MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / kernel / fork.c
blob2adf02ff3975d23edf04add5737b64fd01d8af8b
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51 #include <linux/oom.h>
53 #include <asm/pgtable.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/cacheflush.h>
58 #include <asm/tlbflush.h>
61 * Protected counters by write_lock_irq(&tasklist_lock)
63 unsigned long total_forks; /* Handle normal Linux uptimes. */
64 int nr_threads; /* The idle threads do not count.. */
66 int max_threads; /* tunable limit on nr_threads */
68 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
72 int nr_processes(void)
74 int cpu;
75 int total = 0;
77 for_each_online_cpu(cpu)
78 total += per_cpu(process_counts, cpu);
80 return total;
83 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
84 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
85 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
86 static kmem_cache_t *task_struct_cachep;
87 #endif
89 /* SLAB cache for signal_struct structures (tsk->signal) */
90 static kmem_cache_t *signal_cachep;
92 /* SLAB cache for sighand_struct structures (tsk->sighand) */
93 kmem_cache_t *sighand_cachep;
95 /* SLAB cache for files_struct structures (tsk->files) */
96 kmem_cache_t *files_cachep;
98 /* SLAB cache for fs_struct structures (tsk->fs) */
99 kmem_cache_t *fs_cachep;
101 /* SLAB cache for vm_area_struct structures */
102 kmem_cache_t *vm_area_cachep;
104 /* SLAB cache for mm_struct structures (tsk->mm) */
105 static kmem_cache_t *mm_cachep;
107 void free_task(struct task_struct *tsk)
109 free_thread_info(tsk->thread_info);
110 rt_mutex_debug_task_free(tsk);
111 free_task_struct(tsk);
113 EXPORT_SYMBOL(free_task);
115 void __put_task_struct(struct task_struct *tsk)
117 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
118 WARN_ON(atomic_read(&tsk->usage));
119 WARN_ON(tsk == current);
121 security_task_free(tsk);
122 free_uid(tsk->user);
123 put_group_info(tsk->group_info);
124 delayacct_tsk_free(tsk);
126 if (!profile_handoff_task(tsk))
127 free_task(tsk);
130 void __init fork_init(unsigned long mempages)
132 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
133 #ifndef ARCH_MIN_TASKALIGN
134 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
135 #endif
136 /* create a slab on which task_structs can be allocated */
137 task_struct_cachep =
138 kmem_cache_create("task_struct", sizeof(struct task_struct),
139 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
140 #endif
143 * The default maximum number of threads is set to a safe
144 * value: the thread structures can take up at most half
145 * of memory.
147 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
150 * we need to allow at least 20 threads to boot a system
152 if(max_threads < 20)
153 max_threads = 20;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
156 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
157 init_task.signal->rlim[RLIMIT_SIGPENDING] =
158 init_task.signal->rlim[RLIMIT_NPROC];
161 static struct task_struct *dup_task_struct(struct task_struct *orig)
163 struct task_struct *tsk;
164 struct thread_info *ti;
166 prepare_to_copy(orig);
168 tsk = alloc_task_struct();
169 if (!tsk)
170 return NULL;
172 ti = alloc_thread_info(tsk);
173 if (!ti) {
174 free_task_struct(tsk);
175 return NULL;
178 *tsk = *orig;
179 tsk->thread_info = ti;
180 setup_thread_stack(tsk, orig);
182 #ifdef CONFIG_CC_STACKPROTECTOR
183 tsk->stack_canary = get_random_int();
184 #endif
186 /* One for us, one for whoever does the "release_task()" (usually parent) */
187 atomic_set(&tsk->usage,2);
188 atomic_set(&tsk->fs_excl, 0);
189 #ifdef CONFIG_BLK_DEV_IO_TRACE
190 tsk->btrace_seq = 0;
191 #endif
192 tsk->splice_pipe = NULL;
193 return tsk;
196 #ifdef CONFIG_MMU
197 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
199 struct vm_area_struct *mpnt, *tmp, **pprev;
200 struct rb_node **rb_link, *rb_parent;
201 int retval;
202 unsigned long charge;
203 struct mempolicy *pol;
205 down_write(&oldmm->mmap_sem);
206 flush_cache_mm(oldmm);
208 * Not linked in yet - no deadlock potential:
210 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
212 mm->locked_vm = 0;
213 mm->mmap = NULL;
214 mm->mmap_cache = NULL;
215 mm->free_area_cache = oldmm->mmap_base;
216 mm->cached_hole_size = ~0UL;
217 mm->map_count = 0;
218 cpus_clear(mm->cpu_vm_mask);
219 mm->mm_rb = RB_ROOT;
220 rb_link = &mm->mm_rb.rb_node;
221 rb_parent = NULL;
222 pprev = &mm->mmap;
224 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
225 struct file *file;
227 if (mpnt->vm_flags & VM_DONTCOPY) {
228 long pages = vma_pages(mpnt);
229 mm->total_vm -= pages;
230 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
231 -pages);
232 continue;
234 charge = 0;
235 if (mpnt->vm_flags & VM_ACCOUNT) {
236 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
237 if (security_vm_enough_memory(len))
238 goto fail_nomem;
239 charge = len;
241 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
242 if (!tmp)
243 goto fail_nomem;
244 *tmp = *mpnt;
245 pol = mpol_copy(vma_policy(mpnt));
246 retval = PTR_ERR(pol);
247 if (IS_ERR(pol))
248 goto fail_nomem_policy;
249 vma_set_policy(tmp, pol);
250 tmp->vm_flags &= ~VM_LOCKED;
251 tmp->vm_mm = mm;
252 tmp->vm_next = NULL;
253 anon_vma_link(tmp);
254 file = tmp->vm_file;
255 if (file) {
256 struct inode *inode = file->f_dentry->d_inode;
257 get_file(file);
258 if (tmp->vm_flags & VM_DENYWRITE)
259 atomic_dec(&inode->i_writecount);
261 /* insert tmp into the share list, just after mpnt */
262 spin_lock(&file->f_mapping->i_mmap_lock);
263 tmp->vm_truncate_count = mpnt->vm_truncate_count;
264 flush_dcache_mmap_lock(file->f_mapping);
265 vma_prio_tree_add(tmp, mpnt);
266 flush_dcache_mmap_unlock(file->f_mapping);
267 spin_unlock(&file->f_mapping->i_mmap_lock);
271 * Link in the new vma and copy the page table entries.
273 *pprev = tmp;
274 pprev = &tmp->vm_next;
276 __vma_link_rb(mm, tmp, rb_link, rb_parent);
277 rb_link = &tmp->vm_rb.rb_right;
278 rb_parent = &tmp->vm_rb;
280 mm->map_count++;
281 retval = copy_page_range(mm, oldmm, mpnt);
283 if (tmp->vm_ops && tmp->vm_ops->open)
284 tmp->vm_ops->open(tmp);
286 if (retval)
287 goto out;
289 retval = 0;
290 out:
291 up_write(&mm->mmap_sem);
292 flush_tlb_mm(oldmm);
293 up_write(&oldmm->mmap_sem);
294 return retval;
295 fail_nomem_policy:
296 kmem_cache_free(vm_area_cachep, tmp);
297 fail_nomem:
298 retval = -ENOMEM;
299 vm_unacct_memory(charge);
300 goto out;
303 static inline int mm_alloc_pgd(struct mm_struct * mm)
305 mm->pgd = pgd_alloc(mm);
306 if (unlikely(!mm->pgd))
307 return -ENOMEM;
308 return 0;
311 static inline void mm_free_pgd(struct mm_struct * mm)
313 pgd_free(mm->pgd);
315 #else
316 #define dup_mmap(mm, oldmm) (0)
317 #define mm_alloc_pgd(mm) (0)
318 #define mm_free_pgd(mm)
319 #endif /* CONFIG_MMU */
321 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
323 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
324 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
326 #include <linux/init_task.h>
328 static struct mm_struct * mm_init(struct mm_struct * mm)
330 atomic_set(&mm->mm_users, 1);
331 atomic_set(&mm->mm_count, 1);
332 init_rwsem(&mm->mmap_sem);
333 INIT_LIST_HEAD(&mm->mmlist);
334 mm->core_waiters = 0;
335 mm->nr_ptes = 0;
336 set_mm_counter(mm, file_rss, 0);
337 set_mm_counter(mm, anon_rss, 0);
338 spin_lock_init(&mm->page_table_lock);
339 rwlock_init(&mm->ioctx_list_lock);
340 mm->ioctx_list = NULL;
341 mm->free_area_cache = TASK_UNMAPPED_BASE;
342 mm->cached_hole_size = ~0UL;
344 if (likely(!mm_alloc_pgd(mm))) {
345 mm->def_flags = 0;
346 return mm;
348 free_mm(mm);
349 return NULL;
353 * Allocate and initialize an mm_struct.
355 struct mm_struct * mm_alloc(void)
357 struct mm_struct * mm;
359 mm = allocate_mm();
360 if (mm) {
361 memset(mm, 0, sizeof(*mm));
362 mm = mm_init(mm);
364 return mm;
368 * Called when the last reference to the mm
369 * is dropped: either by a lazy thread or by
370 * mmput. Free the page directory and the mm.
372 void fastcall __mmdrop(struct mm_struct *mm)
374 BUG_ON(mm == &init_mm);
375 mm_free_pgd(mm);
376 destroy_context(mm);
377 free_mm(mm);
381 * Decrement the use count and release all resources for an mm.
383 void mmput(struct mm_struct *mm)
385 might_sleep();
387 if (atomic_dec_and_test(&mm->mm_users)) {
388 exit_aio(mm);
389 exit_mmap(mm);
390 if (!list_empty(&mm->mmlist)) {
391 spin_lock(&mmlist_lock);
392 list_del(&mm->mmlist);
393 spin_unlock(&mmlist_lock);
395 put_swap_token(mm);
396 mmdrop(mm);
399 EXPORT_SYMBOL_GPL(mmput);
402 * get_task_mm - acquire a reference to the task's mm
404 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
405 * this kernel workthread has transiently adopted a user mm with use_mm,
406 * to do its AIO) is not set and if so returns a reference to it, after
407 * bumping up the use count. User must release the mm via mmput()
408 * after use. Typically used by /proc and ptrace.
410 struct mm_struct *get_task_mm(struct task_struct *task)
412 struct mm_struct *mm;
414 task_lock(task);
415 mm = task->mm;
416 if (mm) {
417 if (task->flags & PF_BORROWED_MM)
418 mm = NULL;
419 else
420 atomic_inc(&mm->mm_users);
422 task_unlock(task);
423 return mm;
425 EXPORT_SYMBOL_GPL(get_task_mm);
427 /* Please note the differences between mmput and mm_release.
428 * mmput is called whenever we stop holding onto a mm_struct,
429 * error success whatever.
431 * mm_release is called after a mm_struct has been removed
432 * from the current process.
434 * This difference is important for error handling, when we
435 * only half set up a mm_struct for a new process and need to restore
436 * the old one. Because we mmput the new mm_struct before
437 * restoring the old one. . .
438 * Eric Biederman 10 January 1998
440 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
442 struct completion *vfork_done = tsk->vfork_done;
444 /* Get rid of any cached register state */
445 deactivate_mm(tsk, mm);
447 /* notify parent sleeping on vfork() */
448 if (vfork_done) {
449 tsk->vfork_done = NULL;
450 complete(vfork_done);
452 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
453 u32 __user * tidptr = tsk->clear_child_tid;
454 tsk->clear_child_tid = NULL;
457 * We don't check the error code - if userspace has
458 * not set up a proper pointer then tough luck.
460 put_user(0, tidptr);
461 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
466 * Allocate a new mm structure and copy contents from the
467 * mm structure of the passed in task structure.
469 static struct mm_struct *dup_mm(struct task_struct *tsk)
471 struct mm_struct *mm, *oldmm = current->mm;
472 int err;
474 if (!oldmm)
475 return NULL;
477 mm = allocate_mm();
478 if (!mm)
479 goto fail_nomem;
481 memcpy(mm, oldmm, sizeof(*mm));
483 if (!mm_init(mm))
484 goto fail_nomem;
486 if (init_new_context(tsk, mm))
487 goto fail_nocontext;
489 err = dup_mmap(mm, oldmm);
490 if (err)
491 goto free_pt;
493 mm->hiwater_rss = get_mm_rss(mm);
494 mm->hiwater_vm = mm->total_vm;
496 return mm;
498 free_pt:
499 mmput(mm);
501 fail_nomem:
502 return NULL;
504 fail_nocontext:
506 * If init_new_context() failed, we cannot use mmput() to free the mm
507 * because it calls destroy_context()
509 mm_free_pgd(mm);
510 free_mm(mm);
511 return NULL;
514 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
516 struct mm_struct * mm, *oldmm;
517 int retval;
519 tsk->min_flt = tsk->maj_flt = 0;
520 tsk->nvcsw = tsk->nivcsw = 0;
522 tsk->mm = NULL;
523 tsk->active_mm = NULL;
526 * Are we cloning a kernel thread?
528 * We need to steal a active VM for that..
530 oldmm = current->mm;
531 if (!oldmm)
532 return 0;
534 if (clone_flags & CLONE_VM) {
535 atomic_inc(&oldmm->mm_users);
536 mm = oldmm;
537 goto good_mm;
540 retval = -ENOMEM;
541 mm = dup_mm(tsk);
542 if (!mm)
543 goto fail_nomem;
545 good_mm:
546 tsk->mm = mm;
547 tsk->active_mm = mm;
548 return 0;
550 fail_nomem:
551 return retval;
554 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
556 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
557 /* We don't need to lock fs - think why ;-) */
558 if (fs) {
559 atomic_set(&fs->count, 1);
560 rwlock_init(&fs->lock);
561 fs->umask = old->umask;
562 read_lock(&old->lock);
563 fs->rootmnt = mntget(old->rootmnt);
564 fs->root = dget(old->root);
565 fs->pwdmnt = mntget(old->pwdmnt);
566 fs->pwd = dget(old->pwd);
567 if (old->altroot) {
568 fs->altrootmnt = mntget(old->altrootmnt);
569 fs->altroot = dget(old->altroot);
570 } else {
571 fs->altrootmnt = NULL;
572 fs->altroot = NULL;
574 read_unlock(&old->lock);
576 return fs;
579 struct fs_struct *copy_fs_struct(struct fs_struct *old)
581 return __copy_fs_struct(old);
584 EXPORT_SYMBOL_GPL(copy_fs_struct);
586 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
588 if (clone_flags & CLONE_FS) {
589 atomic_inc(&current->fs->count);
590 return 0;
592 tsk->fs = __copy_fs_struct(current->fs);
593 if (!tsk->fs)
594 return -ENOMEM;
595 return 0;
598 static int count_open_files(struct fdtable *fdt)
600 int size = fdt->max_fdset;
601 int i;
603 /* Find the last open fd */
604 for (i = size/(8*sizeof(long)); i > 0; ) {
605 if (fdt->open_fds->fds_bits[--i])
606 break;
608 i = (i+1) * 8 * sizeof(long);
609 return i;
612 static struct files_struct *alloc_files(void)
614 struct files_struct *newf;
615 struct fdtable *fdt;
617 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
618 if (!newf)
619 goto out;
621 atomic_set(&newf->count, 1);
623 spin_lock_init(&newf->file_lock);
624 newf->next_fd = 0;
625 fdt = &newf->fdtab;
626 fdt->max_fds = NR_OPEN_DEFAULT;
627 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
628 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
629 fdt->open_fds = (fd_set *)&newf->open_fds_init;
630 fdt->fd = &newf->fd_array[0];
631 INIT_RCU_HEAD(&fdt->rcu);
632 fdt->free_files = NULL;
633 fdt->next = NULL;
634 rcu_assign_pointer(newf->fdt, fdt);
635 out:
636 return newf;
640 * Allocate a new files structure and copy contents from the
641 * passed in files structure.
642 * errorp will be valid only when the returned files_struct is NULL.
644 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
646 struct files_struct *newf;
647 struct file **old_fds, **new_fds;
648 int open_files, size, i, expand;
649 struct fdtable *old_fdt, *new_fdt;
651 *errorp = -ENOMEM;
652 newf = alloc_files();
653 if (!newf)
654 goto out;
656 spin_lock(&oldf->file_lock);
657 old_fdt = files_fdtable(oldf);
658 new_fdt = files_fdtable(newf);
659 size = old_fdt->max_fdset;
660 open_files = count_open_files(old_fdt);
661 expand = 0;
664 * Check whether we need to allocate a larger fd array or fd set.
665 * Note: we're not a clone task, so the open count won't change.
667 if (open_files > new_fdt->max_fdset) {
668 new_fdt->max_fdset = 0;
669 expand = 1;
671 if (open_files > new_fdt->max_fds) {
672 new_fdt->max_fds = 0;
673 expand = 1;
676 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
677 if (expand) {
678 spin_unlock(&oldf->file_lock);
679 spin_lock(&newf->file_lock);
680 *errorp = expand_files(newf, open_files-1);
681 spin_unlock(&newf->file_lock);
682 if (*errorp < 0)
683 goto out_release;
684 new_fdt = files_fdtable(newf);
686 * Reacquire the oldf lock and a pointer to its fd table
687 * who knows it may have a new bigger fd table. We need
688 * the latest pointer.
690 spin_lock(&oldf->file_lock);
691 old_fdt = files_fdtable(oldf);
694 old_fds = old_fdt->fd;
695 new_fds = new_fdt->fd;
697 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
698 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
700 for (i = open_files; i != 0; i--) {
701 struct file *f = *old_fds++;
702 if (f) {
703 get_file(f);
704 } else {
706 * The fd may be claimed in the fd bitmap but not yet
707 * instantiated in the files array if a sibling thread
708 * is partway through open(). So make sure that this
709 * fd is available to the new process.
711 FD_CLR(open_files - i, new_fdt->open_fds);
713 rcu_assign_pointer(*new_fds++, f);
715 spin_unlock(&oldf->file_lock);
717 /* compute the remainder to be cleared */
718 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
720 /* This is long word aligned thus could use a optimized version */
721 memset(new_fds, 0, size);
723 if (new_fdt->max_fdset > open_files) {
724 int left = (new_fdt->max_fdset-open_files)/8;
725 int start = open_files / (8 * sizeof(unsigned long));
727 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
728 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
731 out:
732 return newf;
734 out_release:
735 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
736 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
737 free_fd_array(new_fdt->fd, new_fdt->max_fds);
738 kmem_cache_free(files_cachep, newf);
739 return NULL;
742 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
744 struct files_struct *oldf, *newf;
745 int error = 0;
748 * A background process may not have any files ...
750 oldf = current->files;
751 if (!oldf)
752 goto out;
754 if (clone_flags & CLONE_FILES) {
755 atomic_inc(&oldf->count);
756 goto out;
760 * Note: we may be using current for both targets (See exec.c)
761 * This works because we cache current->files (old) as oldf. Don't
762 * break this.
764 tsk->files = NULL;
765 newf = dup_fd(oldf, &error);
766 if (!newf)
767 goto out;
769 tsk->files = newf;
770 error = 0;
771 out:
772 return error;
776 * Helper to unshare the files of the current task.
777 * We don't want to expose copy_files internals to
778 * the exec layer of the kernel.
781 int unshare_files(void)
783 struct files_struct *files = current->files;
784 int rc;
786 BUG_ON(!files);
788 /* This can race but the race causes us to copy when we don't
789 need to and drop the copy */
790 if(atomic_read(&files->count) == 1)
792 atomic_inc(&files->count);
793 return 0;
795 rc = copy_files(0, current);
796 if(rc)
797 current->files = files;
798 return rc;
801 EXPORT_SYMBOL(unshare_files);
803 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
805 struct sighand_struct *sig;
807 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
808 atomic_inc(&current->sighand->count);
809 return 0;
811 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
812 rcu_assign_pointer(tsk->sighand, sig);
813 if (!sig)
814 return -ENOMEM;
815 atomic_set(&sig->count, 1);
816 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
817 return 0;
820 void __cleanup_sighand(struct sighand_struct *sighand)
822 if (atomic_dec_and_test(&sighand->count))
823 kmem_cache_free(sighand_cachep, sighand);
826 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
828 struct signal_struct *sig;
829 int ret;
831 if (clone_flags & CLONE_THREAD) {
832 atomic_inc(&current->signal->count);
833 atomic_inc(&current->signal->live);
834 taskstats_tgid_alloc(current);
835 return 0;
837 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
838 tsk->signal = sig;
839 if (!sig)
840 return -ENOMEM;
842 ret = copy_thread_group_keys(tsk);
843 if (ret < 0) {
844 kmem_cache_free(signal_cachep, sig);
845 return ret;
848 atomic_set(&sig->count, 1);
849 atomic_set(&sig->live, 1);
850 init_waitqueue_head(&sig->wait_chldexit);
851 sig->flags = 0;
852 sig->group_exit_code = 0;
853 sig->group_exit_task = NULL;
854 sig->group_stop_count = 0;
855 sig->curr_target = NULL;
856 init_sigpending(&sig->shared_pending);
857 INIT_LIST_HEAD(&sig->posix_timers);
859 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
860 sig->it_real_incr.tv64 = 0;
861 sig->real_timer.function = it_real_fn;
862 sig->tsk = tsk;
864 sig->it_virt_expires = cputime_zero;
865 sig->it_virt_incr = cputime_zero;
866 sig->it_prof_expires = cputime_zero;
867 sig->it_prof_incr = cputime_zero;
869 sig->leader = 0; /* session leadership doesn't inherit */
870 sig->tty_old_pgrp = 0;
872 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
873 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
874 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
875 sig->sched_time = 0;
876 INIT_LIST_HEAD(&sig->cpu_timers[0]);
877 INIT_LIST_HEAD(&sig->cpu_timers[1]);
878 INIT_LIST_HEAD(&sig->cpu_timers[2]);
879 taskstats_tgid_init(sig);
881 task_lock(current->group_leader);
882 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
883 task_unlock(current->group_leader);
885 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
887 * New sole thread in the process gets an expiry time
888 * of the whole CPU time limit.
890 tsk->it_prof_expires =
891 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
893 acct_init_pacct(&sig->pacct);
895 return 0;
898 void __cleanup_signal(struct signal_struct *sig)
900 exit_thread_group_keys(sig);
901 kmem_cache_free(signal_cachep, sig);
904 static inline void cleanup_signal(struct task_struct *tsk)
906 struct signal_struct *sig = tsk->signal;
908 atomic_dec(&sig->live);
910 if (atomic_dec_and_test(&sig->count))
911 __cleanup_signal(sig);
914 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
916 unsigned long new_flags = p->flags;
918 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
919 new_flags |= PF_FORKNOEXEC;
920 if (!(clone_flags & CLONE_PTRACE))
921 p->ptrace = 0;
922 p->flags = new_flags;
925 asmlinkage long sys_set_tid_address(int __user *tidptr)
927 current->clear_child_tid = tidptr;
929 return current->pid;
932 static inline void rt_mutex_init_task(struct task_struct *p)
934 #ifdef CONFIG_RT_MUTEXES
935 spin_lock_init(&p->pi_lock);
936 plist_head_init(&p->pi_waiters, &p->pi_lock);
937 p->pi_blocked_on = NULL;
938 #endif
942 * This creates a new process as a copy of the old one,
943 * but does not actually start it yet.
945 * It copies the registers, and all the appropriate
946 * parts of the process environment (as per the clone
947 * flags). The actual kick-off is left to the caller.
949 static struct task_struct *copy_process(unsigned long clone_flags,
950 unsigned long stack_start,
951 struct pt_regs *regs,
952 unsigned long stack_size,
953 int __user *parent_tidptr,
954 int __user *child_tidptr,
955 int pid)
957 int retval;
958 struct task_struct *p = NULL;
960 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
961 return ERR_PTR(-EINVAL);
964 * Thread groups must share signals as well, and detached threads
965 * can only be started up within the thread group.
967 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
968 return ERR_PTR(-EINVAL);
971 * Shared signal handlers imply shared VM. By way of the above,
972 * thread groups also imply shared VM. Blocking this case allows
973 * for various simplifications in other code.
975 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
976 return ERR_PTR(-EINVAL);
978 retval = security_task_create(clone_flags);
979 if (retval)
980 goto fork_out;
982 retval = -ENOMEM;
983 p = dup_task_struct(current);
984 if (!p)
985 goto fork_out;
987 rt_mutex_init_task(p);
989 #ifdef CONFIG_TRACE_IRQFLAGS
990 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
991 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
992 #endif
993 retval = -EAGAIN;
994 if (atomic_read(&p->user->processes) >=
995 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
996 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
997 p->user != &root_user)
998 goto bad_fork_free;
1001 atomic_inc(&p->user->__count);
1002 atomic_inc(&p->user->processes);
1003 get_group_info(p->group_info);
1006 * If multiple threads are within copy_process(), then this check
1007 * triggers too late. This doesn't hurt, the check is only there
1008 * to stop root fork bombs.
1010 if (nr_threads >= max_threads)
1011 goto bad_fork_cleanup_count;
1013 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1014 goto bad_fork_cleanup_count;
1016 if (p->binfmt && !try_module_get(p->binfmt->module))
1017 goto bad_fork_cleanup_put_domain;
1019 p->did_exec = 0;
1020 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1021 copy_flags(clone_flags, p);
1022 p->pid = pid;
1023 retval = -EFAULT;
1024 if (clone_flags & CLONE_PARENT_SETTID)
1025 if (put_user(p->pid, parent_tidptr))
1026 goto bad_fork_cleanup_delays_binfmt;
1028 INIT_LIST_HEAD(&p->children);
1029 INIT_LIST_HEAD(&p->sibling);
1030 p->vfork_done = NULL;
1031 spin_lock_init(&p->alloc_lock);
1033 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1034 init_sigpending(&p->pending);
1036 p->utime = cputime_zero;
1037 p->stime = cputime_zero;
1038 p->sched_time = 0;
1039 p->rchar = 0; /* I/O counter: bytes read */
1040 p->wchar = 0; /* I/O counter: bytes written */
1041 p->syscr = 0; /* I/O counter: read syscalls */
1042 p->syscw = 0; /* I/O counter: write syscalls */
1043 acct_clear_integrals(p);
1045 p->it_virt_expires = cputime_zero;
1046 p->it_prof_expires = cputime_zero;
1047 p->it_sched_expires = 0;
1048 INIT_LIST_HEAD(&p->cpu_timers[0]);
1049 INIT_LIST_HEAD(&p->cpu_timers[1]);
1050 INIT_LIST_HEAD(&p->cpu_timers[2]);
1052 p->lock_depth = -1; /* -1 = no lock */
1053 do_posix_clock_monotonic_gettime(&p->start_time);
1054 p->security = NULL;
1055 p->io_context = NULL;
1056 p->io_wait = NULL;
1057 p->audit_context = NULL;
1058 cpuset_fork(p);
1059 #ifdef CONFIG_NUMA
1060 p->mempolicy = mpol_copy(p->mempolicy);
1061 if (IS_ERR(p->mempolicy)) {
1062 retval = PTR_ERR(p->mempolicy);
1063 p->mempolicy = NULL;
1064 goto bad_fork_cleanup_cpuset;
1066 mpol_fix_fork_child_flag(p);
1067 #endif
1068 #ifdef CONFIG_TRACE_IRQFLAGS
1069 p->irq_events = 0;
1070 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1071 p->hardirqs_enabled = 1;
1072 #else
1073 p->hardirqs_enabled = 0;
1074 #endif
1075 p->hardirq_enable_ip = 0;
1076 p->hardirq_enable_event = 0;
1077 p->hardirq_disable_ip = _THIS_IP_;
1078 p->hardirq_disable_event = 0;
1079 p->softirqs_enabled = 1;
1080 p->softirq_enable_ip = _THIS_IP_;
1081 p->softirq_enable_event = 0;
1082 p->softirq_disable_ip = 0;
1083 p->softirq_disable_event = 0;
1084 p->hardirq_context = 0;
1085 p->softirq_context = 0;
1086 #endif
1087 #ifdef CONFIG_LOCKDEP
1088 p->lockdep_depth = 0; /* no locks held yet */
1089 p->curr_chain_key = 0;
1090 p->lockdep_recursion = 0;
1091 #endif
1093 #ifdef CONFIG_DEBUG_MUTEXES
1094 p->blocked_on = NULL; /* not blocked yet */
1095 #endif
1097 p->tgid = p->pid;
1098 if (clone_flags & CLONE_THREAD)
1099 p->tgid = current->tgid;
1101 if ((retval = security_task_alloc(p)))
1102 goto bad_fork_cleanup_policy;
1103 if ((retval = audit_alloc(p)))
1104 goto bad_fork_cleanup_security;
1105 /* copy all the process information */
1106 if ((retval = copy_semundo(clone_flags, p)))
1107 goto bad_fork_cleanup_audit;
1108 if ((retval = copy_files(clone_flags, p)))
1109 goto bad_fork_cleanup_semundo;
1110 if ((retval = copy_fs(clone_flags, p)))
1111 goto bad_fork_cleanup_files;
1112 if ((retval = copy_sighand(clone_flags, p)))
1113 goto bad_fork_cleanup_fs;
1114 if ((retval = copy_signal(clone_flags, p)))
1115 goto bad_fork_cleanup_sighand;
1116 if ((retval = copy_mm(clone_flags, p)))
1117 goto bad_fork_cleanup_signal;
1118 if ((retval = copy_keys(clone_flags, p)))
1119 goto bad_fork_cleanup_mm;
1120 if ((retval = copy_namespaces(clone_flags, p)))
1121 goto bad_fork_cleanup_keys;
1122 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1123 if (retval)
1124 goto bad_fork_cleanup_namespaces;
1126 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1128 * Clear TID on mm_release()?
1130 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1131 p->robust_list = NULL;
1132 #ifdef CONFIG_COMPAT
1133 p->compat_robust_list = NULL;
1134 #endif
1135 INIT_LIST_HEAD(&p->pi_state_list);
1136 p->pi_state_cache = NULL;
1139 * sigaltstack should be cleared when sharing the same VM
1141 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1142 p->sas_ss_sp = p->sas_ss_size = 0;
1145 * Syscall tracing should be turned off in the child regardless
1146 * of CLONE_PTRACE.
1148 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1149 #ifdef TIF_SYSCALL_EMU
1150 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1151 #endif
1153 /* Our parent execution domain becomes current domain
1154 These must match for thread signalling to apply */
1155 p->parent_exec_id = p->self_exec_id;
1157 /* ok, now we should be set up.. */
1158 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1159 p->pdeath_signal = 0;
1160 p->exit_state = 0;
1162 if (p->oomkilladj == OOM_DISABLE_NOINHERIT)
1163 p->oomkilladj = 0;
1166 * Ok, make it visible to the rest of the system.
1167 * We dont wake it up yet.
1169 p->group_leader = p;
1170 INIT_LIST_HEAD(&p->thread_group);
1171 INIT_LIST_HEAD(&p->ptrace_children);
1172 INIT_LIST_HEAD(&p->ptrace_list);
1174 /* Perform scheduler related setup. Assign this task to a CPU. */
1175 sched_fork(p, clone_flags);
1177 /* Need tasklist lock for parent etc handling! */
1178 write_lock_irq(&tasklist_lock);
1180 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1181 p->ioprio = current->ioprio;
1184 * The task hasn't been attached yet, so its cpus_allowed mask will
1185 * not be changed, nor will its assigned CPU.
1187 * The cpus_allowed mask of the parent may have changed after it was
1188 * copied first time - so re-copy it here, then check the child's CPU
1189 * to ensure it is on a valid CPU (and if not, just force it back to
1190 * parent's CPU). This avoids alot of nasty races.
1192 p->cpus_allowed = current->cpus_allowed;
1193 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1194 !cpu_online(task_cpu(p))))
1195 set_task_cpu(p, smp_processor_id());
1197 /* CLONE_PARENT re-uses the old parent */
1198 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1199 p->real_parent = current->real_parent;
1200 else
1201 p->real_parent = current;
1202 p->parent = p->real_parent;
1204 spin_lock(&current->sighand->siglock);
1207 * Process group and session signals need to be delivered to just the
1208 * parent before the fork or both the parent and the child after the
1209 * fork. Restart if a signal comes in before we add the new process to
1210 * it's process group.
1211 * A fatal signal pending means that current will exit, so the new
1212 * thread can't slip out of an OOM kill (or normal SIGKILL).
1214 recalc_sigpending();
1215 if (signal_pending(current)) {
1216 spin_unlock(&current->sighand->siglock);
1217 write_unlock_irq(&tasklist_lock);
1218 retval = -ERESTARTNOINTR;
1219 goto bad_fork_cleanup_namespaces;
1222 if (clone_flags & CLONE_THREAD) {
1223 p->group_leader = current->group_leader;
1224 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1226 if (!cputime_eq(current->signal->it_virt_expires,
1227 cputime_zero) ||
1228 !cputime_eq(current->signal->it_prof_expires,
1229 cputime_zero) ||
1230 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1231 !list_empty(&current->signal->cpu_timers[0]) ||
1232 !list_empty(&current->signal->cpu_timers[1]) ||
1233 !list_empty(&current->signal->cpu_timers[2])) {
1235 * Have child wake up on its first tick to check
1236 * for process CPU timers.
1238 p->it_prof_expires = jiffies_to_cputime(1);
1242 if (likely(p->pid)) {
1243 add_parent(p);
1244 if (unlikely(p->ptrace & PT_PTRACED))
1245 __ptrace_link(p, current->parent);
1247 if (thread_group_leader(p)) {
1248 p->signal->tty = current->signal->tty;
1249 p->signal->pgrp = process_group(current);
1250 p->signal->session = current->signal->session;
1251 attach_pid(p, PIDTYPE_PGID, process_group(p));
1252 attach_pid(p, PIDTYPE_SID, p->signal->session);
1254 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1255 __get_cpu_var(process_counts)++;
1257 attach_pid(p, PIDTYPE_PID, p->pid);
1258 nr_threads++;
1261 total_forks++;
1262 spin_unlock(&current->sighand->siglock);
1263 write_unlock_irq(&tasklist_lock);
1264 proc_fork_connector(p);
1265 return p;
1267 bad_fork_cleanup_namespaces:
1268 exit_task_namespaces(p);
1269 bad_fork_cleanup_keys:
1270 exit_keys(p);
1271 bad_fork_cleanup_mm:
1272 if (p->mm)
1273 mmput(p->mm);
1274 bad_fork_cleanup_signal:
1275 cleanup_signal(p);
1276 bad_fork_cleanup_sighand:
1277 __cleanup_sighand(p->sighand);
1278 bad_fork_cleanup_fs:
1279 exit_fs(p); /* blocking */
1280 bad_fork_cleanup_files:
1281 exit_files(p); /* blocking */
1282 bad_fork_cleanup_semundo:
1283 exit_sem(p);
1284 bad_fork_cleanup_audit:
1285 audit_free(p);
1286 bad_fork_cleanup_security:
1287 security_task_free(p);
1288 bad_fork_cleanup_policy:
1289 #ifdef CONFIG_NUMA
1290 mpol_free(p->mempolicy);
1291 bad_fork_cleanup_cpuset:
1292 #endif
1293 cpuset_exit(p);
1294 bad_fork_cleanup_delays_binfmt:
1295 delayacct_tsk_free(p);
1296 if (p->binfmt)
1297 module_put(p->binfmt->module);
1298 bad_fork_cleanup_put_domain:
1299 module_put(task_thread_info(p)->exec_domain->module);
1300 bad_fork_cleanup_count:
1301 put_group_info(p->group_info);
1302 atomic_dec(&p->user->processes);
1303 free_uid(p->user);
1304 bad_fork_free:
1305 free_task(p);
1306 fork_out:
1307 return ERR_PTR(retval);
1310 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1312 memset(regs, 0, sizeof(struct pt_regs));
1313 return regs;
1316 struct task_struct * __devinit fork_idle(int cpu)
1318 struct task_struct *task;
1319 struct pt_regs regs;
1321 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1322 if (!IS_ERR(task))
1323 init_idle(task, cpu);
1325 return task;
1328 static inline int fork_traceflag (unsigned clone_flags)
1330 if (clone_flags & CLONE_UNTRACED)
1331 return 0;
1332 else if (clone_flags & CLONE_VFORK) {
1333 if (current->ptrace & PT_TRACE_VFORK)
1334 return PTRACE_EVENT_VFORK;
1335 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1336 if (current->ptrace & PT_TRACE_CLONE)
1337 return PTRACE_EVENT_CLONE;
1338 } else if (current->ptrace & PT_TRACE_FORK)
1339 return PTRACE_EVENT_FORK;
1341 return 0;
1345 * Ok, this is the main fork-routine.
1347 * It copies the process, and if successful kick-starts
1348 * it and waits for it to finish using the VM if required.
1350 long do_fork(unsigned long clone_flags,
1351 unsigned long stack_start,
1352 struct pt_regs *regs,
1353 unsigned long stack_size,
1354 int __user *parent_tidptr,
1355 int __user *child_tidptr)
1357 struct task_struct *p;
1358 int trace = 0;
1359 struct pid *pid = alloc_pid();
1360 long nr;
1362 if (!pid)
1363 return -EAGAIN;
1364 nr = pid->nr;
1365 if (unlikely(current->ptrace)) {
1366 trace = fork_traceflag (clone_flags);
1367 if (trace)
1368 clone_flags |= CLONE_PTRACE;
1371 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1373 * Do this prior waking up the new thread - the thread pointer
1374 * might get invalid after that point, if the thread exits quickly.
1376 if (!IS_ERR(p)) {
1377 struct completion vfork;
1379 if (clone_flags & CLONE_VFORK) {
1380 p->vfork_done = &vfork;
1381 init_completion(&vfork);
1384 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1386 * We'll start up with an immediate SIGSTOP.
1388 sigaddset(&p->pending.signal, SIGSTOP);
1389 set_tsk_thread_flag(p, TIF_SIGPENDING);
1392 if (!(clone_flags & CLONE_STOPPED))
1393 wake_up_new_task(p, clone_flags);
1394 else
1395 p->state = TASK_STOPPED;
1397 if (unlikely (trace)) {
1398 current->ptrace_message = nr;
1399 ptrace_notify ((trace << 8) | SIGTRAP);
1402 if (clone_flags & CLONE_VFORK) {
1403 wait_for_completion(&vfork);
1404 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1405 current->ptrace_message = nr;
1406 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1409 } else {
1410 free_pid(pid);
1411 nr = PTR_ERR(p);
1413 return nr;
1416 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1417 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1418 #endif
1420 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1422 struct sighand_struct *sighand = data;
1424 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1425 SLAB_CTOR_CONSTRUCTOR)
1426 spin_lock_init(&sighand->siglock);
1429 void __init proc_caches_init(void)
1431 sighand_cachep = kmem_cache_create("sighand_cache",
1432 sizeof(struct sighand_struct), 0,
1433 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1434 sighand_ctor, NULL);
1435 signal_cachep = kmem_cache_create("signal_cache",
1436 sizeof(struct signal_struct), 0,
1437 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1438 files_cachep = kmem_cache_create("files_cache",
1439 sizeof(struct files_struct), 0,
1440 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1441 fs_cachep = kmem_cache_create("fs_cache",
1442 sizeof(struct fs_struct), 0,
1443 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1444 vm_area_cachep = kmem_cache_create("vm_area_struct",
1445 sizeof(struct vm_area_struct), 0,
1446 SLAB_PANIC, NULL, NULL);
1447 mm_cachep = kmem_cache_create("mm_struct",
1448 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1449 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1454 * Check constraints on flags passed to the unshare system call and
1455 * force unsharing of additional process context as appropriate.
1457 static inline void check_unshare_flags(unsigned long *flags_ptr)
1460 * If unsharing a thread from a thread group, must also
1461 * unshare vm.
1463 if (*flags_ptr & CLONE_THREAD)
1464 *flags_ptr |= CLONE_VM;
1467 * If unsharing vm, must also unshare signal handlers.
1469 if (*flags_ptr & CLONE_VM)
1470 *flags_ptr |= CLONE_SIGHAND;
1473 * If unsharing signal handlers and the task was created
1474 * using CLONE_THREAD, then must unshare the thread
1476 if ((*flags_ptr & CLONE_SIGHAND) &&
1477 (atomic_read(&current->signal->count) > 1))
1478 *flags_ptr |= CLONE_THREAD;
1481 * If unsharing namespace, must also unshare filesystem information.
1483 if (*flags_ptr & CLONE_NEWNS)
1484 *flags_ptr |= CLONE_FS;
1488 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1490 static int unshare_thread(unsigned long unshare_flags)
1492 if (unshare_flags & CLONE_THREAD)
1493 return -EINVAL;
1495 return 0;
1499 * Unshare the filesystem structure if it is being shared
1501 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1503 struct fs_struct *fs = current->fs;
1505 if ((unshare_flags & CLONE_FS) &&
1506 (fs && atomic_read(&fs->count) > 1)) {
1507 *new_fsp = __copy_fs_struct(current->fs);
1508 if (!*new_fsp)
1509 return -ENOMEM;
1512 return 0;
1516 * Unshare the namespace structure if it is being shared
1518 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1520 struct namespace *ns = current->nsproxy->namespace;
1522 if ((unshare_flags & CLONE_NEWNS) && ns) {
1523 if (!capable(CAP_SYS_ADMIN))
1524 return -EPERM;
1526 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1527 if (!*new_nsp)
1528 return -ENOMEM;
1531 return 0;
1535 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1536 * supported yet
1538 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1540 struct sighand_struct *sigh = current->sighand;
1542 if ((unshare_flags & CLONE_SIGHAND) &&
1543 (sigh && atomic_read(&sigh->count) > 1))
1544 return -EINVAL;
1545 else
1546 return 0;
1550 * Unshare vm if it is being shared
1552 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1554 struct mm_struct *mm = current->mm;
1556 if ((unshare_flags & CLONE_VM) &&
1557 (mm && atomic_read(&mm->mm_users) > 1)) {
1558 return -EINVAL;
1561 return 0;
1565 * Unshare file descriptor table if it is being shared
1567 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1569 struct files_struct *fd = current->files;
1570 int error = 0;
1572 if ((unshare_flags & CLONE_FILES) &&
1573 (fd && atomic_read(&fd->count) > 1)) {
1574 *new_fdp = dup_fd(fd, &error);
1575 if (!*new_fdp)
1576 return error;
1579 return 0;
1583 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1584 * supported yet
1586 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1588 if (unshare_flags & CLONE_SYSVSEM)
1589 return -EINVAL;
1591 return 0;
1594 #ifndef CONFIG_IPC_NS
1595 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1597 if (flags & CLONE_NEWIPC)
1598 return -EINVAL;
1600 return 0;
1602 #endif
1605 * unshare allows a process to 'unshare' part of the process
1606 * context which was originally shared using clone. copy_*
1607 * functions used by do_fork() cannot be used here directly
1608 * because they modify an inactive task_struct that is being
1609 * constructed. Here we are modifying the current, active,
1610 * task_struct.
1612 asmlinkage long sys_unshare(unsigned long unshare_flags)
1614 int err = 0;
1615 struct fs_struct *fs, *new_fs = NULL;
1616 struct namespace *ns, *new_ns = NULL;
1617 struct sighand_struct *sigh, *new_sigh = NULL;
1618 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1619 struct files_struct *fd, *new_fd = NULL;
1620 struct sem_undo_list *new_ulist = NULL;
1621 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1622 struct uts_namespace *uts, *new_uts = NULL;
1623 struct ipc_namespace *ipc, *new_ipc = NULL;
1625 check_unshare_flags(&unshare_flags);
1627 /* Return -EINVAL for all unsupported flags */
1628 err = -EINVAL;
1629 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1630 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1631 CLONE_NEWUTS|CLONE_NEWIPC))
1632 goto bad_unshare_out;
1634 if ((err = unshare_thread(unshare_flags)))
1635 goto bad_unshare_out;
1636 if ((err = unshare_fs(unshare_flags, &new_fs)))
1637 goto bad_unshare_cleanup_thread;
1638 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1639 goto bad_unshare_cleanup_fs;
1640 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1641 goto bad_unshare_cleanup_ns;
1642 if ((err = unshare_vm(unshare_flags, &new_mm)))
1643 goto bad_unshare_cleanup_sigh;
1644 if ((err = unshare_fd(unshare_flags, &new_fd)))
1645 goto bad_unshare_cleanup_vm;
1646 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1647 goto bad_unshare_cleanup_fd;
1648 if ((err = unshare_utsname(unshare_flags, &new_uts)))
1649 goto bad_unshare_cleanup_semundo;
1650 if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1651 goto bad_unshare_cleanup_uts;
1653 if (new_ns || new_uts || new_ipc) {
1654 old_nsproxy = current->nsproxy;
1655 new_nsproxy = dup_namespaces(old_nsproxy);
1656 if (!new_nsproxy) {
1657 err = -ENOMEM;
1658 goto bad_unshare_cleanup_ipc;
1662 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist ||
1663 new_uts || new_ipc) {
1665 task_lock(current);
1667 if (new_nsproxy) {
1668 current->nsproxy = new_nsproxy;
1669 new_nsproxy = old_nsproxy;
1672 if (new_fs) {
1673 fs = current->fs;
1674 current->fs = new_fs;
1675 new_fs = fs;
1678 if (new_ns) {
1679 ns = current->nsproxy->namespace;
1680 current->nsproxy->namespace = new_ns;
1681 new_ns = ns;
1684 if (new_sigh) {
1685 sigh = current->sighand;
1686 rcu_assign_pointer(current->sighand, new_sigh);
1687 new_sigh = sigh;
1690 if (new_mm) {
1691 mm = current->mm;
1692 active_mm = current->active_mm;
1693 current->mm = new_mm;
1694 current->active_mm = new_mm;
1695 activate_mm(active_mm, new_mm);
1696 new_mm = mm;
1699 if (new_fd) {
1700 fd = current->files;
1701 current->files = new_fd;
1702 new_fd = fd;
1705 if (new_uts) {
1706 uts = current->nsproxy->uts_ns;
1707 current->nsproxy->uts_ns = new_uts;
1708 new_uts = uts;
1711 if (new_ipc) {
1712 ipc = current->nsproxy->ipc_ns;
1713 current->nsproxy->ipc_ns = new_ipc;
1714 new_ipc = ipc;
1717 task_unlock(current);
1720 if (new_nsproxy)
1721 put_nsproxy(new_nsproxy);
1723 bad_unshare_cleanup_ipc:
1724 if (new_ipc)
1725 put_ipc_ns(new_ipc);
1727 bad_unshare_cleanup_uts:
1728 if (new_uts)
1729 put_uts_ns(new_uts);
1731 bad_unshare_cleanup_semundo:
1732 bad_unshare_cleanup_fd:
1733 if (new_fd)
1734 put_files_struct(new_fd);
1736 bad_unshare_cleanup_vm:
1737 if (new_mm)
1738 mmput(new_mm);
1740 bad_unshare_cleanup_sigh:
1741 if (new_sigh)
1742 if (atomic_dec_and_test(&new_sigh->count))
1743 kmem_cache_free(sighand_cachep, new_sigh);
1745 bad_unshare_cleanup_ns:
1746 if (new_ns)
1747 put_namespace(new_ns);
1749 bad_unshare_cleanup_fs:
1750 if (new_fs)
1751 put_fs_struct(new_fs);
1753 bad_unshare_cleanup_thread:
1754 bad_unshare_out:
1755 return err;