer_size = size;
2304 if (flags & CFLGS_OFF_SLAB) {
2305 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2307 * This is a possibility for one of the malloc_sizes caches.
2308 * But since we go off slab only for object size greater than
2309 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2310 * this should not happen at all.
2311 * But leave a BUG_ON for some lucky dude.
2313 BUG_ON(!cachep->slabp_cache);
2315 cachep->ctor = ctor;
2316 cachep->dtor = dtor;
2317 cachep->name = name;
2319 if (setup_cpu_cache(cachep)) {
2320 __kmem_cache_destroy(cachep);
2321 cachep = NULL;
2322 goto oops;
2325 /* cache setup completed, link it into the list */
2326 list_add(&cachep->next, &cache_chain);
2327 oops:
2328 if (!cachep && (flags & SLAB_PANIC))
2329 panic("kmem_cache_create(): failed to create slab `%s'\n",
2330 name);
2331 mutex_unlock(&cache_chain_mutex);
2332 unlock_cpu_hotplug();
2333 return cachep;
2335 EXPORT_SYMBOL(kmem_cache_create);
2337 #if DEBUG
2338 static void check_irq_off(void)
2340 BUG_ON(!irqs_disabled());
2343 static void check_irq_on(void)
2345 BUG_ON(irqs_disabled());
2348 static void check_spinlock_acquired(struct kmem_cache *cachep)
2350 #ifdef CONFIG_SMP
2351 check_irq_off();
2352 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2353 #endif
2356 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2358 #ifdef CONFIG_SMP
2359 check_irq_off();
2360 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2361 #endif
2364 #else
2365 #define check_irq_off() do { } while(0)
2366 #define check_irq_on() do { } while(0)
2367 #define check_spinlock_acquired(x) do { } while(0)
2368 #define check_spinlock_acquired_node(x, y) do { } while(0)
2369 #endif
2371 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2372 struct array_cache *ac,
2373 int force, int node);
2375 static void do_drain(void *arg)
2377 struct kmem_cache *cachep = arg;
2378 struct array_cache *ac;
2379 int node = numa_node_id();
2381 check_irq_off();
2382 ac = cpu_cache_get(cachep);
2383 spin_lock(&cachep->nodelists[node]->list_lock);
2384 free_block(cachep, ac->entry, ac->avail, node);
2385 spin_unlock(&cachep->nodelists[node]->list_lock);
2386 ac->avail = 0;
2389 static void drain_cpu_caches(struct kmem_cache *cachep)
2391 struct kmem_list3 *l3;
2392 int node;
2394 on_each_cpu(do_drain, cachep, 1, 1);
2395 check_irq_on();
2396 for_each_online_node(node) {
2397 l3 = cachep->nodelists[node];
2398 if (l3 && l3->alien)
2399 drain_alien_cache(cachep, l3->alien);
2402 for_each_online_node(node) {
2403 l3 = cachep->nodelists[node];
2404 if (l3)
2405 drain_array(cachep, l3, l3->shared, 1, node);
2410 * Remove slabs from the list of free slabs.
2411 * Specify the number of slabs to drain in tofree.
2413 * Returns the actual number of slabs released.
2415 static int drain_freelist(struct kmem_cache *cache,
2416 struct kmem_list3 *l3, int tofree)
2418 struct list_head *p;
2419 int nr_freed;
2420 struct slab *slabp;
2422 nr_freed = 0;
2423 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2425 spin_lock_irq(&l3->list_lock);
2426 p = l3->slabs_free.prev;
2427 if (p == &l3->slabs_free) {
2428 spin_unlock_irq(&l3->list_lock);
2429 goto out;
2432 slabp = list_entry(p, struct slab, list);
2433 #if DEBUG
2434 BUG_ON(slabp->inuse);
2435 #endif
2436 list_del(&slabp->list);
2438 * Safe to drop the lock. The slab is no longer linked
2439 * to the cache.
2441 l3->free_objects -= cache->num;
2442 spin_unlock_irq(&l3->list_lock);
2443 slab_destroy(cache, slabp);
2444 nr_freed++;
2446 out:
2447 return nr_freed;
2450 static int __cache_shrink(struct kmem_cache *cachep)
2452 int ret = 0, i = 0;
2453 struct kmem_list3 *l3;
2455 drain_cpu_caches(cachep);
2457 check_irq_on();
2458 for_each_online_node(i) {
2459 l3 = cachep->nodelists[i];
2460 if (!l3)
2461 continue;
2463 drain_freelist(cachep, l3, l3->free_objects);
2465 ret += !list_empty(&l3->slabs_full) ||
2466 !list_empty(&l3->slabs_partial);
2468 return (ret ? 1 : 0);
2472 * kmem_cache_shrink - Shrink a cache.
2473 * @cachep: The cache to shrink.
2475 * Releases as many slabs as possible for a cache.
2476 * To help debugging, a zero exit status indicates all slabs were released.
2478 int kmem_cache_shrink(struct kmem_cache *cachep)
2480 BUG_ON(!cachep || in_interrupt());
2482 return __cache_shrink(cachep);
2484 EXPORT_SYMBOL(kmem_cache_shrink);
2487 * kmem_cache_destroy - delete a cache
2488 * @cachep: the cache to destroy
2490 * Remove a struct kmem_cache object from the slab cache.
2492 * It is expected this function will be called by a module when it is
2493 * unloaded. This will remove the cache completely, and avoid a duplicate
2494 * cache being allocated each time a module is loaded and unloaded, if the
2495 * module doesn't have persistent in-kernel storage across loads and unloads.
2497 * The cache must be empty before calling this function.
2499 * The caller must guarantee that noone will allocate memory from the cache
2500 * during the kmem_cache_destroy().
2502 void kmem_cache_destroy(struct kmem_cache *cachep)
2504 BUG_ON(!cachep || in_interrupt());
2506 /* Don't let CPUs to come and go */
2507 lock_cpu_hotplug();
2509 /* Find the cache in the chain of caches. */
2510 mutex_lock(&cache_chain_mutex);
2512 * the chain is never empty, cache_cache is never destroyed
2514 list_del(&cachep->next);
2515 mutex_unlock(&cache_chain_mutex);
2517 if (__cache_shrink(cachep)) {
2518 slab_error(cachep, "Can't free all objects");
2519 mutex_lock(&cache_chain_mutex);
2520 list_add(&cachep->next, &cache_chain);
2521 mutex_unlock(&cache_chain_mutex);
2522 unlock_cpu_hotplug();
2523 return;
2526 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2527 synchronize_rcu();
2529 __kmem_cache_destroy(cachep);
2530 unlock_cpu_hotplug();
2532 EXPORT_SYMBOL(kmem_cache_destroy);
2535 * Get the memory for a slab management obj.
2536 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2537 * always come from malloc_sizes caches. The slab descriptor cannot
2538 * come from the same cache which is getting created because,
2539 * when we are searching for an appropriate cache for these
2540 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2541 * If we are creating a malloc_sizes cache here it would not be visible to
2542 * kmem_find_general_cachep till the initialization is complete.
2543 * Hence we cannot have slabp_cache same as the original cache.
2545 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2546 int colour_off, gfp_t local_flags,
2547 int nodeid)
2549 struct slab *slabp;
2551 if (OFF_SLAB(cachep)) {
2552 /* Slab management obj is off-slab. */
2553 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2554 local_flags, nodeid);
2555 if (!slabp)
2556 return NULL;
2557 } else {
2558 slabp = objp + colour_off;
2559 colour_off += cachep->slab_size;
2561 slabp->inuse = 0;
2562 slabp->colouroff = colour_off;
2563 slabp->s_mem = objp + colour_off;
2564 slabp->nodeid = nodeid;
2565 return slabp;
2568 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2570 return (kmem_bufctl_t *) (slabp + 1);
2573 static void cache_init_objs(struct kmem_cache *cachep,
2574 struct slab *slabp, unsigned long ctor_flags)
2576 int i;
2578 for (i = 0; i < cachep->num; i++) {
2579 void *objp = index_to_obj(cachep, slabp, i);
2580 #if DEBUG
2581 /* need to poison the objs? */
2582 if (cachep->flags & SLAB_POISON)
2583 poison_obj(cachep, objp, POISON_FREE);
2584 if (cachep->flags & SLAB_STORE_USER)
2585 *dbg_userword(cachep, objp) = NULL;
2587 if (cachep->flags & SLAB_RED_ZONE) {
2588 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2589 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2592 * Constructors are not allowed to allocate memory from the same
2593 * cache which they are a constructor for. Otherwise, deadlock.
2594 * They must also be threaded.
2596 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2597 cachep->ctor(objp + obj_offset(cachep), cachep,
2598 ctor_flags);
2600 if (cachep->flags & SLAB_RED_ZONE) {
2601 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2602 slab_error(cachep, "constructor overwrote the"
2603 " end of an object");
2604 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2605 slab_error(cachep, "constructor overwrote the"
2606 " start of an object");
2608 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2609 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2610 kernel_map_pages(virt_to_page(objp),
2611 cachep->buffer_size / PAGE_SIZE, 0);
2612 #else
2613 if (cachep->ctor)
2614 cachep->ctor(objp, cachep, ctor_flags);
2615 #endif
2616 slab_bufctl(slabp)[i] = i + 1;
2618 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2619 slabp->free = 0;
2622 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2624 if (flags & SLAB_DMA)
2625 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2626 else
2627 BUG_ON(cachep->gfpflags & GFP_DMA);
2630 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2631 int nodeid)
2633 void *objp = index_to_obj(cachep, slabp, slabp->free);
2634 kmem_bufctl_t next;
2636 slabp->inuse++;
2637 next = slab_bufctl(slabp)[slabp->free];
2638 #if DEBUG
2639 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2640 WARN_ON(slabp->nodeid != nodeid);
2641 #endif
2642 slabp->free = next;
2644 return objp;
2647 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2648 void *objp, int nodeid)
2650 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2652 #if DEBUG
2653 /* Verify that the slab belongs to the intended node */
2654 WARN_ON(slabp->nodeid != nodeid);
2656 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2657 printk(KERN_ERR "slab: double free detected in cache "
2658 "'%s', objp %p\n", cachep->name, objp);
2659 BUG();
2661 #endif
2662 slab_bufctl(slabp)[objnr] = slabp->free;
2663 slabp->free = objnr;
2664 slabp->inuse--;
2668 * Map pages beginning at addr to the given cache and slab. This is required
2669 * for the slab allocator to be able to lookup the cache and slab of a
2670 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2672 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2673 void *addr)
2675 int nr_pages;
2676 struct page *page;
2678 page = virt_to_page(addr);
2680 nr_pages = 1;
2681 if (likely(!PageCompound(page)))
2682 nr_pages <<= cache->gfporder;
2684 do {
2685 page_set_cache(page, cache);
2686 page_set_slab(page, slab);
2687 page++;
2688 } while (--nr_pages);
2692 * Grow (by 1) the number of slabs within a cache. This is called by
2693 * kmem_cache_alloc() when there are no active objs left in a cache.
2695 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2697 struct slab *slabp;
2698 void *objp;
2699 size_t offset;
2700 gfp_t local_flags;
2701 unsigned long ctor_flags;
2702 struct kmem_list3 *l3;
2705 * Be lazy and only check for valid flags here, keeping it out of the
2706 * critical path in kmem_cache_alloc().
2708 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2709 if (flags & SLAB_NO_GROW)
2710 return 0;
2712 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2713 local_flags = (flags & SLAB_LEVEL_MASK);
2714 if (!(local_flags & __GFP_WAIT))
2716 * Not allowed to sleep. Need to tell a constructor about
2717 * this - it might need to know...
2719 ctor_flags |= SLAB_CTOR_ATOMIC;
2721 /* Take the l3 list lock to change the colour_next on this node */
2722 check_irq_off();
2723 l3 = cachep->nodelists[nodeid];
2724 spin_lock(&l3->list_lock);
2726 /* Get colour for the slab, and cal the next value. */
2727 offset = l3->colour_next;
2728 l3->colour_next++;
2729 if (l3->colour_next >= cachep->colour)
2730 l3->colour_next = 0;
2731 spin_unlock(&l3->list_lock);
2733 offset *= cachep->colour_off;
2735 if (local_flags & __GFP_WAIT)
2736 local_irq_enable();
2739 * The test for missing atomic flag is performed here, rather than
2740 * the more obvious place, simply to reduce the critical path length
2741 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2742 * will eventually be caught here (where it matters).
2744 kmem_flagcheck(cachep, flags);
2747 * Get mem for the objs. Attempt to allocate a physical page from
2748 * 'nodeid'.
2750 objp = kmem_getpages(cachep, flags, nodeid);
2751 if (!objp)
2752 goto failed;
2754 /* Get slab management. */
2755 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2756 if (!slabp)
2757 goto opps1;
2759 slabp->nodeid = nodeid;
2760 slab_map_pages(cachep, slabp, objp);
2762 cache_init_objs(cachep, slabp, ctor_flags);
2764 if (local_flags & __GFP_WAIT)
2765 local_irq_disable();
2766 check_irq_off();
2767 spin_lock(&l3->list_lock);
2769 /* Make slab active. */
2770 list_add_tail(&slabp->list, &(l3->slabs_free));
2771 STATS_INC_GROWN(cachep);
2772 l3->free_objects += cachep->num;
2773 spin_unlock(&l3->list_lock);
2774 return 1;
2775 opps1:
2776 kmem_freepages(cachep, objp);
2777 failed:
2778 if (local_flags & __GFP_WAIT)
2779 local_irq_disable();
2780 return 0;
2783 #if DEBUG
2786 * Perform extra freeing checks:
2787 * - detect bad pointers.
2788 * - POISON/RED_ZONE checking
2789 * - destructor calls, for caches with POISON+dtor
2791 static void kfree_debugcheck(const void *objp)
2793 struct page *page;
2795 if (!virt_addr_valid(objp)) {
2796 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2797 (unsigned long)objp);
2798 BUG();
2800 page = virt_to_page(objp);
2801 if (!PageSlab(page)) {
2802 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2803 (unsigned long)objp);
2804 BUG();
2808 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2810 unsigned long redzone1, redzone2;
2812 redzone1 = *dbg_redzone1(cache, obj);
2813 redzone2 = *dbg_redzone2(cache, obj);
2816 * Redzone is ok.
2818 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2819 return;
2821 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2822 slab_error(cache, "double free detected");
2823 else
2824 slab_error(cache, "memory outside object was overwritten");
2826 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2827 obj, redzone1, redzone2);
2830 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2831 void *caller)
2833 struct page *page;
2834 unsigned int objnr;
2835 struct slab *slabp;
2837 objp -= obj_offset(cachep);
2838 kfree_debugcheck(objp);
2839 page = virt_to_page(objp);
2841 slabp = page_get_slab(page);
2843 if (cachep->flags & SLAB_RED_ZONE) {
2844 verify_redzone_free(cachep, objp);
2845 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2846 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2848 if (cachep->flags & SLAB_STORE_USER)
2849 *dbg_userword(cachep, objp) = caller;
2851 objnr = obj_to_index(cachep, slabp, objp);
2853 BUG_ON(objnr >= cachep->num);
2854 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2856 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2858 * Need to call the slab's constructor so the caller can
2859 * perform a verify of its state (debugging). Called without
2860 * the cache-lock held.
2862 cachep->ctor(objp + obj_offset(cachep),
2863 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2865 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2866 /* we want to cache poison the object,
2867 * call the destruction callback
2869 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2871 #ifdef CONFIG_DEBUG_SLAB_LEAK
2872 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2873 #endif
2874 if (cachep->flags & SLAB_POISON) {
2875 #ifdef CONFIG_DEBUG_PAGEALLOC
2876 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2877 store_stackinfo(cachep, objp, (unsigned long)caller);
2878 kernel_map_pages(virt_to_page(objp),
2879 cachep->buffer_size / PAGE_SIZE, 0);
2880 } else {
2881 poison_obj(cachep, objp, POISON_FREE);
2883 #else
2884 poison_obj(cachep, objp, POISON_FREE);
2885 #endif
2887 return objp;
2890 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2892 kmem_bufctl_t i;
2893 int entries = 0;
2895 /* Check slab's freelist to see if this obj is there. */
2896 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2897 entries++;
2898 if (entries > cachep->num || i >= cachep->num)
2899 goto bad;
2901 if (entries != cachep->num - slabp->inuse) {
2902 bad:
2903 printk(KERN_ERR "slab: Internal list corruption detected in "
2904 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2905 cachep->name, cachep->num, slabp, slabp->inuse);
2906 for (i = 0;
2907 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2908 i++) {
2909 if (i % 16 == 0)
2910 printk("\n%03x:", i);
2911 printk(" %02x", ((unsigned char *)slabp)[i]);
2913 printk("\n");
2914 BUG();
2917 #else
2918 #define kfree_debugcheck(x) do { } while(0)
2919 #define cache_free_debugcheck(x,objp,z) (objp)
2920 #define check_slabp(x,y) do { } while(0)
2921 #endif
2923 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2925 int batchcount;
2926 struct kmem_list3 *l3;
2927 struct array_cache *ac;
2928 int node;
2930 node = numa_node_id();
2932 check_irq_off();
2933 ac = cpu_cache_get(cachep);
2934 retry:
2935 batchcount = ac->batchcount;
2936 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2938 * If there was little recent activity on this cache, then
2939 * perform only a partial refill. Otherwise we could generate
2940 * refill bouncing.
2942 batchcount = BATCHREFILL_LIMIT;
2944 l3 = cachep->nodelists[node];
2946 BUG_ON(ac->avail > 0 || !l3);
2947 spin_lock(&l3->list_lock);
2949 /* See if we can refill from the shared array */
2950 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
2951 goto alloc_done;
2954 while (batchcount > 0) {
2955 struct list_head *entry;
2956 struct slab *slabp;
2957 /* Get slab alloc is to come from. */
2958 entry = l3->slabs_partial.next;
2959 if (entry == &l3->slabs_partial) {
2960 l3->free_touched = 1;
2961 entry = l3->slabs_free.next;
2962 if (entry == &l3->slabs_free) {
2963 goto must_grow;
2967 slabp = list_entry(entry, struct slab, list);
2968 check_slabp(cachep, slabp);
2969 check_spinlock_acquired(cachep);
2970 while (slabp->inuse < cachep->num && batchcount--) {
2971 STATS_INC_ALLOCED(cachep);
2972 STATS_INC_ACTIVE(cachep);
2973 STATS_SET_HIGH(cachep);
2975 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2976 node);
2978 check_slabp(cachep, slabp);
2980 /* move slabp to correct slabp list: */
2981 list_del(&slabp->list);
2982 if (slabp->free == BUFCTL_END)
2983 list_add(&slabp->list, &l3->slabs_full);
2984 else
2985 list_add(&slabp->list, &l3->slabs_partial);
2988 must_grow:
2989 l3->free_objects -= ac->avail;
2990 alloc_done:
2991 spin_unlock(&l3->list_lock);
2993 if (unlikely(!ac->avail)) {
2994 int x;
2995 x = cache_grow(cachep, flags, node);
2997 /* cache_grow can reenable interrupts, then ac could change. */
2998 ac = cpu_cache_get(cachep);
2999 if (!x && ac->avail == 0) { /* no objects in sight? abort */
3000 return NULL;
3003 if (!ac->avail) { /* objects refilled by interrupt? */
3004 goto retry;
3007 ac->touched = 1;
3008 return ac->entry[--ac->avail];
3011 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3012 gfp_t flags)
3014 might_sleep_if(flags & __GFP_WAIT);
3015 #if DEBUG
3016 kmem_flagcheck(cachep, flags);
3017 #endif
3020 #if DEBUG
3021 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3022 gfp_t flags, void *objp, void *caller)
3024 if (!objp)
3025 return objp;
3026 if (cachep->flags & SLAB_POISON) {
3027 #ifdef CONFIG_DEBUG_PAGEALLOC
3028 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3029 kernel_map_pages(virt_to_page(objp),
3030 cachep->buffer_size / PAGE_SIZE, 1);
3031 else
3032 check_poison_obj(cachep, objp);
3033 #else
3034 check_poison_obj(cachep, objp);
3035 #endif
3036 poison_obj(cachep, objp, POISON_INUSE);
3038 if (cachep->flags & SLAB_STORE_USER)
3039 *dbg_userword(cachep, objp) = caller;
3041 if (cachep->flags & SLAB_RED_ZONE) {
3042 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3043 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3044 slab_error(cachep, "double free, or memory outside"
3045 " object was overwritten");
3046 printk(KERN_ERR
3047 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3048 objp, *dbg_redzone1(cachep, objp),
3049 *dbg_redzone2(cachep, objp));
3051 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3052 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3054 #ifdef CONFIG_DEBUG_SLAB_LEAK
3056 struct slab *slabp;
3057 unsigned objnr;
3059 slabp = page_get_slab(virt_to_page(objp));
3060 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3061 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3063 #endif
3064 objp += obj_offset(cachep);
3065 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3066 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3068 if (!(flags & __GFP_WAIT))
3069 ctor_flags |= SLAB_CTOR_ATOMIC;
3071 cachep->ctor(objp, cachep, ctor_flags);
3073 return objp;
3075 #else
3076 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3077 #endif
3079 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3081 void *objp;
3082 struct array_cache *ac;
3084 check_irq_off();
3085 ac = cpu_cache_get(cachep);
3086 if (likely(ac->avail)) {
3087 STATS_INC_ALLOCHIT(cachep);
3088 ac->touched = 1;
3089 objp = ac->entry[--ac->avail];
3090 } else {
3091 STATS_INC_ALLOCMISS(cachep);
3092 objp = cache_alloc_refill(cachep, flags);
3094 return objp;
3097 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3098 gfp_t flags, void *caller)
3100 unsigned long save_flags;
3101 void *objp = NULL;
3103 cache_alloc_debugcheck_before(cachep, flags);
3105 local_irq_save(save_flags);
3107 if (unlikely(NUMA_BUILD && current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3108 objp = alternate_node_alloc(cachep, flags);
3110 if (!objp)
3111 objp = ____cache_alloc(cachep, flags);
3113 * We may just have run out of memory on the local node.
3114 * __cache_alloc_node() knows how to locate memory on other nodes
3116 if (NUMA_BUILD && !objp)
3117 objp = __cache_alloc_node(cachep, flags, numa_node_id());
3118 local_irq_restore(save_flags);
3119 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3120 prefetchw(objp);
3121 return objp;
3124 #ifdef CONFIG_NUMA
3126 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3128 * If we are in_interrupt, then process context, including cpusets and
3129 * mempolicy, may not apply and should not be used for allocation policy.
3131 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3133 int nid_alloc, nid_here;
3135 if (in_interrupt() || (flags & __GFP_THISNODE))
3136 return NULL;
3137 nid_alloc = nid_here = numa_node_id();
3138 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3139 nid_alloc = cpuset_mem_spread_node();
3140 else if (current->mempolicy)
3141 nid_alloc = slab_node(current->mempolicy);
3142 if (nid_alloc != nid_here)
3143 return __cache_alloc_node(cachep, flags, nid_alloc);
3144 return NULL;
3148 * Fallback function if there was no memory available and no objects on a
3149 * certain node and we are allowed to fall back. We mimick the behavior of
3150 * the page allocator. We fall back according to a zonelist determined by
3151 * the policy layer while obeying cpuset constraints.
3153 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3155 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3156 ->node_zonelists[gfp_zone(flags)];
3157 struct zone **z;
3158 void *obj = NULL;
3160 for (z = zonelist->zones; *z && !obj; z++) {
3161 int nid = zone_to_nid(*z);
3163 if (zone_idx(*z) <= ZONE_NORMAL &&
3164 cpuset_zone_allowed(*z, flags) &&
3165 cache->nodelists[nid])
3166 obj = __cache_alloc_node(cache,
3167 flags | __GFP_THISNODE, nid);
3169 return obj;
3173 * A interface to enable slab creation on nodeid
3175 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3176 int nodeid)
3178 struct list_head *entry;
3179 struct slab *slabp;
3180 struct kmem_list3 *l3;
3181 void *obj;
3182 int x;
3184 l3 = cachep->nodelists[nodeid];
3185 BUG_ON(!l3);
3187 retry:
3188 check_irq_off();
3189 spin_lock(&l3->list_lock);
3190 entry = l3->slabs_partial.next;
3191 if (entry == &l3->slabs_partial) {
3192 l3->free_touched = 1;
3193 entry = l3->slabs_free.next;
3194 if (entry == &l3->slabs_free)
3195 goto must_grow;
3198 slabp = list_entry(entry, struct slab, list);
3199 check_spinlock_acquired_node(cachep, nodeid);
3200 check_slabp(cachep, slabp);
3202 STATS_INC_NODEALLOCS(cachep);
3203 STATS_INC_ACTIVE(cachep);
3204 STATS_SET_HIGH(cachep);
3206 BUG_ON(slabp->inuse == cachep->num);
3208 obj = slab_get_obj(cachep, slabp, nodeid);
3209 check_slabp(cachep, slabp);
3210 l3->free_objects--;
3211 /* move slabp to correct slabp list: */
3212 list_del(&slabp->list);
3214 if (slabp->free == BUFCTL_END)
3215 list_add(&slabp->list, &l3->slabs_full);
3216 else
3217 list_add(&slabp->list, &l3->slabs_partial);
3219 spin_unlock(&l3->list_lock);
3220 goto done;
3222 must_grow:
3223 spin_unlock(&l3->list_lock);
3224 x = cache_grow(cachep, flags, nodeid);
3225 if (x)
3226 goto retry;
3228 if (!(flags & __GFP_THISNODE))
3229 /* Unable to grow the cache. Fall back to other nodes. */
3230 return fallback_alloc(cachep, flags);
3232 return NULL;
3234 done:
3235 return obj;
3237 #endif
3240 * Caller needs to acquire correct kmem_list's list_lock
3242 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3243 int node)
3245 int i;
3246 struct kmem_list3 *l3;
3248 for (i = 0; i < nr_objects; i++) {
3249 void *objp = objpp[i];
3250 struct slab *slabp;
3252 slabp = virt_to_slab(objp);
3253 l3 = cachep->nodelists[node];
3254 list_del(&slabp->list);
3255 check_spinlock_acquired_node(cachep, node);
3256 check_slabp(cachep, slabp);
3257 slab_put_obj(cachep, slabp, objp, node);
3258 STATS_DEC_ACTIVE(cachep);
3259 l3->free_objects++;
3260 check_slabp(cachep, slabp);
3262 /* fixup slab chains */
3263 if (slabp->inuse == 0) {
3264 if (l3->free_objects > l3->free_limit) {
3265 l3->free_objects -= cachep->num;
3266 /* No need to drop any previously held
3267 * lock here, even if we have a off-slab slab
3268 * descriptor it is guaranteed to come from
3269 * a different cache, refer to comments before
3270 * alloc_slabmgmt.
3272 slab_destroy(cachep, slabp);
3273 } else {
3274 list_add(&slabp->list, &l3->slabs_free);
3276 } else {
3277 /* Unconditionally move a slab to the end of the
3278 * partial list on free - maximum time for the
3279 * other objects to be freed, too.
3281 list_add_tail(&slabp->list, &l3->slabs_partial);
3286 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3288 int batchcount;
3289 struct kmem_list3 *l3;
3290 int node = numa_node_id();
3292 batchcount = ac->batchcount;
3293 #if DEBUG
3294 BUG_ON(!batchcount || batchcount > ac->avail);
3295 #endif
3296 check_irq_off();
3297 l3 = cachep->nodelists[node];
3298 spin_lock(&l3->list_lock);
3299 if (l3->shared) {
3300 struct array_cache *shared_array = l3->shared;
3301 int max = shared_array->limit - shared_array->avail;
3302 if (max) {
3303 if (batchcount > max)
3304 batchcount = max;
3305 memcpy(&(shared_array->entry[shared_array->avail]),
3306 ac->entry, sizeof(void *) * batchcount);
3307 shared_array->avail += batchcount;
3308 goto free_done;
3312 free_block(cachep, ac->entry, batchcount, node);
3313 free_done:
3314 #if STATS
3316 int i = 0;
3317 struct list_head *p;
3319 p = l3->slabs_free.next;
3320 while (p != &(l3->slabs_free)) {
3321 struct slab *slabp;
3323 slabp = list_entry(p, struct slab, list);
3324 BUG_ON(slabp->inuse);
3326 i++;
3327 p = p->next;
3329 STATS_SET_FREEABLE(cachep, i);
3331 #endif
3332 spin_unlock(&l3->list_lock);
3333 ac->avail -= batchcount;
3334 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3338 * Release an obj back to its cache. If the obj has a constructed state, it must
3339 * be in this state _before_ it is released. Called with disabled ints.
3341 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3343 struct array_cache *ac = cpu_cache_get(cachep);
3345 check_irq_off();
3346 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3348 if (cache_free_alien(cachep, objp))
3349 return;
3351 if (likely(ac->avail < ac->limit)) {
3352 STATS_INC_FREEHIT(cachep);
3353 ac->entry[ac->avail++] = objp;
3354 return;
3355 } else {
3356 STATS_INC_FREEMISS(cachep);
3357 cache_flusharray(cachep, ac);
3358 ac->entry[ac->avail++] = objp;
3363 * kmem_cache_alloc - Allocate an object
3364 * @cachep: The cache to allocate from.
3365 * @flags: See kmalloc().
3367 * Allocate an object from this cache. The flags are only relevant
3368 * if the cache has no available objects.
3370 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3372 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3374 EXPORT_SYMBOL(kmem_cache_alloc);
3377 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3378 * @cache: The cache to allocate from.
3379 * @flags: See kmalloc().
3381 * Allocate an object from this cache and set the allocated memory to zero.
3382 * The flags are only relevant if the cache has no available objects.
3384 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3386 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3387 if (ret)
3388 memset(ret, 0, obj_size(cache));
3389 return ret;
3391 EXPORT_SYMBOL(kmem_cache_zalloc);
3394 * kmem_ptr_validate - check if an untrusted pointer might
3395 * be a slab entry.
3396 * @cachep: the cache we're checking against
3397 * @ptr: pointer to validate
3399 * This verifies that the untrusted pointer looks sane:
3400 * it is _not_ a guarantee that the pointer is actually
3401 * part of the slab cache in question, but it at least
3402 * validates that the pointer can be dereferenced and
3403 * looks half-way sane.
3405 * Currently only used for dentry validation.
3407 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3409 unsigned long addr = (unsigned long)ptr;
3410 unsigned long min_addr = PAGE_OFFSET;
3411 unsigned long align_mask = BYTES_PER_WORD - 1;
3412 unsigned long size = cachep->buffer_size;
3413 struct page *page;
3415 if (unlikely(addr < min_addr))
3416 goto out;
3417 if (unlikely(addr > (unsigned long)high_memory - size))
3418 goto out;
3419 if (unlikely(addr & align_mask))
3420 goto out;
3421 if (unlikely(!kern_addr_valid(addr)))
3422 goto out;
3423 if (unlikely(!kern_addr_valid(addr + size - 1)))
3424 goto out;
3425 page = virt_to_page(ptr);
3426 if (unlikely(!PageSlab(page)))
3427 goto out;
3428 if (unlikely(page_get_cache(page) != cachep))
3429 goto out;
3430 return 1;
3431 out:
3432 return 0;
3435 #ifdef CONFIG_NUMA
3437 * kmem_cache_alloc_node - Allocate an object on the specified node
3438 * @cachep: The cache to allocate from.
3439 * @flags: See kmalloc().
3440 * @nodeid: node number of the target node.
3442 * Identical to kmem_cache_alloc, except that this function is slow
3443 * and can sleep. And it will allocate memory on the given node, which
3444 * can improve the performance for cpu bound structures.
3445 * New and improved: it will now make sure that the object gets
3446 * put on the correct node list so that there is no false sharing.
3448 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3450 unsigned long save_flags;
3451 void *ptr;
3453 cache_alloc_debugcheck_before(cachep, flags);
3454 local_irq_save(save_flags);
3456 if (nodeid == -1 || nodeid == numa_node_id() ||
3457 !cachep->nodelists[nodeid])
3458 ptr = ____cache_alloc(cachep, flags);
3459 else
3460 ptr = __cache_alloc_node(cachep, flags, nodeid);
3461 local_irq_restore(save_flags);
3463 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3464 __builtin_return_address(0));
3466 return ptr;
3468 EXPORT_SYMBOL(kmem_cache_alloc_node);
3470 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3472 struct kmem_cache *cachep;
3474 cachep = kmem_find_general_cachep(size, flags);
3475 if (unlikely(cachep == NULL))
3476 return NULL;
3477 return kmem_cache_alloc_node(cachep, flags, node);
3479 EXPORT_SYMBOL(__kmalloc_node);
3480 #endif
3483 * __do_kmalloc - allocate memory
3484 * @size: how many bytes of memory are required.
3485 * @flags: the type of memory to allocate (see kmalloc).
3486 * @caller: function caller for debug tracking of the caller
3488 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3489 void *caller)
3491 struct kmem_cache *cachep;
3493 /* If you want to save a few bytes .text space: replace
3494 * __ with kmem_.
3495 * Then kmalloc uses the uninlined functions instead of the inline
3496 * functions.
3498 cachep = __find_general_cachep(size, flags);
3499 if (unlikely(cachep == NULL)) {
3500 return NULL;
3502 return __cache_alloc(cachep, flags, caller);
3506 #ifdef CONFIG_DEBUG_SLAB
3507 void *__kmalloc(size_t size, gfp_t flags)
3509 return __do_kmalloc(size, flags, __builtin_return_address(0));
3511 EXPORT_SYMBOL(__kmalloc);
3513 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3515 return __do_kmalloc(size, flags, caller);
3517 EXPORT_SYMBOL(__kmalloc_track_caller);
3519 #else
3520 void *__kmalloc(size_t size, gfp_t flags)
3522 return __do_kmalloc(size, flags, NULL);
3524 EXPORT_SYMBOL(__kmalloc);
3525 #endif
3528 * kmem_cache_free - Deallocate an object
3529 * @cachep: The cache the allocation was from.
3530 * @objp: The previously allocated object.
3532 * Free an object which was previously allocated from this
3533 * cache.
3535 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3537 unsigned long flags;
3539 BUG_ON(virt_to_cache(objp) != cachep);
3541 local_irq_save(flags);
3542 __cache_free(cachep, objp);
3543 local_irq_restore(flags);
3545 EXPORT_SYMBOL(kmem_cache_free);
3548 * kfree - free previously allocated memory
3549 * @objp: pointer returned by kmalloc.
3551 * If @objp is NULL, no operation is performed.
3553 * Don't free memory not originally allocated by kmalloc()
3554 * or you will run into trouble.
3556 void kfree(const void *objp)
3558 struct kmem_cache *c;
3559 unsigned long flags;
3561 if (unlikely(!objp))
3562 return;
3563 local_irq_save(flags);
3564 kfree_debugcheck(objp);
3565 c = virt_to_cache(objp);
3566 debug_check_no_locks_freed(objp, obj_size(c));
3567 __cache_free(c, (void *)objp);
3568 local_irq_restore(flags);
3570 EXPORT_SYMBOL(kfree);
3572 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3574 return obj_size(cachep);
3576 EXPORT_SYMBOL(kmem_cache_size);
3578 const char *kmem_cache_name(struct kmem_cache *cachep)
3580 return cachep->name;
3582 EXPORT_SYMBOL_GPL(kmem_cache_name);
3585 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3587 static int alloc_kmemlist(struct kmem_cache *cachep)
3589 int node;
3590 struct kmem_list3 *l3;
3591 struct array_cache *new_shared;
3592 struct array_cache **new_alien;
3594 for_each_online_node(node) {
3596 new_alien = alloc_alien_cache(node, cachep->limit);
3597 if (!new_alien)
3598 goto fail;
3600 new_shared = alloc_arraycache(node,
3601 cachep->shared*cachep->batchcount,
3602 0xbaadf00d);
3603 if (!new_shared) {
3604 free_alien_cache(new_alien);
3605 goto fail;
3608 l3 = cachep->nodelists[node];
3609 if (l3) {
3610 struct array_cache *shared = l3->shared;
3612 spin_lock_irq(&l3->list_lock);
3614 if (shared)
3615 free_block(cachep, shared->entry,
3616 shared->avail, node);
3618 l3->shared = new_shared;
3619 if (!l3->alien) {
3620 l3->alien = new_alien;
3621 new_alien = NULL;
3623 l3->free_limit = (1 + nr_cpus_node(node)) *
3624 cachep->batchcount + cachep->num;
3625 spin_unlock_irq(&l3->list_lock);
3626 kfree(shared);
3627 free_alien_cache(new_alien);
3628 continue;
3630 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3631 if (!l3) {
3632 free_alien_cache(new_alien);
3633 kfree(new_shared);
3634 goto fail;
3637 kmem_list3_init(l3);
3638 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3639 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3640 l3->shared = new_shared;
3641 l3->alien = new_alien;
3642 l3->free_limit = (1 + nr_cpus_node(node)) *
3643 cachep->batchcount + cachep->num;
3644 cachep->nodelists[node] = l3;
3646 return 0;
3648 fail:
3649 if (!cachep->next.next) {
3650 /* Cache is not active yet. Roll back what we did */
3651 node--;
3652 while (node >= 0) {
3653 if (cachep->nodelists[node]) {
3654 l3 = cachep->nodelists[node];
3656 kfree(l3->shared);
3657 free_alien_cache(l3->alien);
3658 kfree(l3);
3659 cachep->nodelists[node] = NULL;
3661 node--;
3664 return -ENOMEM;
3667 struct ccupdate_struct {
3668 struct kmem_cache *cachep;
3669 struct array_cache *new[NR_CPUS];
3672 static void do_ccupdate_local(void *info)
3674 struct ccupdate_struct *new = info;
3675 struct array_cache *old;
3677 check_irq_off();
3678 old = cpu_cache_get(new->cachep);
3680 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3681 new->new[smp_processor_id()] = old;
3684 /* Always called with the cache_chain_mutex held */
3685 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3686 int batchcount, int shared)
3688 struct ccupdate_struct *new;
3689 int i;
3691 new = kzalloc(sizeof(*new), GFP_KERNEL);
3692 if (!new)
3693 return -ENOMEM;
3695 for_each_online_cpu(i) {
3696 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3697 batchcount);
3698 if (!new->new[i]) {
3699 for (i--; i >= 0; i--)
3700 kfree(new->new[i]);
3701 kfree(new);
3702 return -ENOMEM;
3705 new->cachep = cachep;
3707 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3709 check_irq_on();
3710 cachep->batchcount = batchcount;
3711 cachep->limit = limit;
3712 cachep->shared = shared;
3714 for_each_online_cpu(i) {
3715 struct array_cache *ccold = new->new[i];
3716 if (!ccold)
3717 continue;
3718 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3719 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3720 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3721 kfree(ccold);
3723 kfree(new);
3724 return alloc_kmemlist(cachep);
3727 /* Called with cache_chain_mutex held always */
3728 static int enable_cpucache(struct kmem_cache *cachep)
3730 int err;
3731 int limit, shared;
3734 * The head array serves three purposes:
3735 * - create a LIFO ordering, i.e. return objects that are cache-warm
3736 * - reduce the number of spinlock operations.
3737 * - reduce the number of linked list operations on the slab and
3738 * bufctl chains: array operations are cheaper.
3739 * The numbers are guessed, we should auto-tune as described by
3740 * Bonwick.
3742 if (cachep->buffer_size > 131072)
3743 limit = 1;
3744 else if (cachep->buffer_size > PAGE_SIZE)
3745 limit = 8;
3746 else if (cachep->buffer_size > 1024)
3747 limit = 24;
3748 else if (cachep->buffer_size > 256)
3749 limit = 54;
3750 else
3751 limit = 120;
3754 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3755 * allocation behaviour: Most allocs on one cpu, most free operations
3756 * on another cpu. For these cases, an efficient object passing between
3757 * cpus is necessary. This is provided by a shared array. The array
3758 * replaces Bonwick's magazine layer.
3759 * On uniprocessor, it's functionally equivalent (but less efficient)
3760 * to a larger limit. Thus disabled by default.
3762 shared = 0;
3763 #ifdef CONFIG_SMP
3764 if (cachep->buffer_size <= PAGE_SIZE)
3765 shared = 8;
3766 #endif
3768 #if DEBUG
3770 * With debugging enabled, large batchcount lead to excessively long
3771 * periods with disabled local interrupts. Limit the batchcount
3773 if (limit > 32)
3774 limit = 32;
3775 #endif
3776 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3777 if (err)
3778 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3779 cachep->name, -err);
3780 return err;
3784 * Drain an array if it contains any elements taking the l3 lock only if
3785 * necessary. Note that the l3 listlock also protects the array_cache
3786 * if drain_array() is used on the shared array.
3788 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3789 struct array_cache *ac, int force, int node)
3791 int tofree;
3793 if (!ac || !ac->avail)
3794 return;
3795 if (ac->touched && !force) {
3796 ac->touched = 0;
3797 } else {
3798 spin_lock_irq(&l3->list_lock);
3799 if (ac->avail) {
3800 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3801 if (tofree > ac->avail)
3802 tofree = (ac->avail + 1) / 2;
3803 free_block(cachep, ac->entry, tofree, node);
3804 ac->avail -= tofree;
3805 memmove(ac->entry, &(ac->entry[tofree]),
3806 sizeof(void *) * ac->avail);
3808 spin_unlock_irq(&l3->list_lock);
3813 * cache_reap - Reclaim memory from caches.
3814 * @unused: unused parameter
3816 * Called from workqueue/eventd every few seconds.
3817 * Purpose:
3818 * - clear the per-cpu caches for this CPU.
3819 * - return freeable pages to the main free memory pool.
3821 * If we cannot acquire the cache chain mutex then just give up - we'll try
3822 * again on the next iteration.
3824 static void cache_reap(void *unused)
3826 struct kmem_cache *searchp;
3827 struct kmem_list3 *l3;
3828 int node = numa_node_id();
3830 if (!mutex_trylock(&cache_chain_mutex)) {
3831 /* Give up. Setup the next iteration. */
3832 schedule_delayed_work(&__get_cpu_var(reap_work),
3833 REAPTIMEOUT_CPUC);
3834 return;
3837 list_for_each_entry(searchp, &cache_chain, next) {
3838 check_irq_on();
3841 * We only take the l3 lock if absolutely necessary and we
3842 * have established with reasonable certainty that
3843 * we can do some work if the lock was obtained.
3845 l3 = searchp->nodelists[node];
3847 reap_alien(searchp, l3);
3849 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3852 * These are racy checks but it does not matter
3853 * if we skip one check or scan twice.
3855 if (time_after(l3->next_reap, jiffies))
3856 goto next;
3858 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3860 drain_array(searchp, l3, l3->shared, 0, node);
3862 if (l3->free_touched)
3863 l3->free_touched = 0;
3864 else {
3865 int freed;
3867 freed = drain_freelist(searchp, l3, (l3->free_limit +
3868 5 * searchp->num - 1) / (5 * searchp->num));
3869 STATS_ADD_REAPED(searchp, freed);
3871 next:
3872 cond_resched();
3874 check_irq_on();
3875 mutex_unlock(&cache_chain_mutex);
3876 next_reap_node();
3877 refresh_cpu_vm_stats(smp_processor_id());
3878 /* Set up the next iteration */
3879 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3882 #ifdef CONFIG_PROC_FS
3884 static void print_slabinfo_header(struct seq_file *m)
3887 * Output format version, so at least we can change it
3888 * without _too_ many complaints.
3890 #if STATS
3891 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3892 #else
3893 seq_puts(m, "slabinfo - version: 2.1\n");
3894 #endif
3895 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3896 "<objperslab> <pagesperslab>");
3897 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3898 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3899 #if STATS
3900 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3901 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3902 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3903 #endif
3904 seq_putc(m, '\n');
3907 static void *s_start(struct seq_file *m, loff_t *pos)
3909 loff_t n = *pos;
3910 struct list_head *p;
3912 mutex_lock(&cache_chain_mutex);
3913 if (!n)
3914 print_slabinfo_header(m);
3915 p = cache_chain.next;
3916 while (n--) {
3917 p = p->next;
3918 if (p == &cache_chain)
3919 return NULL;
3921 return list_entry(p, struct kmem_cache, next);
3924 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3926 struct kmem_cache *cachep = p;
3927 ++*pos;
3928 return cachep->next.next == &cache_chain ?
3929 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3932 static void s_stop(struct seq_file *m, void *p)
3934 mutex_unlock(&cache_chain_mutex);
3937 static int s_show(struct seq_file *m, void *p)
3939 struct kmem_cache *cachep = p;
3940 struct slab *slabp;
3941 unsigned long active_objs;
3942 unsigned long num_objs;
3943 unsigned long active_slabs = 0;
3944 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3945 const char *name;
3946 char *error = NULL;
3947 int node;
3948 struct kmem_list3 *l3;
3950 active_objs = 0;
3951 num_slabs = 0;
3952 for_each_online_node(node) {
3953 l3 = cachep->nodelists[node];
3954 if (!l3)
3955 continue;
3957 check_irq_on();
3958 spin_lock_irq(&l3->list_lock);
3960 list_for_each_entry(slabp, &l3->slabs_full, list) {
3961 if (slabp->inuse != cachep->num && !error)
3962 error = "slabs_full accounting error";
3963 active_objs += cachep->num;
3964 active_slabs++;
3966 list_for_each_entry(slabp, &l3->slabs_partial, list) {
3967 if (slabp->inuse == cachep->num && !error)
3968 error = "slabs_partial inuse accounting error";
3969 if (!slabp->inuse && !error)
3970 error = "slabs_partial/inuse accounting error";
3971 active_objs += slabp->inuse;
3972 active_slabs++;
3974 list_for_each_entry(slabp, &l3->slabs_free, list) {
3975 if (slabp->inuse && !error)
3976 error = "slabs_free/inuse accounting error";
3977 num_slabs++;
3979 free_objects += l3->free_objects;
3980 if (l3->shared)
3981 shared_avail += l3->shared->avail;
3983 spin_unlock_irq(&l3->list_lock);
3985 num_slabs += active_slabs;
3986 num_objs = num_slabs * cachep->num;
3987 if (num_objs - active_objs != free_objects && !error)
3988 error = "free_objects accounting error";
3990 name = cachep->name;
3991 if (error)
3992 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3994 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3995 name, active_objs, num_objs, cachep->buffer_size,
3996 cachep->num, (1 << cachep->gfporder));
3997 seq_printf(m, " : tunables %4u %4u %4u",
3998 cachep->limit, cachep->batchcount, cachep->shared);
3999 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4000 active_slabs, num_slabs, shared_avail);
4001 #if STATS
4002 { /* list3 stats */
4003 unsigned long high = cachep->high_mark;
4004 unsigned long allocs = cachep->num_allocations;
4005 unsigned long grown = cachep->grown;
4006 unsigned long reaped = cachep->reaped;
4007 unsigned long errors = cachep->errors;
4008 unsigned long max_freeable = cachep->max_freeable;
4009 unsigned long node_allocs = cachep->node_allocs;
4010 unsigned long node_frees = cachep->node_frees;
4011 unsigned long overflows = cachep->node_overflow;
4013 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4014 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4015 reaped, errors, max_freeable, node_allocs,
4016 node_frees, overflows);
4018 /* cpu stats */
4020 unsigned long allochit = atomic_read(&cachep->allochit);
4021 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4022 unsigned long freehit = atomic_read(&cachep->freehit);
4023 unsigned long freemiss = atomic_read(&cachep->freemiss);
4025 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4026 allochit, allocmiss, freehit, freemiss);
4028 #endif
4029 seq_putc(m, '\n');
4030 return 0;
4034 * slabinfo_op - iterator that generates /proc/slabinfo
4036 * Output layout:
4037 * cache-name
4038 * num-active-objs
4039 * total-objs
4040 * object size
4041 * num-active-slabs
4042 * total-slabs
4043 * num-pages-per-slab
4044 * + further values on SMP and with statistics enabled
4047 struct seq_operations slabinfo_op = {
4048 .start = s_start,
4049 .next = s_next,
4050 .stop = s_stop,
4051 .show = s_show,
4054 #define MAX_SLABINFO_WRITE 128
4056 * slabinfo_write - Tuning for the slab allocator
4057 * @file: unused
4058 * @buffer: user buffer
4059 * @count: data length
4060 * @ppos: unused
4062 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4063 size_t count, loff_t *ppos)
4065 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4066 int limit, batchcount, shared, res;
4067 struct kmem_cache *cachep;
4069 if (count > MAX_SLABINFO_WRITE)
4070 return -EINVAL;
4071 if (copy_from_user(&kbuf, buffer, count))
4072 return -EFAULT;
4073 kbuf[MAX_SLABINFO_WRITE] = '\0';
4075 tmp = strchr(kbuf, ' ');
4076 if (!tmp)
4077 return -EINVAL;
4078 *tmp = '\0';
4079 tmp++;
4080 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4081 return -EINVAL;
4083 /* Find the cache in the chain of caches. */
4084 mutex_lock(&cache_chain_mutex);
4085 res = -EINVAL;
4086 list_for_each_entry(cachep, &cache_chain, next) {
4087 if (!strcmp(cachep->name, kbuf)) {
4088 if (limit < 1 || batchcount < 1 ||
4089 batchcount > limit || shared < 0) {
4090 res = 0;
4091 } else {
4092 res = do_tune_cpucache(cachep, limit,
4093 batchcount, shared);
4095 break;
4098 mutex_unlock(&cache_chain_mutex);
4099 if (res >= 0)
4100 res = count;
4101 return res;
4104 #ifdef CONFIG_DEBUG_SLAB_LEAK
4106 static void *leaks_start(struct seq_file *m, loff_t *pos)
4108 loff_t n = *pos;
4109 struct list_head *p;
4111 mutex_lock(&cache_chain_mutex);
4112 p = cache_chain.next;
4113 while (n--) {
4114 p = p->next;
4115 if (p == &cache_chain)
4116 return NULL;
4118 return list_entry(p, struct kmem_cache, next);
4121 static inline int add_caller(unsigned long *n, unsigned long v)
4123 unsigned long *p;
4124 int l;
4125 if (!v)
4126 return 1;
4127 l = n[1];
4128 p = n + 2;
4129 while (l) {
4130 int i = l/2;
4131 unsigned long *q = p + 2 * i;
4132 if (*q == v) {
4133 q[1]++;
4134 return 1;
4136 if (*q > v) {
4137 l = i;
4138 } else {
4139 p = q + 2;
4140 l -= i + 1;
4143 if (++n[1] == n[0])
4144 return 0;
4145 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4146 p[0] = v;
4147 p[1] = 1;
4148 return 1;
4151 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4153 void *p;
4154 int i;
4155 if (n[0] == n[1])
4156 return;
4157 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4158 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4159 continue;
4160 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4161 return;
4165 static void show_symbol(struct seq_file *m, unsigned long address)
4167 #ifdef CONFIG_KALLSYMS
4168 char *modname;
4169 const char *name;
4170 unsigned long offset, size;
4171 char namebuf[KSYM_NAME_LEN+1];
4173 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4175 if (name) {
4176 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4177 if (modname)
4178 seq_printf(m, " [%s]", modname);
4179 return;
4181 #endif
4182 seq_printf(m, "%p", (void *)address);
4185 static int leaks_show(struct seq_file *m, void *p)
4187 struct kmem_cache *cachep = p;
4188 struct slab *slabp;
4189 struct kmem_list3 *l3;
4190 const char *name;
4191 unsigned long *n = m->private;
4192 int node;
4193 int i;
4195 if (!(cachep->flags & SLAB_STORE_USER))
4196 return 0;
4197 if (!(cachep->flags & SLAB_RED_ZONE))
4198 return 0;
4200 /* OK, we can do it */
4202 n[1] = 0;
4204 for_each_online_node(node) {
4205 l3 = cachep->nodelists[node];
4206 if (!l3)
4207 continue;
4209 check_irq_on();
4210 spin_lock_irq(&l3->list_lock);
4212 list_for_each_entry(slabp, &l3->slabs_full, list)
4213 handle_slab(n, cachep, slabp);
4214 list_for_each_entry(slabp, &l3->slabs_partial, list)
4215 handle_slab(n, cachep, slabp);
4216 spin_unlock_irq(&l3->list_lock);
4218 name = cachep->name;
4219 if (n[0] == n[1]) {
4220 /* Increase the buffer size */
4221 mutex_unlock(&cache_chain_mutex);
4222 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4223 if (!m->private) {
4224 /* Too bad, we are really out */
4225 m->private = n;
4226 mutex_lock(&cache_chain_mutex);
4227 return -ENOMEM;
4229 *(unsigned long *)m->private = n[0] * 2;
4230 kfree(n);
4231 mutex_lock(&cache_chain_mutex);
4232 /* Now make sure this entry will be retried */
4233 m->count = m->size;
4234 return 0;
4236 for (i = 0; i < n[1]; i++) {
4237 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4238 show_symbol(m, n[2*i+2]);
4239 seq_putc(m, '\n');
4242 return 0;
4245 struct seq_operations slabstats_op = {
4246 .start = leaks_start,
4247 .next = s_next,
4248 .stop = s_stop,
4249 .show = leaks_show,
4251 #endif
4252 #endif
4255 * ksize - get the actual amount of memory allocated for a given object
4256 * @objp: Pointer to the object
4258 * kmalloc may internally round up allocations and return more memory
4259 * than requested. ksize() can be used to determine the actual amount of
4260 * memory allocated. The caller may use this additional memory, even though
4261 * a smaller amount of memory was initially specified with the kmalloc call.
4262 * The caller must guarantee that objp points to a valid object previously
4263 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4264 * must not be freed during the duration of the call.
4266 unsigned int ksize(const void *objp)
4268 if (unlikely(objp == NULL))
4269 return 0;
4271 return obj_size(virt_to_cache(objp));