isl_schedule.c: extract_edge: look for matching edge directly
[isl.git] / isl_ast_codegen.c
blobab62fe82a8e553e9c49388cdcf31038a1879cb9d
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <limits.h>
11 #include <isl/aff.h>
12 #include <isl/set.h>
13 #include <isl/ilp.h>
14 #include <isl/union_map.h>
15 #include <isl_sort.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
25 static int collect_constraint(__isl_take isl_constraint *constraint,
26 void *user)
28 isl_constraint_list **list = user;
30 if (isl_constraint_is_div_constraint(constraint))
31 isl_constraint_free(constraint);
32 else
33 *list = isl_constraint_list_add(*list, constraint);
35 return 0;
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set *bset)
44 int n;
45 isl_ctx *ctx;
46 isl_constraint_list *list;
48 if (!bset)
49 return NULL;
51 ctx = isl_basic_set_get_ctx(bset);
53 n = isl_basic_set_n_constraint(bset);
54 list = isl_constraint_list_alloc(ctx, n);
55 if (isl_basic_set_foreach_constraint(bset,
56 &collect_constraint, &list) < 0)
57 list = isl_constraint_list_free(list);
59 isl_basic_set_free(bset);
60 return list;
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data {
69 isl_ast_build *build;
71 isl_ast_graft_list *list;
74 static __isl_give isl_ast_graft_list *generate_next_level(
75 __isl_take isl_union_map *executed,
76 __isl_take isl_ast_build *build);
77 static __isl_give isl_ast_graft_list *generate_code(
78 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79 int internal);
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
89 * S -> D
91 * then we continue generating code on
93 * [S -> D] -> D
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map *executed,
101 struct isl_generate_domain_data *data)
103 isl_map *identity;
104 isl_ast_build *build;
105 isl_ast_graft_list *list;
107 build = isl_ast_build_copy(data->build);
109 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110 executed = isl_map_domain_product(executed, identity);
111 build = isl_ast_build_set_single_valued(build, 1);
113 list = generate_code(isl_union_map_from_map(executed), build, 1);
115 data->list = isl_ast_graft_list_concat(data->list, list);
117 return 0;
120 /* Call the at_each_domain callback, if requested by the user,
121 * after recording the current inverse schedule in the build.
123 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
124 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
126 if (!graft || !build)
127 return isl_ast_graft_free(graft);
128 if (!build->at_each_domain)
129 return graft;
131 build = isl_ast_build_copy(build);
132 build = isl_ast_build_set_executed(build,
133 isl_union_map_from_map(isl_map_copy(executed)));
134 if (!build)
135 return isl_ast_graft_free(graft);
137 graft->node = build->at_each_domain(graft->node,
138 build, build->at_each_domain_user);
139 isl_ast_build_free(build);
141 if (!graft->node)
142 graft = isl_ast_graft_free(graft);
144 return graft;
147 /* Generate an AST for a single domain based on
148 * the inverse schedule "executed".
150 * If there is more than one domain element associated to the current
151 * schedule "time", then we need to continue the generation process
152 * in generate_non_single_valued.
153 * Note that the inverse schedule being single-valued may depend
154 * on constraints that are only available in the original context
155 * domain specified by the user. We therefore first introduce
156 * the constraints from data->build->domain.
157 * On the other hand, we only perform the test after having taken the gist
158 * of the domain as the resulting map is the one from which the call
159 * expression is constructed. Using this map to construct the call
160 * expression usually yields simpler results.
161 * Because we perform the single-valuedness test on the gisted map,
162 * we may in rare cases fail to recognize that the inverse schedule
163 * is single-valued. This becomes problematic if this happens
164 * from the recursive call through generate_non_single_valued
165 * as we would then end up in an infinite recursion.
166 * We therefore check if we are inside a call to generate_non_single_valued
167 * and revert to the ungisted map if the gisted map turns out not to be
168 * single-valued.
170 * Otherwise, we generate a call expression for the single executed
171 * domain element and put a guard around it based on the (simplified)
172 * domain of "executed".
174 * If the user has set an at_each_domain callback, it is called
175 * on the constructed call expression node.
177 static int generate_domain(__isl_take isl_map *executed, void *user)
179 struct isl_generate_domain_data *data = user;
180 isl_ast_graft *graft;
181 isl_ast_graft_list *list;
182 isl_set *guard;
183 isl_map *map;
184 int sv;
186 executed = isl_map_intersect_domain(executed,
187 isl_set_copy(data->build->domain));
189 executed = isl_map_coalesce(executed);
190 map = isl_map_copy(executed);
191 map = isl_ast_build_compute_gist_map_domain(data->build, map);
192 sv = isl_map_is_single_valued(map);
193 if (sv < 0)
194 goto error;
195 if (!sv) {
196 isl_map_free(map);
197 if (data->build->single_valued)
198 map = isl_map_copy(executed);
199 else
200 return generate_non_single_valued(executed, data);
202 guard = isl_map_domain(isl_map_copy(map));
203 guard = isl_set_coalesce(guard);
204 guard = isl_ast_build_compute_gist(data->build, guard);
205 graft = isl_ast_graft_alloc_domain(map, data->build);
206 graft = at_each_domain(graft, executed, data->build);
208 isl_map_free(executed);
209 graft = isl_ast_graft_add_guard(graft, guard, data->build);
211 list = isl_ast_graft_list_from_ast_graft(graft);
212 data->list = isl_ast_graft_list_concat(data->list, list);
214 return 0;
215 error:
216 isl_map_free(map);
217 isl_map_free(executed);
218 return -1;
221 /* Call build->create_leaf to a create "leaf" node in the AST,
222 * encapsulate the result in an isl_ast_graft and return the result
223 * as a 1-element list.
225 * Note that the node returned by the user may be an entire tree.
227 * Before we pass control to the user, we first clear some information
228 * from the build that is (presumbably) only meaningful
229 * for the current code generation.
230 * This includes the create_leaf callback itself, so we make a copy
231 * of the build first.
233 static __isl_give isl_ast_graft_list *call_create_leaf(
234 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
236 isl_ast_node *node;
237 isl_ast_graft *graft;
238 isl_ast_build *user_build;
240 user_build = isl_ast_build_copy(build);
241 user_build = isl_ast_build_set_executed(user_build, executed);
242 user_build = isl_ast_build_clear_local_info(user_build);
243 if (!user_build)
244 node = NULL;
245 else
246 node = build->create_leaf(user_build, build->create_leaf_user);
247 graft = isl_ast_graft_alloc(node, build);
248 isl_ast_build_free(build);
249 return isl_ast_graft_list_from_ast_graft(graft);
252 /* Generate an AST after having handled the complete schedule
253 * of this call to the code generator.
255 * If the user has specified a create_leaf callback, control
256 * is passed to the user in call_create_leaf.
258 * Otherwise, we generate one or more calls for each individual
259 * domain in generate_domain.
261 static __isl_give isl_ast_graft_list *generate_inner_level(
262 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
264 isl_ctx *ctx;
265 struct isl_generate_domain_data data = { build };
267 if (!build || !executed)
268 goto error;
270 if (build->create_leaf)
271 return call_create_leaf(executed, build);
273 ctx = isl_union_map_get_ctx(executed);
274 data.list = isl_ast_graft_list_alloc(ctx, 0);
275 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
276 data.list = isl_ast_graft_list_free(data.list);
278 if (0)
279 error: data.list = NULL;
280 isl_ast_build_free(build);
281 isl_union_map_free(executed);
282 return data.list;
285 /* Call the before_each_for callback, if requested by the user.
287 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
288 __isl_keep isl_ast_build *build)
290 isl_id *id;
292 if (!node || !build)
293 return isl_ast_node_free(node);
294 if (!build->before_each_for)
295 return node;
296 id = build->before_each_for(build, build->before_each_for_user);
297 node = isl_ast_node_set_annotation(node, id);
298 return node;
301 /* Call the after_each_for callback, if requested by the user.
303 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
304 __isl_keep isl_ast_build *build)
306 if (!graft || !build)
307 return isl_ast_graft_free(graft);
308 if (!build->after_each_for)
309 return graft;
310 graft->node = build->after_each_for(graft->node, build,
311 build->after_each_for_user);
312 if (!graft->node)
313 return isl_ast_graft_free(graft);
314 return graft;
317 /* Plug in all the know values of the current and outer dimensions
318 * in the domain of "executed". In principle, we only need to plug
319 * in the known value of the current dimension since the values of
320 * outer dimensions have been plugged in already.
321 * However, it turns out to be easier to just plug in all known values.
323 static __isl_give isl_union_map *plug_in_values(
324 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
326 return isl_ast_build_substitute_values_union_map_domain(build,
327 executed);
330 /* Check if the constraint "c" is a lower bound on dimension "pos",
331 * an upper bound, or independent of dimension "pos".
333 static int constraint_type(isl_constraint *c, int pos)
335 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
336 return 1;
337 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
338 return 2;
339 return 0;
342 /* Compare the types of the constraints "a" and "b",
343 * resulting in constraints that are independent of "depth"
344 * to be sorted before the lower bounds on "depth", which in
345 * turn are sorted before the upper bounds on "depth".
347 static int cmp_constraint(__isl_keep isl_constraint *a,
348 __isl_keep isl_constraint *b, void *user)
350 int *depth = user;
351 int t1 = constraint_type(a, *depth);
352 int t2 = constraint_type(b, *depth);
354 return t1 - t2;
357 /* Extract a lower bound on dimension "pos" from constraint "c".
359 * If the constraint is of the form
361 * a x + f(...) >= 0
363 * then we essentially return
365 * l = ceil(-f(...)/a)
367 * However, if the current dimension is strided, then we need to make
368 * sure that the lower bound we construct is of the form
370 * f + s a
372 * with f the offset and s the stride.
373 * We therefore compute
375 * f + s * ceil((l - f)/s)
377 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
378 int pos, __isl_keep isl_ast_build *build)
380 isl_aff *aff;
382 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
383 aff = isl_aff_ceil(aff);
385 if (isl_ast_build_has_stride(build, pos)) {
386 isl_aff *offset;
387 isl_val *stride;
389 offset = isl_ast_build_get_offset(build, pos);
390 stride = isl_ast_build_get_stride(build, pos);
392 aff = isl_aff_sub(aff, isl_aff_copy(offset));
393 aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
394 aff = isl_aff_ceil(aff);
395 aff = isl_aff_scale_val(aff, stride);
396 aff = isl_aff_add(aff, offset);
399 aff = isl_ast_build_compute_gist_aff(build, aff);
401 return aff;
404 /* Return the exact lower bound (or upper bound if "upper" is set)
405 * of "domain" as a piecewise affine expression.
407 * If we are computing a lower bound (of a strided dimension), then
408 * we need to make sure it is of the form
410 * f + s a
412 * where f is the offset and s is the stride.
413 * We therefore need to include the stride constraint before computing
414 * the minimum.
416 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
417 __isl_keep isl_ast_build *build, int upper)
419 isl_set *stride;
420 isl_map *it_map;
421 isl_pw_aff *pa;
422 isl_pw_multi_aff *pma;
424 domain = isl_set_copy(domain);
425 if (!upper) {
426 stride = isl_ast_build_get_stride_constraint(build);
427 domain = isl_set_intersect(domain, stride);
429 it_map = isl_ast_build_map_to_iterator(build, domain);
430 if (upper)
431 pma = isl_map_lexmax_pw_multi_aff(it_map);
432 else
433 pma = isl_map_lexmin_pw_multi_aff(it_map);
434 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
435 isl_pw_multi_aff_free(pma);
436 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
437 pa = isl_pw_aff_coalesce(pa);
439 return pa;
442 /* Extract a lower bound on dimension "pos" from each constraint
443 * in "constraints" and return the list of lower bounds.
444 * If "constraints" has zero elements, then we extract a lower bound
445 * from "domain" instead.
447 static __isl_give isl_pw_aff_list *lower_bounds(
448 __isl_keep isl_constraint_list *constraints, int pos,
449 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
451 isl_ctx *ctx;
452 isl_pw_aff_list *list;
453 int i, n;
455 if (!build)
456 return NULL;
458 n = isl_constraint_list_n_constraint(constraints);
459 if (n == 0) {
460 isl_pw_aff *pa;
461 pa = exact_bound(domain, build, 0);
462 return isl_pw_aff_list_from_pw_aff(pa);
465 ctx = isl_ast_build_get_ctx(build);
466 list = isl_pw_aff_list_alloc(ctx,n);
468 for (i = 0; i < n; ++i) {
469 isl_aff *aff;
470 isl_constraint *c;
472 c = isl_constraint_list_get_constraint(constraints, i);
473 aff = lower_bound(c, pos, build);
474 isl_constraint_free(c);
475 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
478 return list;
481 /* Extract an upper bound on dimension "pos" from each constraint
482 * in "constraints" and return the list of upper bounds.
483 * If "constraints" has zero elements, then we extract an upper bound
484 * from "domain" instead.
486 static __isl_give isl_pw_aff_list *upper_bounds(
487 __isl_keep isl_constraint_list *constraints, int pos,
488 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
490 isl_ctx *ctx;
491 isl_pw_aff_list *list;
492 int i, n;
494 n = isl_constraint_list_n_constraint(constraints);
495 if (n == 0) {
496 isl_pw_aff *pa;
497 pa = exact_bound(domain, build, 1);
498 return isl_pw_aff_list_from_pw_aff(pa);
501 ctx = isl_ast_build_get_ctx(build);
502 list = isl_pw_aff_list_alloc(ctx,n);
504 for (i = 0; i < n; ++i) {
505 isl_aff *aff;
506 isl_constraint *c;
508 c = isl_constraint_list_get_constraint(constraints, i);
509 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
510 isl_constraint_free(c);
511 aff = isl_aff_floor(aff);
512 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
515 return list;
518 /* Return an isl_ast_expr that performs the reduction of type "type"
519 * on AST expressions corresponding to the elements in "list".
521 * The list is assumed to contain at least one element.
522 * If the list contains exactly one element, then the returned isl_ast_expr
523 * simply computes that affine expression.
525 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
526 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
528 int i, n;
529 isl_ctx *ctx;
530 isl_ast_expr *expr;
532 if (!list)
533 return NULL;
535 n = isl_pw_aff_list_n_pw_aff(list);
537 if (n == 1)
538 return isl_ast_build_expr_from_pw_aff_internal(build,
539 isl_pw_aff_list_get_pw_aff(list, 0));
541 ctx = isl_pw_aff_list_get_ctx(list);
542 expr = isl_ast_expr_alloc_op(ctx, type, n);
543 if (!expr)
544 return NULL;
546 for (i = 0; i < n; ++i) {
547 isl_ast_expr *expr_i;
549 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
550 isl_pw_aff_list_get_pw_aff(list, i));
551 if (!expr_i)
552 return isl_ast_expr_free(expr);
553 expr->u.op.args[i] = expr_i;
556 return expr;
559 /* Add a guard to "graft" based on "bound" in the case of a degenerate
560 * level (including the special case of an eliminated level).
562 * We eliminate the current dimension, simplify the result in the current
563 * build and add the result as guards to the graft.
565 * Note that we cannot simply drop the constraints on the current dimension
566 * even in the eliminated case, because the single affine expression may
567 * not be explicitly available in "bounds". Moreover, the single affine
568 * expression may only be defined on a subset of the build domain,
569 * so we do in some cases need to insert a guard even in the eliminated case.
571 static __isl_give isl_ast_graft *add_degenerate_guard(
572 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
573 __isl_keep isl_ast_build *build)
575 int depth;
576 isl_set *dom;
578 depth = isl_ast_build_get_depth(build);
580 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
581 if (isl_ast_build_has_stride(build, depth)) {
582 isl_set *stride;
584 stride = isl_ast_build_get_stride_constraint(build);
585 dom = isl_set_intersect(dom, stride);
587 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
588 dom = isl_ast_build_compute_gist(build, dom);
590 graft = isl_ast_graft_add_guard(graft, dom, build);
592 return graft;
595 /* Update "graft" based on "bounds" for the eliminated case.
597 * In the eliminated case, no for node is created, so we only need
598 * to check if "bounds" imply any guards that need to be inserted.
600 static __isl_give isl_ast_graft *refine_eliminated(
601 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
602 __isl_keep isl_ast_build *build)
604 return add_degenerate_guard(graft, bounds, build);
607 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
609 * "build" is the build in which graft->node was created
610 * "sub_build" contains information about the current level itself,
611 * including the single value attained.
613 * We first set the initialization part of the for loop to the single
614 * value attained by the current dimension.
615 * The increment and condition are not strictly needed as the are known
616 * to be "1" and "iterator <= value" respectively.
617 * Then we set the size of the iterator and
618 * check if "bounds" imply any guards that need to be inserted.
620 static __isl_give isl_ast_graft *refine_degenerate(
621 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
622 __isl_keep isl_ast_build *build,
623 __isl_keep isl_ast_build *sub_build)
625 isl_pw_aff *value;
627 if (!graft || !sub_build)
628 return isl_ast_graft_free(graft);
630 value = isl_pw_aff_copy(sub_build->value);
632 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
633 value);
634 if (!graft->node->u.f.init)
635 return isl_ast_graft_free(graft);
637 graft = add_degenerate_guard(graft, bounds, build);
639 return graft;
642 /* Return the intersection of constraints in "list" as a set.
644 static __isl_give isl_set *intersect_constraints(
645 __isl_keep isl_constraint_list *list)
647 int i, n;
648 isl_basic_set *bset;
650 n = isl_constraint_list_n_constraint(list);
651 if (n < 1)
652 isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
653 "expecting at least one constraint", return NULL);
655 bset = isl_basic_set_from_constraint(
656 isl_constraint_list_get_constraint(list, 0));
657 for (i = 1; i < n; ++i) {
658 isl_basic_set *bset_i;
660 bset_i = isl_basic_set_from_constraint(
661 isl_constraint_list_get_constraint(list, i));
662 bset = isl_basic_set_intersect(bset, bset_i);
665 return isl_set_from_basic_set(bset);
668 /* Compute the constraints on the outer dimensions enforced by
669 * graft->node and add those constraints to graft->enforced,
670 * in case the upper bound is expressed as a set "upper".
672 * In particular, if l(...) is a lower bound in "lower", and
674 * -a i + f(...) >= 0 or a i <= f(...)
676 * is an upper bound ocnstraint on the current dimension i,
677 * then the for loop enforces the constraint
679 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
681 * We therefore simply take each lower bound in turn, plug it into
682 * the upper bounds and compute the intersection over all lower bounds.
684 * If a lower bound is a rational expression, then
685 * isl_basic_set_preimage_multi_aff will force this rational
686 * expression to have only integer values. However, the loop
687 * itself does not enforce this integrality constraint. We therefore
688 * use the ceil of the lower bounds instead of the lower bounds themselves.
689 * Other constraints will make sure that the for loop is only executed
690 * when each of the lower bounds attains an integral value.
691 * In particular, potentially rational values only occur in
692 * lower_bound if the offset is a (seemingly) rational expression,
693 * but then outer conditions will make sure that this rational expression
694 * only attains integer values.
696 static __isl_give isl_ast_graft *set_enforced_from_set(
697 __isl_take isl_ast_graft *graft,
698 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
700 isl_space *space;
701 isl_basic_set *enforced;
702 isl_pw_multi_aff *pma;
703 int i, n;
705 if (!graft || !lower)
706 return isl_ast_graft_free(graft);
708 space = isl_set_get_space(upper);
709 enforced = isl_basic_set_universe(isl_space_copy(space));
711 space = isl_space_map_from_set(space);
712 pma = isl_pw_multi_aff_identity(space);
714 n = isl_pw_aff_list_n_pw_aff(lower);
715 for (i = 0; i < n; ++i) {
716 isl_pw_aff *pa;
717 isl_set *enforced_i;
718 isl_basic_set *hull;
719 isl_pw_multi_aff *pma_i;
721 pa = isl_pw_aff_list_get_pw_aff(lower, i);
722 pa = isl_pw_aff_ceil(pa);
723 pma_i = isl_pw_multi_aff_copy(pma);
724 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
725 enforced_i = isl_set_copy(upper);
726 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
727 hull = isl_set_simple_hull(enforced_i);
728 enforced = isl_basic_set_intersect(enforced, hull);
731 isl_pw_multi_aff_free(pma);
733 graft = isl_ast_graft_enforce(graft, enforced);
735 return graft;
738 /* Compute the constraints on the outer dimensions enforced by
739 * graft->node and add those constraints to graft->enforced,
740 * in case the upper bound is expressed as
741 * a list of affine expressions "upper".
743 * The enforced condition is that each lower bound expression is less
744 * than or equal to each upper bound expression.
746 static __isl_give isl_ast_graft *set_enforced_from_list(
747 __isl_take isl_ast_graft *graft,
748 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
750 isl_set *cond;
751 isl_basic_set *enforced;
753 lower = isl_pw_aff_list_copy(lower);
754 upper = isl_pw_aff_list_copy(upper);
755 cond = isl_pw_aff_list_le_set(lower, upper);
756 enforced = isl_set_simple_hull(cond);
757 graft = isl_ast_graft_enforce(graft, enforced);
759 return graft;
762 /* Does "aff" have a negative constant term?
764 static int aff_constant_is_negative(__isl_take isl_set *set,
765 __isl_take isl_aff *aff, void *user)
767 int *neg = user;
768 isl_val *v;
770 v = isl_aff_get_constant_val(aff);
771 *neg = isl_val_is_neg(v);
772 isl_val_free(v);
773 isl_set_free(set);
774 isl_aff_free(aff);
776 return *neg ? 0 : -1;
779 /* Does "pa" have a negative constant term over its entire domain?
781 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
783 int r;
784 int *neg = user;
786 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
787 isl_pw_aff_free(pa);
789 return *neg ? 0 : -1;
792 /* Does each element in "list" have a negative constant term?
794 * The callback terminates the iteration as soon an element has been
795 * found that does not have a negative constant term.
797 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
799 int neg = 1;
801 if (isl_pw_aff_list_foreach(list,
802 &pw_aff_constant_is_negative, &neg) < 0 && neg)
803 return -1;
805 return neg;
808 /* Add 1 to each of the elements in "list", where each of these elements
809 * is defined over the internal schedule space of "build".
811 static __isl_give isl_pw_aff_list *list_add_one(
812 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
814 int i, n;
815 isl_space *space;
816 isl_aff *aff;
817 isl_pw_aff *one;
819 space = isl_ast_build_get_space(build, 1);
820 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
821 aff = isl_aff_add_constant_si(aff, 1);
822 one = isl_pw_aff_from_aff(aff);
824 n = isl_pw_aff_list_n_pw_aff(list);
825 for (i = 0; i < n; ++i) {
826 isl_pw_aff *pa;
827 pa = isl_pw_aff_list_get_pw_aff(list, i);
828 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
829 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
832 isl_pw_aff_free(one);
834 return list;
837 /* Set the condition part of the for node graft->node in case
838 * the upper bound is represented as a list of piecewise affine expressions.
840 * In particular, set the condition to
842 * iterator <= min(list of upper bounds)
844 * If each of the upper bounds has a negative constant term, then
845 * set the condition to
847 * iterator < min(list of (upper bound + 1)s)
850 static __isl_give isl_ast_graft *set_for_cond_from_list(
851 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
852 __isl_keep isl_ast_build *build)
854 int neg;
855 isl_ast_expr *bound, *iterator, *cond;
856 enum isl_ast_op_type type = isl_ast_op_le;
858 if (!graft || !list)
859 return isl_ast_graft_free(graft);
861 neg = list_constant_is_negative(list);
862 if (neg < 0)
863 return isl_ast_graft_free(graft);
864 list = isl_pw_aff_list_copy(list);
865 if (neg) {
866 list = list_add_one(list, build);
867 type = isl_ast_op_lt;
870 bound = reduce_list(isl_ast_op_min, list, build);
871 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
872 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
873 graft->node->u.f.cond = cond;
875 isl_pw_aff_list_free(list);
876 if (!graft->node->u.f.cond)
877 return isl_ast_graft_free(graft);
878 return graft;
881 /* Set the condition part of the for node graft->node in case
882 * the upper bound is represented as a set.
884 static __isl_give isl_ast_graft *set_for_cond_from_set(
885 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
886 __isl_keep isl_ast_build *build)
888 isl_ast_expr *cond;
890 if (!graft)
891 return NULL;
893 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
894 graft->node->u.f.cond = cond;
895 if (!graft->node->u.f.cond)
896 return isl_ast_graft_free(graft);
897 return graft;
900 /* Construct an isl_ast_expr for the increment (i.e., stride) of
901 * the current dimension.
903 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
905 int depth;
906 isl_val *v;
907 isl_ctx *ctx;
909 if (!build)
910 return NULL;
911 ctx = isl_ast_build_get_ctx(build);
912 depth = isl_ast_build_get_depth(build);
914 if (!isl_ast_build_has_stride(build, depth))
915 return isl_ast_expr_alloc_int_si(ctx, 1);
917 v = isl_ast_build_get_stride(build, depth);
918 return isl_ast_expr_from_val(v);
921 /* Should we express the loop condition as
923 * iterator <= min(list of upper bounds)
925 * or as a conjunction of constraints?
927 * The first is constructed from a list of upper bounds.
928 * The second is constructed from a set.
930 * If there are no upper bounds in "constraints", then this could mean
931 * that "domain" simply doesn't have an upper bound or that we didn't
932 * pick any upper bound. In the first case, we want to generate the
933 * loop condition as a(n empty) conjunction of constraints
934 * In the second case, we will compute
935 * a single upper bound from "domain" and so we use the list form.
937 * If there are upper bounds in "constraints",
938 * then we use the list form iff the atomic_upper_bound option is set.
940 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
941 __isl_keep isl_set *domain, int depth)
943 if (n_upper > 0)
944 return isl_options_get_ast_build_atomic_upper_bound(ctx);
945 else
946 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
949 /* Fill in the expressions of the for node in graft->node.
951 * In particular,
952 * - set the initialization part of the loop to the maximum of the lower bounds
953 * - set the size of the iterator based on the values attained by the iterator
954 * - extract the increment from the stride of the current dimension
955 * - construct the for condition either based on a list of upper bounds
956 * or on a set of upper bound constraints.
958 static __isl_give isl_ast_graft *set_for_node_expressions(
959 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
960 int use_list, __isl_keep isl_pw_aff_list *upper_list,
961 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
963 isl_ast_node *node;
965 if (!graft)
966 return NULL;
968 build = isl_ast_build_copy(build);
969 build = isl_ast_build_set_enforced(build,
970 isl_ast_graft_get_enforced(graft));
972 node = graft->node;
973 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
974 node->u.f.inc = for_inc(build);
976 if (use_list)
977 graft = set_for_cond_from_list(graft, upper_list, build);
978 else
979 graft = set_for_cond_from_set(graft, upper_set, build);
981 isl_ast_build_free(build);
983 if (!node->u.f.iterator || !node->u.f.init ||
984 !node->u.f.cond || !node->u.f.inc)
985 return isl_ast_graft_free(graft);
987 return graft;
990 /* Update "graft" based on "bounds" and "domain" for the generic,
991 * non-degenerate, case.
993 * "c_lower" and "c_upper" contain the lower and upper bounds
994 * that the loop node should express.
995 * "domain" is the subset of the intersection of the constraints
996 * for which some code is executed.
998 * There may be zero lower bounds or zero upper bounds in "constraints"
999 * in case the list of constraints was created
1000 * based on the atomic option or based on separation with explicit bounds.
1001 * In that case, we use "domain" to derive lower and/or upper bounds.
1003 * We first compute a list of one or more lower bounds.
1005 * Then we decide if we want to express the condition as
1007 * iterator <= min(list of upper bounds)
1009 * or as a conjunction of constraints.
1011 * The set of enforced constraints is then computed either based on
1012 * a list of upper bounds or on a set of upper bound constraints.
1013 * We do not compute any enforced constraints if we were forced
1014 * to compute a lower or upper bound using exact_bound. The domains
1015 * of the resulting expressions may imply some bounds on outer dimensions
1016 * that we do not want to appear in the enforced constraints since
1017 * they are not actually enforced by the corresponding code.
1019 * Finally, we fill in the expressions of the for node.
1021 static __isl_give isl_ast_graft *refine_generic_bounds(
1022 __isl_take isl_ast_graft *graft,
1023 __isl_take isl_constraint_list *c_lower,
1024 __isl_take isl_constraint_list *c_upper,
1025 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1027 int depth;
1028 isl_ctx *ctx;
1029 isl_pw_aff_list *lower;
1030 int use_list;
1031 isl_set *upper_set = NULL;
1032 isl_pw_aff_list *upper_list = NULL;
1033 int n_lower, n_upper;
1035 if (!graft || !c_lower || !c_upper || !build)
1036 goto error;
1038 depth = isl_ast_build_get_depth(build);
1039 ctx = isl_ast_graft_get_ctx(graft);
1041 n_lower = isl_constraint_list_n_constraint(c_lower);
1042 n_upper = isl_constraint_list_n_constraint(c_upper);
1044 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1046 lower = lower_bounds(c_lower, depth, domain, build);
1048 if (use_list)
1049 upper_list = upper_bounds(c_upper, depth, domain, build);
1050 else if (n_upper > 0)
1051 upper_set = intersect_constraints(c_upper);
1052 else
1053 upper_set = isl_set_universe(isl_set_get_space(domain));
1055 if (n_lower == 0 || n_upper == 0)
1057 else if (use_list)
1058 graft = set_enforced_from_list(graft, lower, upper_list);
1059 else
1060 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1062 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1063 upper_set, build);
1065 isl_pw_aff_list_free(lower);
1066 isl_pw_aff_list_free(upper_list);
1067 isl_set_free(upper_set);
1068 isl_constraint_list_free(c_lower);
1069 isl_constraint_list_free(c_upper);
1071 return graft;
1072 error:
1073 isl_constraint_list_free(c_lower);
1074 isl_constraint_list_free(c_upper);
1075 return isl_ast_graft_free(graft);
1078 /* Internal data structure used inside count_constraints to keep
1079 * track of the number of constraints that are independent of dimension "pos",
1080 * the lower bounds in "pos" and the upper bounds in "pos".
1082 struct isl_ast_count_constraints_data {
1083 int pos;
1085 int n_indep;
1086 int n_lower;
1087 int n_upper;
1090 /* Increment data->n_indep, data->lower or data->upper depending
1091 * on whether "c" is independenct of dimensions data->pos,
1092 * a lower bound or an upper bound.
1094 static int count_constraints(__isl_take isl_constraint *c, void *user)
1096 struct isl_ast_count_constraints_data *data = user;
1098 if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1099 data->n_lower++;
1100 else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1101 data->n_upper++;
1102 else
1103 data->n_indep++;
1105 isl_constraint_free(c);
1107 return 0;
1110 /* Update "graft" based on "bounds" and "domain" for the generic,
1111 * non-degenerate, case.
1113 * "list" respresent the list of bounds that need to be encoded by
1114 * the for loop (or a guard around the for loop).
1115 * "domain" is the subset of the intersection of the constraints
1116 * for which some code is executed.
1117 * "build" is the build in which graft->node was created.
1119 * We separate lower bounds, upper bounds and constraints that
1120 * are independent of the loop iterator.
1122 * The actual for loop bounds are generated in refine_generic_bounds.
1123 * If there are any constraints that are independent of the loop iterator,
1124 * we need to put a guard around the for loop (which may get hoisted up
1125 * to higher levels) and we call refine_generic_bounds in a build
1126 * where this guard is enforced.
1128 static __isl_give isl_ast_graft *refine_generic_split(
1129 __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1130 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1132 isl_ast_build *for_build;
1133 isl_set *guard;
1134 struct isl_ast_count_constraints_data data;
1135 isl_constraint_list *lower;
1136 isl_constraint_list *upper;
1138 if (!list)
1139 return isl_ast_graft_free(graft);
1141 data.pos = isl_ast_build_get_depth(build);
1143 list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1144 if (!list)
1145 return isl_ast_graft_free(graft);
1147 data.n_indep = data.n_lower = data.n_upper = 0;
1148 if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1149 isl_constraint_list_free(list);
1150 return isl_ast_graft_free(graft);
1153 lower = isl_constraint_list_copy(list);
1154 lower = isl_constraint_list_drop(lower, 0, data.n_indep);
1155 upper = isl_constraint_list_copy(lower);
1156 lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1157 upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1159 if (data.n_indep == 0) {
1160 isl_constraint_list_free(list);
1161 return refine_generic_bounds(graft, lower, upper,
1162 domain, build);
1165 list = isl_constraint_list_drop(list, data.n_indep,
1166 data.n_lower + data.n_upper);
1167 guard = intersect_constraints(list);
1168 isl_constraint_list_free(list);
1170 for_build = isl_ast_build_copy(build);
1171 for_build = isl_ast_build_restrict_pending(for_build,
1172 isl_set_copy(guard));
1173 graft = refine_generic_bounds(graft, lower, upper, domain, for_build);
1174 isl_ast_build_free(for_build);
1176 graft = isl_ast_graft_add_guard(graft, guard, build);
1178 return graft;
1181 /* Add the guard implied by the current stride constraint (if any),
1182 * but not (necessarily) enforced by the generated AST to "graft".
1184 static __isl_give isl_ast_graft *add_stride_guard(
1185 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
1187 int depth;
1188 isl_set *dom;
1190 depth = isl_ast_build_get_depth(build);
1191 if (!isl_ast_build_has_stride(build, depth))
1192 return graft;
1194 dom = isl_ast_build_get_stride_constraint(build);
1195 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
1196 dom = isl_ast_build_compute_gist(build, dom);
1198 graft = isl_ast_graft_add_guard(graft, dom, build);
1200 return graft;
1203 /* Update "graft" based on "bounds" and "domain" for the generic,
1204 * non-degenerate, case.
1206 * "bounds" respresent the bounds that need to be encoded by
1207 * the for loop (or a guard around the for loop).
1208 * "domain" is the subset of "bounds" for which some code is executed.
1209 * "build" is the build in which graft->node was created.
1211 * We break up "bounds" into a list of constraints and continue with
1212 * refine_generic_split.
1214 static __isl_give isl_ast_graft *refine_generic(
1215 __isl_take isl_ast_graft *graft,
1216 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1217 __isl_keep isl_ast_build *build)
1219 isl_constraint_list *list;
1221 if (!build || !graft)
1222 return isl_ast_graft_free(graft);
1224 bounds = isl_basic_set_copy(bounds);
1225 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1226 list = isl_constraint_list_from_basic_set(bounds);
1228 graft = refine_generic_split(graft, list, domain, build);
1229 graft = add_stride_guard(graft, build);
1231 return graft;
1234 /* Create a for node for the current level.
1236 * Mark the for node degenerate if "degenerate" is set.
1238 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1239 int degenerate)
1241 int depth;
1242 isl_id *id;
1243 isl_ast_node *node;
1245 if (!build)
1246 return NULL;
1248 depth = isl_ast_build_get_depth(build);
1249 id = isl_ast_build_get_iterator_id(build, depth);
1250 node = isl_ast_node_alloc_for(id);
1251 if (degenerate)
1252 node = isl_ast_node_for_mark_degenerate(node);
1254 return node;
1257 /* Create an AST node for the current dimension based on
1258 * the schedule domain "bounds" and return the node encapsulated
1259 * in an isl_ast_graft.
1261 * "executed" is the current inverse schedule, taking into account
1262 * the bounds in "bounds"
1263 * "domain" is the domain of "executed", with inner dimensions projected out.
1264 * It may be a strict subset of "bounds" in case "bounds" was created
1265 * based on the atomic option or based on separation with explicit bounds.
1267 * "domain" may satisfy additional equalities that result
1268 * from intersecting "executed" with "bounds" in add_node.
1269 * It may also satisfy some global constraints that were dropped out because
1270 * we performed separation with explicit bounds.
1271 * The very first step is then to copy these constraints to "bounds".
1273 * Since we may be calling before_each_for and after_each_for
1274 * callbacks, we record the current inverse schedule in the build.
1276 * We consider three builds,
1277 * "build" is the one in which the current level is created,
1278 * "body_build" is the build in which the next level is created,
1279 * "sub_build" is essentially the same as "body_build", except that
1280 * the depth has not been increased yet.
1282 * "build" already contains information (in strides and offsets)
1283 * about the strides at the current level, but this information is not
1284 * reflected in the build->domain.
1285 * We first add this information and the "bounds" to the sub_build->domain.
1286 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1287 * only a single value and whether this single value can be represented using
1288 * a single affine expression.
1289 * In the first case, the current level is considered "degenerate".
1290 * In the second, sub-case, the current level is considered "eliminated".
1291 * Eliminated level don't need to be reflected in the AST since we can
1292 * simply plug in the affine expression. For degenerate, but non-eliminated,
1293 * levels, we do introduce a for node, but mark is as degenerate so that
1294 * it can be printed as an assignment of the single value to the loop
1295 * "iterator".
1297 * If the current level is eliminated, we explicitly plug in the value
1298 * for the current level found by isl_ast_build_set_loop_bounds in the
1299 * inverse schedule. This ensures that if we are working on a slice
1300 * of the domain based on information available in the inverse schedule
1301 * and the build domain, that then this information is also reflected
1302 * in the inverse schedule. This operation also eliminates the current
1303 * dimension from the inverse schedule making sure no inner dimensions depend
1304 * on the current dimension. Otherwise, we create a for node, marking
1305 * it degenerate if appropriate. The initial for node is still incomplete
1306 * and will be completed in either refine_degenerate or refine_generic.
1308 * We then generate a sequence of grafts for the next level,
1309 * create a surrounding graft for the current level and insert
1310 * the for node we created (if the current level is not eliminated).
1312 * Finally, we set the bounds of the for loop and insert guards
1313 * (either in the AST or in the graft) in one of
1314 * refine_eliminated, refine_degenerate or refine_generic.
1316 static __isl_give isl_ast_graft *create_node_scaled(
1317 __isl_take isl_union_map *executed,
1318 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1319 __isl_take isl_ast_build *build)
1321 int depth;
1322 int degenerate, eliminated;
1323 isl_basic_set *hull;
1324 isl_ast_node *node = NULL;
1325 isl_ast_graft *graft;
1326 isl_ast_graft_list *children;
1327 isl_ast_build *sub_build;
1328 isl_ast_build *body_build;
1330 domain = isl_ast_build_eliminate_divs(build, domain);
1331 domain = isl_set_detect_equalities(domain);
1332 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1333 bounds = isl_basic_set_intersect(bounds, hull);
1334 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1336 depth = isl_ast_build_get_depth(build);
1337 sub_build = isl_ast_build_copy(build);
1338 sub_build = isl_ast_build_include_stride(sub_build);
1339 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1340 isl_basic_set_copy(bounds));
1341 degenerate = isl_ast_build_has_value(sub_build);
1342 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1343 if (degenerate < 0 || eliminated < 0)
1344 executed = isl_union_map_free(executed);
1345 if (eliminated)
1346 executed = plug_in_values(executed, sub_build);
1347 else
1348 node = create_for(build, degenerate);
1350 body_build = isl_ast_build_copy(sub_build);
1351 body_build = isl_ast_build_increase_depth(body_build);
1352 if (!eliminated)
1353 node = before_each_for(node, body_build);
1354 children = generate_next_level(executed,
1355 isl_ast_build_copy(body_build));
1357 graft = isl_ast_graft_alloc_level(children, build, sub_build);
1358 if (!eliminated)
1359 graft = isl_ast_graft_insert_for(graft, node);
1360 if (eliminated)
1361 graft = refine_eliminated(graft, bounds, build);
1362 else if (degenerate)
1363 graft = refine_degenerate(graft, bounds, build, sub_build);
1364 else
1365 graft = refine_generic(graft, bounds, domain, build);
1366 if (!eliminated)
1367 graft = after_each_for(graft, body_build);
1369 isl_ast_build_free(body_build);
1370 isl_ast_build_free(sub_build);
1371 isl_ast_build_free(build);
1372 isl_basic_set_free(bounds);
1373 isl_set_free(domain);
1375 return graft;
1378 /* Internal data structure for checking if all constraints involving
1379 * the input dimension "depth" are such that the other coefficients
1380 * are multiples of "m", reducing "m" if they are not.
1381 * If "m" is reduced all the way down to "1", then the check has failed
1382 * and we break out of the iteration.
1384 struct isl_check_scaled_data {
1385 int depth;
1386 isl_val *m;
1389 /* If constraint "c" involves the input dimension data->depth,
1390 * then make sure that all the other coefficients are multiples of data->m,
1391 * reducing data->m if needed.
1392 * Break out of the iteration if data->m has become equal to "1".
1394 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1396 struct isl_check_scaled_data *data = user;
1397 int i, j, n;
1398 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1399 isl_dim_div };
1401 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1402 isl_constraint_free(c);
1403 return 0;
1406 for (i = 0; i < 4; ++i) {
1407 n = isl_constraint_dim(c, t[i]);
1408 for (j = 0; j < n; ++j) {
1409 isl_val *d;
1411 if (t[i] == isl_dim_in && j == data->depth)
1412 continue;
1413 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1414 continue;
1415 d = isl_constraint_get_coefficient_val(c, t[i], j);
1416 data->m = isl_val_gcd(data->m, d);
1417 if (isl_val_is_one(data->m))
1418 break;
1420 if (j < n)
1421 break;
1424 isl_constraint_free(c);
1426 return i < 4 ? -1 : 0;
1429 /* For each constraint of "bmap" that involves the input dimension data->depth,
1430 * make sure that all the other coefficients are multiples of data->m,
1431 * reducing data->m if needed.
1432 * Break out of the iteration if data->m has become equal to "1".
1434 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1436 int r;
1438 r = isl_basic_map_foreach_constraint(bmap,
1439 &constraint_check_scaled, user);
1440 isl_basic_map_free(bmap);
1442 return r;
1445 /* For each constraint of "map" that involves the input dimension data->depth,
1446 * make sure that all the other coefficients are multiples of data->m,
1447 * reducing data->m if needed.
1448 * Break out of the iteration if data->m has become equal to "1".
1450 static int map_check_scaled(__isl_take isl_map *map, void *user)
1452 int r;
1454 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1455 isl_map_free(map);
1457 return r;
1460 /* Create an AST node for the current dimension based on
1461 * the schedule domain "bounds" and return the node encapsulated
1462 * in an isl_ast_graft.
1464 * "executed" is the current inverse schedule, taking into account
1465 * the bounds in "bounds"
1466 * "domain" is the domain of "executed", with inner dimensions projected out.
1469 * Before moving on to the actual AST node construction in create_node_scaled,
1470 * we first check if the current dimension is strided and if we can scale
1471 * down this stride. Note that we only do this if the ast_build_scale_strides
1472 * option is set.
1474 * In particular, let the current dimension take on values
1476 * f + s a
1478 * with a an integer. We check if we can find an integer m that (obviouly)
1479 * divides both f and s.
1481 * If so, we check if the current dimension only appears in constraints
1482 * where the coefficients of the other variables are multiples of m.
1483 * We perform this extra check to avoid the risk of introducing
1484 * divisions by scaling down the current dimension.
1486 * If so, we scale the current dimension down by a factor of m.
1487 * That is, we plug in
1489 * i = m i' (1)
1491 * Note that in principle we could always scale down strided loops
1492 * by plugging in
1494 * i = f + s i'
1496 * but this may result in i' taking on larger values than the original i,
1497 * due to the shift by "f".
1498 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1500 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1501 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1502 __isl_take isl_ast_build *build)
1504 struct isl_check_scaled_data data;
1505 isl_ctx *ctx;
1506 isl_aff *offset;
1507 isl_val *d;
1509 ctx = isl_ast_build_get_ctx(build);
1510 if (!isl_options_get_ast_build_scale_strides(ctx))
1511 return create_node_scaled(executed, bounds, domain, build);
1513 data.depth = isl_ast_build_get_depth(build);
1514 if (!isl_ast_build_has_stride(build, data.depth))
1515 return create_node_scaled(executed, bounds, domain, build);
1517 offset = isl_ast_build_get_offset(build, data.depth);
1518 data.m = isl_ast_build_get_stride(build, data.depth);
1519 if (!data.m)
1520 offset = isl_aff_free(offset);
1521 offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
1522 d = isl_aff_get_denominator_val(offset);
1523 if (!d)
1524 executed = isl_union_map_free(executed);
1526 if (executed && isl_val_is_divisible_by(data.m, d))
1527 data.m = isl_val_div(data.m, d);
1528 else {
1529 data.m = isl_val_set_si(data.m, 1);
1530 isl_val_free(d);
1533 if (!isl_val_is_one(data.m)) {
1534 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1535 &data) < 0 &&
1536 !isl_val_is_one(data.m))
1537 executed = isl_union_map_free(executed);
1540 if (!isl_val_is_one(data.m)) {
1541 isl_space *space;
1542 isl_multi_aff *ma;
1543 isl_aff *aff;
1544 isl_map *map;
1545 isl_union_map *umap;
1547 space = isl_ast_build_get_space(build, 1);
1548 space = isl_space_map_from_set(space);
1549 ma = isl_multi_aff_identity(space);
1550 aff = isl_multi_aff_get_aff(ma, data.depth);
1551 aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
1552 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1554 bounds = isl_basic_set_preimage_multi_aff(bounds,
1555 isl_multi_aff_copy(ma));
1556 domain = isl_set_preimage_multi_aff(domain,
1557 isl_multi_aff_copy(ma));
1558 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1559 umap = isl_union_map_from_map(map);
1560 executed = isl_union_map_apply_domain(executed,
1561 isl_union_map_copy(umap));
1562 build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
1563 umap);
1565 isl_aff_free(offset);
1566 isl_val_free(data.m);
1568 return create_node_scaled(executed, bounds, domain, build);
1571 /* Add the basic set to the list that "user" points to.
1573 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1575 isl_basic_set_list **list = user;
1577 *list = isl_basic_set_list_add(*list, bset);
1579 return 0;
1582 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1584 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1585 __isl_take isl_set *set)
1587 int n;
1588 isl_ctx *ctx;
1589 isl_basic_set_list *list;
1591 if (!set)
1592 return NULL;
1594 ctx = isl_set_get_ctx(set);
1596 n = isl_set_n_basic_set(set);
1597 list = isl_basic_set_list_alloc(ctx, n);
1598 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1599 list = isl_basic_set_list_free(list);
1601 isl_set_free(set);
1602 return list;
1605 /* Generate code for the schedule domain "bounds"
1606 * and add the result to "list".
1608 * We mainly detect strides and additional equalities here
1609 * and then pass over control to create_node.
1611 * "bounds" reflects the bounds on the current dimension and possibly
1612 * some extra conditions on outer dimensions.
1613 * It does not, however, include any divs involving the current dimension,
1614 * so it does not capture any stride constraints.
1615 * We therefore need to compute that part of the schedule domain that
1616 * intersects with "bounds" and derive the strides from the result.
1618 static __isl_give isl_ast_graft_list *add_node(
1619 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1620 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1622 isl_ast_graft *graft;
1623 isl_set *domain = NULL;
1624 isl_union_set *uset;
1625 int empty;
1627 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1628 executed = isl_union_map_intersect_domain(executed, uset);
1629 empty = isl_union_map_is_empty(executed);
1630 if (empty < 0)
1631 goto error;
1632 if (empty)
1633 goto done;
1635 uset = isl_union_map_domain(isl_union_map_copy(executed));
1636 domain = isl_set_from_union_set(uset);
1637 domain = isl_ast_build_compute_gist(build, domain);
1638 empty = isl_set_is_empty(domain);
1639 if (empty < 0)
1640 goto error;
1641 if (empty)
1642 goto done;
1644 domain = isl_ast_build_eliminate_inner(build, domain);
1645 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1647 graft = create_node(executed, bounds, domain,
1648 isl_ast_build_copy(build));
1649 list = isl_ast_graft_list_add(list, graft);
1650 isl_ast_build_free(build);
1651 return list;
1652 error:
1653 list = isl_ast_graft_list_free(list);
1654 done:
1655 isl_set_free(domain);
1656 isl_basic_set_free(bounds);
1657 isl_union_map_free(executed);
1658 isl_ast_build_free(build);
1659 return list;
1662 /* Does any element of i follow or coincide with any element of j
1663 * at the current depth for equal values of the outer dimensions?
1665 static int domain_follows_at_depth(__isl_keep isl_basic_set *i,
1666 __isl_keep isl_basic_set *j, void *user)
1668 int depth = *(int *) user;
1669 isl_basic_map *test;
1670 int empty;
1671 int l;
1673 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1674 isl_basic_set_copy(j));
1675 for (l = 0; l < depth; ++l)
1676 test = isl_basic_map_equate(test, isl_dim_in, l,
1677 isl_dim_out, l);
1678 test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1679 isl_dim_out, depth);
1680 empty = isl_basic_map_is_empty(test);
1681 isl_basic_map_free(test);
1683 return empty < 0 ? -1 : !empty;
1686 /* Split up each element of "list" into a part that is related to "bset"
1687 * according to "gt" and a part that is not.
1688 * Return a list that consist of "bset" and all the pieces.
1690 static __isl_give isl_basic_set_list *add_split_on(
1691 __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1692 __isl_keep isl_basic_map *gt)
1694 int i, n;
1695 isl_basic_set_list *res;
1697 if (!list)
1698 bset = isl_basic_set_free(bset);
1700 gt = isl_basic_map_copy(gt);
1701 gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
1702 n = isl_basic_set_list_n_basic_set(list);
1703 res = isl_basic_set_list_from_basic_set(bset);
1704 for (i = 0; res && i < n; ++i) {
1705 isl_basic_set *bset;
1706 isl_set *set1, *set2;
1707 isl_basic_map *bmap;
1708 int empty;
1710 bset = isl_basic_set_list_get_basic_set(list, i);
1711 bmap = isl_basic_map_copy(gt);
1712 bmap = isl_basic_map_intersect_range(bmap, bset);
1713 bset = isl_basic_map_range(bmap);
1714 empty = isl_basic_set_is_empty(bset);
1715 if (empty < 0)
1716 res = isl_basic_set_list_free(res);
1717 if (empty) {
1718 isl_basic_set_free(bset);
1719 bset = isl_basic_set_list_get_basic_set(list, i);
1720 res = isl_basic_set_list_add(res, bset);
1721 continue;
1724 res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
1725 set1 = isl_set_from_basic_set(bset);
1726 bset = isl_basic_set_list_get_basic_set(list, i);
1727 set2 = isl_set_from_basic_set(bset);
1728 set1 = isl_set_subtract(set2, set1);
1729 set1 = isl_set_make_disjoint(set1);
1731 res = isl_basic_set_list_concat(res,
1732 isl_basic_set_list_from_set(set1));
1734 isl_basic_map_free(gt);
1735 isl_basic_set_list_free(list);
1736 return res;
1739 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1740 __isl_keep isl_basic_set_list *domain_list,
1741 __isl_keep isl_union_map *executed,
1742 __isl_keep isl_ast_build *build);
1744 /* Internal data structure for add_nodes.
1746 * "executed" and "build" are extra arguments to be passed to add_node.
1747 * "list" collects the results.
1749 struct isl_add_nodes_data {
1750 isl_union_map *executed;
1751 isl_ast_build *build;
1753 isl_ast_graft_list *list;
1756 /* Generate code for the schedule domains in "scc"
1757 * and add the results to "list".
1759 * The domains in "scc" form a strongly connected component in the ordering.
1760 * If the number of domains in "scc" is larger than 1, then this means
1761 * that we cannot determine a valid ordering for the domains in the component.
1762 * This should be fairly rare because the individual domains
1763 * have been made disjoint first.
1764 * The problem is that the domains may be integrally disjoint but not
1765 * rationally disjoint. For example, we may have domains
1767 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1769 * These two domains have an empty intersection, but their rational
1770 * relaxations do intersect. It is impossible to order these domains
1771 * in the second dimension because the first should be ordered before
1772 * the second for outer dimension equal to 0, while it should be ordered
1773 * after for outer dimension equal to 1.
1775 * This may happen in particular in case of unrolling since the domain
1776 * of each slice is replaced by its simple hull.
1778 * For each basic set i in "scc" and for each of the following basic sets j,
1779 * we split off that part of the basic set i that shares the outer dimensions
1780 * with j and lies before j in the current dimension.
1781 * We collect all the pieces in a new list that replaces "scc".
1783 * While the elements in "scc" should be disjoint, we double-check
1784 * this property to avoid running into an infinite recursion in case
1785 * they intersect due to some internal error.
1787 static int add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1789 struct isl_add_nodes_data *data = user;
1790 int i, n, depth;
1791 isl_basic_set *bset, *first;
1792 isl_basic_set_list *list;
1793 isl_space *space;
1794 isl_basic_map *gt;
1796 n = isl_basic_set_list_n_basic_set(scc);
1797 bset = isl_basic_set_list_get_basic_set(scc, 0);
1798 if (n == 1) {
1799 isl_basic_set_list_free(scc);
1800 data->list = add_node(data->list,
1801 isl_union_map_copy(data->executed), bset,
1802 isl_ast_build_copy(data->build));
1803 return data->list ? 0 : -1;
1806 depth = isl_ast_build_get_depth(data->build);
1807 space = isl_basic_set_get_space(bset);
1808 space = isl_space_map_from_set(space);
1809 gt = isl_basic_map_universe(space);
1810 for (i = 0; i < depth; ++i)
1811 gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
1812 gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
1814 first = isl_basic_set_copy(bset);
1815 list = isl_basic_set_list_from_basic_set(bset);
1816 for (i = 1; i < n; ++i) {
1817 int disjoint;
1819 bset = isl_basic_set_list_get_basic_set(scc, i);
1821 disjoint = isl_basic_set_is_disjoint(bset, first);
1822 if (disjoint < 0)
1823 list = isl_basic_set_list_free(list);
1824 else if (!disjoint)
1825 isl_die(isl_basic_set_list_get_ctx(scc),
1826 isl_error_internal,
1827 "basic sets in scc are assumed to be disjoint",
1828 list = isl_basic_set_list_free(list));
1830 list = add_split_on(list, bset, gt);
1832 isl_basic_set_free(first);
1833 isl_basic_map_free(gt);
1834 isl_basic_set_list_free(scc);
1835 scc = list;
1836 data->list = isl_ast_graft_list_concat(data->list,
1837 generate_sorted_domains(scc, data->executed, data->build));
1838 isl_basic_set_list_free(scc);
1840 return data->list ? 0 : -1;
1843 /* Sort the domains in "domain_list" according to the execution order
1844 * at the current depth (for equal values of the outer dimensions),
1845 * generate code for each of them, collecting the results in a list.
1846 * If no code is generated (because the intersection of the inverse schedule
1847 * with the domains turns out to be empty), then an empty list is returned.
1849 * The caller is responsible for ensuring that the basic sets in "domain_list"
1850 * are pair-wise disjoint. It can, however, in principle happen that
1851 * two basic sets should be ordered one way for one value of the outer
1852 * dimensions and the other way for some other value of the outer dimensions.
1853 * We therefore play safe and look for strongly connected components.
1854 * The function add_nodes takes care of handling non-trivial components.
1856 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1857 __isl_keep isl_basic_set_list *domain_list,
1858 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1860 isl_ctx *ctx;
1861 struct isl_add_nodes_data data;
1862 int depth;
1863 int n;
1865 if (!domain_list)
1866 return NULL;
1868 ctx = isl_basic_set_list_get_ctx(domain_list);
1869 n = isl_basic_set_list_n_basic_set(domain_list);
1870 data.list = isl_ast_graft_list_alloc(ctx, n);
1871 if (n == 0)
1872 return data.list;
1873 if (n == 1)
1874 return add_node(data.list, isl_union_map_copy(executed),
1875 isl_basic_set_list_get_basic_set(domain_list, 0),
1876 isl_ast_build_copy(build));
1878 depth = isl_ast_build_get_depth(build);
1879 data.executed = executed;
1880 data.build = build;
1881 if (isl_basic_set_list_foreach_scc(domain_list,
1882 &domain_follows_at_depth, &depth,
1883 &add_nodes, &data) < 0)
1884 data.list = isl_ast_graft_list_free(data.list);
1886 return data.list;
1889 /* Do i and j share any values for the outer dimensions?
1891 static int shared_outer(__isl_keep isl_basic_set *i,
1892 __isl_keep isl_basic_set *j, void *user)
1894 int depth = *(int *) user;
1895 isl_basic_map *test;
1896 int empty;
1897 int l;
1899 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1900 isl_basic_set_copy(j));
1901 for (l = 0; l < depth; ++l)
1902 test = isl_basic_map_equate(test, isl_dim_in, l,
1903 isl_dim_out, l);
1904 empty = isl_basic_map_is_empty(test);
1905 isl_basic_map_free(test);
1907 return empty < 0 ? -1 : !empty;
1910 /* Internal data structure for generate_sorted_domains_wrap.
1912 * "n" is the total number of basic sets
1913 * "executed" and "build" are extra arguments to be passed
1914 * to generate_sorted_domains.
1916 * "single" is set to 1 by generate_sorted_domains_wrap if there
1917 * is only a single component.
1918 * "list" collects the results.
1920 struct isl_ast_generate_parallel_domains_data {
1921 int n;
1922 isl_union_map *executed;
1923 isl_ast_build *build;
1925 int single;
1926 isl_ast_graft_list *list;
1929 /* Call generate_sorted_domains on "scc", fuse the result into a list
1930 * with either zero or one graft and collect the these single element
1931 * lists into data->list.
1933 * If there is only one component, i.e., if the number of basic sets
1934 * in the current component is equal to the total number of basic sets,
1935 * then data->single is set to 1 and the result of generate_sorted_domains
1936 * is not fused.
1938 static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
1939 void *user)
1941 struct isl_ast_generate_parallel_domains_data *data = user;
1942 isl_ast_graft_list *list;
1944 list = generate_sorted_domains(scc, data->executed, data->build);
1945 data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
1946 if (!data->single)
1947 list = isl_ast_graft_list_fuse(list, data->build);
1948 if (!data->list)
1949 data->list = list;
1950 else
1951 data->list = isl_ast_graft_list_concat(data->list, list);
1953 isl_basic_set_list_free(scc);
1954 if (!data->list)
1955 return -1;
1957 return 0;
1960 /* Look for any (weakly connected) components in the "domain_list"
1961 * of domains that share some values of the outer dimensions.
1962 * That is, domains in different components do not share any values
1963 * of the outer dimensions. This means that these components
1964 * can be freely reordered.
1965 * Within each of the components, we sort the domains according
1966 * to the execution order at the current depth.
1968 * If there is more than one component, then generate_sorted_domains_wrap
1969 * fuses the result of each call to generate_sorted_domains
1970 * into a list with either zero or one graft and collects these (at most)
1971 * single element lists into a bigger list. This means that the elements of the
1972 * final list can be freely reordered. In particular, we sort them
1973 * according to an arbitrary but fixed ordering to ease merging of
1974 * graft lists from different components.
1976 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1977 __isl_keep isl_basic_set_list *domain_list,
1978 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1980 int depth;
1981 struct isl_ast_generate_parallel_domains_data data;
1983 if (!domain_list)
1984 return NULL;
1986 data.n = isl_basic_set_list_n_basic_set(domain_list);
1987 if (data.n <= 1)
1988 return generate_sorted_domains(domain_list, executed, build);
1990 depth = isl_ast_build_get_depth(build);
1991 data.list = NULL;
1992 data.executed = executed;
1993 data.build = build;
1994 data.single = 0;
1995 if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
1996 &generate_sorted_domains_wrap,
1997 &data) < 0)
1998 data.list = isl_ast_graft_list_free(data.list);
2000 if (!data.single)
2001 data.list = isl_ast_graft_list_sort_guard(data.list);
2003 return data.list;
2006 /* Internal data for separate_domain.
2008 * "explicit" is set if we only want to use explicit bounds.
2010 * "domain" collects the separated domains.
2012 struct isl_separate_domain_data {
2013 isl_ast_build *build;
2014 int explicit;
2015 isl_set *domain;
2018 /* Extract implicit bounds on the current dimension for the executed "map".
2020 * The domain of "map" may involve inner dimensions, so we
2021 * need to eliminate them.
2023 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2024 __isl_keep isl_ast_build *build)
2026 isl_set *domain;
2028 domain = isl_map_domain(map);
2029 domain = isl_ast_build_eliminate(build, domain);
2031 return domain;
2034 /* Extract explicit bounds on the current dimension for the executed "map".
2036 * Rather than eliminating the inner dimensions as in implicit_bounds,
2037 * we simply drop any constraints involving those inner dimensions.
2038 * The idea is that most bounds that are implied by constraints on the
2039 * inner dimensions will be enforced by for loops and not by explicit guards.
2040 * There is then no need to separate along those bounds.
2042 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2043 __isl_keep isl_ast_build *build)
2045 isl_set *domain;
2046 int depth, dim;
2048 dim = isl_map_dim(map, isl_dim_out);
2049 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
2051 domain = isl_map_domain(map);
2052 depth = isl_ast_build_get_depth(build);
2053 dim = isl_set_dim(domain, isl_dim_set);
2054 domain = isl_set_detect_equalities(domain);
2055 domain = isl_set_drop_constraints_involving_dims(domain,
2056 isl_dim_set, depth + 1, dim - (depth + 1));
2057 domain = isl_set_remove_divs_involving_dims(domain,
2058 isl_dim_set, depth, 1);
2059 domain = isl_set_remove_unknown_divs(domain);
2061 return domain;
2064 /* Split data->domain into pieces that intersect with the range of "map"
2065 * and pieces that do not intersect with the range of "map"
2066 * and then add that part of the range of "map" that does not intersect
2067 * with data->domain.
2069 static int separate_domain(__isl_take isl_map *map, void *user)
2071 struct isl_separate_domain_data *data = user;
2072 isl_set *domain;
2073 isl_set *d1, *d2;
2075 if (data->explicit)
2076 domain = explicit_bounds(map, data->build);
2077 else
2078 domain = implicit_bounds(map, data->build);
2080 domain = isl_set_coalesce(domain);
2081 domain = isl_set_make_disjoint(domain);
2082 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2083 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2084 data->domain = isl_set_intersect(data->domain, domain);
2085 data->domain = isl_set_union(data->domain, d1);
2086 data->domain = isl_set_union(data->domain, d2);
2088 return 0;
2091 /* Separate the schedule domains of "executed".
2093 * That is, break up the domain of "executed" into basic sets,
2094 * such that for each basic set S, every element in S is associated with
2095 * the same domain spaces.
2097 * "space" is the (single) domain space of "executed".
2099 static __isl_give isl_set *separate_schedule_domains(
2100 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2101 __isl_keep isl_ast_build *build)
2103 struct isl_separate_domain_data data = { build };
2104 isl_ctx *ctx;
2106 ctx = isl_ast_build_get_ctx(build);
2107 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2108 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2109 data.domain = isl_set_empty(space);
2110 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2111 data.domain = isl_set_free(data.domain);
2113 isl_union_map_free(executed);
2114 return data.domain;
2117 /* Temporary data used during the search for a lower bound for unrolling.
2119 * "domain" is the original set for which to find a lower bound
2120 * "depth" is the dimension for which to find a lower boudn
2122 * "lower" is the best lower bound found so far. It is NULL if we have not
2123 * found any yet.
2124 * "n" is the corresponding size. If lower is NULL, then the value of n
2125 * is undefined.
2127 struct isl_find_unroll_data {
2128 isl_set *domain;
2129 int depth;
2131 isl_aff *lower;
2132 int *n;
2135 /* Check if we can use "c" as a lower bound and if it is better than
2136 * any previously found lower bound.
2138 * If "c" does not involve the dimension at the current depth,
2139 * then we cannot use it.
2140 * Otherwise, let "c" be of the form
2142 * i >= f(j)/a
2144 * We compute the maximal value of
2146 * -ceil(f(j)/a)) + i + 1
2148 * over the domain. If there is such a value "n", then we know
2150 * -ceil(f(j)/a)) + i + 1 <= n
2152 * or
2154 * i < ceil(f(j)/a)) + n
2156 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2157 * We just need to check if we have found any lower bound before and
2158 * if the new lower bound is better (smaller n) than the previously found
2159 * lower bounds.
2161 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2162 __isl_keep isl_constraint *c)
2164 isl_aff *aff, *lower;
2165 isl_val *max;
2167 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2168 return 0;
2170 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2171 lower = isl_aff_ceil(lower);
2172 aff = isl_aff_copy(lower);
2173 aff = isl_aff_neg(aff);
2174 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2175 aff = isl_aff_add_constant_si(aff, 1);
2176 max = isl_set_max_val(data->domain, aff);
2177 isl_aff_free(aff);
2179 if (!max)
2180 goto error;
2181 if (isl_val_is_infty(max)) {
2182 isl_val_free(max);
2183 isl_aff_free(lower);
2184 return 0;
2187 if (isl_val_cmp_si(max, INT_MAX) <= 0 &&
2188 (!data->lower || isl_val_cmp_si(max, *data->n) < 0)) {
2189 isl_aff_free(data->lower);
2190 data->lower = lower;
2191 *data->n = isl_val_get_num_si(max);
2192 } else
2193 isl_aff_free(lower);
2194 isl_val_free(max);
2196 return 1;
2197 error:
2198 isl_aff_free(lower);
2199 return -1;
2202 /* Check if we can use "c" as a lower bound and if it is better than
2203 * any previously found lower bound.
2205 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2207 struct isl_find_unroll_data *data;
2208 int r;
2210 data = (struct isl_find_unroll_data *) user;
2211 r = update_unrolling_lower_bound(data, c);
2212 isl_constraint_free(c);
2214 return r;
2217 /* Look for a lower bound l(i) on the dimension at "depth"
2218 * and a size n such that "domain" is a subset of
2220 * { [i] : l(i) <= i_d < l(i) + n }
2222 * where d is "depth" and l(i) depends only on earlier dimensions.
2223 * Furthermore, try and find a lower bound such that n is as small as possible.
2224 * In particular, "n" needs to be finite.
2226 * Inner dimensions have been eliminated from "domain" by the caller.
2228 * We first construct a collection of lower bounds on the input set
2229 * by computing its simple hull. We then iterate through them,
2230 * discarding those that we cannot use (either because they do not
2231 * involve the dimension at "depth" or because they have no corresponding
2232 * upper bound, meaning that "n" would be unbounded) and pick out the
2233 * best from the remaining ones.
2235 * If we cannot find a suitable lower bound, then we consider that
2236 * to be an error.
2238 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2239 int depth, int *n)
2241 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2242 isl_basic_set *hull;
2244 hull = isl_set_simple_hull(isl_set_copy(domain));
2246 if (isl_basic_set_foreach_constraint(hull,
2247 &constraint_find_unroll, &data) < 0)
2248 goto error;
2250 isl_basic_set_free(hull);
2252 if (!data.lower)
2253 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2254 "cannot find lower bound for unrolling", return NULL);
2256 return data.lower;
2257 error:
2258 isl_basic_set_free(hull);
2259 return isl_aff_free(data.lower);
2262 /* Return the constraint
2264 * i_"depth" = aff + offset
2266 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2267 int offset)
2269 aff = isl_aff_copy(aff);
2270 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2271 aff = isl_aff_add_constant_si(aff, offset);
2272 return isl_equality_from_aff(aff);
2275 /* Data structure for storing the results and the intermediate objects
2276 * of compute_domains.
2278 * "list" is the main result of the function and contains a list
2279 * of disjoint basic sets for which code should be generated.
2281 * "executed" and "build" are inputs to compute_domains.
2282 * "schedule_domain" is the domain of "executed".
2284 * "option" constains the domains at the current depth that should by
2285 * atomic, separated or unrolled. These domains are as specified by
2286 * the user, except that inner dimensions have been eliminated and
2287 * that they have been made pair-wise disjoint.
2289 * "sep_class" contains the user-specified split into separation classes
2290 * specialized to the current depth.
2291 * "done" contains the union of the separation domains that have already
2292 * been handled.
2294 struct isl_codegen_domains {
2295 isl_basic_set_list *list;
2297 isl_union_map *executed;
2298 isl_ast_build *build;
2299 isl_set *schedule_domain;
2301 isl_set *option[3];
2303 isl_map *sep_class;
2304 isl_set *done;
2307 /* Extend domains->list with a list of basic sets, one for each value
2308 * of the current dimension in "domain" and remove the corresponding
2309 * sets from the class domain. Return the updated class domain.
2310 * The divs that involve the current dimension have not been projected out
2311 * from this domain.
2313 * Since we are going to be iterating over the individual values,
2314 * we first check if there are any strides on the current dimension.
2315 * If there is, we rewrite the current dimension i as
2317 * i = stride i' + offset
2319 * and then iterate over individual values of i' instead.
2321 * We then look for a lower bound on i' and a size such that the domain
2322 * is a subset of
2324 * { [j,i'] : l(j) <= i' < l(j) + n }
2326 * and then take slices of the domain at values of i'
2327 * between l(j) and l(j) + n - 1.
2329 * We compute the unshifted simple hull of each slice to ensure that
2330 * we have a single basic set per offset. The slicing constraint
2331 * may get simplified away before the unshifted simple hull is taken
2332 * and may therefore in some rare cases disappear from the result.
2333 * We therefore explicitly add the constraint back after computing
2334 * the unshifted simple hull to ensure that the basic sets
2335 * remain disjoint. The constraints that are dropped by taking the hull
2336 * will be taken into account at the next level, as in the case of the
2337 * atomic option.
2339 * Finally, we map i' back to i and add each basic set to the list.
2340 * Since we may have dropped some constraints, we intersect with
2341 * the class domain again to ensure that each element in the list
2342 * is disjoint from the other class domains.
2344 static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
2345 __isl_take isl_set *domain, __isl_take isl_set *class_domain)
2347 int i, n;
2348 int depth;
2349 isl_ctx *ctx;
2350 isl_aff *lower;
2351 isl_multi_aff *expansion;
2352 isl_basic_map *bmap;
2353 isl_set *unroll_domain;
2354 isl_ast_build *build;
2356 if (!domain)
2357 return isl_set_free(class_domain);
2359 ctx = isl_set_get_ctx(domain);
2360 depth = isl_ast_build_get_depth(domains->build);
2361 build = isl_ast_build_copy(domains->build);
2362 domain = isl_ast_build_eliminate_inner(build, domain);
2363 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2364 expansion = isl_ast_build_get_stride_expansion(build);
2366 domain = isl_set_preimage_multi_aff(domain,
2367 isl_multi_aff_copy(expansion));
2368 domain = isl_ast_build_eliminate_divs(build, domain);
2370 isl_ast_build_free(build);
2372 lower = find_unroll_lower_bound(domain, depth, &n);
2373 if (!lower)
2374 class_domain = isl_set_free(class_domain);
2376 bmap = isl_basic_map_from_multi_aff(expansion);
2378 unroll_domain = isl_set_empty(isl_set_get_space(domain));
2380 for (i = 0; class_domain && i < n; ++i) {
2381 isl_set *set;
2382 isl_basic_set *bset;
2383 isl_constraint *slice;
2384 isl_basic_set_list *list;
2386 slice = at_offset(depth, lower, i);
2387 set = isl_set_copy(domain);
2388 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2389 bset = isl_set_unshifted_simple_hull(set);
2390 bset = isl_basic_set_add_constraint(bset, slice);
2391 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2392 set = isl_set_from_basic_set(bset);
2393 unroll_domain = isl_set_union(unroll_domain, isl_set_copy(set));
2394 set = isl_set_intersect(set, isl_set_copy(class_domain));
2395 set = isl_set_make_disjoint(set);
2396 list = isl_basic_set_list_from_set(set);
2397 domains->list = isl_basic_set_list_concat(domains->list, list);
2400 class_domain = isl_set_subtract(class_domain, unroll_domain);
2402 isl_aff_free(lower);
2403 isl_set_free(domain);
2404 isl_basic_map_free(bmap);
2406 return class_domain;
2409 /* Add domains to domains->list for each individual value of the current
2410 * dimension, for that part of the schedule domain that lies in the
2411 * intersection of the option domain and the class domain.
2412 * Remove the corresponding sets from the class domain and
2413 * return the updated class domain.
2415 * We first break up the unroll option domain into individual pieces
2416 * and then handle each of them separately. The unroll option domain
2417 * has been made disjoint in compute_domains_init_options,
2419 * Note that we actively want to combine different pieces of the
2420 * schedule domain that have the same value at the current dimension.
2421 * We therefore need to break up the unroll option domain before
2422 * intersecting with class and schedule domain, hoping that the
2423 * unroll option domain specified by the user is relatively simple.
2425 static __isl_give isl_set *compute_unroll_domains(
2426 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2428 isl_set *unroll_domain;
2429 isl_basic_set_list *unroll_list;
2430 int i, n;
2431 int empty;
2433 empty = isl_set_is_empty(domains->option[unroll]);
2434 if (empty < 0)
2435 return isl_set_free(class_domain);
2436 if (empty)
2437 return class_domain;
2439 unroll_domain = isl_set_copy(domains->option[unroll]);
2440 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2442 n = isl_basic_set_list_n_basic_set(unroll_list);
2443 for (i = 0; i < n; ++i) {
2444 isl_basic_set *bset;
2446 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2447 unroll_domain = isl_set_from_basic_set(bset);
2448 unroll_domain = isl_set_intersect(unroll_domain,
2449 isl_set_copy(class_domain));
2450 unroll_domain = isl_set_intersect(unroll_domain,
2451 isl_set_copy(domains->schedule_domain));
2453 empty = isl_set_is_empty(unroll_domain);
2454 if (empty >= 0 && empty) {
2455 isl_set_free(unroll_domain);
2456 continue;
2459 class_domain = do_unroll(domains, unroll_domain, class_domain);
2462 isl_basic_set_list_free(unroll_list);
2464 return class_domain;
2467 /* Try and construct a single basic set that includes the intersection of
2468 * the schedule domain, the atomic option domain and the class domain.
2469 * Add the resulting basic set(s) to domains->list and remove them
2470 * from class_domain. Return the updated class domain.
2472 * We construct a single domain rather than trying to combine
2473 * the schedule domains of individual domains because we are working
2474 * within a single component so that non-overlapping schedule domains
2475 * should already have been separated.
2476 * We do however need to make sure that this single domains is a subset
2477 * of the class domain so that it would not intersect with any other
2478 * class domains. This means that we may end up splitting up the atomic
2479 * domain in case separation classes are being used.
2481 * "domain" is the intersection of the schedule domain and the class domain,
2482 * with inner dimensions projected out.
2484 static __isl_give isl_set *compute_atomic_domain(
2485 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2487 isl_basic_set *bset;
2488 isl_basic_set_list *list;
2489 isl_set *domain, *atomic_domain;
2490 int empty;
2492 domain = isl_set_copy(domains->option[atomic]);
2493 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2494 domain = isl_set_intersect(domain,
2495 isl_set_copy(domains->schedule_domain));
2496 empty = isl_set_is_empty(domain);
2497 if (empty < 0)
2498 class_domain = isl_set_free(class_domain);
2499 if (empty) {
2500 isl_set_free(domain);
2501 return class_domain;
2504 domain = isl_ast_build_eliminate(domains->build, domain);
2505 domain = isl_set_coalesce(domain);
2506 bset = isl_set_unshifted_simple_hull(domain);
2507 domain = isl_set_from_basic_set(bset);
2508 atomic_domain = isl_set_copy(domain);
2509 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2510 class_domain = isl_set_subtract(class_domain, atomic_domain);
2511 domain = isl_set_make_disjoint(domain);
2512 list = isl_basic_set_list_from_set(domain);
2513 domains->list = isl_basic_set_list_concat(domains->list, list);
2515 return class_domain;
2518 /* Split up the schedule domain into uniform basic sets,
2519 * in the sense that each element in a basic set is associated to
2520 * elements of the same domains, and add the result to domains->list.
2521 * Do this for that part of the schedule domain that lies in the
2522 * intersection of "class_domain" and the separate option domain.
2524 * "class_domain" may or may not include the constraints
2525 * of the schedule domain, but this does not make a difference
2526 * since we are going to intersect it with the domain of the inverse schedule.
2527 * If it includes schedule domain constraints, then they may involve
2528 * inner dimensions, but we will eliminate them in separation_domain.
2530 static int compute_separate_domain(struct isl_codegen_domains *domains,
2531 __isl_keep isl_set *class_domain)
2533 isl_space *space;
2534 isl_set *domain;
2535 isl_union_map *executed;
2536 isl_basic_set_list *list;
2537 int empty;
2539 domain = isl_set_copy(domains->option[separate]);
2540 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2541 executed = isl_union_map_copy(domains->executed);
2542 executed = isl_union_map_intersect_domain(executed,
2543 isl_union_set_from_set(domain));
2544 empty = isl_union_map_is_empty(executed);
2545 if (empty < 0 || empty) {
2546 isl_union_map_free(executed);
2547 return empty < 0 ? -1 : 0;
2550 space = isl_set_get_space(class_domain);
2551 domain = separate_schedule_domains(space, executed, domains->build);
2553 list = isl_basic_set_list_from_set(domain);
2554 domains->list = isl_basic_set_list_concat(domains->list, list);
2556 return 0;
2559 /* Split up the domain at the current depth into disjoint
2560 * basic sets for which code should be generated separately
2561 * for the given separation class domain.
2563 * If any separation classes have been defined, then "class_domain"
2564 * is the domain of the current class and does not refer to inner dimensions.
2565 * Otherwise, "class_domain" is the universe domain.
2567 * We first make sure that the class domain is disjoint from
2568 * previously considered class domains.
2570 * The separate domains can be computed directly from the "class_domain".
2572 * The unroll, atomic and remainder domains need the constraints
2573 * from the schedule domain.
2575 * For unrolling, the actual schedule domain is needed (with divs that
2576 * may refer to the current dimension) so that stride detection can be
2577 * performed.
2579 * For atomic and remainder domains, inner dimensions and divs involving
2580 * the current dimensions should be eliminated.
2581 * In case we are working within a separation class, we need to intersect
2582 * the result with the current "class_domain" to ensure that the domains
2583 * are disjoint from those generated from other class domains.
2585 * The domain that has been made atomic may be larger than specified
2586 * by the user since it needs to be representable as a single basic set.
2587 * This possibly larger domain is removed from class_domain by
2588 * compute_atomic_domain. It is computed first so that the extended domain
2589 * would not overlap with any domains computed before.
2590 * Similary, the unrolled domains may have some constraints removed and
2591 * may therefore also be larger than specified by the user.
2593 * If anything is left after handling separate, unroll and atomic,
2594 * we split it up into basic sets and append the basic sets to domains->list.
2596 static int compute_partial_domains(struct isl_codegen_domains *domains,
2597 __isl_take isl_set *class_domain)
2599 isl_basic_set_list *list;
2600 isl_set *domain;
2602 class_domain = isl_set_subtract(class_domain,
2603 isl_set_copy(domains->done));
2604 domains->done = isl_set_union(domains->done,
2605 isl_set_copy(class_domain));
2607 class_domain = compute_atomic_domain(domains, class_domain);
2608 class_domain = compute_unroll_domains(domains, class_domain);
2610 domain = isl_set_copy(class_domain);
2612 if (compute_separate_domain(domains, domain) < 0)
2613 goto error;
2614 domain = isl_set_subtract(domain,
2615 isl_set_copy(domains->option[separate]));
2617 domain = isl_set_intersect(domain,
2618 isl_set_copy(domains->schedule_domain));
2620 domain = isl_ast_build_eliminate(domains->build, domain);
2621 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2623 domain = isl_set_coalesce(domain);
2624 domain = isl_set_make_disjoint(domain);
2626 list = isl_basic_set_list_from_set(domain);
2627 domains->list = isl_basic_set_list_concat(domains->list, list);
2629 isl_set_free(class_domain);
2631 return 0;
2632 error:
2633 isl_set_free(domain);
2634 isl_set_free(class_domain);
2635 return -1;
2638 /* Split up the domain at the current depth into disjoint
2639 * basic sets for which code should be generated separately
2640 * for the separation class identified by "pnt".
2642 * We extract the corresponding class domain from domains->sep_class,
2643 * eliminate inner dimensions and pass control to compute_partial_domains.
2645 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2647 struct isl_codegen_domains *domains = user;
2648 isl_set *class_set;
2649 isl_set *domain;
2650 int disjoint;
2652 class_set = isl_set_from_point(pnt);
2653 domain = isl_map_domain(isl_map_intersect_range(
2654 isl_map_copy(domains->sep_class), class_set));
2655 domain = isl_ast_build_compute_gist(domains->build, domain);
2656 domain = isl_ast_build_eliminate(domains->build, domain);
2658 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2659 if (disjoint < 0)
2660 return -1;
2661 if (disjoint) {
2662 isl_set_free(domain);
2663 return 0;
2666 return compute_partial_domains(domains, domain);
2669 /* Extract the domains at the current depth that should be atomic,
2670 * separated or unrolled and store them in option.
2672 * The domains specified by the user might overlap, so we make
2673 * them disjoint by subtracting earlier domains from later domains.
2675 static void compute_domains_init_options(isl_set *option[3],
2676 __isl_keep isl_ast_build *build)
2678 enum isl_ast_build_domain_type type, type2;
2680 for (type = atomic; type <= separate; ++type) {
2681 option[type] = isl_ast_build_get_option_domain(build, type);
2682 for (type2 = atomic; type2 < type; ++type2)
2683 option[type] = isl_set_subtract(option[type],
2684 isl_set_copy(option[type2]));
2687 option[unroll] = isl_set_coalesce(option[unroll]);
2688 option[unroll] = isl_set_make_disjoint(option[unroll]);
2691 /* Split up the domain at the current depth into disjoint
2692 * basic sets for which code should be generated separately,
2693 * based on the user-specified options.
2694 * Return the list of disjoint basic sets.
2696 * There are three kinds of domains that we need to keep track of.
2697 * - the "schedule domain" is the domain of "executed"
2698 * - the "class domain" is the domain corresponding to the currrent
2699 * separation class
2700 * - the "option domain" is the domain corresponding to one of the options
2701 * atomic, unroll or separate
2703 * We first consider the individial values of the separation classes
2704 * and split up the domain for each of them separately.
2705 * Finally, we consider the remainder. If no separation classes were
2706 * specified, then we call compute_partial_domains with the universe
2707 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2708 * with inner dimensions removed. We do this because we want to
2709 * avoid computing the complement of the class domains (i.e., the difference
2710 * between the universe and domains->done).
2712 static __isl_give isl_basic_set_list *compute_domains(
2713 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2715 struct isl_codegen_domains domains;
2716 isl_ctx *ctx;
2717 isl_set *domain;
2718 isl_union_set *schedule_domain;
2719 isl_set *classes;
2720 isl_space *space;
2721 int n_param;
2722 enum isl_ast_build_domain_type type;
2723 int empty;
2725 if (!executed)
2726 return NULL;
2728 ctx = isl_union_map_get_ctx(executed);
2729 domains.list = isl_basic_set_list_alloc(ctx, 0);
2731 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2732 domain = isl_set_from_union_set(schedule_domain);
2734 compute_domains_init_options(domains.option, build);
2736 domains.sep_class = isl_ast_build_get_separation_class(build);
2737 classes = isl_map_range(isl_map_copy(domains.sep_class));
2738 n_param = isl_set_dim(classes, isl_dim_param);
2739 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2741 space = isl_set_get_space(domain);
2742 domains.build = build;
2743 domains.schedule_domain = isl_set_copy(domain);
2744 domains.executed = executed;
2745 domains.done = isl_set_empty(space);
2747 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2748 domains.list = isl_basic_set_list_free(domains.list);
2749 isl_set_free(classes);
2751 empty = isl_set_is_empty(domains.done);
2752 if (empty < 0) {
2753 domains.list = isl_basic_set_list_free(domains.list);
2754 domain = isl_set_free(domain);
2755 } else if (empty) {
2756 isl_set_free(domain);
2757 domain = isl_set_universe(isl_set_get_space(domains.done));
2758 } else {
2759 domain = isl_ast_build_eliminate(build, domain);
2761 if (compute_partial_domains(&domains, domain) < 0)
2762 domains.list = isl_basic_set_list_free(domains.list);
2764 isl_set_free(domains.schedule_domain);
2765 isl_set_free(domains.done);
2766 isl_map_free(domains.sep_class);
2767 for (type = atomic; type <= separate; ++type)
2768 isl_set_free(domains.option[type]);
2770 return domains.list;
2773 /* Generate code for a single component, after shifting (if any)
2774 * has been applied.
2776 * We first split up the domain at the current depth into disjoint
2777 * basic sets based on the user-specified options.
2778 * Then we generated code for each of them and concatenate the results.
2780 static __isl_give isl_ast_graft_list *generate_shifted_component(
2781 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2783 isl_basic_set_list *domain_list;
2784 isl_ast_graft_list *list = NULL;
2786 domain_list = compute_domains(executed, build);
2787 list = generate_parallel_domains(domain_list, executed, build);
2789 isl_basic_set_list_free(domain_list);
2790 isl_union_map_free(executed);
2791 isl_ast_build_free(build);
2793 return list;
2796 struct isl_set_map_pair {
2797 isl_set *set;
2798 isl_map *map;
2801 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2802 * of indices into the "domain" array,
2803 * return the union of the "map" fields of the elements
2804 * indexed by the first "n" elements of "order".
2806 static __isl_give isl_union_map *construct_component_executed(
2807 struct isl_set_map_pair *domain, int *order, int n)
2809 int i;
2810 isl_map *map;
2811 isl_union_map *executed;
2813 map = isl_map_copy(domain[order[0]].map);
2814 executed = isl_union_map_from_map(map);
2815 for (i = 1; i < n; ++i) {
2816 map = isl_map_copy(domain[order[i]].map);
2817 executed = isl_union_map_add_map(executed, map);
2820 return executed;
2823 /* Generate code for a single component, after shifting (if any)
2824 * has been applied.
2826 * The component inverse schedule is specified as the "map" fields
2827 * of the elements of "domain" indexed by the first "n" elements of "order".
2829 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2830 struct isl_set_map_pair *domain, int *order, int n,
2831 __isl_take isl_ast_build *build)
2833 isl_union_map *executed;
2835 executed = construct_component_executed(domain, order, n);
2836 return generate_shifted_component(executed, build);
2839 /* Does set dimension "pos" of "set" have an obviously fixed value?
2841 static int dim_is_fixed(__isl_keep isl_set *set, int pos)
2843 int fixed;
2844 isl_val *v;
2846 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
2847 if (!v)
2848 return -1;
2849 fixed = !isl_val_is_nan(v);
2850 isl_val_free(v);
2852 return fixed;
2855 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2856 * of indices into the "domain" array,
2857 * do all (except for at most one) of the "set" field of the elements
2858 * indexed by the first "n" elements of "order" have a fixed value
2859 * at position "depth"?
2861 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2862 int *order, int n, int depth)
2864 int i;
2865 int non_fixed = -1;
2867 for (i = 0; i < n; ++i) {
2868 int f;
2870 f = dim_is_fixed(domain[order[i]].set, depth);
2871 if (f < 0)
2872 return -1;
2873 if (f)
2874 continue;
2875 if (non_fixed >= 0)
2876 return 0;
2877 non_fixed = i;
2880 return 1;
2883 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2884 * of indices into the "domain" array,
2885 * eliminate the inner dimensions from the "set" field of the elements
2886 * indexed by the first "n" elements of "order", provided the current
2887 * dimension does not have a fixed value.
2889 * Return the index of the first element in "order" with a corresponding
2890 * "set" field that does not have an (obviously) fixed value.
2892 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2893 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2895 int i;
2896 int base = -1;
2898 for (i = n - 1; i >= 0; --i) {
2899 int f;
2900 f = dim_is_fixed(domain[order[i]].set, depth);
2901 if (f < 0)
2902 return -1;
2903 if (f)
2904 continue;
2905 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2906 domain[order[i]].set);
2907 base = i;
2910 return base;
2913 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2914 * of indices into the "domain" array,
2915 * find the element of "domain" (amongst those indexed by the first "n"
2916 * elements of "order") with the "set" field that has the smallest
2917 * value for the current iterator.
2919 * Note that the domain with the smallest value may depend on the parameters
2920 * and/or outer loop dimension. Since the result of this function is only
2921 * used as heuristic, we only make a reasonable attempt at finding the best
2922 * domain, one that should work in case a single domain provides the smallest
2923 * value for the current dimension over all values of the parameters
2924 * and outer dimensions.
2926 * In particular, we compute the smallest value of the first domain
2927 * and replace it by that of any later domain if that later domain
2928 * has a smallest value that is smaller for at least some value
2929 * of the parameters and outer dimensions.
2931 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2932 __isl_keep isl_ast_build *build)
2934 int i;
2935 isl_map *min_first;
2936 int first = 0;
2938 min_first = isl_ast_build_map_to_iterator(build,
2939 isl_set_copy(domain[order[0]].set));
2940 min_first = isl_map_lexmin(min_first);
2942 for (i = 1; i < n; ++i) {
2943 isl_map *min, *test;
2944 int empty;
2946 min = isl_ast_build_map_to_iterator(build,
2947 isl_set_copy(domain[order[i]].set));
2948 min = isl_map_lexmin(min);
2949 test = isl_map_copy(min);
2950 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2951 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2952 empty = isl_map_is_empty(test);
2953 isl_map_free(test);
2954 if (empty >= 0 && !empty) {
2955 isl_map_free(min_first);
2956 first = i;
2957 min_first = min;
2958 } else
2959 isl_map_free(min);
2961 if (empty < 0)
2962 break;
2965 isl_map_free(min_first);
2967 return i < n ? -1 : first;
2970 /* Construct a shifted inverse schedule based on the original inverse schedule,
2971 * the stride and the offset.
2973 * The original inverse schedule is specified as the "map" fields
2974 * of the elements of "domain" indexed by the first "n" elements of "order".
2976 * "stride" and "offset" are such that the difference
2977 * between the values of the current dimension of domain "i"
2978 * and the values of the current dimension for some reference domain are
2979 * equal to
2981 * stride * integer + offset[i]
2983 * Moreover, 0 <= offset[i] < stride.
2985 * For each domain, we create a map
2987 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2989 * where j refers to the current dimension and the other dimensions are
2990 * unchanged, and apply this map to the original schedule domain.
2992 * For example, for the original schedule
2994 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2996 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2997 * we apply the mapping
2999 * { [j] -> [j, 0] }
3001 * to the schedule of the "A" domain and the mapping
3003 * { [j - 1] -> [j, 1] }
3005 * to the schedule of the "B" domain.
3008 * Note that after the transformation, the differences between pairs
3009 * of values of the current dimension over all domains are multiples
3010 * of stride and that we have therefore exposed the stride.
3013 * To see that the mapping preserves the lexicographic order,
3014 * first note that each of the individual maps above preserves the order.
3015 * If the value of the current iterator is j1 in one domain and j2 in another,
3016 * then if j1 = j2, we know that the same map is applied to both domains
3017 * and the order is preserved.
3018 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3019 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3021 * j1 - c1 < j2 - c2
3023 * and the order is preserved.
3024 * If c1 < c2, then we know
3026 * 0 <= c2 - c1 < s
3028 * We also have
3030 * j2 - j1 = n * s + r
3032 * with n >= 0 and 0 <= r < s.
3033 * In other words, r = c2 - c1.
3034 * If n > 0, then
3036 * j1 - c1 < j2 - c2
3038 * If n = 0, then
3040 * j1 - c1 = j2 - c2
3042 * and so
3044 * (j1 - c1, c1) << (j2 - c2, c2)
3046 * with "<<" the lexicographic order, proving that the order is preserved
3047 * in all cases.
3049 static __isl_give isl_union_map *contruct_shifted_executed(
3050 struct isl_set_map_pair *domain, int *order, int n,
3051 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3052 __isl_take isl_ast_build *build)
3054 int i;
3055 isl_union_map *executed;
3056 isl_space *space;
3057 isl_map *map;
3058 int depth;
3059 isl_constraint *c;
3061 depth = isl_ast_build_get_depth(build);
3062 space = isl_ast_build_get_space(build, 1);
3063 executed = isl_union_map_empty(isl_space_copy(space));
3064 space = isl_space_map_from_set(space);
3065 map = isl_map_identity(isl_space_copy(space));
3066 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
3067 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
3068 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
3070 c = isl_equality_alloc(isl_local_space_from_space(space));
3071 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
3072 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
3074 for (i = 0; i < n; ++i) {
3075 isl_map *map_i;
3076 isl_val *v;
3078 v = isl_multi_val_get_val(offset, i);
3079 if (!v)
3080 break;
3081 map_i = isl_map_copy(map);
3082 map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
3083 isl_val_copy(v));
3084 v = isl_val_neg(v);
3085 c = isl_constraint_set_constant_val(c, v);
3086 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
3088 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
3089 map_i);
3090 executed = isl_union_map_add_map(executed, map_i);
3093 isl_constraint_free(c);
3094 isl_map_free(map);
3096 if (i < n)
3097 executed = isl_union_map_free(executed);
3099 return executed;
3102 /* Generate code for a single component, after exposing the stride,
3103 * given that the schedule domain is "shifted strided".
3105 * The component inverse schedule is specified as the "map" fields
3106 * of the elements of "domain" indexed by the first "n" elements of "order".
3108 * The schedule domain being "shifted strided" means that the differences
3109 * between the values of the current dimension of domain "i"
3110 * and the values of the current dimension for some reference domain are
3111 * equal to
3113 * stride * integer + offset[i]
3115 * We first look for the domain with the "smallest" value for the current
3116 * dimension and adjust the offsets such that the offset of the "smallest"
3117 * domain is equal to zero. The other offsets are reduced modulo stride.
3119 * Based on this information, we construct a new inverse schedule in
3120 * contruct_shifted_executed that exposes the stride.
3121 * Since this involves the introduction of a new schedule dimension,
3122 * the build needs to be changed accodingly.
3123 * After computing the AST, the newly introduced dimension needs
3124 * to be removed again from the list of grafts. We do this by plugging
3125 * in a mapping that represents the new schedule domain in terms of the
3126 * old schedule domain.
3128 static __isl_give isl_ast_graft_list *generate_shift_component(
3129 struct isl_set_map_pair *domain, int *order, int n,
3130 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3131 __isl_take isl_ast_build *build)
3133 isl_ast_graft_list *list;
3134 int first;
3135 int depth;
3136 isl_ctx *ctx;
3137 isl_val *val;
3138 isl_multi_val *mv;
3139 isl_space *space;
3140 isl_multi_aff *ma, *zero;
3141 isl_union_map *executed;
3143 ctx = isl_ast_build_get_ctx(build);
3144 depth = isl_ast_build_get_depth(build);
3146 first = first_offset(domain, order, n, build);
3147 if (first < 0)
3148 return isl_ast_build_free(build);
3150 mv = isl_multi_val_copy(offset);
3151 val = isl_multi_val_get_val(offset, first);
3152 val = isl_val_neg(val);
3153 mv = isl_multi_val_add_val(mv, val);
3154 mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));
3156 executed = contruct_shifted_executed(domain, order, n, stride, mv,
3157 build);
3158 space = isl_ast_build_get_space(build, 1);
3159 space = isl_space_map_from_set(space);
3160 ma = isl_multi_aff_identity(isl_space_copy(space));
3161 space = isl_space_from_domain(isl_space_domain(space));
3162 space = isl_space_add_dims(space, isl_dim_out, 1);
3163 zero = isl_multi_aff_zero(space);
3164 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3165 build = isl_ast_build_insert_dim(build, depth + 1);
3166 list = generate_shifted_component(executed, build);
3168 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3170 isl_multi_val_free(mv);
3172 return list;
3175 /* Generate code for a single component.
3177 * The component inverse schedule is specified as the "map" fields
3178 * of the elements of "domain" indexed by the first "n" elements of "order".
3180 * This function may modify the "set" fields of "domain".
3182 * Before proceeding with the actual code generation for the component,
3183 * we first check if there are any "shifted" strides, meaning that
3184 * the schedule domains of the individual domains are all strided,
3185 * but that they have different offsets, resulting in the union
3186 * of schedule domains not being strided anymore.
3188 * The simplest example is the schedule
3190 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3192 * Both schedule domains are strided, but their union is not.
3193 * This function detects such cases and then rewrites the schedule to
3195 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3197 * In the new schedule, the schedule domains have the same offset (modulo
3198 * the stride), ensuring that the union of schedule domains is also strided.
3201 * If there is only a single domain in the component, then there is
3202 * nothing to do. Similarly, if the current schedule dimension has
3203 * a fixed value for almost all domains then there is nothing to be done.
3204 * In particular, we need at least two domains where the current schedule
3205 * dimension does not have a fixed value.
3206 * Finally, if any of the options refer to the current schedule dimension,
3207 * then we bail out as well. It would be possible to reformulate the options
3208 * in terms of the new schedule domain, but that would introduce constraints
3209 * that separate the domains in the options and that is something we would
3210 * like to avoid.
3213 * To see if there is any shifted stride, we look at the differences
3214 * between the values of the current dimension in pairs of domains
3215 * for equal values of outer dimensions. These differences should be
3216 * of the form
3218 * m x + r
3220 * with "m" the stride and "r" a constant. Note that we cannot perform
3221 * this analysis on individual domains as the lower bound in each domain
3222 * may depend on parameters or outer dimensions and so the current dimension
3223 * itself may not have a fixed remainder on division by the stride.
3225 * In particular, we compare the first domain that does not have an
3226 * obviously fixed value for the current dimension to itself and all
3227 * other domains and collect the offsets and the gcd of the strides.
3228 * If the gcd becomes one, then we failed to find shifted strides.
3229 * If the gcd is zero, then the differences were all fixed, meaning
3230 * that some domains had non-obviously fixed values for the current dimension.
3231 * If all the offsets are the same (for those domains that do not have
3232 * an obviously fixed value for the current dimension), then we do not
3233 * apply the transformation.
3234 * If none of the domains were skipped, then there is nothing to do.
3235 * If some of them were skipped, then if we apply separation, the schedule
3236 * domain should get split in pieces with a (non-shifted) stride.
3238 * Otherwise, we apply a shift to expose the stride in
3239 * generate_shift_component.
3241 static __isl_give isl_ast_graft_list *generate_component(
3242 struct isl_set_map_pair *domain, int *order, int n,
3243 __isl_take isl_ast_build *build)
3245 int i, d;
3246 int depth;
3247 isl_ctx *ctx;
3248 isl_map *map;
3249 isl_set *deltas;
3250 isl_val *gcd = NULL;
3251 isl_multi_val *mv;
3252 int fixed, skip;
3253 int base;
3254 isl_ast_graft_list *list;
3255 int res = 0;
3257 depth = isl_ast_build_get_depth(build);
3259 skip = n == 1;
3260 if (skip >= 0 && !skip)
3261 skip = at_most_one_non_fixed(domain, order, n, depth);
3262 if (skip >= 0 && !skip)
3263 skip = isl_ast_build_options_involve_depth(build);
3264 if (skip < 0)
3265 return isl_ast_build_free(build);
3266 if (skip)
3267 return generate_shifted_component_from_list(domain,
3268 order, n, build);
3270 base = eliminate_non_fixed(domain, order, n, depth, build);
3271 if (base < 0)
3272 return isl_ast_build_free(build);
3274 ctx = isl_ast_build_get_ctx(build);
3276 mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));
3278 fixed = 1;
3279 for (i = 0; i < n; ++i) {
3280 isl_val *r, *m;
3282 map = isl_map_from_domain_and_range(
3283 isl_set_copy(domain[order[base]].set),
3284 isl_set_copy(domain[order[i]].set));
3285 for (d = 0; d < depth; ++d)
3286 map = isl_map_equate(map, isl_dim_in, d,
3287 isl_dim_out, d);
3288 deltas = isl_map_deltas(map);
3289 res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
3290 isl_set_free(deltas);
3291 if (res < 0)
3292 break;
3294 if (i == 0)
3295 gcd = m;
3296 else
3297 gcd = isl_val_gcd(gcd, m);
3298 if (isl_val_is_one(gcd)) {
3299 isl_val_free(r);
3300 break;
3302 mv = isl_multi_val_set_val(mv, i, r);
3304 res = dim_is_fixed(domain[order[i]].set, depth);
3305 if (res < 0)
3306 break;
3307 if (res)
3308 continue;
3310 if (fixed && i > base) {
3311 isl_val *a, *b;
3312 a = isl_multi_val_get_val(mv, i);
3313 b = isl_multi_val_get_val(mv, base);
3314 if (isl_val_ne(a, b))
3315 fixed = 0;
3316 isl_val_free(a);
3317 isl_val_free(b);
3321 if (res < 0 || !gcd) {
3322 isl_ast_build_free(build);
3323 list = NULL;
3324 } else if (i < n || fixed || isl_val_is_zero(gcd)) {
3325 list = generate_shifted_component_from_list(domain,
3326 order, n, build);
3327 } else {
3328 list = generate_shift_component(domain, order, n, gcd, mv,
3329 build);
3332 isl_val_free(gcd);
3333 isl_multi_val_free(mv);
3335 return list;
3338 /* Store both "map" itself and its domain in the
3339 * structure pointed to by *next and advance to the next array element.
3341 static int extract_domain(__isl_take isl_map *map, void *user)
3343 struct isl_set_map_pair **next = user;
3345 (*next)->map = isl_map_copy(map);
3346 (*next)->set = isl_map_domain(map);
3347 (*next)++;
3349 return 0;
3352 /* Internal data for any_scheduled_after.
3354 * "depth" is the number of loops that have already been generated
3355 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3356 * "domain" is an array of set-map pairs corresponding to the different
3357 * iteration domains. The set is the schedule domain, i.e., the domain
3358 * of the inverse schedule, while the map is the inverse schedule itself.
3360 struct isl_any_scheduled_after_data {
3361 int depth;
3362 int group_coscheduled;
3363 struct isl_set_map_pair *domain;
3366 /* Is any element of domain "i" scheduled after any element of domain "j"
3367 * (for a common iteration of the first data->depth loops)?
3369 * data->domain[i].set contains the domain of the inverse schedule
3370 * for domain "i", i.e., elements in the schedule domain.
3372 * If data->group_coscheduled is set, then we also return 1 if there
3373 * is any pair of elements in the two domains that are scheduled together.
3375 static int any_scheduled_after(int i, int j, void *user)
3377 struct isl_any_scheduled_after_data *data = user;
3378 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3379 int pos;
3381 for (pos = data->depth; pos < dim; ++pos) {
3382 int follows;
3384 follows = isl_set_follows_at(data->domain[i].set,
3385 data->domain[j].set, pos);
3387 if (follows < -1)
3388 return -1;
3389 if (follows > 0)
3390 return 1;
3391 if (follows < 0)
3392 return 0;
3395 return data->group_coscheduled;
3398 /* Look for independent components at the current depth and generate code
3399 * for each component separately. The resulting lists of grafts are
3400 * merged in an attempt to combine grafts with identical guards.
3402 * Code for two domains can be generated separately if all the elements
3403 * of one domain are scheduled before (or together with) all the elements
3404 * of the other domain. We therefore consider the graph with as nodes
3405 * the domains and an edge between two nodes if any element of the first
3406 * node is scheduled after any element of the second node.
3407 * If the ast_build_group_coscheduled is set, then we also add an edge if
3408 * there is any pair of elements in the two domains that are scheduled
3409 * together.
3410 * Code is then generated (by generate_component)
3411 * for each of the strongly connected components in this graph
3412 * in their topological order.
3414 * Since the test is performed on the domain of the inverse schedules of
3415 * the different domains, we precompute these domains and store
3416 * them in data.domain.
3418 static __isl_give isl_ast_graft_list *generate_components(
3419 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3421 int i;
3422 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3423 int n = isl_union_map_n_map(executed);
3424 struct isl_any_scheduled_after_data data;
3425 struct isl_set_map_pair *next;
3426 struct isl_tarjan_graph *g = NULL;
3427 isl_ast_graft_list *list = NULL;
3428 int n_domain = 0;
3430 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3431 if (!data.domain)
3432 goto error;
3433 n_domain = n;
3435 next = data.domain;
3436 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3437 goto error;
3439 if (!build)
3440 goto error;
3441 data.depth = isl_ast_build_get_depth(build);
3442 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3443 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3445 list = isl_ast_graft_list_alloc(ctx, 0);
3447 i = 0;
3448 while (list && n) {
3449 isl_ast_graft_list *list_c;
3450 int first = i;
3452 if (g->order[i] == -1)
3453 isl_die(ctx, isl_error_internal, "cannot happen",
3454 goto error);
3455 ++i; --n;
3456 while (g->order[i] != -1) {
3457 ++i; --n;
3460 list_c = generate_component(data.domain,
3461 g->order + first, i - first,
3462 isl_ast_build_copy(build));
3463 list = isl_ast_graft_list_merge(list, list_c, build);
3465 ++i;
3468 if (0)
3469 error: list = isl_ast_graft_list_free(list);
3470 isl_tarjan_graph_free(g);
3471 for (i = 0; i < n_domain; ++i) {
3472 isl_map_free(data.domain[i].map);
3473 isl_set_free(data.domain[i].set);
3475 free(data.domain);
3476 isl_union_map_free(executed);
3477 isl_ast_build_free(build);
3479 return list;
3482 /* Generate code for the next level (and all inner levels).
3484 * If "executed" is empty, i.e., no code needs to be generated,
3485 * then we return an empty list.
3487 * If we have already generated code for all loop levels, then we pass
3488 * control to generate_inner_level.
3490 * If "executed" lives in a single space, i.e., if code needs to be
3491 * generated for a single domain, then there can only be a single
3492 * component and we go directly to generate_shifted_component.
3493 * Otherwise, we call generate_components to detect the components
3494 * and to call generate_component on each of them separately.
3496 static __isl_give isl_ast_graft_list *generate_next_level(
3497 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3499 int depth;
3501 if (!build || !executed)
3502 goto error;
3504 if (isl_union_map_is_empty(executed)) {
3505 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3506 isl_union_map_free(executed);
3507 isl_ast_build_free(build);
3508 return isl_ast_graft_list_alloc(ctx, 0);
3511 depth = isl_ast_build_get_depth(build);
3512 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3513 return generate_inner_level(executed, build);
3515 if (isl_union_map_n_map(executed) == 1)
3516 return generate_shifted_component(executed, build);
3518 return generate_components(executed, build);
3519 error:
3520 isl_union_map_free(executed);
3521 isl_ast_build_free(build);
3522 return NULL;
3525 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3526 * internal, executed and build are the inputs to generate_code.
3527 * list collects the output.
3529 struct isl_generate_code_data {
3530 int internal;
3531 isl_union_map *executed;
3532 isl_ast_build *build;
3534 isl_ast_graft_list *list;
3537 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3539 * [E -> S] -> D
3541 * with E the external build schedule and S the additional schedule "space",
3542 * reformulate the inverse schedule in terms of the internal schedule domain,
3543 * i.e., return
3545 * [I -> S] -> D
3547 * We first obtain a mapping
3549 * I -> E
3551 * take the inverse and the product with S -> S, resulting in
3553 * [I -> S] -> [E -> S]
3555 * Applying the map to the input produces the desired result.
3557 static __isl_give isl_union_map *internal_executed(
3558 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3559 __isl_keep isl_ast_build *build)
3561 isl_map *id, *proj;
3563 proj = isl_ast_build_get_schedule_map(build);
3564 proj = isl_map_reverse(proj);
3565 space = isl_space_map_from_set(isl_space_copy(space));
3566 id = isl_map_identity(space);
3567 proj = isl_map_product(proj, id);
3568 executed = isl_union_map_apply_domain(executed,
3569 isl_union_map_from_map(proj));
3570 return executed;
3573 /* Generate an AST that visits the elements in the range of data->executed
3574 * in the relative order specified by the corresponding image element(s)
3575 * for those image elements that belong to "set".
3576 * Add the result to data->list.
3578 * The caller ensures that "set" is a universe domain.
3579 * "space" is the space of the additional part of the schedule.
3580 * It is equal to the space of "set" if build->domain is parametric.
3581 * Otherwise, it is equal to the range of the wrapped space of "set".
3583 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3584 * was called from an outside user (data->internal not set), then
3585 * the (inverse) schedule refers to the external build domain and needs to
3586 * be transformed to refer to the internal build domain.
3588 * The build is extended to include the additional part of the schedule.
3589 * If the original build space was not parametric, then the options
3590 * in data->build refer only to the additional part of the schedule
3591 * and they need to be adjusted to refer to the complete AST build
3592 * domain.
3594 * After having adjusted inverse schedule and build, we start generating
3595 * code with the outer loop of the current code generation
3596 * in generate_next_level.
3598 * If the original build space was not parametric, we undo the embedding
3599 * on the resulting isl_ast_node_list so that it can be used within
3600 * the outer AST build.
3602 static int generate_code_in_space(struct isl_generate_code_data *data,
3603 __isl_take isl_set *set, __isl_take isl_space *space)
3605 isl_union_map *executed;
3606 isl_ast_build *build;
3607 isl_ast_graft_list *list;
3608 int embed;
3610 executed = isl_union_map_copy(data->executed);
3611 executed = isl_union_map_intersect_domain(executed,
3612 isl_union_set_from_set(set));
3614 embed = !isl_set_is_params(data->build->domain);
3615 if (embed && !data->internal)
3616 executed = internal_executed(executed, space, data->build);
3618 build = isl_ast_build_copy(data->build);
3619 build = isl_ast_build_product(build, space);
3621 list = generate_next_level(executed, build);
3623 list = isl_ast_graft_list_unembed(list, embed);
3625 data->list = isl_ast_graft_list_concat(data->list, list);
3627 return 0;
3630 /* Generate an AST that visits the elements in the range of data->executed
3631 * in the relative order specified by the corresponding domain element(s)
3632 * for those domain elements that belong to "set".
3633 * Add the result to data->list.
3635 * The caller ensures that "set" is a universe domain.
3637 * If the build space S is not parametric, then the space of "set"
3638 * need to be a wrapped relation with S as domain. That is, it needs
3639 * to be of the form
3641 * [S -> T]
3643 * Check this property and pass control to generate_code_in_space
3644 * passing along T.
3645 * If the build space is not parametric, then T is the space of "set".
3647 static int generate_code_set(__isl_take isl_set *set, void *user)
3649 struct isl_generate_code_data *data = user;
3650 isl_space *space, *build_space;
3651 int is_domain;
3653 space = isl_set_get_space(set);
3655 if (isl_set_is_params(data->build->domain))
3656 return generate_code_in_space(data, set, space);
3658 build_space = isl_ast_build_get_space(data->build, data->internal);
3659 space = isl_space_unwrap(space);
3660 is_domain = isl_space_is_domain(build_space, space);
3661 isl_space_free(build_space);
3662 space = isl_space_range(space);
3664 if (is_domain < 0)
3665 goto error;
3666 if (!is_domain)
3667 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3668 "invalid nested schedule space", goto error);
3670 return generate_code_in_space(data, set, space);
3671 error:
3672 isl_set_free(set);
3673 isl_space_free(space);
3674 return -1;
3677 /* Generate an AST that visits the elements in the range of "executed"
3678 * in the relative order specified by the corresponding domain element(s).
3680 * "build" is an isl_ast_build that has either been constructed by
3681 * isl_ast_build_from_context or passed to a callback set by
3682 * isl_ast_build_set_create_leaf.
3683 * In the first case, the space of the isl_ast_build is typically
3684 * a parametric space, although this is currently not enforced.
3685 * In the second case, the space is never a parametric space.
3686 * If the space S is not parametric, then the domain space(s) of "executed"
3687 * need to be wrapped relations with S as domain.
3689 * If the domain of "executed" consists of several spaces, then an AST
3690 * is generated for each of them (in arbitrary order) and the results
3691 * are concatenated.
3693 * If "internal" is set, then the domain "S" above refers to the internal
3694 * schedule domain representation. Otherwise, it refers to the external
3695 * representation, as returned by isl_ast_build_get_schedule_space.
3697 * We essentially run over all the spaces in the domain of "executed"
3698 * and call generate_code_set on each of them.
3700 static __isl_give isl_ast_graft_list *generate_code(
3701 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3702 int internal)
3704 isl_ctx *ctx;
3705 struct isl_generate_code_data data = { 0 };
3706 isl_space *space;
3707 isl_union_set *schedule_domain;
3708 isl_union_map *universe;
3710 if (!build)
3711 goto error;
3712 space = isl_ast_build_get_space(build, 1);
3713 space = isl_space_align_params(space,
3714 isl_union_map_get_space(executed));
3715 space = isl_space_align_params(space,
3716 isl_union_map_get_space(build->options));
3717 build = isl_ast_build_align_params(build, isl_space_copy(space));
3718 executed = isl_union_map_align_params(executed, space);
3719 if (!executed || !build)
3720 goto error;
3722 ctx = isl_ast_build_get_ctx(build);
3724 data.internal = internal;
3725 data.executed = executed;
3726 data.build = build;
3727 data.list = isl_ast_graft_list_alloc(ctx, 0);
3729 universe = isl_union_map_universe(isl_union_map_copy(executed));
3730 schedule_domain = isl_union_map_domain(universe);
3731 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3732 &data) < 0)
3733 data.list = isl_ast_graft_list_free(data.list);
3735 isl_union_set_free(schedule_domain);
3736 isl_union_map_free(executed);
3738 isl_ast_build_free(build);
3739 return data.list;
3740 error:
3741 isl_union_map_free(executed);
3742 isl_ast_build_free(build);
3743 return NULL;
3746 /* Generate an AST that visits the elements in the domain of "schedule"
3747 * in the relative order specified by the corresponding image element(s).
3749 * "build" is an isl_ast_build that has either been constructed by
3750 * isl_ast_build_from_context or passed to a callback set by
3751 * isl_ast_build_set_create_leaf.
3752 * In the first case, the space of the isl_ast_build is typically
3753 * a parametric space, although this is currently not enforced.
3754 * In the second case, the space is never a parametric space.
3755 * If the space S is not parametric, then the range space(s) of "schedule"
3756 * need to be wrapped relations with S as domain.
3758 * If the range of "schedule" consists of several spaces, then an AST
3759 * is generated for each of them (in arbitrary order) and the results
3760 * are concatenated.
3762 * We first initialize the local copies of the relevant options.
3763 * We do this here rather than when the isl_ast_build is created
3764 * because the options may have changed between the construction
3765 * of the isl_ast_build and the call to isl_generate_code.
3767 * The main computation is performed on an inverse schedule (with
3768 * the schedule domain in the domain and the elements to be executed
3769 * in the range) called "executed".
3771 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3772 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3774 isl_ast_graft_list *list;
3775 isl_ast_node *node;
3776 isl_union_map *executed;
3778 build = isl_ast_build_copy(build);
3779 build = isl_ast_build_set_single_valued(build, 0);
3780 executed = isl_union_map_reverse(schedule);
3781 list = generate_code(executed, isl_ast_build_copy(build), 0);
3782 node = isl_ast_node_from_graft_list(list, build);
3783 isl_ast_build_free(build);
3785 return node;