MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / mm / filemap.c
blob283fdc8c3cf8e9783c1504a7f3e143c51918e310
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 #include <asm/mman.h>
43 #ifdef CONFIG_DIRECTIO
44 static ssize_t
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 loff_t offset, unsigned long nr_segs);
47 #else
48 static inline ssize_t
49 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
50 loff_t offset, unsigned long nr_segs)
52 return -EINVAL;
54 #endif
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
60 * Shared mappings now work. 15.8.1995 Bruno.
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 * Lock ordering:
71 * ->i_mmap_lock (vmtruncate)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
74 * ->mapping->tree_lock
76 * ->i_mutex
77 * ->i_mmap_lock (truncate->unmap_mapping_range)
79 * ->mmap_sem
80 * ->i_mmap_lock
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
87 * ->i_mutex (generic_file_buffered_write)
88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
90 * ->i_mutex
91 * ->i_alloc_sem (various)
93 * ->inode_lock
94 * ->sb_lock (fs/fs-writeback.c)
95 * ->mapping->tree_lock (__sync_single_inode)
97 * ->i_mmap_lock
98 * ->anon_vma.lock (vma_adjust)
100 * ->anon_vma.lock
101 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
103 * ->page_table_lock or pte_lock
104 * ->swap_lock (try_to_unmap_one)
105 * ->private_lock (try_to_unmap_one)
106 * ->tree_lock (try_to_unmap_one)
107 * ->zone.lru_lock (follow_page->mark_page_accessed)
108 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
109 * ->private_lock (page_remove_rmap->set_page_dirty)
110 * ->tree_lock (page_remove_rmap->set_page_dirty)
111 * ->inode_lock (page_remove_rmap->set_page_dirty)
112 * ->inode_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 * ->task->proc_lock
116 * ->dcache_lock (proc_pid_lookup)
120 * Remove a page from the page cache and free it. Caller has to make
121 * sure the page is locked and that nobody else uses it - or that usage
122 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
124 void __remove_from_page_cache(struct page *page)
126 #if 0 // mask by Victor Yu. 02-12-2007
127 struct address_space *mapping = page->mapping;
128 #else
129 struct address_space *mapping = page->u.xx.mapping;
130 #endif
132 radix_tree_delete(&mapping->page_tree, page->index);
133 #if 0 // mask by Victor Yu. 02-12-2007
134 page->mapping = NULL;
135 #else
136 page->u.xx.mapping = NULL;
137 #endif
138 mapping->nrpages--;
139 __dec_zone_page_state(page, NR_FILE_PAGES);
142 void remove_from_page_cache(struct page *page)
144 #if 0 // mask by Victor Yu. 02-12-2007
145 struct address_space *mapping = page->mapping;
146 #else
147 struct address_space *mapping = page->u.xx.mapping;
148 #endif
150 BUG_ON(!PageLocked(page));
152 write_lock_irq(&mapping->tree_lock);
153 __remove_from_page_cache(page);
154 write_unlock_irq(&mapping->tree_lock);
157 static int sync_page(void *word)
159 struct address_space *mapping;
160 struct page *page;
162 page = container_of((unsigned long *)word, struct page, flags);
165 * page_mapping() is being called without PG_locked held.
166 * Some knowledge of the state and use of the page is used to
167 * reduce the requirements down to a memory barrier.
168 * The danger here is of a stale page_mapping() return value
169 * indicating a struct address_space different from the one it's
170 * associated with when it is associated with one.
171 * After smp_mb(), it's either the correct page_mapping() for
172 * the page, or an old page_mapping() and the page's own
173 * page_mapping() has gone NULL.
174 * The ->sync_page() address_space operation must tolerate
175 * page_mapping() going NULL. By an amazing coincidence,
176 * this comes about because none of the users of the page
177 * in the ->sync_page() methods make essential use of the
178 * page_mapping(), merely passing the page down to the backing
179 * device's unplug functions when it's non-NULL, which in turn
180 * ignore it for all cases but swap, where only page_private(page) is
181 * of interest. When page_mapping() does go NULL, the entire
182 * call stack gracefully ignores the page and returns.
183 * -- wli
185 smp_mb();
186 mapping = page_mapping(page);
187 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
188 mapping->a_ops->sync_page(page);
189 io_schedule();
190 return 0;
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209 loff_t end, int sync_mode)
211 int ret;
212 struct writeback_control wbc = {
213 .sync_mode = sync_mode,
214 .nr_to_write = mapping->nrpages * 2,
215 .range_start = start,
216 .range_end = end,
219 if (!mapping_cap_writeback_dirty(mapping))
220 return 0;
222 ret = do_writepages(mapping, &wbc);
223 return ret;
226 static inline int __filemap_fdatawrite(struct address_space *mapping,
227 int sync_mode)
229 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232 int filemap_fdatawrite(struct address_space *mapping)
234 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 EXPORT_SYMBOL(filemap_fdatawrite);
238 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
239 loff_t end)
241 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
274 if (end < start)
275 return 0;
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
394 int err = 0;
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
410 return err;
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
428 int err = 0;
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
442 return err;
446 * add_to_page_cache - add newly allocated pagecache pages
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add newly allocated pagecache pages;
453 * the page is new, so we can just run SetPageLocked() against it.
454 * The other page state flags were set by rmqueue().
456 * This function does not add the page to the LRU. The caller must do that.
458 int add_to_page_cache(struct page *page, struct address_space *mapping,
459 pgoff_t offset, gfp_t gfp_mask)
461 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
463 if (error == 0) {
464 write_lock_irq(&mapping->tree_lock);
465 error = radix_tree_insert(&mapping->page_tree, offset, page);
466 if (!error) {
467 page_cache_get(page);
468 SetPageLocked(page);
469 #if 0 // mask by Victor Yu. 02-12-2007
470 page->mapping = mapping;
471 #else
472 page->u.xx.mapping = mapping;
473 #endif
474 page->index = offset;
475 mapping->nrpages++;
476 __inc_zone_page_state(page, NR_FILE_PAGES);
478 write_unlock_irq(&mapping->tree_lock);
479 radix_tree_preload_end();
481 return error;
483 EXPORT_SYMBOL(add_to_page_cache);
485 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
486 pgoff_t offset, gfp_t gfp_mask)
488 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
489 if (ret == 0)
490 lru_cache_add(page);
491 return ret;
494 #ifdef CONFIG_NUMA
495 struct page *__page_cache_alloc(gfp_t gfp)
497 if (cpuset_do_page_mem_spread()) {
498 int n = cpuset_mem_spread_node();
499 return alloc_pages_node(n, gfp, 0);
501 return alloc_pages(gfp, 0);
503 EXPORT_SYMBOL(__page_cache_alloc);
504 #endif
506 static int __sleep_on_page_lock(void *word)
508 io_schedule();
509 return 0;
513 * In order to wait for pages to become available there must be
514 * waitqueues associated with pages. By using a hash table of
515 * waitqueues where the bucket discipline is to maintain all
516 * waiters on the same queue and wake all when any of the pages
517 * become available, and for the woken contexts to check to be
518 * sure the appropriate page became available, this saves space
519 * at a cost of "thundering herd" phenomena during rare hash
520 * collisions.
522 static wait_queue_head_t *page_waitqueue(struct page *page)
524 const struct zone *zone = page_zone(page);
526 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
529 static inline void wake_up_page(struct page *page, int bit)
531 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
534 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
536 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
538 if (test_bit(bit_nr, &page->flags))
539 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
540 TASK_UNINTERRUPTIBLE);
542 EXPORT_SYMBOL(wait_on_page_bit);
545 * unlock_page - unlock a locked page
546 * @page: the page
548 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
549 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
550 * mechananism between PageLocked pages and PageWriteback pages is shared.
551 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
553 * The first mb is necessary to safely close the critical section opened by the
554 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
555 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
556 * parallel wait_on_page_locked()).
558 void fastcall unlock_page(struct page *page)
560 smp_mb__before_clear_bit();
561 if (!TestClearPageLocked(page))
562 BUG();
563 smp_mb__after_clear_bit();
564 wake_up_page(page, PG_locked);
566 EXPORT_SYMBOL(unlock_page);
569 * end_page_writeback - end writeback against a page
570 * @page: the page
572 void end_page_writeback(struct page *page)
574 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
575 if (!test_clear_page_writeback(page))
576 BUG();
578 smp_mb__after_clear_bit();
579 wake_up_page(page, PG_writeback);
581 EXPORT_SYMBOL(end_page_writeback);
584 * __lock_page - get a lock on the page, assuming we need to sleep to get it
585 * @page: the page to lock
587 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
588 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
589 * chances are that on the second loop, the block layer's plug list is empty,
590 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
592 void fastcall __lock_page(struct page *page)
594 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
596 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
597 TASK_UNINTERRUPTIBLE);
599 EXPORT_SYMBOL(__lock_page);
602 * Variant of lock_page that does not require the caller to hold a reference
603 * on the page's mapping.
605 void fastcall __lock_page_nosync(struct page *page)
607 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
608 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
609 TASK_UNINTERRUPTIBLE);
613 * find_get_page - find and get a page reference
614 * @mapping: the address_space to search
615 * @offset: the page index
617 * Is there a pagecache struct page at the given (mapping, offset) tuple?
618 * If yes, increment its refcount and return it; if no, return NULL.
620 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
622 struct page *page;
624 read_lock_irq(&mapping->tree_lock);
625 page = radix_tree_lookup(&mapping->page_tree, offset);
626 if (page)
627 page_cache_get(page);
628 read_unlock_irq(&mapping->tree_lock);
629 return page;
631 EXPORT_SYMBOL(find_get_page);
634 * find_trylock_page - find and lock a page
635 * @mapping: the address_space to search
636 * @offset: the page index
638 * Same as find_get_page(), but trylock it instead of incrementing the count.
640 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
642 struct page *page;
644 read_lock_irq(&mapping->tree_lock);
645 page = radix_tree_lookup(&mapping->page_tree, offset);
646 if (page && TestSetPageLocked(page))
647 page = NULL;
648 read_unlock_irq(&mapping->tree_lock);
649 return page;
651 EXPORT_SYMBOL(find_trylock_page);
654 * find_lock_page - locate, pin and lock a pagecache page
655 * @mapping: the address_space to search
656 * @offset: the page index
658 * Locates the desired pagecache page, locks it, increments its reference
659 * count and returns its address.
661 * Returns zero if the page was not present. find_lock_page() may sleep.
663 struct page *find_lock_page(struct address_space *mapping,
664 unsigned long offset)
666 struct page *page;
668 read_lock_irq(&mapping->tree_lock);
669 repeat:
670 page = radix_tree_lookup(&mapping->page_tree, offset);
671 if (page) {
672 page_cache_get(page);
673 if (TestSetPageLocked(page)) {
674 read_unlock_irq(&mapping->tree_lock);
675 __lock_page(page);
676 read_lock_irq(&mapping->tree_lock);
678 /* Has the page been truncated while we slept? */
679 #if 0 // mask by Victor Yu. 02-12-2007
680 if (unlikely(page->mapping != mapping ||
681 page->index != offset)) {
682 #else
683 if (unlikely(page->u.xx.mapping != mapping ||
684 page->index != offset)) {
685 #endif
686 unlock_page(page);
687 page_cache_release(page);
688 goto repeat;
692 read_unlock_irq(&mapping->tree_lock);
693 return page;
695 EXPORT_SYMBOL(find_lock_page);
698 * find_or_create_page - locate or add a pagecache page
699 * @mapping: the page's address_space
700 * @index: the page's index into the mapping
701 * @gfp_mask: page allocation mode
703 * Locates a page in the pagecache. If the page is not present, a new page
704 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
705 * LRU list. The returned page is locked and has its reference count
706 * incremented.
708 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
709 * allocation!
711 * find_or_create_page() returns the desired page's address, or zero on
712 * memory exhaustion.
714 struct page *find_or_create_page(struct address_space *mapping,
715 unsigned long index, gfp_t gfp_mask)
717 struct page *page, *cached_page = NULL;
718 int err;
719 repeat:
720 page = find_lock_page(mapping, index);
721 if (!page) {
722 if (!cached_page) {
723 cached_page = alloc_page(gfp_mask);
724 if (!cached_page)
725 return NULL;
727 err = add_to_page_cache_lru(cached_page, mapping,
728 index, gfp_mask);
729 if (!err) {
730 page = cached_page;
731 cached_page = NULL;
732 } else if (err == -EEXIST)
733 goto repeat;
735 if (cached_page)
736 page_cache_release(cached_page);
737 return page;
739 EXPORT_SYMBOL(find_or_create_page);
742 * find_get_pages - gang pagecache lookup
743 * @mapping: The address_space to search
744 * @start: The starting page index
745 * @nr_pages: The maximum number of pages
746 * @pages: Where the resulting pages are placed
748 * find_get_pages() will search for and return a group of up to
749 * @nr_pages pages in the mapping. The pages are placed at @pages.
750 * find_get_pages() takes a reference against the returned pages.
752 * The search returns a group of mapping-contiguous pages with ascending
753 * indexes. There may be holes in the indices due to not-present pages.
755 * find_get_pages() returns the number of pages which were found.
757 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
758 unsigned int nr_pages, struct page **pages)
760 unsigned int i;
761 unsigned int ret;
763 read_lock_irq(&mapping->tree_lock);
764 ret = radix_tree_gang_lookup(&mapping->page_tree,
765 (void **)pages, start, nr_pages);
766 for (i = 0; i < ret; i++)
767 page_cache_get(pages[i]);
768 read_unlock_irq(&mapping->tree_lock);
769 return ret;
773 * find_get_pages_contig - gang contiguous pagecache lookup
774 * @mapping: The address_space to search
775 * @index: The starting page index
776 * @nr_pages: The maximum number of pages
777 * @pages: Where the resulting pages are placed
779 * find_get_pages_contig() works exactly like find_get_pages(), except
780 * that the returned number of pages are guaranteed to be contiguous.
782 * find_get_pages_contig() returns the number of pages which were found.
784 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
785 unsigned int nr_pages, struct page **pages)
787 unsigned int i;
788 unsigned int ret;
790 read_lock_irq(&mapping->tree_lock);
791 ret = radix_tree_gang_lookup(&mapping->page_tree,
792 (void **)pages, index, nr_pages);
793 for (i = 0; i < ret; i++) {
794 #if 0 // mask by Victor Yu. 02-12-2007
795 if (pages[i]->mapping == NULL || pages[i]->index != index)
796 #else
797 if (pages[i]->u.xx.mapping == NULL || pages[i]->index != index)
798 #endif
799 break;
801 page_cache_get(pages[i]);
802 index++;
804 read_unlock_irq(&mapping->tree_lock);
805 return i;
809 * find_get_pages_tag - find and return pages that match @tag
810 * @mapping: the address_space to search
811 * @index: the starting page index
812 * @tag: the tag index
813 * @nr_pages: the maximum number of pages
814 * @pages: where the resulting pages are placed
816 * Like find_get_pages, except we only return pages which are tagged with
817 * @tag. We update @index to index the next page for the traversal.
819 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
820 int tag, unsigned int nr_pages, struct page **pages)
822 unsigned int i;
823 unsigned int ret;
825 read_lock_irq(&mapping->tree_lock);
826 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
827 (void **)pages, *index, nr_pages, tag);
828 for (i = 0; i < ret; i++)
829 page_cache_get(pages[i]);
830 if (ret)
831 *index = pages[ret - 1]->index + 1;
832 read_unlock_irq(&mapping->tree_lock);
833 return ret;
837 * grab_cache_page_nowait - returns locked page at given index in given cache
838 * @mapping: target address_space
839 * @index: the page index
841 * Same as grab_cache_page, but do not wait if the page is unavailable.
842 * This is intended for speculative data generators, where the data can
843 * be regenerated if the page couldn't be grabbed. This routine should
844 * be safe to call while holding the lock for another page.
846 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
847 * and deadlock against the caller's locked page.
849 struct page *
850 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
852 struct page *page = find_get_page(mapping, index);
854 if (page) {
855 if (!TestSetPageLocked(page))
856 return page;
857 page_cache_release(page);
858 return NULL;
860 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
861 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
862 page_cache_release(page);
863 page = NULL;
865 return page;
867 EXPORT_SYMBOL(grab_cache_page_nowait);
870 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
871 * a _large_ part of the i/o request. Imagine the worst scenario:
873 * ---R__________________________________________B__________
874 * ^ reading here ^ bad block(assume 4k)
876 * read(R) => miss => readahead(R...B) => media error => frustrating retries
877 * => failing the whole request => read(R) => read(R+1) =>
878 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
879 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
880 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
882 * It is going insane. Fix it by quickly scaling down the readahead size.
884 static void shrink_readahead_size_eio(struct file *filp,
885 struct file_ra_state *ra)
887 if (!ra->ra_pages)
888 return;
890 ra->ra_pages /= 4;
894 * do_generic_mapping_read - generic file read routine
895 * @mapping: address_space to be read
896 * @_ra: file's readahead state
897 * @filp: the file to read
898 * @ppos: current file position
899 * @desc: read_descriptor
900 * @actor: read method
902 * This is a generic file read routine, and uses the
903 * mapping->a_ops->readpage() function for the actual low-level stuff.
905 * This is really ugly. But the goto's actually try to clarify some
906 * of the logic when it comes to error handling etc.
908 * Note the struct file* is only passed for the use of readpage.
909 * It may be NULL.
911 void do_generic_mapping_read(struct address_space *mapping,
912 struct file_ra_state *_ra,
913 struct file *filp,
914 loff_t *ppos,
915 read_descriptor_t *desc,
916 read_actor_t actor)
918 struct inode *inode = mapping->host;
919 unsigned long index;
920 unsigned long end_index;
921 unsigned long offset;
922 unsigned long last_index;
923 unsigned long next_index;
924 unsigned long prev_index;
925 loff_t isize;
926 struct page *cached_page;
927 int error;
928 struct file_ra_state ra = *_ra;
930 cached_page = NULL;
931 index = *ppos >> PAGE_CACHE_SHIFT;
932 next_index = index;
933 prev_index = ra.prev_page;
934 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
935 offset = *ppos & ~PAGE_CACHE_MASK;
937 isize = i_size_read(inode);
938 if (!isize)
939 goto out;
941 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
942 for (;;) {
943 struct page *page;
944 unsigned long nr, ret;
946 /* nr is the maximum number of bytes to copy from this page */
947 nr = PAGE_CACHE_SIZE;
948 if (index >= end_index) {
949 if (index > end_index)
950 goto out;
951 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
952 if (nr <= offset) {
953 goto out;
956 nr = nr - offset;
958 cond_resched();
959 if (index == next_index)
960 next_index = page_cache_readahead(mapping, &ra, filp,
961 index, last_index - index);
963 find_page:
964 page = find_get_page(mapping, index);
965 if (unlikely(page == NULL)) {
966 handle_ra_miss(mapping, &ra, index);
967 goto no_cached_page;
969 if (!PageUptodate(page))
970 goto page_not_up_to_date;
971 page_ok:
973 /* If users can be writing to this page using arbitrary
974 * virtual addresses, take care about potential aliasing
975 * before reading the page on the kernel side.
977 if (mapping_writably_mapped(mapping))
978 flush_dcache_page(page);
981 * When (part of) the same page is read multiple times
982 * in succession, only mark it as accessed the first time.
984 if (prev_index != index)
985 mark_page_accessed(page);
986 prev_index = index;
989 * Ok, we have the page, and it's up-to-date, so
990 * now we can copy it to user space...
992 * The actor routine returns how many bytes were actually used..
993 * NOTE! This may not be the same as how much of a user buffer
994 * we filled up (we may be padding etc), so we can only update
995 * "pos" here (the actor routine has to update the user buffer
996 * pointers and the remaining count).
998 ret = actor(desc, page, offset, nr);
999 offset += ret;
1000 index += offset >> PAGE_CACHE_SHIFT;
1001 offset &= ~PAGE_CACHE_MASK;
1003 page_cache_release(page);
1004 if (ret == nr && desc->count)
1005 continue;
1006 goto out;
1008 page_not_up_to_date:
1009 /* Get exclusive access to the page ... */
1010 lock_page(page);
1012 /* Did it get truncated before we got the lock? */
1013 #if 0 // mask by Victor Yu. 02-12-2007
1014 if (!page->mapping) {
1015 #else
1016 if (!page->u.xx.mapping) {
1017 #endif
1018 unlock_page(page);
1019 page_cache_release(page);
1020 continue;
1023 /* Did somebody else fill it already? */
1024 if (PageUptodate(page)) {
1025 unlock_page(page);
1026 goto page_ok;
1029 readpage:
1030 /* Start the actual read. The read will unlock the page. */
1031 error = mapping->a_ops->readpage(filp, page);
1033 if (unlikely(error)) {
1034 if (error == AOP_TRUNCATED_PAGE) {
1035 page_cache_release(page);
1036 goto find_page;
1038 goto readpage_error;
1041 if (!PageUptodate(page)) {
1042 lock_page(page);
1043 if (!PageUptodate(page)) {
1044 #if 0 // mask by Victor Yu. 02-12-2007
1045 if (page->mapping == NULL) {
1046 #else
1047 if (page->u.xx.mapping == NULL) {
1048 #endif
1050 * invalidate_inode_pages got it
1052 unlock_page(page);
1053 page_cache_release(page);
1054 goto find_page;
1056 unlock_page(page);
1057 error = -EIO;
1058 shrink_readahead_size_eio(filp, &ra);
1059 goto readpage_error;
1061 unlock_page(page);
1065 * i_size must be checked after we have done ->readpage.
1067 * Checking i_size after the readpage allows us to calculate
1068 * the correct value for "nr", which means the zero-filled
1069 * part of the page is not copied back to userspace (unless
1070 * another truncate extends the file - this is desired though).
1072 isize = i_size_read(inode);
1073 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1074 if (unlikely(!isize || index > end_index)) {
1075 page_cache_release(page);
1076 goto out;
1079 /* nr is the maximum number of bytes to copy from this page */
1080 nr = PAGE_CACHE_SIZE;
1081 if (index == end_index) {
1082 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1083 if (nr <= offset) {
1084 page_cache_release(page);
1085 goto out;
1088 nr = nr - offset;
1089 goto page_ok;
1091 readpage_error:
1092 /* UHHUH! A synchronous read error occurred. Report it */
1093 desc->error = error;
1094 page_cache_release(page);
1095 goto out;
1097 no_cached_page:
1099 * Ok, it wasn't cached, so we need to create a new
1100 * page..
1102 if (!cached_page) {
1103 cached_page = page_cache_alloc_cold(mapping);
1104 if (!cached_page) {
1105 desc->error = -ENOMEM;
1106 goto out;
1109 error = add_to_page_cache_lru(cached_page, mapping,
1110 index, GFP_KERNEL);
1111 if (error) {
1112 if (error == -EEXIST)
1113 goto find_page;
1114 desc->error = error;
1115 goto out;
1117 page = cached_page;
1118 cached_page = NULL;
1119 goto readpage;
1122 out:
1123 *_ra = ra;
1125 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1126 if (cached_page)
1127 page_cache_release(cached_page);
1128 if (filp)
1129 file_accessed(filp);
1131 EXPORT_SYMBOL(do_generic_mapping_read);
1133 int file_read_actor(read_descriptor_t *desc, struct page *page,
1134 unsigned long offset, unsigned long size)
1136 char *kaddr;
1137 unsigned long left, count = desc->count;
1139 if (size > count)
1140 size = count;
1143 * Faults on the destination of a read are common, so do it before
1144 * taking the kmap.
1146 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1147 kaddr = kmap_atomic(page, KM_USER0);
1148 left = __copy_to_user_inatomic(desc->arg.buf,
1149 kaddr + offset, size);
1150 kunmap_atomic(kaddr, KM_USER0);
1151 if (left == 0)
1152 goto success;
1155 /* Do it the slow way */
1156 kaddr = kmap(page);
1157 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1158 kunmap(page);
1160 if (left) {
1161 size -= left;
1162 desc->error = -EFAULT;
1164 success:
1165 desc->count = count - size;
1166 desc->written += size;
1167 desc->arg.buf += size;
1168 return size;
1172 * generic_file_aio_read - generic filesystem read routine
1173 * @iocb: kernel I/O control block
1174 * @iov: io vector request
1175 * @nr_segs: number of segments in the iovec
1176 * @pos: current file position
1178 * This is the "read()" routine for all filesystems
1179 * that can use the page cache directly.
1181 ssize_t
1182 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1183 unsigned long nr_segs, loff_t pos)
1185 struct file *filp = iocb->ki_filp;
1186 ssize_t retval;
1187 unsigned long seg;
1188 size_t count;
1189 loff_t *ppos = &iocb->ki_pos;
1191 count = 0;
1192 for (seg = 0; seg < nr_segs; seg++) {
1193 const struct iovec *iv = &iov[seg];
1196 * If any segment has a negative length, or the cumulative
1197 * length ever wraps negative then return -EINVAL.
1199 count += iv->iov_len;
1200 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1201 return -EINVAL;
1202 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1203 continue;
1204 if (seg == 0)
1205 return -EFAULT;
1206 nr_segs = seg;
1207 count -= iv->iov_len; /* This segment is no good */
1208 break;
1211 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1212 if (filp->f_flags & O_DIRECT) {
1213 loff_t size;
1214 struct address_space *mapping;
1215 struct inode *inode;
1217 mapping = filp->f_mapping;
1218 inode = mapping->host;
1219 retval = 0;
1220 if (!count)
1221 goto out; /* skip atime */
1222 size = i_size_read(inode);
1223 if (pos < size) {
1224 retval = generic_file_direct_IO(READ, iocb,
1225 iov, pos, nr_segs);
1226 if (retval > 0 && !is_sync_kiocb(iocb))
1227 retval = -EIOCBQUEUED;
1228 if (retval > 0)
1229 *ppos = pos + retval;
1231 if (likely(retval != 0)) {
1232 file_accessed(filp);
1233 goto out;
1237 retval = 0;
1238 if (count) {
1239 for (seg = 0; seg < nr_segs; seg++) {
1240 read_descriptor_t desc;
1242 desc.written = 0;
1243 desc.arg.buf = iov[seg].iov_base;
1244 desc.count = iov[seg].iov_len;
1245 if (desc.count == 0)
1246 continue;
1247 desc.error = 0;
1248 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1249 retval += desc.written;
1250 if (desc.error) {
1251 retval = retval ?: desc.error;
1252 break;
1256 out:
1257 return retval;
1259 EXPORT_SYMBOL(generic_file_aio_read);
1261 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1263 ssize_t written;
1264 unsigned long count = desc->count;
1265 struct file *file = desc->arg.data;
1267 if (size > count)
1268 size = count;
1270 written = file->f_op->sendpage(file, page, offset,
1271 size, &file->f_pos, size<count);
1272 if (written < 0) {
1273 desc->error = written;
1274 written = 0;
1276 desc->count = count - written;
1277 desc->written += written;
1278 return written;
1281 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1282 size_t count, read_actor_t actor, void *target)
1284 read_descriptor_t desc;
1286 if (!count)
1287 return 0;
1289 desc.written = 0;
1290 desc.count = count;
1291 desc.arg.data = target;
1292 desc.error = 0;
1294 do_generic_file_read(in_file, ppos, &desc, actor);
1295 if (desc.written)
1296 return desc.written;
1297 return desc.error;
1299 EXPORT_SYMBOL(generic_file_sendfile);
1301 static ssize_t
1302 do_readahead(struct address_space *mapping, struct file *filp,
1303 unsigned long index, unsigned long nr)
1305 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1306 return -EINVAL;
1308 force_page_cache_readahead(mapping, filp, index,
1309 max_sane_readahead(nr));
1310 return 0;
1313 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1315 ssize_t ret;
1316 struct file *file;
1318 ret = -EBADF;
1319 file = fget(fd);
1320 if (file) {
1321 if (file->f_mode & FMODE_READ) {
1322 struct address_space *mapping = file->f_mapping;
1323 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1324 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1325 unsigned long len = end - start + 1;
1326 ret = do_readahead(mapping, file, start, len);
1328 fput(file);
1330 return ret;
1333 #ifdef CONFIG_MMU
1334 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1336 * page_cache_read - adds requested page to the page cache if not already there
1337 * @file: file to read
1338 * @offset: page index
1340 * This adds the requested page to the page cache if it isn't already there,
1341 * and schedules an I/O to read in its contents from disk.
1343 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1345 struct address_space *mapping = file->f_mapping;
1346 struct page *page;
1347 int ret;
1349 do {
1350 page = page_cache_alloc_cold(mapping);
1351 if (!page)
1352 return -ENOMEM;
1354 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1355 if (ret == 0)
1356 ret = mapping->a_ops->readpage(file, page);
1357 else if (ret == -EEXIST)
1358 ret = 0; /* losing race to add is OK */
1360 page_cache_release(page);
1362 } while (ret == AOP_TRUNCATED_PAGE);
1364 return ret;
1367 #define MMAP_LOTSAMISS (100)
1370 * filemap_nopage - read in file data for page fault handling
1371 * @area: the applicable vm_area
1372 * @address: target address to read in
1373 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1375 * filemap_nopage() is invoked via the vma operations vector for a
1376 * mapped memory region to read in file data during a page fault.
1378 * The goto's are kind of ugly, but this streamlines the normal case of having
1379 * it in the page cache, and handles the special cases reasonably without
1380 * having a lot of duplicated code.
1382 struct page *filemap_nopage(struct vm_area_struct *area,
1383 unsigned long address, int *type)
1385 int error;
1386 struct file *file = area->vm_file;
1387 struct address_space *mapping = file->f_mapping;
1388 struct file_ra_state *ra = &file->f_ra;
1389 struct inode *inode = mapping->host;
1390 struct page *page;
1391 unsigned long size, pgoff;
1392 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1394 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1396 retry_all:
1397 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1398 if (pgoff >= size)
1399 goto outside_data_content;
1401 /* If we don't want any read-ahead, don't bother */
1402 if (VM_RandomReadHint(area))
1403 goto no_cached_page;
1406 * The readahead code wants to be told about each and every page
1407 * so it can build and shrink its windows appropriately
1409 * For sequential accesses, we use the generic readahead logic.
1411 if (VM_SequentialReadHint(area))
1412 page_cache_readahead(mapping, ra, file, pgoff, 1);
1415 * Do we have something in the page cache already?
1417 retry_find:
1418 page = find_get_page(mapping, pgoff);
1419 if (!page) {
1420 unsigned long ra_pages;
1422 if (VM_SequentialReadHint(area)) {
1423 handle_ra_miss(mapping, ra, pgoff);
1424 goto no_cached_page;
1426 ra->mmap_miss++;
1429 * Do we miss much more than hit in this file? If so,
1430 * stop bothering with read-ahead. It will only hurt.
1432 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1433 goto no_cached_page;
1436 * To keep the pgmajfault counter straight, we need to
1437 * check did_readaround, as this is an inner loop.
1439 if (!did_readaround) {
1440 majmin = VM_FAULT_MAJOR;
1441 count_vm_event(PGMAJFAULT);
1443 did_readaround = 1;
1444 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1445 if (ra_pages) {
1446 pgoff_t start = 0;
1448 if (pgoff > ra_pages / 2)
1449 start = pgoff - ra_pages / 2;
1450 do_page_cache_readahead(mapping, file, start, ra_pages);
1452 page = find_get_page(mapping, pgoff);
1453 if (!page)
1454 goto no_cached_page;
1457 if (!did_readaround)
1458 ra->mmap_hit++;
1461 * Ok, found a page in the page cache, now we need to check
1462 * that it's up-to-date.
1464 if (!PageUptodate(page))
1465 goto page_not_uptodate;
1467 success:
1469 * Found the page and have a reference on it.
1471 mark_page_accessed(page);
1472 if (type)
1473 *type = majmin;
1474 return page;
1476 outside_data_content:
1478 * An external ptracer can access pages that normally aren't
1479 * accessible..
1481 if (area->vm_mm == current->mm)
1482 return NOPAGE_SIGBUS;
1483 /* Fall through to the non-read-ahead case */
1484 no_cached_page:
1486 * We're only likely to ever get here if MADV_RANDOM is in
1487 * effect.
1489 error = page_cache_read(file, pgoff);
1490 grab_swap_token();
1493 * The page we want has now been added to the page cache.
1494 * In the unlikely event that someone removed it in the
1495 * meantime, we'll just come back here and read it again.
1497 if (error >= 0)
1498 goto retry_find;
1501 * An error return from page_cache_read can result if the
1502 * system is low on memory, or a problem occurs while trying
1503 * to schedule I/O.
1505 if (error == -ENOMEM)
1506 return NOPAGE_OOM;
1507 return NOPAGE_SIGBUS;
1509 page_not_uptodate:
1510 if (!did_readaround) {
1511 majmin = VM_FAULT_MAJOR;
1512 count_vm_event(PGMAJFAULT);
1514 lock_page(page);
1516 /* Did it get unhashed while we waited for it? */
1517 if (!page->mapping) {
1518 unlock_page(page);
1519 page_cache_release(page);
1520 goto retry_all;
1523 /* Did somebody else get it up-to-date? */
1524 if (PageUptodate(page)) {
1525 unlock_page(page);
1526 goto success;
1529 error = mapping->a_ops->readpage(file, page);
1530 if (!error) {
1531 wait_on_page_locked(page);
1532 if (PageUptodate(page))
1533 goto success;
1534 } else if (error == AOP_TRUNCATED_PAGE) {
1535 page_cache_release(page);
1536 goto retry_find;
1540 * Umm, take care of errors if the page isn't up-to-date.
1541 * Try to re-read it _once_. We do this synchronously,
1542 * because there really aren't any performance issues here
1543 * and we need to check for errors.
1545 lock_page(page);
1547 /* Somebody truncated the page on us? */
1548 if (!page->mapping) {
1549 unlock_page(page);
1550 page_cache_release(page);
1551 goto retry_all;
1554 /* Somebody else successfully read it in? */
1555 if (PageUptodate(page)) {
1556 unlock_page(page);
1557 goto success;
1559 ClearPageError(page);
1560 error = mapping->a_ops->readpage(file, page);
1561 if (!error) {
1562 wait_on_page_locked(page);
1563 if (PageUptodate(page))
1564 goto success;
1565 } else if (error == AOP_TRUNCATED_PAGE) {
1566 page_cache_release(page);
1567 goto retry_find;
1571 * Things didn't work out. Return zero to tell the
1572 * mm layer so, possibly freeing the page cache page first.
1574 shrink_readahead_size_eio(file, ra);
1575 page_cache_release(page);
1576 return NOPAGE_SIGBUS;
1578 EXPORT_SYMBOL(filemap_nopage);
1580 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1581 int nonblock)
1583 struct address_space *mapping = file->f_mapping;
1584 struct page *page;
1585 int error;
1588 * Do we have something in the page cache already?
1590 retry_find:
1591 page = find_get_page(mapping, pgoff);
1592 if (!page) {
1593 if (nonblock)
1594 return NULL;
1595 goto no_cached_page;
1599 * Ok, found a page in the page cache, now we need to check
1600 * that it's up-to-date.
1602 if (!PageUptodate(page)) {
1603 if (nonblock) {
1604 page_cache_release(page);
1605 return NULL;
1607 goto page_not_uptodate;
1610 success:
1612 * Found the page and have a reference on it.
1614 mark_page_accessed(page);
1615 return page;
1617 no_cached_page:
1618 error = page_cache_read(file, pgoff);
1621 * The page we want has now been added to the page cache.
1622 * In the unlikely event that someone removed it in the
1623 * meantime, we'll just come back here and read it again.
1625 if (error >= 0)
1626 goto retry_find;
1629 * An error return from page_cache_read can result if the
1630 * system is low on memory, or a problem occurs while trying
1631 * to schedule I/O.
1633 return NULL;
1635 page_not_uptodate:
1636 lock_page(page);
1638 /* Did it get truncated while we waited for it? */
1639 if (!page->mapping) {
1640 unlock_page(page);
1641 goto err;
1644 /* Did somebody else get it up-to-date? */
1645 if (PageUptodate(page)) {
1646 unlock_page(page);
1647 goto success;
1650 error = mapping->a_ops->readpage(file, page);
1651 if (!error) {
1652 wait_on_page_locked(page);
1653 if (PageUptodate(page))
1654 goto success;
1655 } else if (error == AOP_TRUNCATED_PAGE) {
1656 page_cache_release(page);
1657 goto retry_find;
1661 * Umm, take care of errors if the page isn't up-to-date.
1662 * Try to re-read it _once_. We do this synchronously,
1663 * because there really aren't any performance issues here
1664 * and we need to check for errors.
1666 lock_page(page);
1668 /* Somebody truncated the page on us? */
1669 if (!page->mapping) {
1670 unlock_page(page);
1671 goto err;
1673 /* Somebody else successfully read it in? */
1674 if (PageUptodate(page)) {
1675 unlock_page(page);
1676 goto success;
1679 ClearPageError(page);
1680 error = mapping->a_ops->readpage(file, page);
1681 if (!error) {
1682 wait_on_page_locked(page);
1683 if (PageUptodate(page))
1684 goto success;
1685 } else if (error == AOP_TRUNCATED_PAGE) {
1686 page_cache_release(page);
1687 goto retry_find;
1691 * Things didn't work out. Return zero to tell the
1692 * mm layer so, possibly freeing the page cache page first.
1694 err:
1695 page_cache_release(page);
1697 return NULL;
1700 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1701 unsigned long len, pgprot_t prot, unsigned long pgoff,
1702 int nonblock)
1704 struct file *file = vma->vm_file;
1705 struct address_space *mapping = file->f_mapping;
1706 struct inode *inode = mapping->host;
1707 unsigned long size;
1708 struct mm_struct *mm = vma->vm_mm;
1709 struct page *page;
1710 int err;
1712 if (!nonblock)
1713 force_page_cache_readahead(mapping, vma->vm_file,
1714 pgoff, len >> PAGE_CACHE_SHIFT);
1716 repeat:
1717 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1719 return -EINVAL;
1721 page = filemap_getpage(file, pgoff, nonblock);
1723 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1724 * done in shmem_populate calling shmem_getpage */
1725 if (!page && !nonblock)
1726 return -ENOMEM;
1728 if (page) {
1729 err = install_page(mm, vma, addr, page, prot);
1730 if (err) {
1731 page_cache_release(page);
1732 return err;
1734 } else if (vma->vm_flags & VM_NONLINEAR) {
1735 /* No page was found just because we can't read it in now (being
1736 * here implies nonblock != 0), but the page may exist, so set
1737 * the PTE to fault it in later. */
1738 err = install_file_pte(mm, vma, addr, pgoff, prot);
1739 if (err)
1740 return err;
1743 len -= PAGE_SIZE;
1744 addr += PAGE_SIZE;
1745 pgoff++;
1746 if (len)
1747 goto repeat;
1749 return 0;
1751 EXPORT_SYMBOL(filemap_populate);
1753 struct vm_operations_struct generic_file_vm_ops = {
1754 .nopage = filemap_nopage,
1755 .populate = filemap_populate,
1758 /* This is used for a general mmap of a disk file */
1760 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1762 struct address_space *mapping = file->f_mapping;
1764 if (!mapping->a_ops->readpage)
1765 return -ENOEXEC;
1766 file_accessed(file);
1767 vma->vm_ops = &generic_file_vm_ops;
1768 return 0;
1772 * This is for filesystems which do not implement ->writepage.
1774 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1776 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1777 return -EINVAL;
1778 return generic_file_mmap(file, vma);
1780 #else
1781 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783 return -ENOSYS;
1785 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1787 return -ENOSYS;
1789 #endif /* CONFIG_MMU */
1791 EXPORT_SYMBOL(generic_file_mmap);
1792 EXPORT_SYMBOL(generic_file_readonly_mmap);
1794 static inline struct page *__read_cache_page(struct address_space *mapping,
1795 unsigned long index,
1796 int (*filler)(void *,struct page*),
1797 void *data)
1799 struct page *page, *cached_page = NULL;
1800 int err;
1801 repeat:
1802 page = find_get_page(mapping, index);
1803 if (!page) {
1804 if (!cached_page) {
1805 cached_page = page_cache_alloc_cold(mapping);
1806 if (!cached_page)
1807 return ERR_PTR(-ENOMEM);
1809 err = add_to_page_cache_lru(cached_page, mapping,
1810 index, GFP_KERNEL);
1811 if (err == -EEXIST)
1812 goto repeat;
1813 if (err < 0) {
1814 /* Presumably ENOMEM for radix tree node */
1815 page_cache_release(cached_page);
1816 return ERR_PTR(err);
1818 page = cached_page;
1819 cached_page = NULL;
1820 err = filler(data, page);
1821 if (err < 0) {
1822 page_cache_release(page);
1823 page = ERR_PTR(err);
1826 if (cached_page)
1827 page_cache_release(cached_page);
1828 return page;
1832 * read_cache_page - read into page cache, fill it if needed
1833 * @mapping: the page's address_space
1834 * @index: the page index
1835 * @filler: function to perform the read
1836 * @data: destination for read data
1838 * Read into the page cache. If a page already exists,
1839 * and PageUptodate() is not set, try to fill the page.
1841 struct page *read_cache_page(struct address_space *mapping,
1842 unsigned long index,
1843 int (*filler)(void *,struct page*),
1844 void *data)
1846 struct page *page;
1847 int err;
1849 retry:
1850 page = __read_cache_page(mapping, index, filler, data);
1851 if (IS_ERR(page))
1852 goto out;
1853 mark_page_accessed(page);
1854 if (PageUptodate(page))
1855 goto out;
1857 lock_page(page);
1858 #if 0 // mask by Victor Yu. 02-12-2007
1859 if (!page->mapping) {
1860 #else
1861 if (!page->u.xx.mapping) {
1862 #endif
1863 unlock_page(page);
1864 page_cache_release(page);
1865 goto retry;
1867 if (PageUptodate(page)) {
1868 unlock_page(page);
1869 goto out;
1871 err = filler(data, page);
1872 if (err < 0) {
1873 page_cache_release(page);
1874 page = ERR_PTR(err);
1876 out:
1877 return page;
1879 EXPORT_SYMBOL(read_cache_page);
1882 * If the page was newly created, increment its refcount and add it to the
1883 * caller's lru-buffering pagevec. This function is specifically for
1884 * generic_file_write().
1886 static inline struct page *
1887 __grab_cache_page(struct address_space *mapping, unsigned long index,
1888 struct page **cached_page, struct pagevec *lru_pvec)
1890 int err;
1891 struct page *page;
1892 repeat:
1893 page = find_lock_page(mapping, index);
1894 if (!page) {
1895 if (!*cached_page) {
1896 *cached_page = page_cache_alloc(mapping);
1897 if (!*cached_page)
1898 return NULL;
1900 err = add_to_page_cache(*cached_page, mapping,
1901 index, GFP_KERNEL);
1902 if (err == -EEXIST)
1903 goto repeat;
1904 if (err == 0) {
1905 page = *cached_page;
1906 page_cache_get(page);
1907 if (!pagevec_add(lru_pvec, page))
1908 __pagevec_lru_add(lru_pvec);
1909 *cached_page = NULL;
1912 return page;
1916 * The logic we want is
1918 * if suid or (sgid and xgrp)
1919 * remove privs
1921 int should_remove_suid(struct dentry *dentry)
1923 mode_t mode = dentry->d_inode->i_mode;
1924 int kill = 0;
1926 /* suid always must be killed */
1927 if (unlikely(mode & S_ISUID))
1928 kill = ATTR_KILL_SUID;
1931 * sgid without any exec bits is just a mandatory locking mark; leave
1932 * it alone. If some exec bits are set, it's a real sgid; kill it.
1934 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1935 kill |= ATTR_KILL_SGID;
1937 if (unlikely(kill && !capable(CAP_FSETID)))
1938 return kill;
1940 return 0;
1943 int __remove_suid(struct dentry *dentry, int kill)
1945 struct iattr newattrs;
1947 newattrs.ia_valid = ATTR_FORCE | kill;
1948 return notify_change(dentry, &newattrs);
1951 int remove_suid(struct dentry *dentry)
1953 int kill = should_remove_suid(dentry);
1955 if (unlikely(kill))
1956 return __remove_suid(dentry, kill);
1958 return 0;
1960 EXPORT_SYMBOL(remove_suid);
1962 size_t
1963 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1964 const struct iovec *iov, size_t base, size_t bytes)
1966 size_t copied = 0, left = 0;
1968 while (bytes) {
1969 char __user *buf = iov->iov_base + base;
1970 int copy = min(bytes, iov->iov_len - base);
1972 base = 0;
1973 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1974 copied += copy;
1975 bytes -= copy;
1976 vaddr += copy;
1977 iov++;
1979 if (unlikely(left))
1980 break;
1982 return copied - left;
1986 * Performs necessary checks before doing a write
1988 * Can adjust writing position or amount of bytes to write.
1989 * Returns appropriate error code that caller should return or
1990 * zero in case that write should be allowed.
1992 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1994 struct inode *inode = file->f_mapping->host;
1995 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1997 if (unlikely(*pos < 0))
1998 return -EINVAL;
2000 if (!isblk) {
2001 /* FIXME: this is for backwards compatibility with 2.4 */
2002 if (file->f_flags & O_APPEND)
2003 *pos = i_size_read(inode);
2005 if (limit != RLIM_INFINITY) {
2006 if (*pos >= limit) {
2007 send_sig(SIGXFSZ, current, 0);
2008 return -EFBIG;
2010 if (*count > limit - (typeof(limit))*pos) {
2011 *count = limit - (typeof(limit))*pos;
2017 * LFS rule
2019 if (unlikely(*pos + *count > MAX_NON_LFS &&
2020 !(file->f_flags & O_LARGEFILE))) {
2021 if (*pos >= MAX_NON_LFS) {
2022 send_sig(SIGXFSZ, current, 0);
2023 return -EFBIG;
2025 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2026 *count = MAX_NON_LFS - (unsigned long)*pos;
2031 * Are we about to exceed the fs block limit ?
2033 * If we have written data it becomes a short write. If we have
2034 * exceeded without writing data we send a signal and return EFBIG.
2035 * Linus frestrict idea will clean these up nicely..
2037 if (likely(!isblk)) {
2038 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2039 if (*count || *pos > inode->i_sb->s_maxbytes) {
2040 send_sig(SIGXFSZ, current, 0);
2041 return -EFBIG;
2043 /* zero-length writes at ->s_maxbytes are OK */
2046 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2047 *count = inode->i_sb->s_maxbytes - *pos;
2048 } else {
2049 #ifdef CONFIG_BLOCK
2050 loff_t isize;
2051 if (bdev_read_only(I_BDEV(inode)))
2052 return -EPERM;
2053 isize = i_size_read(inode);
2054 if (*pos >= isize) {
2055 if (*count || *pos > isize)
2056 return -ENOSPC;
2059 if (*pos + *count > isize)
2060 *count = isize - *pos;
2061 #else
2062 return -EPERM;
2063 #endif
2065 return 0;
2067 EXPORT_SYMBOL(generic_write_checks);
2069 ssize_t
2070 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2071 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2072 size_t count, size_t ocount)
2074 struct file *file = iocb->ki_filp;
2075 struct address_space *mapping = file->f_mapping;
2076 struct inode *inode = mapping->host;
2077 ssize_t written;
2079 if (count != ocount)
2080 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2082 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2083 if (written > 0) {
2084 loff_t end = pos + written;
2085 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2086 i_size_write(inode, end);
2087 mark_inode_dirty(inode);
2089 *ppos = end;
2093 * Sync the fs metadata but not the minor inode changes and
2094 * of course not the data as we did direct DMA for the IO.
2095 * i_mutex is held, which protects generic_osync_inode() from
2096 * livelocking.
2098 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2099 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2100 if (err < 0)
2101 written = err;
2103 if (written == count && !is_sync_kiocb(iocb))
2104 written = -EIOCBQUEUED;
2105 return written;
2107 EXPORT_SYMBOL(generic_file_direct_write);
2109 ssize_t
2110 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2111 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2112 size_t count, ssize_t written)
2114 struct file *file = iocb->ki_filp;
2115 struct address_space * mapping = file->f_mapping;
2116 const struct address_space_operations *a_ops = mapping->a_ops;
2117 struct inode *inode = mapping->host;
2118 long status = 0;
2119 struct page *page;
2120 struct page *cached_page = NULL;
2121 size_t bytes;
2122 struct pagevec lru_pvec;
2123 const struct iovec *cur_iov = iov; /* current iovec */
2124 size_t iov_base = 0; /* offset in the current iovec */
2125 char __user *buf;
2127 pagevec_init(&lru_pvec, 0);
2130 * handle partial DIO write. Adjust cur_iov if needed.
2132 if (likely(nr_segs == 1))
2133 buf = iov->iov_base + written;
2134 else {
2135 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2136 buf = cur_iov->iov_base + iov_base;
2139 do {
2140 unsigned long index;
2141 unsigned long offset;
2142 size_t copied;
2144 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2145 index = pos >> PAGE_CACHE_SHIFT;
2146 bytes = PAGE_CACHE_SIZE - offset;
2148 /* Limit the size of the copy to the caller's write size */
2149 bytes = min(bytes, count);
2152 * Limit the size of the copy to that of the current segment,
2153 * because fault_in_pages_readable() doesn't know how to walk
2154 * segments.
2156 bytes = min(bytes, cur_iov->iov_len - iov_base);
2159 * Bring in the user page that we will copy from _first_.
2160 * Otherwise there's a nasty deadlock on copying from the
2161 * same page as we're writing to, without it being marked
2162 * up-to-date.
2164 fault_in_pages_readable(buf, bytes);
2166 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2167 if (!page) {
2168 status = -ENOMEM;
2169 break;
2172 if (unlikely(bytes == 0)) {
2173 status = 0;
2174 copied = 0;
2175 goto zero_length_segment;
2178 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2179 if (unlikely(status)) {
2180 loff_t isize = i_size_read(inode);
2182 if (status != AOP_TRUNCATED_PAGE)
2183 unlock_page(page);
2184 page_cache_release(page);
2185 if (status == AOP_TRUNCATED_PAGE)
2186 continue;
2188 * prepare_write() may have instantiated a few blocks
2189 * outside i_size. Trim these off again.
2191 if (pos + bytes > isize)
2192 vmtruncate(inode, isize);
2193 break;
2195 if (likely(nr_segs == 1))
2196 copied = filemap_copy_from_user(page, offset,
2197 buf, bytes);
2198 else
2199 copied = filemap_copy_from_user_iovec(page, offset,
2200 cur_iov, iov_base, bytes);
2201 flush_dcache_page(page);
2202 status = a_ops->commit_write(file, page, offset, offset+bytes);
2203 if (status == AOP_TRUNCATED_PAGE) {
2204 page_cache_release(page);
2205 continue;
2207 zero_length_segment:
2208 if (likely(copied >= 0)) {
2209 if (!status)
2210 status = copied;
2212 if (status >= 0) {
2213 written += status;
2214 count -= status;
2215 pos += status;
2216 buf += status;
2217 if (unlikely(nr_segs > 1)) {
2218 filemap_set_next_iovec(&cur_iov,
2219 &iov_base, status);
2220 if (count)
2221 buf = cur_iov->iov_base +
2222 iov_base;
2223 } else {
2224 iov_base += status;
2228 if (unlikely(copied != bytes))
2229 if (status >= 0)
2230 status = -EFAULT;
2231 unlock_page(page);
2232 mark_page_accessed(page);
2233 page_cache_release(page);
2234 if (status < 0)
2235 break;
2236 balance_dirty_pages_ratelimited(mapping);
2237 cond_resched();
2238 } while (count);
2239 *ppos = pos;
2241 if (cached_page)
2242 page_cache_release(cached_page);
2245 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2247 if (likely(status >= 0)) {
2248 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2249 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2250 status = generic_osync_inode(inode, mapping,
2251 OSYNC_METADATA|OSYNC_DATA);
2256 * If we get here for O_DIRECT writes then we must have fallen through
2257 * to buffered writes (block instantiation inside i_size). So we sync
2258 * the file data here, to try to honour O_DIRECT expectations.
2260 if (unlikely(file->f_flags & O_DIRECT) && written)
2261 status = filemap_write_and_wait(mapping);
2263 pagevec_lru_add(&lru_pvec);
2264 return written ? written : status;
2266 EXPORT_SYMBOL(generic_file_buffered_write);
2268 static ssize_t
2269 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2270 unsigned long nr_segs, loff_t *ppos)
2272 struct file *file = iocb->ki_filp;
2273 struct address_space * mapping = file->f_mapping;
2274 size_t ocount; /* original count */
2275 size_t count; /* after file limit checks */
2276 struct inode *inode = mapping->host;
2277 unsigned long seg;
2278 loff_t pos;
2279 ssize_t written;
2280 ssize_t err;
2282 ocount = 0;
2283 for (seg = 0; seg < nr_segs; seg++) {
2284 const struct iovec *iv = &iov[seg];
2287 * If any segment has a negative length, or the cumulative
2288 * length ever wraps negative then return -EINVAL.
2290 ocount += iv->iov_len;
2291 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2292 return -EINVAL;
2293 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2294 continue;
2295 if (seg == 0)
2296 return -EFAULT;
2297 nr_segs = seg;
2298 ocount -= iv->iov_len; /* This segment is no good */
2299 break;
2302 count = ocount;
2303 pos = *ppos;
2305 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2307 /* We can write back this queue in page reclaim */
2308 current->backing_dev_info = mapping->backing_dev_info;
2309 written = 0;
2311 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2312 if (err)
2313 goto out;
2315 if (count == 0)
2316 goto out;
2318 err = remove_suid(file->f_dentry);
2319 if (err)
2320 goto out;
2322 file_update_time(file);
2324 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2325 if (unlikely(file->f_flags & O_DIRECT)) {
2326 loff_t endbyte;
2327 ssize_t written_buffered;
2329 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2330 ppos, count, ocount);
2331 if (written < 0 || written == count)
2332 goto out;
2334 * direct-io write to a hole: fall through to buffered I/O
2335 * for completing the rest of the request.
2337 pos += written;
2338 count -= written;
2339 written_buffered = generic_file_buffered_write(iocb, iov,
2340 nr_segs, pos, ppos, count,
2341 written);
2343 * If generic_file_buffered_write() retuned a synchronous error
2344 * then we want to return the number of bytes which were
2345 * direct-written, or the error code if that was zero. Note
2346 * that this differs from normal direct-io semantics, which
2347 * will return -EFOO even if some bytes were written.
2349 if (written_buffered < 0) {
2350 err = written_buffered;
2351 goto out;
2355 * We need to ensure that the page cache pages are written to
2356 * disk and invalidated to preserve the expected O_DIRECT
2357 * semantics.
2359 endbyte = pos + written_buffered - written - 1;
2360 err = do_sync_file_range(file, pos, endbyte,
2361 SYNC_FILE_RANGE_WAIT_BEFORE|
2362 SYNC_FILE_RANGE_WRITE|
2363 SYNC_FILE_RANGE_WAIT_AFTER);
2364 if (err == 0) {
2365 written = written_buffered;
2366 invalidate_mapping_pages(mapping,
2367 pos >> PAGE_CACHE_SHIFT,
2368 endbyte >> PAGE_CACHE_SHIFT);
2369 } else {
2371 * We don't know how much we wrote, so just return
2372 * the number of bytes which were direct-written
2375 } else {
2376 written = generic_file_buffered_write(iocb, iov, nr_segs,
2377 pos, ppos, count, written);
2379 out:
2380 current->backing_dev_info = NULL;
2381 return written ? written : err;
2384 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2385 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2387 struct file *file = iocb->ki_filp;
2388 struct address_space *mapping = file->f_mapping;
2389 struct inode *inode = mapping->host;
2390 ssize_t ret;
2392 BUG_ON(iocb->ki_pos != pos);
2394 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2395 &iocb->ki_pos);
2397 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2398 ssize_t err;
2400 err = sync_page_range_nolock(inode, mapping, pos, ret);
2401 if (err < 0)
2402 ret = err;
2404 return ret;
2406 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2408 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2409 unsigned long nr_segs, loff_t pos)
2411 struct file *file = iocb->ki_filp;
2412 struct address_space *mapping = file->f_mapping;
2413 struct inode *inode = mapping->host;
2414 ssize_t ret;
2416 BUG_ON(iocb->ki_pos != pos);
2418 mutex_lock(&inode->i_mutex);
2419 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2420 &iocb->ki_pos);
2421 mutex_unlock(&inode->i_mutex);
2423 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2424 ssize_t err;
2426 err = sync_page_range(inode, mapping, pos, ret);
2427 if (err < 0)
2428 ret = err;
2430 return ret;
2432 EXPORT_SYMBOL(generic_file_aio_write);
2434 #ifdef CONFIG_DIRECTIO
2436 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2437 * went wrong during pagecache shootdown.
2439 static ssize_t
2440 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2441 loff_t offset, unsigned long nr_segs)
2443 struct file *file = iocb->ki_filp;
2444 struct address_space *mapping = file->f_mapping;
2445 ssize_t retval;
2446 size_t write_len = 0;
2449 * If it's a write, unmap all mmappings of the file up-front. This
2450 * will cause any pte dirty bits to be propagated into the pageframes
2451 * for the subsequent filemap_write_and_wait().
2453 if (rw == WRITE) {
2454 write_len = iov_length(iov, nr_segs);
2455 if (mapping_mapped(mapping))
2456 unmap_mapping_range(mapping, offset, write_len, 0);
2459 retval = filemap_write_and_wait(mapping);
2460 if (retval == 0) {
2461 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2462 offset, nr_segs);
2463 if (rw == WRITE && mapping->nrpages) {
2464 pgoff_t end = (offset + write_len - 1)
2465 >> PAGE_CACHE_SHIFT;
2466 int err = invalidate_inode_pages2_range(mapping,
2467 offset >> PAGE_CACHE_SHIFT, end);
2468 if (err)
2469 retval = err;
2472 return retval;
2474 #endif
2477 * try_to_release_page() - release old fs-specific metadata on a page
2479 * @page: the page which the kernel is trying to free
2480 * @gfp_mask: memory allocation flags (and I/O mode)
2482 * The address_space is to try to release any data against the page
2483 * (presumably at page->private). If the release was successful, return `1'.
2484 * Otherwise return zero.
2486 * The @gfp_mask argument specifies whether I/O may be performed to release
2487 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2489 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2491 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2493 #if 0 // mask by Victor Yu. 02-12-2007
2494 struct address_space * const mapping = page->mapping;
2495 #else
2496 struct address_space * const mapping = page->u.xx.mapping;
2497 #endif
2499 BUG_ON(!PageLocked(page));
2500 if (PageWriteback(page))
2501 return 0;
2503 if (mapping && mapping->a_ops->releasepage)
2504 return mapping->a_ops->releasepage(page, gfp_mask);
2505 return try_to_free_buffers(page);
2508 EXPORT_SYMBOL(try_to_release_page);