f640c355a14f80a34584ea3b9b6a25ccd07f267e
[isl.git] / isl_schedule.c
blobf640c355a14f80a34584ea3b9b6a25ccd07f267e
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
39 /* Construct an isl_schedule_constraints object for computing a schedule
40 * on "domain". The initial object does not impose any constraints.
42 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
43 __isl_take isl_union_set *domain)
45 isl_ctx *ctx;
46 isl_space *space;
47 isl_schedule_constraints *sc;
48 isl_union_map *empty;
49 enum isl_edge_type i;
51 if (!domain)
52 return NULL;
54 ctx = isl_union_set_get_ctx(domain);
55 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
56 if (!sc)
57 return isl_union_set_free(domain);
59 space = isl_union_set_get_space(domain);
60 sc->domain = domain;
61 empty = isl_union_map_empty(space);
62 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
63 sc->constraint[i] = isl_union_map_copy(empty);
64 if (!sc->constraint[i])
65 sc->domain = isl_union_set_free(sc->domain);
67 isl_union_map_free(empty);
69 if (!sc->domain)
70 return isl_schedule_constraints_free(sc);
72 return sc;
75 /* Replace the validity constraints of "sc" by "validity".
77 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
78 __isl_take isl_schedule_constraints *sc,
79 __isl_take isl_union_map *validity)
81 if (!sc || !validity)
82 goto error;
84 isl_union_map_free(sc->constraint[isl_edge_validity]);
85 sc->constraint[isl_edge_validity] = validity;
87 return sc;
88 error:
89 isl_schedule_constraints_free(sc);
90 isl_union_map_free(validity);
91 return NULL;
94 /* Replace the proximity constraints of "sc" by "proximity".
96 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
97 __isl_take isl_schedule_constraints *sc,
98 __isl_take isl_union_map *proximity)
100 if (!sc || !proximity)
101 goto error;
103 isl_union_map_free(sc->constraint[isl_edge_proximity]);
104 sc->constraint[isl_edge_proximity] = proximity;
106 return sc;
107 error:
108 isl_schedule_constraints_free(sc);
109 isl_union_map_free(proximity);
110 return NULL;
113 void *isl_schedule_constraints_free(__isl_take isl_schedule_constraints *sc)
115 enum isl_edge_type i;
117 if (!sc)
118 return NULL;
120 isl_union_set_free(sc->domain);
121 for (i = isl_edge_first; i <= isl_edge_last; ++i)
122 isl_union_map_free(sc->constraint[i]);
124 free(sc);
126 return NULL;
129 isl_ctx *isl_schedule_constraints_get_ctx(
130 __isl_keep isl_schedule_constraints *sc)
132 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
135 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
137 if (!sc)
138 return;
140 fprintf(stderr, "domain: ");
141 isl_union_set_dump(sc->domain);
142 fprintf(stderr, "validity: ");
143 isl_union_map_dump(sc->constraint[isl_edge_validity]);
144 fprintf(stderr, "proximity: ");
145 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
148 /* Align the parameters of the fields of "sc".
150 static __isl_give isl_schedule_constraints *
151 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
153 isl_space *space;
154 enum isl_edge_type i;
156 if (!sc)
157 return NULL;
159 space = isl_union_set_get_space(sc->domain);
160 for (i = isl_edge_first; i <= isl_edge_last; ++i)
161 space = isl_space_align_params(space,
162 isl_union_map_get_space(sc->constraint[i]));
164 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
165 sc->constraint[i] = isl_union_map_align_params(
166 sc->constraint[i], isl_space_copy(space));
167 if (!sc->constraint[i])
168 space = isl_space_free(space);
170 sc->domain = isl_union_set_align_params(sc->domain, space);
171 if (!sc->domain)
172 return isl_schedule_constraints_free(sc);
174 return sc;
177 /* Return the total number of isl_maps in the constraints of "sc".
179 static __isl_give int isl_schedule_constraints_n_map(
180 __isl_keep isl_schedule_constraints *sc)
182 enum isl_edge_type i;
183 int n = 0;
185 for (i = isl_edge_first; i <= isl_edge_last; ++i)
186 n += isl_union_map_n_map(sc->constraint[i]);
188 return n;
191 /* Internal information about a node that is used during the construction
192 * of a schedule.
193 * dim represents the space in which the domain lives
194 * sched is a matrix representation of the schedule being constructed
195 * for this node
196 * sched_map is an isl_map representation of the same (partial) schedule
197 * sched_map may be NULL
198 * rank is the number of linearly independent rows in the linear part
199 * of sched
200 * the columns of cmap represent a change of basis for the schedule
201 * coefficients; the first rank columns span the linear part of
202 * the schedule rows
203 * cinv is the inverse of cmap.
204 * start is the first variable in the LP problem in the sequences that
205 * represents the schedule coefficients of this node
206 * nvar is the dimension of the domain
207 * nparam is the number of parameters or 0 if we are not constructing
208 * a parametric schedule
210 * scc is the index of SCC (or WCC) this node belongs to
212 * band contains the band index for each of the rows of the schedule.
213 * band_id is used to differentiate between separate bands at the same
214 * level within the same parent band, i.e., bands that are separated
215 * by the parent band or bands that are independent of each other.
216 * zero contains a boolean for each of the rows of the schedule,
217 * indicating whether the corresponding scheduling dimension results
218 * in zero dependence distances within its band and with respect
219 * to the proximity edges.
221 struct isl_sched_node {
222 isl_space *dim;
223 isl_mat *sched;
224 isl_map *sched_map;
225 int rank;
226 isl_mat *cmap;
227 isl_mat *cinv;
228 int start;
229 int nvar;
230 int nparam;
232 int scc;
234 int *band;
235 int *band_id;
236 int *zero;
239 static int node_has_dim(const void *entry, const void *val)
241 struct isl_sched_node *node = (struct isl_sched_node *)entry;
242 isl_space *dim = (isl_space *)val;
244 return isl_space_is_equal(node->dim, dim);
247 /* An edge in the dependence graph. An edge may be used to
248 * ensure validity of the generated schedule, to minimize the dependence
249 * distance or both
251 * map is the dependence relation
252 * src is the source node
253 * dst is the sink node
254 * validity is set if the edge is used to ensure correctness
255 * proximity is set if the edge is used to minimize dependence distances
257 * For validity edges, start and end mark the sequence of inequality
258 * constraints in the LP problem that encode the validity constraint
259 * corresponding to this edge.
261 struct isl_sched_edge {
262 isl_map *map;
264 struct isl_sched_node *src;
265 struct isl_sched_node *dst;
267 int validity;
268 int proximity;
270 int start;
271 int end;
274 /* Internal information about the dependence graph used during
275 * the construction of the schedule.
277 * intra_hmap is a cache, mapping dependence relations to their dual,
278 * for dependences from a node to itself
279 * inter_hmap is a cache, mapping dependence relations to their dual,
280 * for dependences between distinct nodes
282 * n is the number of nodes
283 * node is the list of nodes
284 * maxvar is the maximal number of variables over all nodes
285 * max_row is the allocated number of rows in the schedule
286 * n_row is the current (maximal) number of linearly independent
287 * rows in the node schedules
288 * n_total_row is the current number of rows in the node schedules
289 * n_band is the current number of completed bands
290 * band_start is the starting row in the node schedules of the current band
291 * root is set if this graph is the original dependence graph,
292 * without any splitting
294 * sorted contains a list of node indices sorted according to the
295 * SCC to which a node belongs
297 * n_edge is the number of edges
298 * edge is the list of edges
299 * max_edge contains the maximal number of edges of each type;
300 * in particular, it contains the number of edges in the inital graph.
301 * edge_table contains pointers into the edge array, hashed on the source
302 * and sink spaces; there is one such table for each type;
303 * a given edge may be referenced from more than one table
304 * if the corresponding relation appears in more than of the
305 * sets of dependences
307 * node_table contains pointers into the node array, hashed on the space
309 * region contains a list of variable sequences that should be non-trivial
311 * lp contains the (I)LP problem used to obtain new schedule rows
313 * src_scc and dst_scc are the source and sink SCCs of an edge with
314 * conflicting constraints
316 * scc represents the number of components
318 struct isl_sched_graph {
319 isl_map_to_basic_set *intra_hmap;
320 isl_map_to_basic_set *inter_hmap;
322 struct isl_sched_node *node;
323 int n;
324 int maxvar;
325 int max_row;
326 int n_row;
328 int *sorted;
330 int n_band;
331 int n_total_row;
332 int band_start;
334 int root;
336 struct isl_sched_edge *edge;
337 int n_edge;
338 int max_edge[isl_edge_last + 1];
339 struct isl_hash_table *edge_table[isl_edge_last + 1];
341 struct isl_hash_table *node_table;
342 struct isl_region *region;
344 isl_basic_set *lp;
346 int src_scc;
347 int dst_scc;
349 int scc;
352 /* Initialize node_table based on the list of nodes.
354 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
356 int i;
358 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
359 if (!graph->node_table)
360 return -1;
362 for (i = 0; i < graph->n; ++i) {
363 struct isl_hash_table_entry *entry;
364 uint32_t hash;
366 hash = isl_space_get_hash(graph->node[i].dim);
367 entry = isl_hash_table_find(ctx, graph->node_table, hash,
368 &node_has_dim,
369 graph->node[i].dim, 1);
370 if (!entry)
371 return -1;
372 entry->data = &graph->node[i];
375 return 0;
378 /* Return a pointer to the node that lives within the given space,
379 * or NULL if there is no such node.
381 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
382 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
384 struct isl_hash_table_entry *entry;
385 uint32_t hash;
387 hash = isl_space_get_hash(dim);
388 entry = isl_hash_table_find(ctx, graph->node_table, hash,
389 &node_has_dim, dim, 0);
391 return entry ? entry->data : NULL;
394 static int edge_has_src_and_dst(const void *entry, const void *val)
396 const struct isl_sched_edge *edge = entry;
397 const struct isl_sched_edge *temp = val;
399 return edge->src == temp->src && edge->dst == temp->dst;
402 /* Add the given edge to graph->edge_table[type].
404 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
405 enum isl_edge_type type, struct isl_sched_edge *edge)
407 struct isl_hash_table_entry *entry;
408 uint32_t hash;
410 hash = isl_hash_init();
411 hash = isl_hash_builtin(hash, edge->src);
412 hash = isl_hash_builtin(hash, edge->dst);
413 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
414 &edge_has_src_and_dst, edge, 1);
415 if (!entry)
416 return -1;
417 entry->data = edge;
419 return 0;
422 /* Allocate the edge_tables based on the maximal number of edges of
423 * each type.
425 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
427 int i;
429 for (i = 0; i <= isl_edge_last; ++i) {
430 graph->edge_table[i] = isl_hash_table_alloc(ctx,
431 graph->max_edge[i]);
432 if (!graph->edge_table[i])
433 return -1;
436 return 0;
439 /* If graph->edge_table[type] contains an edge from the given source
440 * to the given destination, then return the hash table entry of this edge.
441 * Otherwise, return NULL.
443 static struct isl_hash_table_entry *graph_find_edge_entry(
444 struct isl_sched_graph *graph,
445 enum isl_edge_type type,
446 struct isl_sched_node *src, struct isl_sched_node *dst)
448 isl_ctx *ctx = isl_space_get_ctx(src->dim);
449 uint32_t hash;
450 struct isl_sched_edge temp = { .src = src, .dst = dst };
452 hash = isl_hash_init();
453 hash = isl_hash_builtin(hash, temp.src);
454 hash = isl_hash_builtin(hash, temp.dst);
455 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
456 &edge_has_src_and_dst, &temp, 0);
460 /* If graph->edge_table[type] contains an edge from the given source
461 * to the given destination, then return this edge.
462 * Otherwise, return NULL.
464 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
465 enum isl_edge_type type,
466 struct isl_sched_node *src, struct isl_sched_node *dst)
468 struct isl_hash_table_entry *entry;
470 entry = graph_find_edge_entry(graph, type, src, dst);
471 if (!entry)
472 return NULL;
474 return entry->data;
477 /* Check whether the dependence graph has an edge of the given type
478 * between the given two nodes.
480 static int graph_has_edge(struct isl_sched_graph *graph,
481 enum isl_edge_type type,
482 struct isl_sched_node *src, struct isl_sched_node *dst)
484 struct isl_sched_edge *edge;
485 int empty;
487 edge = graph_find_edge(graph, type, src, dst);
488 if (!edge)
489 return 0;
491 empty = isl_map_plain_is_empty(edge->map);
492 if (empty < 0)
493 return -1;
495 return !empty;
498 /* If there is an edge from the given source to the given destination
499 * of any type then return this edge.
500 * Otherwise, return NULL.
502 static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
503 struct isl_sched_node *src, struct isl_sched_node *dst)
505 enum isl_edge_type i;
506 struct isl_sched_edge *edge;
508 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
509 edge = graph_find_edge(graph, i, src, dst);
510 if (edge)
511 return edge;
514 return NULL;
517 /* Remove the given edge from all the edge_tables that refer to it.
519 static void graph_remove_edge(struct isl_sched_graph *graph,
520 struct isl_sched_edge *edge)
522 isl_ctx *ctx = isl_map_get_ctx(edge->map);
523 enum isl_edge_type i;
525 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
526 struct isl_hash_table_entry *entry;
528 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
529 if (!entry)
530 continue;
531 if (entry->data != edge)
532 continue;
533 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
537 /* Check whether the dependence graph has any edge
538 * between the given two nodes.
540 static int graph_has_any_edge(struct isl_sched_graph *graph,
541 struct isl_sched_node *src, struct isl_sched_node *dst)
543 enum isl_edge_type i;
544 int r;
546 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
547 r = graph_has_edge(graph, i, src, dst);
548 if (r < 0 || r)
549 return r;
552 return r;
555 /* Check whether the dependence graph has a validity edge
556 * between the given two nodes.
558 static int graph_has_validity_edge(struct isl_sched_graph *graph,
559 struct isl_sched_node *src, struct isl_sched_node *dst)
561 return graph_has_edge(graph, isl_edge_validity, src, dst);
564 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
565 int n_node, int n_edge)
567 int i;
569 graph->n = n_node;
570 graph->n_edge = n_edge;
571 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
572 graph->sorted = isl_calloc_array(ctx, int, graph->n);
573 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
574 graph->edge = isl_calloc_array(ctx,
575 struct isl_sched_edge, graph->n_edge);
577 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
578 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
580 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
581 !graph->sorted)
582 return -1;
584 for(i = 0; i < graph->n; ++i)
585 graph->sorted[i] = i;
587 return 0;
590 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
592 int i;
594 isl_map_to_basic_set_free(graph->intra_hmap);
595 isl_map_to_basic_set_free(graph->inter_hmap);
597 for (i = 0; i < graph->n; ++i) {
598 isl_space_free(graph->node[i].dim);
599 isl_mat_free(graph->node[i].sched);
600 isl_map_free(graph->node[i].sched_map);
601 isl_mat_free(graph->node[i].cmap);
602 isl_mat_free(graph->node[i].cinv);
603 if (graph->root) {
604 free(graph->node[i].band);
605 free(graph->node[i].band_id);
606 free(graph->node[i].zero);
609 free(graph->node);
610 free(graph->sorted);
611 for (i = 0; i < graph->n_edge; ++i)
612 isl_map_free(graph->edge[i].map);
613 free(graph->edge);
614 free(graph->region);
615 for (i = 0; i <= isl_edge_last; ++i)
616 isl_hash_table_free(ctx, graph->edge_table[i]);
617 isl_hash_table_free(ctx, graph->node_table);
618 isl_basic_set_free(graph->lp);
621 /* For each "set" on which this function is called, increment
622 * graph->n by one and update graph->maxvar.
624 static int init_n_maxvar(__isl_take isl_set *set, void *user)
626 struct isl_sched_graph *graph = user;
627 int nvar = isl_set_dim(set, isl_dim_set);
629 graph->n++;
630 if (nvar > graph->maxvar)
631 graph->maxvar = nvar;
633 isl_set_free(set);
635 return 0;
638 /* Compute the number of rows that should be allocated for the schedule.
639 * The graph can be split at most "n - 1" times, there can be at most
640 * two rows for each dimension in the iteration domains (in particular,
641 * we usually have one row, but it may be split by split_scaled),
642 * and there can be one extra row for ordering the statements.
643 * Note that if we have actually split "n - 1" times, then no ordering
644 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
646 static int compute_max_row(struct isl_sched_graph *graph,
647 __isl_keep isl_union_set *domain)
649 graph->n = 0;
650 graph->maxvar = 0;
651 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
652 return -1;
653 graph->max_row = graph->n + 2 * graph->maxvar;
655 return 0;
658 /* Add a new node to the graph representing the given set.
660 static int extract_node(__isl_take isl_set *set, void *user)
662 int nvar, nparam;
663 isl_ctx *ctx;
664 isl_space *dim;
665 isl_mat *sched;
666 struct isl_sched_graph *graph = user;
667 int *band, *band_id, *zero;
669 ctx = isl_set_get_ctx(set);
670 dim = isl_set_get_space(set);
671 isl_set_free(set);
672 nvar = isl_space_dim(dim, isl_dim_set);
673 nparam = isl_space_dim(dim, isl_dim_param);
674 if (!ctx->opt->schedule_parametric)
675 nparam = 0;
676 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
677 graph->node[graph->n].dim = dim;
678 graph->node[graph->n].nvar = nvar;
679 graph->node[graph->n].nparam = nparam;
680 graph->node[graph->n].sched = sched;
681 graph->node[graph->n].sched_map = NULL;
682 band = isl_alloc_array(ctx, int, graph->max_row);
683 graph->node[graph->n].band = band;
684 band_id = isl_calloc_array(ctx, int, graph->max_row);
685 graph->node[graph->n].band_id = band_id;
686 zero = isl_calloc_array(ctx, int, graph->max_row);
687 graph->node[graph->n].zero = zero;
688 graph->n++;
690 if (!sched || (graph->max_row && (!band || !band_id || !zero)))
691 return -1;
693 return 0;
696 struct isl_extract_edge_data {
697 enum isl_edge_type type;
698 struct isl_sched_graph *graph;
701 /* Merge edge2 into edge1, freeing the contents of edge2.
702 * "type" is the type of the schedule constraint from which edge2 was
703 * extracted.
704 * Return 0 on success and -1 on failure.
706 * edge1 and edge2 are assumed to have the same value for the map field.
708 static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
709 struct isl_sched_edge *edge2)
711 edge1->validity |= edge2->validity;
712 edge1->proximity |= edge2->proximity;
713 isl_map_free(edge2->map);
715 return 0;
718 /* Add a new edge to the graph based on the given map
719 * and add it to data->graph->edge_table[data->type].
720 * If a dependence relation of a given type happens to be identical
721 * to one of the dependence relations of a type that was added before,
722 * then we don't create a new edge, but instead mark the original edge
723 * as also representing a dependence of the current type.
725 static int extract_edge(__isl_take isl_map *map, void *user)
727 isl_ctx *ctx = isl_map_get_ctx(map);
728 struct isl_extract_edge_data *data = user;
729 struct isl_sched_graph *graph = data->graph;
730 struct isl_sched_node *src, *dst;
731 isl_space *dim;
732 struct isl_sched_edge *edge;
733 int is_equal;
735 dim = isl_space_domain(isl_map_get_space(map));
736 src = graph_find_node(ctx, graph, dim);
737 isl_space_free(dim);
738 dim = isl_space_range(isl_map_get_space(map));
739 dst = graph_find_node(ctx, graph, dim);
740 isl_space_free(dim);
742 if (!src || !dst) {
743 isl_map_free(map);
744 return 0;
747 graph->edge[graph->n_edge].src = src;
748 graph->edge[graph->n_edge].dst = dst;
749 graph->edge[graph->n_edge].map = map;
750 if (data->type == isl_edge_validity) {
751 graph->edge[graph->n_edge].validity = 1;
752 graph->edge[graph->n_edge].proximity = 0;
754 if (data->type == isl_edge_proximity) {
755 graph->edge[graph->n_edge].validity = 0;
756 graph->edge[graph->n_edge].proximity = 1;
758 graph->n_edge++;
760 edge = graph_find_any_edge(graph, src, dst);
761 if (!edge)
762 return graph_edge_table_add(ctx, graph, data->type,
763 &graph->edge[graph->n_edge - 1]);
764 is_equal = isl_map_plain_is_equal(map, edge->map);
765 if (is_equal < 0)
766 return -1;
767 if (!is_equal)
768 return graph_edge_table_add(ctx, graph, data->type,
769 &graph->edge[graph->n_edge - 1]);
771 graph->n_edge--;
772 if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
773 return -1;
775 return graph_edge_table_add(ctx, graph, data->type, edge);
778 /* Check whether there is any dependence from node[j] to node[i]
779 * or from node[i] to node[j].
781 static int node_follows_weak(int i, int j, void *user)
783 int f;
784 struct isl_sched_graph *graph = user;
786 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
787 if (f < 0 || f)
788 return f;
789 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
792 /* Check whether there is a validity dependence from node[j] to node[i],
793 * forcing node[i] to follow node[j].
795 static int node_follows_strong(int i, int j, void *user)
797 struct isl_sched_graph *graph = user;
799 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
802 /* Use Tarjan's algorithm for computing the strongly connected components
803 * in the dependence graph (only validity edges).
804 * If weak is set, we consider the graph to be undirected and
805 * we effectively compute the (weakly) connected components.
806 * Additionally, we also consider other edges when weak is set.
808 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
810 int i, n;
811 struct isl_tarjan_graph *g = NULL;
813 g = isl_tarjan_graph_init(ctx, graph->n,
814 weak ? &node_follows_weak : &node_follows_strong, graph);
815 if (!g)
816 return -1;
818 graph->scc = 0;
819 i = 0;
820 n = graph->n;
821 while (n) {
822 while (g->order[i] != -1) {
823 graph->node[g->order[i]].scc = graph->scc;
824 --n;
825 ++i;
827 ++i;
828 graph->scc++;
831 isl_tarjan_graph_free(g);
833 return 0;
836 /* Apply Tarjan's algorithm to detect the strongly connected components
837 * in the dependence graph.
839 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
841 return detect_ccs(ctx, graph, 0);
844 /* Apply Tarjan's algorithm to detect the (weakly) connected components
845 * in the dependence graph.
847 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
849 return detect_ccs(ctx, graph, 1);
852 static int cmp_scc(const void *a, const void *b, void *data)
854 struct isl_sched_graph *graph = data;
855 const int *i1 = a;
856 const int *i2 = b;
858 return graph->node[*i1].scc - graph->node[*i2].scc;
861 /* Sort the elements of graph->sorted according to the corresponding SCCs.
863 static int sort_sccs(struct isl_sched_graph *graph)
865 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
868 /* Given a dependence relation R from a node to itself,
869 * construct the set of coefficients of valid constraints for elements
870 * in that dependence relation.
871 * In particular, the result contains tuples of coefficients
872 * c_0, c_n, c_x such that
874 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
876 * or, equivalently,
878 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
880 * We choose here to compute the dual of delta R.
881 * Alternatively, we could have computed the dual of R, resulting
882 * in a set of tuples c_0, c_n, c_x, c_y, and then
883 * plugged in (c_0, c_n, c_x, -c_x).
885 static __isl_give isl_basic_set *intra_coefficients(
886 struct isl_sched_graph *graph, __isl_take isl_map *map)
888 isl_set *delta;
889 isl_basic_set *coef;
891 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
892 return isl_map_to_basic_set_get(graph->intra_hmap, map);
894 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
895 coef = isl_set_coefficients(delta);
896 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, map,
897 isl_basic_set_copy(coef));
899 return coef;
902 /* Given a dependence relation R, * construct the set of coefficients
903 * of valid constraints for elements in that dependence relation.
904 * In particular, the result contains tuples of coefficients
905 * c_0, c_n, c_x, c_y such that
907 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
910 static __isl_give isl_basic_set *inter_coefficients(
911 struct isl_sched_graph *graph, __isl_take isl_map *map)
913 isl_set *set;
914 isl_basic_set *coef;
916 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
917 return isl_map_to_basic_set_get(graph->inter_hmap, map);
919 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
920 coef = isl_set_coefficients(set);
921 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, map,
922 isl_basic_set_copy(coef));
924 return coef;
927 /* Add constraints to graph->lp that force validity for the given
928 * dependence from a node i to itself.
929 * That is, add constraints that enforce
931 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
932 * = c_i_x (y - x) >= 0
934 * for each (x,y) in R.
935 * We obtain general constraints on coefficients (c_0, c_n, c_x)
936 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
937 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
938 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
940 * Actually, we do not construct constraints for the c_i_x themselves,
941 * but for the coefficients of c_i_x written as a linear combination
942 * of the columns in node->cmap.
944 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
945 struct isl_sched_edge *edge)
947 unsigned total;
948 isl_map *map = isl_map_copy(edge->map);
949 isl_ctx *ctx = isl_map_get_ctx(map);
950 isl_space *dim;
951 isl_dim_map *dim_map;
952 isl_basic_set *coef;
953 struct isl_sched_node *node = edge->src;
955 coef = intra_coefficients(graph, map);
957 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
959 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
960 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
961 if (!coef)
962 goto error;
964 total = isl_basic_set_total_dim(graph->lp);
965 dim_map = isl_dim_map_alloc(ctx, total);
966 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
967 isl_space_dim(dim, isl_dim_set), 1,
968 node->nvar, -1);
969 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
970 isl_space_dim(dim, isl_dim_set), 1,
971 node->nvar, 1);
972 graph->lp = isl_basic_set_extend_constraints(graph->lp,
973 coef->n_eq, coef->n_ineq);
974 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
975 coef, dim_map);
976 isl_space_free(dim);
978 return 0;
979 error:
980 isl_space_free(dim);
981 return -1;
984 /* Add constraints to graph->lp that force validity for the given
985 * dependence from node i to node j.
986 * That is, add constraints that enforce
988 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
990 * for each (x,y) in R.
991 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
992 * of valid constraints for R and then plug in
993 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
994 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
995 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
996 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
998 * Actually, we do not construct constraints for the c_*_x themselves,
999 * but for the coefficients of c_*_x written as a linear combination
1000 * of the columns in node->cmap.
1002 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1003 struct isl_sched_edge *edge)
1005 unsigned total;
1006 isl_map *map = isl_map_copy(edge->map);
1007 isl_ctx *ctx = isl_map_get_ctx(map);
1008 isl_space *dim;
1009 isl_dim_map *dim_map;
1010 isl_basic_set *coef;
1011 struct isl_sched_node *src = edge->src;
1012 struct isl_sched_node *dst = edge->dst;
1014 coef = inter_coefficients(graph, map);
1016 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1018 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1019 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1020 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1021 isl_space_dim(dim, isl_dim_set) + src->nvar,
1022 isl_mat_copy(dst->cmap));
1023 if (!coef)
1024 goto error;
1026 total = isl_basic_set_total_dim(graph->lp);
1027 dim_map = isl_dim_map_alloc(ctx, total);
1029 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1030 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1031 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1032 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1033 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1034 dst->nvar, -1);
1035 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1036 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1037 dst->nvar, 1);
1039 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1040 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1041 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1042 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1043 isl_space_dim(dim, isl_dim_set), 1,
1044 src->nvar, 1);
1045 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1046 isl_space_dim(dim, isl_dim_set), 1,
1047 src->nvar, -1);
1049 edge->start = graph->lp->n_ineq;
1050 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1051 coef->n_eq, coef->n_ineq);
1052 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1053 coef, dim_map);
1054 if (!graph->lp)
1055 goto error;
1056 isl_space_free(dim);
1057 edge->end = graph->lp->n_ineq;
1059 return 0;
1060 error:
1061 isl_space_free(dim);
1062 return -1;
1065 /* Add constraints to graph->lp that bound the dependence distance for the given
1066 * dependence from a node i to itself.
1067 * If s = 1, we add the constraint
1069 * c_i_x (y - x) <= m_0 + m_n n
1071 * or
1073 * -c_i_x (y - x) + m_0 + m_n n >= 0
1075 * for each (x,y) in R.
1076 * If s = -1, we add the constraint
1078 * -c_i_x (y - x) <= m_0 + m_n n
1080 * or
1082 * c_i_x (y - x) + m_0 + m_n n >= 0
1084 * for each (x,y) in R.
1085 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1086 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1087 * with each coefficient (except m_0) represented as a pair of non-negative
1088 * coefficients.
1090 * Actually, we do not construct constraints for the c_i_x themselves,
1091 * but for the coefficients of c_i_x written as a linear combination
1092 * of the columns in node->cmap.
1094 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1095 struct isl_sched_edge *edge, int s)
1097 unsigned total;
1098 unsigned nparam;
1099 isl_map *map = isl_map_copy(edge->map);
1100 isl_ctx *ctx = isl_map_get_ctx(map);
1101 isl_space *dim;
1102 isl_dim_map *dim_map;
1103 isl_basic_set *coef;
1104 struct isl_sched_node *node = edge->src;
1106 coef = intra_coefficients(graph, map);
1108 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1110 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1111 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1112 if (!coef)
1113 goto error;
1115 nparam = isl_space_dim(node->dim, isl_dim_param);
1116 total = isl_basic_set_total_dim(graph->lp);
1117 dim_map = isl_dim_map_alloc(ctx, total);
1118 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1119 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1120 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1121 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1122 isl_space_dim(dim, isl_dim_set), 1,
1123 node->nvar, s);
1124 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1125 isl_space_dim(dim, isl_dim_set), 1,
1126 node->nvar, -s);
1127 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1128 coef->n_eq, coef->n_ineq);
1129 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1130 coef, dim_map);
1131 isl_space_free(dim);
1133 return 0;
1134 error:
1135 isl_space_free(dim);
1136 return -1;
1139 /* Add constraints to graph->lp that bound the dependence distance for the given
1140 * dependence from node i to node j.
1141 * If s = 1, we add the constraint
1143 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1144 * <= m_0 + m_n n
1146 * or
1148 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1149 * m_0 + m_n n >= 0
1151 * for each (x,y) in R.
1152 * If s = -1, we add the constraint
1154 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1155 * <= m_0 + m_n n
1157 * or
1159 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1160 * m_0 + m_n n >= 0
1162 * for each (x,y) in R.
1163 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1164 * of valid constraints for R and then plug in
1165 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1166 * -s*c_j_x+s*c_i_x)
1167 * with each coefficient (except m_0, c_j_0 and c_i_0)
1168 * represented as a pair of non-negative coefficients.
1170 * Actually, we do not construct constraints for the c_*_x themselves,
1171 * but for the coefficients of c_*_x written as a linear combination
1172 * of the columns in node->cmap.
1174 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1175 struct isl_sched_edge *edge, int s)
1177 unsigned total;
1178 unsigned nparam;
1179 isl_map *map = isl_map_copy(edge->map);
1180 isl_ctx *ctx = isl_map_get_ctx(map);
1181 isl_space *dim;
1182 isl_dim_map *dim_map;
1183 isl_basic_set *coef;
1184 struct isl_sched_node *src = edge->src;
1185 struct isl_sched_node *dst = edge->dst;
1187 coef = inter_coefficients(graph, map);
1189 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1191 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1192 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1193 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1194 isl_space_dim(dim, isl_dim_set) + src->nvar,
1195 isl_mat_copy(dst->cmap));
1196 if (!coef)
1197 goto error;
1199 nparam = isl_space_dim(src->dim, isl_dim_param);
1200 total = isl_basic_set_total_dim(graph->lp);
1201 dim_map = isl_dim_map_alloc(ctx, total);
1203 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1204 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1205 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1207 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1208 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1209 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1210 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1211 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1212 dst->nvar, s);
1213 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1214 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1215 dst->nvar, -s);
1217 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1218 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1219 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1220 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1221 isl_space_dim(dim, isl_dim_set), 1,
1222 src->nvar, -s);
1223 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1224 isl_space_dim(dim, isl_dim_set), 1,
1225 src->nvar, s);
1227 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1228 coef->n_eq, coef->n_ineq);
1229 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1230 coef, dim_map);
1231 isl_space_free(dim);
1233 return 0;
1234 error:
1235 isl_space_free(dim);
1236 return -1;
1239 static int add_all_validity_constraints(struct isl_sched_graph *graph)
1241 int i;
1243 for (i = 0; i < graph->n_edge; ++i) {
1244 struct isl_sched_edge *edge= &graph->edge[i];
1245 if (!edge->validity)
1246 continue;
1247 if (edge->src != edge->dst)
1248 continue;
1249 if (add_intra_validity_constraints(graph, edge) < 0)
1250 return -1;
1253 for (i = 0; i < graph->n_edge; ++i) {
1254 struct isl_sched_edge *edge = &graph->edge[i];
1255 if (!edge->validity)
1256 continue;
1257 if (edge->src == edge->dst)
1258 continue;
1259 if (add_inter_validity_constraints(graph, edge) < 0)
1260 return -1;
1263 return 0;
1266 /* Add constraints to graph->lp that bound the dependence distance
1267 * for all dependence relations.
1268 * If a given proximity dependence is identical to a validity
1269 * dependence, then the dependence distance is already bounded
1270 * from below (by zero), so we only need to bound the distance
1271 * from above.
1272 * Otherwise, we need to bound the distance both from above and from below.
1274 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
1276 int i;
1278 for (i = 0; i < graph->n_edge; ++i) {
1279 struct isl_sched_edge *edge= &graph->edge[i];
1280 if (!edge->proximity)
1281 continue;
1282 if (edge->src == edge->dst &&
1283 add_intra_proximity_constraints(graph, edge, 1) < 0)
1284 return -1;
1285 if (edge->src != edge->dst &&
1286 add_inter_proximity_constraints(graph, edge, 1) < 0)
1287 return -1;
1288 if (edge->validity)
1289 continue;
1290 if (edge->src == edge->dst &&
1291 add_intra_proximity_constraints(graph, edge, -1) < 0)
1292 return -1;
1293 if (edge->src != edge->dst &&
1294 add_inter_proximity_constraints(graph, edge, -1) < 0)
1295 return -1;
1298 return 0;
1301 /* Compute a basis for the rows in the linear part of the schedule
1302 * and extend this basis to a full basis. The remaining rows
1303 * can then be used to force linear independence from the rows
1304 * in the schedule.
1306 * In particular, given the schedule rows S, we compute
1308 * S = H Q
1309 * S U = H
1311 * with H the Hermite normal form of S. That is, all but the
1312 * first rank columns of H are zero and so each row in S is
1313 * a linear combination of the first rank rows of Q.
1314 * The matrix Q is then transposed because we will write the
1315 * coefficients of the next schedule row as a column vector s
1316 * and express this s as a linear combination s = Q c of the
1317 * computed basis.
1318 * Similarly, the matrix U is transposed such that we can
1319 * compute the coefficients c = U s from a schedule row s.
1321 static int node_update_cmap(struct isl_sched_node *node)
1323 isl_mat *H, *U, *Q;
1324 int n_row = isl_mat_rows(node->sched);
1326 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1327 1 + node->nparam, node->nvar);
1329 H = isl_mat_left_hermite(H, 0, &U, &Q);
1330 isl_mat_free(node->cmap);
1331 isl_mat_free(node->cinv);
1332 node->cmap = isl_mat_transpose(Q);
1333 node->cinv = isl_mat_transpose(U);
1334 node->rank = isl_mat_initial_non_zero_cols(H);
1335 isl_mat_free(H);
1337 if (!node->cmap || !node->cinv || node->rank < 0)
1338 return -1;
1339 return 0;
1342 /* Count the number of equality and inequality constraints
1343 * that will be added for the given map.
1344 * If carry is set, then we are counting the number of (validity)
1345 * constraints that will be added in setup_carry_lp and we count
1346 * each edge exactly once. Otherwise, we count as follows
1347 * validity -> 1 (>= 0)
1348 * validity+proximity -> 2 (>= 0 and upper bound)
1349 * proximity -> 2 (lower and upper bound)
1351 static int count_map_constraints(struct isl_sched_graph *graph,
1352 struct isl_sched_edge *edge, __isl_take isl_map *map,
1353 int *n_eq, int *n_ineq, int carry)
1355 isl_basic_set *coef;
1356 int f = carry ? 1 : edge->proximity ? 2 : 1;
1358 if (carry && !edge->validity) {
1359 isl_map_free(map);
1360 return 0;
1363 if (edge->src == edge->dst)
1364 coef = intra_coefficients(graph, map);
1365 else
1366 coef = inter_coefficients(graph, map);
1367 if (!coef)
1368 return -1;
1369 *n_eq += f * coef->n_eq;
1370 *n_ineq += f * coef->n_ineq;
1371 isl_basic_set_free(coef);
1373 return 0;
1376 /* Count the number of equality and inequality constraints
1377 * that will be added to the main lp problem.
1378 * We count as follows
1379 * validity -> 1 (>= 0)
1380 * validity+proximity -> 2 (>= 0 and upper bound)
1381 * proximity -> 2 (lower and upper bound)
1383 static int count_constraints(struct isl_sched_graph *graph,
1384 int *n_eq, int *n_ineq)
1386 int i;
1388 *n_eq = *n_ineq = 0;
1389 for (i = 0; i < graph->n_edge; ++i) {
1390 struct isl_sched_edge *edge= &graph->edge[i];
1391 isl_map *map = isl_map_copy(edge->map);
1393 if (count_map_constraints(graph, edge, map,
1394 n_eq, n_ineq, 0) < 0)
1395 return -1;
1398 return 0;
1401 /* Count the number of constraints that will be added by
1402 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1403 * accordingly.
1405 * In practice, add_bound_coefficient_constraints only adds inequalities.
1407 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1408 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1410 int i;
1412 if (ctx->opt->schedule_max_coefficient == -1)
1413 return 0;
1415 for (i = 0; i < graph->n; ++i)
1416 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1418 return 0;
1421 /* Add constraints that bound the values of the variable and parameter
1422 * coefficients of the schedule.
1424 * The maximal value of the coefficients is defined by the option
1425 * 'schedule_max_coefficient'.
1427 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1428 struct isl_sched_graph *graph)
1430 int i, j, k;
1431 int max_coefficient;
1432 int total;
1434 max_coefficient = ctx->opt->schedule_max_coefficient;
1436 if (max_coefficient == -1)
1437 return 0;
1439 total = isl_basic_set_total_dim(graph->lp);
1441 for (i = 0; i < graph->n; ++i) {
1442 struct isl_sched_node *node = &graph->node[i];
1443 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1444 int dim;
1445 k = isl_basic_set_alloc_inequality(graph->lp);
1446 if (k < 0)
1447 return -1;
1448 dim = 1 + node->start + 1 + j;
1449 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1450 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1451 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1455 return 0;
1458 /* Construct an ILP problem for finding schedule coefficients
1459 * that result in non-negative, but small dependence distances
1460 * over all dependences.
1461 * In particular, the dependence distances over proximity edges
1462 * are bounded by m_0 + m_n n and we compute schedule coefficients
1463 * with small values (preferably zero) of m_n and m_0.
1465 * All variables of the ILP are non-negative. The actual coefficients
1466 * may be negative, so each coefficient is represented as the difference
1467 * of two non-negative variables. The negative part always appears
1468 * immediately before the positive part.
1469 * Other than that, the variables have the following order
1471 * - sum of positive and negative parts of m_n coefficients
1472 * - m_0
1473 * - sum of positive and negative parts of all c_n coefficients
1474 * (unconstrained when computing non-parametric schedules)
1475 * - sum of positive and negative parts of all c_x coefficients
1476 * - positive and negative parts of m_n coefficients
1477 * - for each node
1478 * - c_i_0
1479 * - positive and negative parts of c_i_n (if parametric)
1480 * - positive and negative parts of c_i_x
1482 * The c_i_x are not represented directly, but through the columns of
1483 * node->cmap. That is, the computed values are for variable t_i_x
1484 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1486 * The constraints are those from the edges plus two or three equalities
1487 * to express the sums.
1489 * If force_zero is set, then we add equalities to ensure that
1490 * the sum of the m_n coefficients and m_0 are both zero.
1492 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1493 int force_zero)
1495 int i, j;
1496 int k;
1497 unsigned nparam;
1498 unsigned total;
1499 isl_space *dim;
1500 int parametric;
1501 int param_pos;
1502 int n_eq, n_ineq;
1503 int max_constant_term;
1505 max_constant_term = ctx->opt->schedule_max_constant_term;
1507 parametric = ctx->opt->schedule_parametric;
1508 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1509 param_pos = 4;
1510 total = param_pos + 2 * nparam;
1511 for (i = 0; i < graph->n; ++i) {
1512 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1513 if (node_update_cmap(node) < 0)
1514 return -1;
1515 node->start = total;
1516 total += 1 + 2 * (node->nparam + node->nvar);
1519 if (count_constraints(graph, &n_eq, &n_ineq) < 0)
1520 return -1;
1521 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1522 return -1;
1524 dim = isl_space_set_alloc(ctx, 0, total);
1525 isl_basic_set_free(graph->lp);
1526 n_eq += 2 + parametric + force_zero;
1527 if (max_constant_term != -1)
1528 n_ineq += graph->n;
1530 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1532 k = isl_basic_set_alloc_equality(graph->lp);
1533 if (k < 0)
1534 return -1;
1535 isl_seq_clr(graph->lp->eq[k], 1 + total);
1536 if (!force_zero)
1537 isl_int_set_si(graph->lp->eq[k][1], -1);
1538 for (i = 0; i < 2 * nparam; ++i)
1539 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1541 if (force_zero) {
1542 k = isl_basic_set_alloc_equality(graph->lp);
1543 if (k < 0)
1544 return -1;
1545 isl_seq_clr(graph->lp->eq[k], 1 + total);
1546 isl_int_set_si(graph->lp->eq[k][2], -1);
1549 if (parametric) {
1550 k = isl_basic_set_alloc_equality(graph->lp);
1551 if (k < 0)
1552 return -1;
1553 isl_seq_clr(graph->lp->eq[k], 1 + total);
1554 isl_int_set_si(graph->lp->eq[k][3], -1);
1555 for (i = 0; i < graph->n; ++i) {
1556 int pos = 1 + graph->node[i].start + 1;
1558 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1559 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1563 k = isl_basic_set_alloc_equality(graph->lp);
1564 if (k < 0)
1565 return -1;
1566 isl_seq_clr(graph->lp->eq[k], 1 + total);
1567 isl_int_set_si(graph->lp->eq[k][4], -1);
1568 for (i = 0; i < graph->n; ++i) {
1569 struct isl_sched_node *node = &graph->node[i];
1570 int pos = 1 + node->start + 1 + 2 * node->nparam;
1572 for (j = 0; j < 2 * node->nvar; ++j)
1573 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1576 if (max_constant_term != -1)
1577 for (i = 0; i < graph->n; ++i) {
1578 struct isl_sched_node *node = &graph->node[i];
1579 k = isl_basic_set_alloc_inequality(graph->lp);
1580 if (k < 0)
1581 return -1;
1582 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1583 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1584 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1587 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1588 return -1;
1589 if (add_all_validity_constraints(graph) < 0)
1590 return -1;
1591 if (add_all_proximity_constraints(graph) < 0)
1592 return -1;
1594 return 0;
1597 /* Analyze the conflicting constraint found by
1598 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1599 * constraint of one of the edges between distinct nodes, living, moreover
1600 * in distinct SCCs, then record the source and sink SCC as this may
1601 * be a good place to cut between SCCs.
1603 static int check_conflict(int con, void *user)
1605 int i;
1606 struct isl_sched_graph *graph = user;
1608 if (graph->src_scc >= 0)
1609 return 0;
1611 con -= graph->lp->n_eq;
1613 if (con >= graph->lp->n_ineq)
1614 return 0;
1616 for (i = 0; i < graph->n_edge; ++i) {
1617 if (!graph->edge[i].validity)
1618 continue;
1619 if (graph->edge[i].src == graph->edge[i].dst)
1620 continue;
1621 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1622 continue;
1623 if (graph->edge[i].start > con)
1624 continue;
1625 if (graph->edge[i].end <= con)
1626 continue;
1627 graph->src_scc = graph->edge[i].src->scc;
1628 graph->dst_scc = graph->edge[i].dst->scc;
1631 return 0;
1634 /* Check whether the next schedule row of the given node needs to be
1635 * non-trivial. Lower-dimensional domains may have some trivial rows,
1636 * but as soon as the number of remaining required non-trivial rows
1637 * is as large as the number or remaining rows to be computed,
1638 * all remaining rows need to be non-trivial.
1640 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1642 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1645 /* Solve the ILP problem constructed in setup_lp.
1646 * For each node such that all the remaining rows of its schedule
1647 * need to be non-trivial, we construct a non-triviality region.
1648 * This region imposes that the next row is independent of previous rows.
1649 * In particular the coefficients c_i_x are represented by t_i_x
1650 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1651 * its first columns span the rows of the previously computed part
1652 * of the schedule. The non-triviality region enforces that at least
1653 * one of the remaining components of t_i_x is non-zero, i.e.,
1654 * that the new schedule row depends on at least one of the remaining
1655 * columns of Q.
1657 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1659 int i;
1660 isl_vec *sol;
1661 isl_basic_set *lp;
1663 for (i = 0; i < graph->n; ++i) {
1664 struct isl_sched_node *node = &graph->node[i];
1665 int skip = node->rank;
1666 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1667 if (needs_row(graph, node))
1668 graph->region[i].len = 2 * (node->nvar - skip);
1669 else
1670 graph->region[i].len = 0;
1672 lp = isl_basic_set_copy(graph->lp);
1673 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1674 graph->region, &check_conflict, graph);
1675 return sol;
1678 /* Update the schedules of all nodes based on the given solution
1679 * of the LP problem.
1680 * The new row is added to the current band.
1681 * All possibly negative coefficients are encoded as a difference
1682 * of two non-negative variables, so we need to perform the subtraction
1683 * here. Moreover, if use_cmap is set, then the solution does
1684 * not refer to the actual coefficients c_i_x, but instead to variables
1685 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1686 * In this case, we then also need to perform this multiplication
1687 * to obtain the values of c_i_x.
1689 * If check_zero is set, then the first two coordinates of sol are
1690 * assumed to correspond to the dependence distance. If these two
1691 * coordinates are zero, then the corresponding scheduling dimension
1692 * is marked as being zero distance.
1694 static int update_schedule(struct isl_sched_graph *graph,
1695 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1697 int i, j;
1698 int zero = 0;
1699 isl_vec *csol = NULL;
1701 if (!sol)
1702 goto error;
1703 if (sol->size == 0)
1704 isl_die(sol->ctx, isl_error_internal,
1705 "no solution found", goto error);
1706 if (graph->n_total_row >= graph->max_row)
1707 isl_die(sol->ctx, isl_error_internal,
1708 "too many schedule rows", goto error);
1710 if (check_zero)
1711 zero = isl_int_is_zero(sol->el[1]) &&
1712 isl_int_is_zero(sol->el[2]);
1714 for (i = 0; i < graph->n; ++i) {
1715 struct isl_sched_node *node = &graph->node[i];
1716 int pos = node->start;
1717 int row = isl_mat_rows(node->sched);
1719 isl_vec_free(csol);
1720 csol = isl_vec_alloc(sol->ctx, node->nvar);
1721 if (!csol)
1722 goto error;
1724 isl_map_free(node->sched_map);
1725 node->sched_map = NULL;
1726 node->sched = isl_mat_add_rows(node->sched, 1);
1727 if (!node->sched)
1728 goto error;
1729 node->sched = isl_mat_set_element(node->sched, row, 0,
1730 sol->el[1 + pos]);
1731 for (j = 0; j < node->nparam + node->nvar; ++j)
1732 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1733 sol->el[1 + pos + 1 + 2 * j + 1],
1734 sol->el[1 + pos + 1 + 2 * j]);
1735 for (j = 0; j < node->nparam; ++j)
1736 node->sched = isl_mat_set_element(node->sched,
1737 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1738 for (j = 0; j < node->nvar; ++j)
1739 isl_int_set(csol->el[j],
1740 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1741 if (use_cmap)
1742 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1743 csol);
1744 if (!csol)
1745 goto error;
1746 for (j = 0; j < node->nvar; ++j)
1747 node->sched = isl_mat_set_element(node->sched,
1748 row, 1 + node->nparam + j, csol->el[j]);
1749 node->band[graph->n_total_row] = graph->n_band;
1750 node->zero[graph->n_total_row] = zero;
1752 isl_vec_free(sol);
1753 isl_vec_free(csol);
1755 graph->n_row++;
1756 graph->n_total_row++;
1758 return 0;
1759 error:
1760 isl_vec_free(sol);
1761 isl_vec_free(csol);
1762 return -1;
1765 /* Convert row "row" of node->sched into an isl_aff living in "ls"
1766 * and return this isl_aff.
1768 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
1769 struct isl_sched_node *node, int row)
1771 int j;
1772 isl_int v;
1773 isl_aff *aff;
1775 isl_int_init(v);
1777 aff = isl_aff_zero_on_domain(ls);
1778 isl_mat_get_element(node->sched, row, 0, &v);
1779 aff = isl_aff_set_constant(aff, v);
1780 for (j = 0; j < node->nparam; ++j) {
1781 isl_mat_get_element(node->sched, row, 1 + j, &v);
1782 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
1784 for (j = 0; j < node->nvar; ++j) {
1785 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
1786 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
1789 isl_int_clear(v);
1791 return aff;
1794 /* Convert node->sched into a multi_aff and return this multi_aff.
1796 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
1797 struct isl_sched_node *node)
1799 int i;
1800 isl_space *space;
1801 isl_local_space *ls;
1802 isl_aff *aff;
1803 isl_multi_aff *ma;
1804 int nrow, ncol;
1806 nrow = isl_mat_rows(node->sched);
1807 ncol = isl_mat_cols(node->sched) - 1;
1808 space = isl_space_from_domain(isl_space_copy(node->dim));
1809 space = isl_space_add_dims(space, isl_dim_out, nrow);
1810 ma = isl_multi_aff_zero(space);
1811 ls = isl_local_space_from_space(isl_space_copy(node->dim));
1813 for (i = 0; i < nrow; ++i) {
1814 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
1815 ma = isl_multi_aff_set_aff(ma, i, aff);
1818 isl_local_space_free(ls);
1820 return ma;
1823 /* Convert node->sched into a map and return this map.
1825 * The result is cached in node->sched_map, which needs to be released
1826 * whenever node->sched is updated.
1828 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1830 if (!node->sched_map) {
1831 isl_multi_aff *ma;
1833 ma = node_extract_schedule_multi_aff(node);
1834 node->sched_map = isl_map_from_multi_aff(ma);
1837 return isl_map_copy(node->sched_map);
1840 /* Update the given dependence relation based on the current schedule.
1841 * That is, intersect the dependence relation with a map expressing
1842 * that source and sink are executed within the same iteration of
1843 * the current schedule.
1844 * This is not the most efficient way, but this shouldn't be a critical
1845 * operation.
1847 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1848 struct isl_sched_node *src, struct isl_sched_node *dst)
1850 isl_map *src_sched, *dst_sched, *id;
1852 src_sched = node_extract_schedule(src);
1853 dst_sched = node_extract_schedule(dst);
1854 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1855 return isl_map_intersect(map, id);
1858 /* Update the dependence relations of all edges based on the current schedule.
1859 * If a dependence is carried completely by the current schedule, then
1860 * it is removed from the edge_tables. It is kept in the list of edges
1861 * as otherwise all edge_tables would have to be recomputed.
1863 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1865 int i;
1867 for (i = graph->n_edge - 1; i >= 0; --i) {
1868 struct isl_sched_edge *edge = &graph->edge[i];
1869 edge->map = specialize(edge->map, edge->src, edge->dst);
1870 if (!edge->map)
1871 return -1;
1873 if (isl_map_plain_is_empty(edge->map))
1874 graph_remove_edge(graph, edge);
1877 return 0;
1880 static void next_band(struct isl_sched_graph *graph)
1882 graph->band_start = graph->n_total_row;
1883 graph->n_band++;
1886 /* Topologically sort statements mapped to the same schedule iteration
1887 * and add a row to the schedule corresponding to this order.
1889 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1891 int i, j;
1893 if (graph->n <= 1)
1894 return 0;
1896 if (update_edges(ctx, graph) < 0)
1897 return -1;
1899 if (graph->n_edge == 0)
1900 return 0;
1902 if (detect_sccs(ctx, graph) < 0)
1903 return -1;
1905 if (graph->n_total_row >= graph->max_row)
1906 isl_die(ctx, isl_error_internal,
1907 "too many schedule rows", return -1);
1909 for (i = 0; i < graph->n; ++i) {
1910 struct isl_sched_node *node = &graph->node[i];
1911 int row = isl_mat_rows(node->sched);
1912 int cols = isl_mat_cols(node->sched);
1914 isl_map_free(node->sched_map);
1915 node->sched_map = NULL;
1916 node->sched = isl_mat_add_rows(node->sched, 1);
1917 if (!node->sched)
1918 return -1;
1919 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1920 node->scc);
1921 for (j = 1; j < cols; ++j)
1922 node->sched = isl_mat_set_element_si(node->sched,
1923 row, j, 0);
1924 node->band[graph->n_total_row] = graph->n_band;
1927 graph->n_total_row++;
1928 next_band(graph);
1930 return 0;
1933 /* Construct an isl_schedule based on the computed schedule stored
1934 * in graph and with parameters specified by dim.
1936 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1937 __isl_take isl_space *dim)
1939 int i;
1940 isl_ctx *ctx;
1941 isl_schedule *sched = NULL;
1943 if (!dim)
1944 return NULL;
1946 ctx = isl_space_get_ctx(dim);
1947 sched = isl_calloc(ctx, struct isl_schedule,
1948 sizeof(struct isl_schedule) +
1949 (graph->n - 1) * sizeof(struct isl_schedule_node));
1950 if (!sched)
1951 goto error;
1953 sched->ref = 1;
1954 sched->n = graph->n;
1955 sched->n_band = graph->n_band;
1956 sched->n_total_row = graph->n_total_row;
1958 for (i = 0; i < sched->n; ++i) {
1959 int r, b;
1960 int *band_end, *band_id, *zero;
1962 sched->node[i].sched =
1963 node_extract_schedule_multi_aff(&graph->node[i]);
1964 if (!sched->node[i].sched)
1965 goto error;
1967 sched->node[i].n_band = graph->n_band;
1968 if (graph->n_band == 0)
1969 continue;
1971 band_end = isl_alloc_array(ctx, int, graph->n_band);
1972 band_id = isl_alloc_array(ctx, int, graph->n_band);
1973 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1974 sched->node[i].band_end = band_end;
1975 sched->node[i].band_id = band_id;
1976 sched->node[i].zero = zero;
1977 if (!band_end || !band_id || !zero)
1978 goto error;
1980 for (r = 0; r < graph->n_total_row; ++r)
1981 zero[r] = graph->node[i].zero[r];
1982 for (r = b = 0; r < graph->n_total_row; ++r) {
1983 if (graph->node[i].band[r] == b)
1984 continue;
1985 band_end[b++] = r;
1986 if (graph->node[i].band[r] == -1)
1987 break;
1989 if (r == graph->n_total_row)
1990 band_end[b++] = r;
1991 sched->node[i].n_band = b;
1992 for (--b; b >= 0; --b)
1993 band_id[b] = graph->node[i].band_id[b];
1996 sched->dim = dim;
1998 return sched;
1999 error:
2000 isl_space_free(dim);
2001 isl_schedule_free(sched);
2002 return NULL;
2005 /* Copy nodes that satisfy node_pred from the src dependence graph
2006 * to the dst dependence graph.
2008 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
2009 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2011 int i;
2013 dst->n = 0;
2014 for (i = 0; i < src->n; ++i) {
2015 if (!node_pred(&src->node[i], data))
2016 continue;
2017 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
2018 dst->node[dst->n].nvar = src->node[i].nvar;
2019 dst->node[dst->n].nparam = src->node[i].nparam;
2020 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
2021 dst->node[dst->n].sched_map =
2022 isl_map_copy(src->node[i].sched_map);
2023 dst->node[dst->n].band = src->node[i].band;
2024 dst->node[dst->n].band_id = src->node[i].band_id;
2025 dst->node[dst->n].zero = src->node[i].zero;
2026 dst->n++;
2029 return 0;
2032 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2033 * to the dst dependence graph.
2034 * If the source or destination node of the edge is not in the destination
2035 * graph, then it must be a backward proximity edge and it should simply
2036 * be ignored.
2038 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2039 struct isl_sched_graph *src,
2040 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2042 int i;
2043 enum isl_edge_type t;
2045 dst->n_edge = 0;
2046 for (i = 0; i < src->n_edge; ++i) {
2047 struct isl_sched_edge *edge = &src->edge[i];
2048 isl_map *map;
2049 struct isl_sched_node *dst_src, *dst_dst;
2051 if (!edge_pred(edge, data))
2052 continue;
2054 if (isl_map_plain_is_empty(edge->map))
2055 continue;
2057 dst_src = graph_find_node(ctx, dst, edge->src->dim);
2058 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
2059 if (!dst_src || !dst_dst) {
2060 if (edge->validity)
2061 isl_die(ctx, isl_error_internal,
2062 "backward validity edge", return -1);
2063 continue;
2066 map = isl_map_copy(edge->map);
2068 dst->edge[dst->n_edge].src = dst_src;
2069 dst->edge[dst->n_edge].dst = dst_dst;
2070 dst->edge[dst->n_edge].map = map;
2071 dst->edge[dst->n_edge].validity = edge->validity;
2072 dst->edge[dst->n_edge].proximity = edge->proximity;
2073 dst->n_edge++;
2075 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2076 if (edge !=
2077 graph_find_edge(src, t, edge->src, edge->dst))
2078 continue;
2079 if (graph_edge_table_add(ctx, dst, t,
2080 &dst->edge[dst->n_edge - 1]) < 0)
2081 return -1;
2085 return 0;
2088 /* Given a "src" dependence graph that contains the nodes from "dst"
2089 * that satisfy node_pred, copy the schedule computed in "src"
2090 * for those nodes back to "dst".
2092 static int copy_schedule(struct isl_sched_graph *dst,
2093 struct isl_sched_graph *src,
2094 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2096 int i;
2098 src->n = 0;
2099 for (i = 0; i < dst->n; ++i) {
2100 if (!node_pred(&dst->node[i], data))
2101 continue;
2102 isl_mat_free(dst->node[i].sched);
2103 isl_map_free(dst->node[i].sched_map);
2104 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
2105 dst->node[i].sched_map =
2106 isl_map_copy(src->node[src->n].sched_map);
2107 src->n++;
2110 dst->max_row = src->max_row;
2111 dst->n_total_row = src->n_total_row;
2112 dst->n_band = src->n_band;
2114 return 0;
2117 /* Compute the maximal number of variables over all nodes.
2118 * This is the maximal number of linearly independent schedule
2119 * rows that we need to compute.
2120 * Just in case we end up in a part of the dependence graph
2121 * with only lower-dimensional domains, we make sure we will
2122 * compute the required amount of extra linearly independent rows.
2124 static int compute_maxvar(struct isl_sched_graph *graph)
2126 int i;
2128 graph->maxvar = 0;
2129 for (i = 0; i < graph->n; ++i) {
2130 struct isl_sched_node *node = &graph->node[i];
2131 int nvar;
2133 if (node_update_cmap(node) < 0)
2134 return -1;
2135 nvar = node->nvar + graph->n_row - node->rank;
2136 if (nvar > graph->maxvar)
2137 graph->maxvar = nvar;
2140 return 0;
2143 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
2144 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
2146 /* Compute a schedule for a subgraph of "graph". In particular, for
2147 * the graph composed of nodes that satisfy node_pred and edges that
2148 * that satisfy edge_pred. The caller should precompute the number
2149 * of nodes and edges that satisfy these predicates and pass them along
2150 * as "n" and "n_edge".
2151 * If the subgraph is known to consist of a single component, then wcc should
2152 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2153 * Otherwise, we call compute_schedule, which will check whether the subgraph
2154 * is connected.
2156 static int compute_sub_schedule(isl_ctx *ctx,
2157 struct isl_sched_graph *graph, int n, int n_edge,
2158 int (*node_pred)(struct isl_sched_node *node, int data),
2159 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2160 int data, int wcc)
2162 struct isl_sched_graph split = { 0 };
2163 int t;
2165 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2166 goto error;
2167 if (copy_nodes(&split, graph, node_pred, data) < 0)
2168 goto error;
2169 if (graph_init_table(ctx, &split) < 0)
2170 goto error;
2171 for (t = 0; t <= isl_edge_last; ++t)
2172 split.max_edge[t] = graph->max_edge[t];
2173 if (graph_init_edge_tables(ctx, &split) < 0)
2174 goto error;
2175 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2176 goto error;
2177 split.n_row = graph->n_row;
2178 split.max_row = graph->max_row;
2179 split.n_total_row = graph->n_total_row;
2180 split.n_band = graph->n_band;
2181 split.band_start = graph->band_start;
2183 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2184 goto error;
2185 if (!wcc && compute_schedule(ctx, &split) < 0)
2186 goto error;
2188 copy_schedule(graph, &split, node_pred, data);
2190 graph_free(ctx, &split);
2191 return 0;
2192 error:
2193 graph_free(ctx, &split);
2194 return -1;
2197 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2199 return node->scc == scc;
2202 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2204 return node->scc <= scc;
2207 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2209 return node->scc >= scc;
2212 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2214 return edge->src->scc == scc && edge->dst->scc == scc;
2217 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2219 return edge->dst->scc <= scc;
2222 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2224 return edge->src->scc >= scc;
2227 /* Pad the schedules of all nodes with zero rows such that in the end
2228 * they all have graph->n_total_row rows.
2229 * The extra rows don't belong to any band, so they get assigned band number -1.
2231 static int pad_schedule(struct isl_sched_graph *graph)
2233 int i, j;
2235 for (i = 0; i < graph->n; ++i) {
2236 struct isl_sched_node *node = &graph->node[i];
2237 int row = isl_mat_rows(node->sched);
2238 if (graph->n_total_row > row) {
2239 isl_map_free(node->sched_map);
2240 node->sched_map = NULL;
2242 node->sched = isl_mat_add_zero_rows(node->sched,
2243 graph->n_total_row - row);
2244 if (!node->sched)
2245 return -1;
2246 for (j = row; j < graph->n_total_row; ++j)
2247 node->band[j] = -1;
2250 return 0;
2253 /* Reset the current band by dropping all its schedule rows.
2255 static int reset_band(struct isl_sched_graph *graph)
2257 int i;
2258 int drop;
2260 drop = graph->n_total_row - graph->band_start;
2261 graph->n_total_row -= drop;
2262 graph->n_row -= drop;
2264 for (i = 0; i < graph->n; ++i) {
2265 struct isl_sched_node *node = &graph->node[i];
2267 isl_map_free(node->sched_map);
2268 node->sched_map = NULL;
2270 node->sched = isl_mat_drop_rows(node->sched,
2271 graph->band_start, drop);
2273 if (!node->sched)
2274 return -1;
2277 return 0;
2280 /* Split the current graph into two parts and compute a schedule for each
2281 * part individually. In particular, one part consists of all SCCs up
2282 * to and including graph->src_scc, while the other part contains the other
2283 * SCCS.
2285 * The split is enforced in the schedule by constant rows with two different
2286 * values (0 and 1). These constant rows replace the previously computed rows
2287 * in the current band.
2288 * It would be possible to reuse them as the first rows in the next
2289 * band, but recomputing them may result in better rows as we are looking
2290 * at a smaller part of the dependence graph.
2291 * compute_split_schedule is only called when no zero-distance schedule row
2292 * could be found on the entire graph, so we wark the splitting row as
2293 * non zero-distance.
2295 * The band_id of the second group is set to n, where n is the number
2296 * of nodes in the first group. This ensures that the band_ids over
2297 * the two groups remain disjoint, even if either or both of the two
2298 * groups contain independent components.
2300 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2302 int i, j, n, e1, e2;
2303 int n_total_row, orig_total_row;
2304 int n_band, orig_band;
2306 if (graph->n_total_row >= graph->max_row)
2307 isl_die(ctx, isl_error_internal,
2308 "too many schedule rows", return -1);
2310 if (reset_band(graph) < 0)
2311 return -1;
2313 n = 0;
2314 for (i = 0; i < graph->n; ++i) {
2315 struct isl_sched_node *node = &graph->node[i];
2316 int row = isl_mat_rows(node->sched);
2317 int cols = isl_mat_cols(node->sched);
2318 int before = node->scc <= graph->src_scc;
2320 if (before)
2321 n++;
2323 isl_map_free(node->sched_map);
2324 node->sched_map = NULL;
2325 node->sched = isl_mat_add_rows(node->sched, 1);
2326 if (!node->sched)
2327 return -1;
2328 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2329 !before);
2330 for (j = 1; j < cols; ++j)
2331 node->sched = isl_mat_set_element_si(node->sched,
2332 row, j, 0);
2333 node->band[graph->n_total_row] = graph->n_band;
2334 node->zero[graph->n_total_row] = 0;
2337 e1 = e2 = 0;
2338 for (i = 0; i < graph->n_edge; ++i) {
2339 if (graph->edge[i].dst->scc <= graph->src_scc)
2340 e1++;
2341 if (graph->edge[i].src->scc > graph->src_scc)
2342 e2++;
2345 graph->n_total_row++;
2346 next_band(graph);
2348 for (i = 0; i < graph->n; ++i) {
2349 struct isl_sched_node *node = &graph->node[i];
2350 if (node->scc > graph->src_scc)
2351 node->band_id[graph->n_band] = n;
2354 orig_total_row = graph->n_total_row;
2355 orig_band = graph->n_band;
2356 if (compute_sub_schedule(ctx, graph, n, e1,
2357 &node_scc_at_most, &edge_dst_scc_at_most,
2358 graph->src_scc, 0) < 0)
2359 return -1;
2360 n_total_row = graph->n_total_row;
2361 graph->n_total_row = orig_total_row;
2362 n_band = graph->n_band;
2363 graph->n_band = orig_band;
2364 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2365 &node_scc_at_least, &edge_src_scc_at_least,
2366 graph->src_scc + 1, 0) < 0)
2367 return -1;
2368 if (n_total_row > graph->n_total_row)
2369 graph->n_total_row = n_total_row;
2370 if (n_band > graph->n_band)
2371 graph->n_band = n_band;
2373 return pad_schedule(graph);
2376 /* Compute the next band of the schedule after updating the dependence
2377 * relations based on the the current schedule.
2379 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2381 if (update_edges(ctx, graph) < 0)
2382 return -1;
2383 next_band(graph);
2385 return compute_schedule(ctx, graph);
2388 /* Add constraints to graph->lp that force the dependence "map" (which
2389 * is part of the dependence relation of "edge")
2390 * to be respected and attempt to carry it, where the edge is one from
2391 * a node j to itself. "pos" is the sequence number of the given map.
2392 * That is, add constraints that enforce
2394 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2395 * = c_j_x (y - x) >= e_i
2397 * for each (x,y) in R.
2398 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2399 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2400 * with each coefficient in c_j_x represented as a pair of non-negative
2401 * coefficients.
2403 static int add_intra_constraints(struct isl_sched_graph *graph,
2404 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2406 unsigned total;
2407 isl_ctx *ctx = isl_map_get_ctx(map);
2408 isl_space *dim;
2409 isl_dim_map *dim_map;
2410 isl_basic_set *coef;
2411 struct isl_sched_node *node = edge->src;
2413 coef = intra_coefficients(graph, map);
2414 if (!coef)
2415 return -1;
2417 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2419 total = isl_basic_set_total_dim(graph->lp);
2420 dim_map = isl_dim_map_alloc(ctx, total);
2421 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2422 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2423 isl_space_dim(dim, isl_dim_set), 1,
2424 node->nvar, -1);
2425 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2426 isl_space_dim(dim, isl_dim_set), 1,
2427 node->nvar, 1);
2428 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2429 coef->n_eq, coef->n_ineq);
2430 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2431 coef, dim_map);
2432 isl_space_free(dim);
2434 return 0;
2437 /* Add constraints to graph->lp that force the dependence "map" (which
2438 * is part of the dependence relation of "edge")
2439 * to be respected and attempt to carry it, where the edge is one from
2440 * node j to node k. "pos" is the sequence number of the given map.
2441 * That is, add constraints that enforce
2443 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2445 * for each (x,y) in R.
2446 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2447 * of valid constraints for R and then plug in
2448 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2449 * with each coefficient (except e_i, c_k_0 and c_j_0)
2450 * represented as a pair of non-negative coefficients.
2452 static int add_inter_constraints(struct isl_sched_graph *graph,
2453 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2455 unsigned total;
2456 isl_ctx *ctx = isl_map_get_ctx(map);
2457 isl_space *dim;
2458 isl_dim_map *dim_map;
2459 isl_basic_set *coef;
2460 struct isl_sched_node *src = edge->src;
2461 struct isl_sched_node *dst = edge->dst;
2463 coef = inter_coefficients(graph, map);
2464 if (!coef)
2465 return -1;
2467 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2469 total = isl_basic_set_total_dim(graph->lp);
2470 dim_map = isl_dim_map_alloc(ctx, total);
2472 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2474 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2475 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2476 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2477 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2478 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2479 dst->nvar, -1);
2480 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2481 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2482 dst->nvar, 1);
2484 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2485 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2486 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2487 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2488 isl_space_dim(dim, isl_dim_set), 1,
2489 src->nvar, 1);
2490 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2491 isl_space_dim(dim, isl_dim_set), 1,
2492 src->nvar, -1);
2494 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2495 coef->n_eq, coef->n_ineq);
2496 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2497 coef, dim_map);
2498 isl_space_free(dim);
2500 return 0;
2503 /* Add constraints to graph->lp that force all validity dependences
2504 * to be respected and attempt to carry them.
2506 static int add_all_constraints(struct isl_sched_graph *graph)
2508 int i, j;
2509 int pos;
2511 pos = 0;
2512 for (i = 0; i < graph->n_edge; ++i) {
2513 struct isl_sched_edge *edge= &graph->edge[i];
2515 if (!edge->validity)
2516 continue;
2518 for (j = 0; j < edge->map->n; ++j) {
2519 isl_basic_map *bmap;
2520 isl_map *map;
2522 bmap = isl_basic_map_copy(edge->map->p[j]);
2523 map = isl_map_from_basic_map(bmap);
2525 if (edge->src == edge->dst &&
2526 add_intra_constraints(graph, edge, map, pos) < 0)
2527 return -1;
2528 if (edge->src != edge->dst &&
2529 add_inter_constraints(graph, edge, map, pos) < 0)
2530 return -1;
2531 ++pos;
2535 return 0;
2538 /* Count the number of equality and inequality constraints
2539 * that will be added to the carry_lp problem.
2540 * We count each edge exactly once.
2542 static int count_all_constraints(struct isl_sched_graph *graph,
2543 int *n_eq, int *n_ineq)
2545 int i, j;
2547 *n_eq = *n_ineq = 0;
2548 for (i = 0; i < graph->n_edge; ++i) {
2549 struct isl_sched_edge *edge= &graph->edge[i];
2550 for (j = 0; j < edge->map->n; ++j) {
2551 isl_basic_map *bmap;
2552 isl_map *map;
2554 bmap = isl_basic_map_copy(edge->map->p[j]);
2555 map = isl_map_from_basic_map(bmap);
2557 if (count_map_constraints(graph, edge, map,
2558 n_eq, n_ineq, 1) < 0)
2559 return -1;
2563 return 0;
2566 /* Construct an LP problem for finding schedule coefficients
2567 * such that the schedule carries as many dependences as possible.
2568 * In particular, for each dependence i, we bound the dependence distance
2569 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2570 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2571 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2572 * Note that if the dependence relation is a union of basic maps,
2573 * then we have to consider each basic map individually as it may only
2574 * be possible to carry the dependences expressed by some of those
2575 * basic maps and not all off them.
2576 * Below, we consider each of those basic maps as a separate "edge".
2578 * All variables of the LP are non-negative. The actual coefficients
2579 * may be negative, so each coefficient is represented as the difference
2580 * of two non-negative variables. The negative part always appears
2581 * immediately before the positive part.
2582 * Other than that, the variables have the following order
2584 * - sum of (1 - e_i) over all edges
2585 * - sum of positive and negative parts of all c_n coefficients
2586 * (unconstrained when computing non-parametric schedules)
2587 * - sum of positive and negative parts of all c_x coefficients
2588 * - for each edge
2589 * - e_i
2590 * - for each node
2591 * - c_i_0
2592 * - positive and negative parts of c_i_n (if parametric)
2593 * - positive and negative parts of c_i_x
2595 * The constraints are those from the (validity) edges plus three equalities
2596 * to express the sums and n_edge inequalities to express e_i <= 1.
2598 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2600 int i, j;
2601 int k;
2602 isl_space *dim;
2603 unsigned total;
2604 int n_eq, n_ineq;
2605 int n_edge;
2607 n_edge = 0;
2608 for (i = 0; i < graph->n_edge; ++i)
2609 n_edge += graph->edge[i].map->n;
2611 total = 3 + n_edge;
2612 for (i = 0; i < graph->n; ++i) {
2613 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2614 node->start = total;
2615 total += 1 + 2 * (node->nparam + node->nvar);
2618 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2619 return -1;
2620 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2621 return -1;
2623 dim = isl_space_set_alloc(ctx, 0, total);
2624 isl_basic_set_free(graph->lp);
2625 n_eq += 3;
2626 n_ineq += n_edge;
2627 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2628 graph->lp = isl_basic_set_set_rational(graph->lp);
2630 k = isl_basic_set_alloc_equality(graph->lp);
2631 if (k < 0)
2632 return -1;
2633 isl_seq_clr(graph->lp->eq[k], 1 + total);
2634 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2635 isl_int_set_si(graph->lp->eq[k][1], 1);
2636 for (i = 0; i < n_edge; ++i)
2637 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2639 k = isl_basic_set_alloc_equality(graph->lp);
2640 if (k < 0)
2641 return -1;
2642 isl_seq_clr(graph->lp->eq[k], 1 + total);
2643 isl_int_set_si(graph->lp->eq[k][2], -1);
2644 for (i = 0; i < graph->n; ++i) {
2645 int pos = 1 + graph->node[i].start + 1;
2647 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2648 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2651 k = isl_basic_set_alloc_equality(graph->lp);
2652 if (k < 0)
2653 return -1;
2654 isl_seq_clr(graph->lp->eq[k], 1 + total);
2655 isl_int_set_si(graph->lp->eq[k][3], -1);
2656 for (i = 0; i < graph->n; ++i) {
2657 struct isl_sched_node *node = &graph->node[i];
2658 int pos = 1 + node->start + 1 + 2 * node->nparam;
2660 for (j = 0; j < 2 * node->nvar; ++j)
2661 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2664 for (i = 0; i < n_edge; ++i) {
2665 k = isl_basic_set_alloc_inequality(graph->lp);
2666 if (k < 0)
2667 return -1;
2668 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2669 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2670 isl_int_set_si(graph->lp->ineq[k][0], 1);
2673 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2674 return -1;
2675 if (add_all_constraints(graph) < 0)
2676 return -1;
2678 return 0;
2681 /* If the schedule_split_scaled option is set and if the linear
2682 * parts of the scheduling rows for all nodes in the graphs have
2683 * non-trivial common divisor, then split off the constant term
2684 * from the linear part.
2685 * The constant term is then placed in a separate band and
2686 * the linear part is reduced.
2688 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2690 int i;
2691 int row;
2692 isl_int gcd, gcd_i;
2694 if (!ctx->opt->schedule_split_scaled)
2695 return 0;
2696 if (graph->n <= 1)
2697 return 0;
2699 if (graph->n_total_row >= graph->max_row)
2700 isl_die(ctx, isl_error_internal,
2701 "too many schedule rows", return -1);
2703 isl_int_init(gcd);
2704 isl_int_init(gcd_i);
2706 isl_int_set_si(gcd, 0);
2708 row = isl_mat_rows(graph->node[0].sched) - 1;
2710 for (i = 0; i < graph->n; ++i) {
2711 struct isl_sched_node *node = &graph->node[i];
2712 int cols = isl_mat_cols(node->sched);
2714 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2715 isl_int_gcd(gcd, gcd, gcd_i);
2718 isl_int_clear(gcd_i);
2720 if (isl_int_cmp_si(gcd, 1) <= 0) {
2721 isl_int_clear(gcd);
2722 return 0;
2725 next_band(graph);
2727 for (i = 0; i < graph->n; ++i) {
2728 struct isl_sched_node *node = &graph->node[i];
2730 isl_map_free(node->sched_map);
2731 node->sched_map = NULL;
2732 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2733 if (!node->sched)
2734 goto error;
2735 isl_int_fdiv_r(node->sched->row[row + 1][0],
2736 node->sched->row[row][0], gcd);
2737 isl_int_fdiv_q(node->sched->row[row][0],
2738 node->sched->row[row][0], gcd);
2739 isl_int_mul(node->sched->row[row][0],
2740 node->sched->row[row][0], gcd);
2741 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2742 if (!node->sched)
2743 goto error;
2744 node->band[graph->n_total_row] = graph->n_band;
2747 graph->n_total_row++;
2749 isl_int_clear(gcd);
2750 return 0;
2751 error:
2752 isl_int_clear(gcd);
2753 return -1;
2756 static int compute_component_schedule(isl_ctx *ctx,
2757 struct isl_sched_graph *graph);
2759 /* Is the schedule row "sol" trivial on node "node"?
2760 * That is, is the solution zero on the dimensions orthogonal to
2761 * the previously found solutions?
2762 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
2764 * Each coefficient is represented as the difference between
2765 * two non-negative values in "sol". "sol" has been computed
2766 * in terms of the original iterators (i.e., without use of cmap).
2767 * We construct the schedule row s and write it as a linear
2768 * combination of (linear combinations of) previously computed schedule rows.
2769 * s = Q c or c = U s.
2770 * If the final entries of c are all zero, then the solution is trivial.
2772 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
2774 int i;
2775 int pos;
2776 int trivial;
2777 isl_ctx *ctx;
2778 isl_vec *node_sol;
2780 if (!sol)
2781 return -1;
2782 if (node->nvar == node->rank)
2783 return 0;
2785 ctx = isl_vec_get_ctx(sol);
2786 node_sol = isl_vec_alloc(ctx, node->nvar);
2787 if (!node_sol)
2788 return -1;
2790 pos = 1 + node->start + 1 + 2 * node->nparam;
2792 for (i = 0; i < node->nvar; ++i)
2793 isl_int_sub(node_sol->el[i],
2794 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2796 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
2798 if (!node_sol)
2799 return -1;
2801 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
2802 node->nvar - node->rank) == -1;
2804 isl_vec_free(node_sol);
2806 return trivial;
2809 /* Is the schedule row "sol" trivial on any node where it should
2810 * not be trivial?
2811 * "sol" has been computed in terms of the original iterators
2812 * (i.e., without use of cmap).
2813 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
2815 static int is_any_trivial(struct isl_sched_graph *graph,
2816 __isl_keep isl_vec *sol)
2818 int i;
2820 for (i = 0; i < graph->n; ++i) {
2821 struct isl_sched_node *node = &graph->node[i];
2822 int trivial;
2824 if (!needs_row(graph, node))
2825 continue;
2826 trivial = is_trivial(node, sol);
2827 if (trivial < 0 || trivial)
2828 return trivial;
2831 return 0;
2834 /* Construct a schedule row for each node such that as many dependences
2835 * as possible are carried and then continue with the next band.
2837 * If the computed schedule row turns out to be trivial on one or
2838 * more nodes where it should not be trivial, then we throw it away
2839 * and try again on each component separately.
2841 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2843 int i;
2844 int n_edge;
2845 int trivial;
2846 isl_vec *sol;
2847 isl_basic_set *lp;
2849 n_edge = 0;
2850 for (i = 0; i < graph->n_edge; ++i)
2851 n_edge += graph->edge[i].map->n;
2853 if (setup_carry_lp(ctx, graph) < 0)
2854 return -1;
2856 lp = isl_basic_set_copy(graph->lp);
2857 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2858 if (!sol)
2859 return -1;
2861 if (sol->size == 0) {
2862 isl_vec_free(sol);
2863 isl_die(ctx, isl_error_internal,
2864 "error in schedule construction", return -1);
2867 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
2868 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2869 isl_vec_free(sol);
2870 isl_die(ctx, isl_error_unknown,
2871 "unable to carry dependences", return -1);
2874 trivial = is_any_trivial(graph, sol);
2875 if (trivial < 0) {
2876 sol = isl_vec_free(sol);
2877 } else if (trivial) {
2878 isl_vec_free(sol);
2879 if (graph->scc > 1)
2880 return compute_component_schedule(ctx, graph);
2881 isl_die(ctx, isl_error_unknown,
2882 "unable to construct non-trivial solution", return -1);
2885 if (update_schedule(graph, sol, 0, 0) < 0)
2886 return -1;
2888 if (split_scaled(ctx, graph) < 0)
2889 return -1;
2891 return compute_next_band(ctx, graph);
2894 /* Are there any (non-empty) validity edges in the graph?
2896 static int has_validity_edges(struct isl_sched_graph *graph)
2898 int i;
2900 for (i = 0; i < graph->n_edge; ++i) {
2901 int empty;
2903 empty = isl_map_plain_is_empty(graph->edge[i].map);
2904 if (empty < 0)
2905 return -1;
2906 if (empty)
2907 continue;
2908 if (graph->edge[i].validity)
2909 return 1;
2912 return 0;
2915 /* Should we apply a Feautrier step?
2916 * That is, did the user request the Feautrier algorithm and are
2917 * there any validity dependences (left)?
2919 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2921 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2922 return 0;
2924 return has_validity_edges(graph);
2927 /* Compute a schedule for a connected dependence graph using Feautrier's
2928 * multi-dimensional scheduling algorithm.
2929 * The original algorithm is described in [1].
2930 * The main idea is to minimize the number of scheduling dimensions, by
2931 * trying to satisfy as many dependences as possible per scheduling dimension.
2933 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2934 * Problem, Part II: Multi-Dimensional Time.
2935 * In Intl. Journal of Parallel Programming, 1992.
2937 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2938 struct isl_sched_graph *graph)
2940 return carry_dependences(ctx, graph);
2943 /* Compute a schedule for a connected dependence graph.
2944 * We try to find a sequence of as many schedule rows as possible that result
2945 * in non-negative dependence distances (independent of the previous rows
2946 * in the sequence, i.e., such that the sequence is tilable).
2947 * If we can't find any more rows we either
2948 * - split between SCCs and start over (assuming we found an interesting
2949 * pair of SCCs between which to split)
2950 * - continue with the next band (assuming the current band has at least
2951 * one row)
2952 * - try to carry as many dependences as possible and continue with the next
2953 * band
2955 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2956 * as many validity dependences as possible. When all validity dependences
2957 * are satisfied we extend the schedule to a full-dimensional schedule.
2959 * If we manage to complete the schedule, we finish off by topologically
2960 * sorting the statements based on the remaining dependences.
2962 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2963 * outermost dimension in the current band to be zero distance. If this
2964 * turns out to be impossible, we fall back on the general scheme above
2965 * and try to carry as many dependences as possible.
2967 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2969 int force_zero = 0;
2971 if (detect_sccs(ctx, graph) < 0)
2972 return -1;
2973 if (sort_sccs(graph) < 0)
2974 return -1;
2976 if (compute_maxvar(graph) < 0)
2977 return -1;
2979 if (need_feautrier_step(ctx, graph))
2980 return compute_schedule_wcc_feautrier(ctx, graph);
2982 if (ctx->opt->schedule_outer_zero_distance)
2983 force_zero = 1;
2985 while (graph->n_row < graph->maxvar) {
2986 isl_vec *sol;
2988 graph->src_scc = -1;
2989 graph->dst_scc = -1;
2991 if (setup_lp(ctx, graph, force_zero) < 0)
2992 return -1;
2993 sol = solve_lp(graph);
2994 if (!sol)
2995 return -1;
2996 if (sol->size == 0) {
2997 isl_vec_free(sol);
2998 if (!ctx->opt->schedule_maximize_band_depth &&
2999 graph->n_total_row > graph->band_start)
3000 return compute_next_band(ctx, graph);
3001 if (graph->src_scc >= 0)
3002 return compute_split_schedule(ctx, graph);
3003 if (graph->n_total_row > graph->band_start)
3004 return compute_next_band(ctx, graph);
3005 return carry_dependences(ctx, graph);
3007 if (update_schedule(graph, sol, 1, 1) < 0)
3008 return -1;
3009 force_zero = 0;
3012 if (graph->n_total_row > graph->band_start)
3013 next_band(graph);
3014 return sort_statements(ctx, graph);
3017 /* Add a row to the schedules that separates the SCCs and move
3018 * to the next band.
3020 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
3022 int i;
3024 if (graph->n_total_row >= graph->max_row)
3025 isl_die(ctx, isl_error_internal,
3026 "too many schedule rows", return -1);
3028 for (i = 0; i < graph->n; ++i) {
3029 struct isl_sched_node *node = &graph->node[i];
3030 int row = isl_mat_rows(node->sched);
3032 isl_map_free(node->sched_map);
3033 node->sched_map = NULL;
3034 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3035 node->sched = isl_mat_set_element_si(node->sched, row, 0,
3036 node->scc);
3037 if (!node->sched)
3038 return -1;
3039 node->band[graph->n_total_row] = graph->n_band;
3042 graph->n_total_row++;
3043 next_band(graph);
3045 return 0;
3048 /* Compute a schedule for each component (identified by node->scc)
3049 * of the dependence graph separately and then combine the results.
3050 * Depending on the setting of schedule_fuse, a component may be
3051 * either weakly or strongly connected.
3053 * The band_id is adjusted such that each component has a separate id.
3054 * Note that the band_id may have already been set to a value different
3055 * from zero by compute_split_schedule.
3057 static int compute_component_schedule(isl_ctx *ctx,
3058 struct isl_sched_graph *graph)
3060 int wcc, i;
3061 int n, n_edge;
3062 int n_total_row, orig_total_row;
3063 int n_band, orig_band;
3065 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
3066 ctx->opt->schedule_separate_components)
3067 if (split_on_scc(ctx, graph) < 0)
3068 return -1;
3070 n_total_row = 0;
3071 orig_total_row = graph->n_total_row;
3072 n_band = 0;
3073 orig_band = graph->n_band;
3074 for (i = 0; i < graph->n; ++i)
3075 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
3076 for (wcc = 0; wcc < graph->scc; ++wcc) {
3077 n = 0;
3078 for (i = 0; i < graph->n; ++i)
3079 if (graph->node[i].scc == wcc)
3080 n++;
3081 n_edge = 0;
3082 for (i = 0; i < graph->n_edge; ++i)
3083 if (graph->edge[i].src->scc == wcc &&
3084 graph->edge[i].dst->scc == wcc)
3085 n_edge++;
3087 if (compute_sub_schedule(ctx, graph, n, n_edge,
3088 &node_scc_exactly,
3089 &edge_scc_exactly, wcc, 1) < 0)
3090 return -1;
3091 if (graph->n_total_row > n_total_row)
3092 n_total_row = graph->n_total_row;
3093 graph->n_total_row = orig_total_row;
3094 if (graph->n_band > n_band)
3095 n_band = graph->n_band;
3096 graph->n_band = orig_band;
3099 graph->n_total_row = n_total_row;
3100 graph->n_band = n_band;
3102 return pad_schedule(graph);
3105 /* Compute a schedule for the given dependence graph.
3106 * We first check if the graph is connected (through validity dependences)
3107 * and, if not, compute a schedule for each component separately.
3108 * If schedule_fuse is set to minimal fusion, then we check for strongly
3109 * connected components instead and compute a separate schedule for
3110 * each such strongly connected component.
3112 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
3114 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
3115 if (detect_sccs(ctx, graph) < 0)
3116 return -1;
3117 } else {
3118 if (detect_wccs(ctx, graph) < 0)
3119 return -1;
3122 if (graph->scc > 1)
3123 return compute_component_schedule(ctx, graph);
3125 return compute_schedule_wcc(ctx, graph);
3128 /* Compute a schedule on sc->domain that respects the given schedule
3129 * constraints.
3131 * In particular, the schedule respects all the validity dependences.
3132 * If the default isl scheduling algorithm is used, it tries to minimize
3133 * the dependence distances over the proximity dependences.
3134 * If Feautrier's scheduling algorithm is used, the proximity dependence
3135 * distances are only minimized during the extension to a full-dimensional
3136 * schedule.
3138 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
3139 __isl_take isl_schedule_constraints *sc)
3141 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
3142 struct isl_sched_graph graph = { 0 };
3143 isl_schedule *sched;
3144 struct isl_extract_edge_data data;
3145 enum isl_edge_type i;
3147 sc = isl_schedule_constraints_align_params(sc);
3148 if (!sc)
3149 return NULL;
3151 graph.n = isl_union_set_n_set(sc->domain);
3152 if (graph.n == 0)
3153 goto empty;
3154 if (graph_alloc(ctx, &graph, graph.n,
3155 isl_schedule_constraints_n_map(sc)) < 0)
3156 goto error;
3157 if (compute_max_row(&graph, sc->domain) < 0)
3158 goto error;
3159 graph.root = 1;
3160 graph.n = 0;
3161 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
3162 goto error;
3163 if (graph_init_table(ctx, &graph) < 0)
3164 goto error;
3165 for (i = isl_edge_first; i <= isl_edge_last; ++i)
3166 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
3167 if (graph_init_edge_tables(ctx, &graph) < 0)
3168 goto error;
3169 graph.n_edge = 0;
3170 data.graph = &graph;
3171 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
3172 data.type = i;
3173 if (isl_union_map_foreach_map(sc->constraint[i],
3174 &extract_edge, &data) < 0)
3175 goto error;
3178 if (compute_schedule(ctx, &graph) < 0)
3179 goto error;
3181 empty:
3182 sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
3184 graph_free(ctx, &graph);
3185 isl_schedule_constraints_free(sc);
3187 return sched;
3188 error:
3189 graph_free(ctx, &graph);
3190 isl_schedule_constraints_free(sc);
3191 return NULL;
3194 /* Compute a schedule for the given union of domains that respects
3195 * all the validity dependences and minimizes
3196 * the dependence distances over the proximity dependences.
3198 * This function is kept for backward compatibility.
3200 __isl_give isl_schedule *isl_union_set_compute_schedule(
3201 __isl_take isl_union_set *domain,
3202 __isl_take isl_union_map *validity,
3203 __isl_take isl_union_map *proximity)
3205 isl_schedule_constraints *sc;
3207 sc = isl_schedule_constraints_on_domain(domain);
3208 sc = isl_schedule_constraints_set_validity(sc, validity);
3209 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3211 return isl_schedule_constraints_compute_schedule(sc);
3214 void *isl_schedule_free(__isl_take isl_schedule *sched)
3216 int i;
3217 if (!sched)
3218 return NULL;
3220 if (--sched->ref > 0)
3221 return NULL;
3223 for (i = 0; i < sched->n; ++i) {
3224 isl_multi_aff_free(sched->node[i].sched);
3225 free(sched->node[i].band_end);
3226 free(sched->node[i].band_id);
3227 free(sched->node[i].zero);
3229 isl_space_free(sched->dim);
3230 isl_band_list_free(sched->band_forest);
3231 free(sched);
3232 return NULL;
3235 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
3237 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
3240 /* Set max_out to the maximal number of output dimensions over
3241 * all maps.
3243 static int update_max_out(__isl_take isl_map *map, void *user)
3245 int *max_out = user;
3246 int n_out = isl_map_dim(map, isl_dim_out);
3248 if (n_out > *max_out)
3249 *max_out = n_out;
3251 isl_map_free(map);
3252 return 0;
3255 /* Internal data structure for map_pad_range.
3257 * "max_out" is the maximal schedule dimension.
3258 * "res" collects the results.
3260 struct isl_pad_schedule_map_data {
3261 int max_out;
3262 isl_union_map *res;
3265 /* Pad the range of the given map with zeros to data->max_out and
3266 * then add the result to data->res.
3268 static int map_pad_range(__isl_take isl_map *map, void *user)
3270 struct isl_pad_schedule_map_data *data = user;
3271 int i;
3272 int n_out = isl_map_dim(map, isl_dim_out);
3274 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3275 for (i = n_out; i < data->max_out; ++i)
3276 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3278 data->res = isl_union_map_add_map(data->res, map);
3279 if (!data->res)
3280 return -1;
3282 return 0;
3285 /* Pad the ranges of the maps in the union map with zeros such they all have
3286 * the same dimension.
3288 static __isl_give isl_union_map *pad_schedule_map(
3289 __isl_take isl_union_map *umap)
3291 struct isl_pad_schedule_map_data data;
3293 if (!umap)
3294 return NULL;
3295 if (isl_union_map_n_map(umap) <= 1)
3296 return umap;
3298 data.max_out = 0;
3299 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3300 return isl_union_map_free(umap);
3302 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3303 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3304 data.res = isl_union_map_free(data.res);
3306 isl_union_map_free(umap);
3307 return data.res;
3310 /* Return an isl_union_map of the schedule. If we have already constructed
3311 * a band forest, then this band forest may have been modified so we need
3312 * to extract the isl_union_map from the forest rather than from
3313 * the originally computed schedule. This reconstructed schedule map
3314 * then needs to be padded with zeros to unify the schedule space
3315 * since the result of isl_band_list_get_suffix_schedule may not have
3316 * a unified schedule space.
3318 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3320 int i;
3321 isl_union_map *umap;
3323 if (!sched)
3324 return NULL;
3326 if (sched->band_forest) {
3327 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3328 return pad_schedule_map(umap);
3331 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3332 for (i = 0; i < sched->n; ++i) {
3333 isl_multi_aff *ma;
3335 ma = isl_multi_aff_copy(sched->node[i].sched);
3336 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
3339 return umap;
3342 static __isl_give isl_band_list *construct_band_list(
3343 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3344 int band_nr, int *parent_active, int n_active);
3346 /* Construct an isl_band structure for the band in the given schedule
3347 * with sequence number band_nr for the n_active nodes marked by active.
3348 * If the nodes don't have a band with the given sequence number,
3349 * then a band without members is created.
3351 * Because of the way the schedule is constructed, we know that
3352 * the position of the band inside the schedule of a node is the same
3353 * for all active nodes.
3355 * The partial schedule for the band is created before the children
3356 * are created to that construct_band_list can refer to the partial
3357 * schedule of the parent.
3359 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
3360 __isl_keep isl_band *parent,
3361 int band_nr, int *active, int n_active)
3363 int i, j;
3364 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3365 isl_band *band;
3366 unsigned start, end;
3368 band = isl_band_alloc(ctx);
3369 if (!band)
3370 return NULL;
3372 band->schedule = schedule;
3373 band->parent = parent;
3375 for (i = 0; i < schedule->n; ++i)
3376 if (active[i])
3377 break;
3379 if (i >= schedule->n)
3380 isl_die(ctx, isl_error_internal,
3381 "band without active statements", goto error);
3383 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
3384 end = band_nr < schedule->node[i].n_band ?
3385 schedule->node[i].band_end[band_nr] : start;
3386 band->n = end - start;
3388 band->zero = isl_alloc_array(ctx, int, band->n);
3389 if (band->n && !band->zero)
3390 goto error;
3392 for (j = 0; j < band->n; ++j)
3393 band->zero[j] = schedule->node[i].zero[start + j];
3395 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
3396 for (i = 0; i < schedule->n; ++i) {
3397 isl_multi_aff *ma;
3398 isl_pw_multi_aff *pma;
3399 unsigned n_out;
3401 if (!active[i])
3402 continue;
3404 ma = isl_multi_aff_copy(schedule->node[i].sched);
3405 n_out = isl_multi_aff_dim(ma, isl_dim_out);
3406 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
3407 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
3408 pma = isl_pw_multi_aff_from_multi_aff(ma);
3409 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
3410 pma);
3412 if (!band->pma)
3413 goto error;
3415 for (i = 0; i < schedule->n; ++i)
3416 if (active[i] && schedule->node[i].n_band > band_nr + 1)
3417 break;
3419 if (i < schedule->n) {
3420 band->children = construct_band_list(schedule, band,
3421 band_nr + 1, active, n_active);
3422 if (!band->children)
3423 goto error;
3426 return band;
3427 error:
3428 isl_band_free(band);
3429 return NULL;
3432 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
3434 * r is set to a negative value if anything goes wrong.
3436 * c1 stores the result of extract_int.
3437 * c2 is a temporary value used inside cmp_band_in_ancestor.
3438 * t is a temporary value used inside extract_int.
3440 * first and equal are used inside extract_int.
3441 * first is set if we are looking at the first isl_multi_aff inside
3442 * the isl_union_pw_multi_aff.
3443 * equal is set if all the isl_multi_affs have been equal so far.
3445 struct isl_cmp_band_data {
3446 int r;
3448 int first;
3449 int equal;
3451 isl_int t;
3452 isl_int c1;
3453 isl_int c2;
3456 /* Check if "ma" assigns a constant value.
3457 * Note that this function is only called on isl_multi_affs
3458 * with a single output dimension.
3460 * If "ma" assigns a constant value then we compare it to data->c1
3461 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
3462 * If "ma" does not assign a constant value or if it assigns a value
3463 * that is different from data->c1, then we set data->equal to zero
3464 * and terminate the check.
3466 static int multi_aff_extract_int(__isl_take isl_set *set,
3467 __isl_take isl_multi_aff *ma, void *user)
3469 isl_aff *aff;
3470 struct isl_cmp_band_data *data = user;
3472 aff = isl_multi_aff_get_aff(ma, 0);
3473 data->r = isl_aff_is_cst(aff);
3474 if (data->r >= 0 && data->r) {
3475 isl_aff_get_constant(aff, &data->t);
3476 if (data->first) {
3477 isl_int_set(data->c1, data->t);
3478 data->first = 0;
3479 } else if (!isl_int_eq(data->c1, data->t))
3480 data->equal = 0;
3481 } else if (data->r >= 0 && !data->r)
3482 data->equal = 0;
3484 isl_aff_free(aff);
3485 isl_set_free(set);
3486 isl_multi_aff_free(ma);
3488 if (data->r < 0)
3489 return -1;
3490 if (!data->equal)
3491 return -1;
3492 return 0;
3495 /* This function is called for each isl_pw_multi_aff in
3496 * the isl_union_pw_multi_aff checked by extract_int.
3497 * Check all the isl_multi_affs inside "pma".
3499 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
3500 void *user)
3502 int r;
3504 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
3505 isl_pw_multi_aff_free(pma);
3507 return r;
3510 /* Check if "upma" assigns a single constant value to its domain.
3511 * If so, return 1 and store the result in data->c1.
3512 * If not, return 0.
3514 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
3515 * means that either an error occurred or that we have broken off the check
3516 * because we already know the result is going to be negative.
3517 * In the latter case, data->equal is set to zero.
3519 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
3520 struct isl_cmp_band_data *data)
3522 data->first = 1;
3523 data->equal = 1;
3525 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
3526 &pw_multi_aff_extract_int, data) < 0) {
3527 if (!data->equal)
3528 return 0;
3529 return -1;
3532 return !data->first && data->equal;
3535 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
3536 * "ancestor".
3538 * If the parent of "ancestor" also has a single member, then we
3539 * first try to compare the two band based on the partial schedule
3540 * of this parent.
3542 * Otherwise, or if the result is inconclusive, we look at the partial schedule
3543 * of "ancestor" itself.
3544 * In particular, we specialize the parent schedule based
3545 * on the domains of the child schedules, check if both assign
3546 * a single constant value and, if so, compare the two constant values.
3547 * If the specialized parent schedules do not assign a constant value,
3548 * then they cannot be used to order the two bands and so in this case
3549 * we return 0.
3551 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
3552 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
3553 __isl_keep isl_band *ancestor)
3555 isl_union_pw_multi_aff *upma;
3556 isl_union_set *domain;
3557 int r;
3559 if (data->r < 0)
3560 return 0;
3562 if (ancestor->parent && ancestor->parent->n == 1) {
3563 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
3564 if (data->r < 0)
3565 return 0;
3566 if (r)
3567 return r;
3570 upma = isl_union_pw_multi_aff_copy(b1->pma);
3571 domain = isl_union_pw_multi_aff_domain(upma);
3572 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3573 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3574 r = extract_int(upma, data);
3575 isl_union_pw_multi_aff_free(upma);
3577 if (r < 0)
3578 data->r = -1;
3579 if (r < 0 || !r)
3580 return 0;
3582 isl_int_set(data->c2, data->c1);
3584 upma = isl_union_pw_multi_aff_copy(b2->pma);
3585 domain = isl_union_pw_multi_aff_domain(upma);
3586 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3587 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3588 r = extract_int(upma, data);
3589 isl_union_pw_multi_aff_free(upma);
3591 if (r < 0)
3592 data->r = -1;
3593 if (r < 0 || !r)
3594 return 0;
3596 return isl_int_cmp(data->c2, data->c1);
3599 /* Compare "a" and "b" based on the parent schedule of their parent.
3601 static int cmp_band(const void *a, const void *b, void *user)
3603 isl_band *b1 = *(isl_band * const *) a;
3604 isl_band *b2 = *(isl_band * const *) b;
3605 struct isl_cmp_band_data *data = user;
3607 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
3610 /* Sort the elements in "list" based on the partial schedules of its parent
3611 * (and ancestors). In particular if the parent assigns constant values
3612 * to the domains of the bands in "list", then the elements are sorted
3613 * according to that order.
3614 * This order should be a more "natural" order for the user, but otherwise
3615 * shouldn't have any effect.
3616 * If we would be constructing an isl_band forest directly in
3617 * isl_schedule_constraints_compute_schedule then there wouldn't be any need
3618 * for a reordering, since the children would be added to the list
3619 * in their natural order automatically.
3621 * If there is only one element in the list, then there is no need to sort
3622 * anything.
3623 * If the partial schedule of the parent has more than one member
3624 * (or if there is no parent), then it's
3625 * defnitely not assigning constant values to the different children in
3626 * the list and so we wouldn't be able to use it to sort the list.
3628 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
3629 __isl_keep isl_band *parent)
3631 struct isl_cmp_band_data data;
3633 if (!list)
3634 return NULL;
3635 if (list->n <= 1)
3636 return list;
3637 if (!parent || parent->n != 1)
3638 return list;
3640 data.r = 0;
3641 isl_int_init(data.c1);
3642 isl_int_init(data.c2);
3643 isl_int_init(data.t);
3644 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
3645 if (data.r < 0)
3646 list = isl_band_list_free(list);
3647 isl_int_clear(data.c1);
3648 isl_int_clear(data.c2);
3649 isl_int_clear(data.t);
3651 return list;
3654 /* Construct a list of bands that start at the same position (with
3655 * sequence number band_nr) in the schedules of the nodes that
3656 * were active in the parent band.
3658 * A separate isl_band structure is created for each band_id
3659 * and for each node that does not have a band with sequence
3660 * number band_nr. In the latter case, a band without members
3661 * is created.
3662 * This ensures that if a band has any children, then each node
3663 * that was active in the band is active in exactly one of the children.
3665 static __isl_give isl_band_list *construct_band_list(
3666 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3667 int band_nr, int *parent_active, int n_active)
3669 int i, j;
3670 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3671 int *active;
3672 int n_band;
3673 isl_band_list *list;
3675 n_band = 0;
3676 for (i = 0; i < n_active; ++i) {
3677 for (j = 0; j < schedule->n; ++j) {
3678 if (!parent_active[j])
3679 continue;
3680 if (schedule->node[j].n_band <= band_nr)
3681 continue;
3682 if (schedule->node[j].band_id[band_nr] == i) {
3683 n_band++;
3684 break;
3688 for (j = 0; j < schedule->n; ++j)
3689 if (schedule->node[j].n_band <= band_nr)
3690 n_band++;
3692 if (n_band == 1) {
3693 isl_band *band;
3694 list = isl_band_list_alloc(ctx, n_band);
3695 band = construct_band(schedule, parent, band_nr,
3696 parent_active, n_active);
3697 return isl_band_list_add(list, band);
3700 active = isl_alloc_array(ctx, int, schedule->n);
3701 if (schedule->n && !active)
3702 return NULL;
3704 list = isl_band_list_alloc(ctx, n_band);
3706 for (i = 0; i < n_active; ++i) {
3707 int n = 0;
3708 isl_band *band;
3710 for (j = 0; j < schedule->n; ++j) {
3711 active[j] = parent_active[j] &&
3712 schedule->node[j].n_band > band_nr &&
3713 schedule->node[j].band_id[band_nr] == i;
3714 if (active[j])
3715 n++;
3717 if (n == 0)
3718 continue;
3720 band = construct_band(schedule, parent, band_nr, active, n);
3722 list = isl_band_list_add(list, band);
3724 for (i = 0; i < schedule->n; ++i) {
3725 isl_band *band;
3726 if (!parent_active[i])
3727 continue;
3728 if (schedule->node[i].n_band > band_nr)
3729 continue;
3730 for (j = 0; j < schedule->n; ++j)
3731 active[j] = j == i;
3732 band = construct_band(schedule, parent, band_nr, active, 1);
3733 list = isl_band_list_add(list, band);
3736 free(active);
3738 list = sort_band_list(list, parent);
3740 return list;
3743 /* Construct a band forest representation of the schedule and
3744 * return the list of roots.
3746 static __isl_give isl_band_list *construct_forest(
3747 __isl_keep isl_schedule *schedule)
3749 int i;
3750 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3751 isl_band_list *forest;
3752 int *active;
3754 active = isl_alloc_array(ctx, int, schedule->n);
3755 if (schedule->n && !active)
3756 return NULL;
3758 for (i = 0; i < schedule->n; ++i)
3759 active[i] = 1;
3761 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
3763 free(active);
3765 return forest;
3768 /* Return the roots of a band forest representation of the schedule.
3770 __isl_give isl_band_list *isl_schedule_get_band_forest(
3771 __isl_keep isl_schedule *schedule)
3773 if (!schedule)
3774 return NULL;
3775 if (!schedule->band_forest)
3776 schedule->band_forest = construct_forest(schedule);
3777 return isl_band_list_dup(schedule->band_forest);
3780 /* Call "fn" on each band in the schedule in depth-first post-order.
3782 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
3783 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
3785 int r;
3786 isl_band_list *forest;
3788 if (!sched)
3789 return -1;
3791 forest = isl_schedule_get_band_forest(sched);
3792 r = isl_band_list_foreach_band(forest, fn, user);
3793 isl_band_list_free(forest);
3795 return r;
3798 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3799 __isl_keep isl_band_list *list);
3801 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
3802 __isl_keep isl_band *band)
3804 isl_band_list *children;
3806 p = isl_printer_start_line(p);
3807 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
3808 p = isl_printer_end_line(p);
3810 if (!isl_band_has_children(band))
3811 return p;
3813 children = isl_band_get_children(band);
3815 p = isl_printer_indent(p, 4);
3816 p = print_band_list(p, children);
3817 p = isl_printer_indent(p, -4);
3819 isl_band_list_free(children);
3821 return p;
3824 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3825 __isl_keep isl_band_list *list)
3827 int i, n;
3829 n = isl_band_list_n_band(list);
3830 for (i = 0; i < n; ++i) {
3831 isl_band *band;
3832 band = isl_band_list_get_band(list, i);
3833 p = print_band(p, band);
3834 isl_band_free(band);
3837 return p;
3840 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
3841 __isl_keep isl_schedule *schedule)
3843 isl_band_list *forest;
3845 forest = isl_schedule_get_band_forest(schedule);
3847 p = print_band_list(p, forest);
3849 isl_band_list_free(forest);
3851 return p;
3854 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
3856 isl_printer *printer;
3858 if (!schedule)
3859 return;
3861 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
3862 printer = isl_printer_print_schedule(printer, schedule);
3864 isl_printer_free(printer);