c09b2e4ddae9829254457eb4e127868eb44c67bf
[isl.git] / isl_ast_codegen.c
blobc09b2e4ddae9829254457eb4e127868eb44c67bf
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <limits.h>
11 #include <isl/aff.h>
12 #include <isl/set.h>
13 #include <isl/ilp.h>
14 #include <isl/union_map.h>
15 #include <isl_sort.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
21 #include <isl_list_private.h>
23 /* Add the constraint to the list that "user" points to, if it is not
24 * a div constraint.
26 static int collect_constraint(__isl_take isl_constraint *constraint,
27 void *user)
29 isl_constraint_list **list = user;
31 if (isl_constraint_is_div_constraint(constraint))
32 isl_constraint_free(constraint);
33 else
34 *list = isl_constraint_list_add(*list, constraint);
36 return 0;
39 /* Extract the constraints of "bset" (except the div constraints)
40 * and collect them in an isl_constraint_list.
42 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
43 __isl_take isl_basic_set *bset)
45 int n;
46 isl_ctx *ctx;
47 isl_constraint_list *list;
49 if (!bset)
50 return NULL;
52 ctx = isl_basic_set_get_ctx(bset);
54 n = isl_basic_set_n_constraint(bset);
55 list = isl_constraint_list_alloc(ctx, n);
56 if (isl_basic_set_foreach_constraint(bset,
57 &collect_constraint, &list) < 0)
58 list = isl_constraint_list_free(list);
60 isl_basic_set_free(bset);
61 return list;
64 /* Data used in generate_domain.
66 * "build" is the input build.
67 * "list" collects the results.
69 struct isl_generate_domain_data {
70 isl_ast_build *build;
72 isl_ast_graft_list *list;
75 static __isl_give isl_ast_graft_list *generate_next_level(
76 __isl_take isl_union_map *executed,
77 __isl_take isl_ast_build *build);
78 static __isl_give isl_ast_graft_list *generate_code(
79 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
80 int internal);
82 /* Generate an AST for a single domain based on
83 * the (non single valued) inverse schedule "executed".
85 * We extend the schedule with the iteration domain
86 * and continue generating through a call to generate_code.
88 * In particular, if executed has the form
90 * S -> D
92 * then we continue generating code on
94 * [S -> D] -> D
96 * The extended inverse schedule is clearly single valued
97 * ensuring that the nested generate_code will not reach this function,
98 * but will instead create calls to all elements of D that need
99 * to be executed from the current schedule domain.
101 static int generate_non_single_valued(__isl_take isl_map *executed,
102 struct isl_generate_domain_data *data)
104 isl_map *identity;
105 isl_ast_build *build;
106 isl_ast_graft_list *list;
108 build = isl_ast_build_copy(data->build);
110 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
111 executed = isl_map_domain_product(executed, identity);
112 build = isl_ast_build_set_single_valued(build, 1);
114 list = generate_code(isl_union_map_from_map(executed), build, 1);
116 data->list = isl_ast_graft_list_concat(data->list, list);
118 return 0;
121 /* Call the at_each_domain callback, if requested by the user,
122 * after recording the current inverse schedule in the build.
124 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
125 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
127 if (!graft || !build)
128 return isl_ast_graft_free(graft);
129 if (!build->at_each_domain)
130 return graft;
132 build = isl_ast_build_copy(build);
133 build = isl_ast_build_set_executed(build,
134 isl_union_map_from_map(isl_map_copy(executed)));
135 if (!build)
136 return isl_ast_graft_free(graft);
138 graft->node = build->at_each_domain(graft->node,
139 build, build->at_each_domain_user);
140 isl_ast_build_free(build);
142 if (!graft->node)
143 graft = isl_ast_graft_free(graft);
145 return graft;
148 /* Generate an AST for a single domain based on
149 * the inverse schedule "executed".
151 * If there is more than one domain element associated to the current
152 * schedule "time", then we need to continue the generation process
153 * in generate_non_single_valued.
154 * Note that the inverse schedule being single-valued may depend
155 * on constraints that are only available in the original context
156 * domain specified by the user. We therefore first introduce
157 * the constraints from data->build->domain.
158 * On the other hand, we only perform the test after having taken the gist
159 * of the domain as the resulting map is the one from which the call
160 * expression is constructed. Using this map to construct the call
161 * expression usually yields simpler results.
162 * Because we perform the single-valuedness test on the gisted map,
163 * we may in rare cases fail to recognize that the inverse schedule
164 * is single-valued. This becomes problematic if this happens
165 * from the recursive call through generate_non_single_valued
166 * as we would then end up in an infinite recursion.
167 * We therefore check if we are inside a call to generate_non_single_valued
168 * and revert to the ungisted map if the gisted map turns out not to be
169 * single-valued.
171 * Otherwise, we generate a call expression for the single executed
172 * domain element and put a guard around it based on the (simplified)
173 * domain of "executed".
175 * If the user has set an at_each_domain callback, it is called
176 * on the constructed call expression node.
178 static int generate_domain(__isl_take isl_map *executed, void *user)
180 struct isl_generate_domain_data *data = user;
181 isl_ast_graft *graft;
182 isl_ast_graft_list *list;
183 isl_set *guard;
184 isl_map *map;
185 int sv;
187 executed = isl_map_intersect_domain(executed,
188 isl_set_copy(data->build->domain));
190 executed = isl_map_coalesce(executed);
191 map = isl_map_copy(executed);
192 map = isl_ast_build_compute_gist_map_domain(data->build, map);
193 sv = isl_map_is_single_valued(map);
194 if (sv < 0)
195 goto error;
196 if (!sv) {
197 isl_map_free(map);
198 if (data->build->single_valued)
199 map = isl_map_copy(executed);
200 else
201 return generate_non_single_valued(executed, data);
203 guard = isl_map_domain(isl_map_copy(map));
204 guard = isl_set_coalesce(guard);
205 guard = isl_ast_build_compute_gist(data->build, guard);
206 graft = isl_ast_graft_alloc_domain(map, data->build);
207 graft = at_each_domain(graft, executed, data->build);
209 isl_map_free(executed);
210 graft = isl_ast_graft_add_guard(graft, guard, data->build);
212 list = isl_ast_graft_list_from_ast_graft(graft);
213 data->list = isl_ast_graft_list_concat(data->list, list);
215 return 0;
216 error:
217 isl_map_free(map);
218 isl_map_free(executed);
219 return -1;
222 /* Call build->create_leaf to a create "leaf" node in the AST,
223 * encapsulate the result in an isl_ast_graft and return the result
224 * as a 1-element list.
226 * Note that the node returned by the user may be an entire tree.
228 * Before we pass control to the user, we first clear some information
229 * from the build that is (presumbably) only meaningful
230 * for the current code generation.
231 * This includes the create_leaf callback itself, so we make a copy
232 * of the build first.
234 static __isl_give isl_ast_graft_list *call_create_leaf(
235 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
237 isl_ast_node *node;
238 isl_ast_graft *graft;
239 isl_ast_build *user_build;
241 user_build = isl_ast_build_copy(build);
242 user_build = isl_ast_build_set_executed(user_build, executed);
243 user_build = isl_ast_build_clear_local_info(user_build);
244 if (!user_build)
245 node = NULL;
246 else
247 node = build->create_leaf(user_build, build->create_leaf_user);
248 graft = isl_ast_graft_alloc(node, build);
249 isl_ast_build_free(build);
250 return isl_ast_graft_list_from_ast_graft(graft);
253 /* Generate an AST after having handled the complete schedule
254 * of this call to the code generator.
256 * If the user has specified a create_leaf callback, control
257 * is passed to the user in call_create_leaf.
259 * Otherwise, we generate one or more calls for each individual
260 * domain in generate_domain.
262 static __isl_give isl_ast_graft_list *generate_inner_level(
263 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
265 isl_ctx *ctx;
266 struct isl_generate_domain_data data = { build };
268 if (!build || !executed)
269 goto error;
271 if (build->create_leaf)
272 return call_create_leaf(executed, build);
274 ctx = isl_union_map_get_ctx(executed);
275 data.list = isl_ast_graft_list_alloc(ctx, 0);
276 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
277 data.list = isl_ast_graft_list_free(data.list);
279 if (0)
280 error: data.list = NULL;
281 isl_ast_build_free(build);
282 isl_union_map_free(executed);
283 return data.list;
286 /* Call the before_each_for callback, if requested by the user.
288 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
289 __isl_keep isl_ast_build *build)
291 isl_id *id;
293 if (!node || !build)
294 return isl_ast_node_free(node);
295 if (!build->before_each_for)
296 return node;
297 id = build->before_each_for(build, build->before_each_for_user);
298 node = isl_ast_node_set_annotation(node, id);
299 return node;
302 /* Call the after_each_for callback, if requested by the user.
304 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
305 __isl_keep isl_ast_build *build)
307 if (!graft || !build)
308 return isl_ast_graft_free(graft);
309 if (!build->after_each_for)
310 return graft;
311 graft->node = build->after_each_for(graft->node, build,
312 build->after_each_for_user);
313 if (!graft->node)
314 return isl_ast_graft_free(graft);
315 return graft;
318 /* Plug in all the know values of the current and outer dimensions
319 * in the domain of "executed". In principle, we only need to plug
320 * in the known value of the current dimension since the values of
321 * outer dimensions have been plugged in already.
322 * However, it turns out to be easier to just plug in all known values.
324 static __isl_give isl_union_map *plug_in_values(
325 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
327 return isl_ast_build_substitute_values_union_map_domain(build,
328 executed);
331 /* Check if the constraint "c" is a lower bound on dimension "pos",
332 * an upper bound, or independent of dimension "pos".
334 static int constraint_type(isl_constraint *c, int pos)
336 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
337 return 1;
338 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
339 return 2;
340 return 0;
343 /* Compare the types of the constraints "a" and "b",
344 * resulting in constraints that are independent of "depth"
345 * to be sorted before the lower bounds on "depth", which in
346 * turn are sorted before the upper bounds on "depth".
348 static int cmp_constraint(const void *a, const void *b, void *user)
350 int *depth = user;
351 isl_constraint * const *c1 = a;
352 isl_constraint * const *c2 = b;
353 int t1 = constraint_type(*c1, *depth);
354 int t2 = constraint_type(*c2, *depth);
356 return t1 - t2;
359 /* Extract a lower bound on dimension "pos" from constraint "c".
361 * If the constraint is of the form
363 * a x + f(...) >= 0
365 * then we essentially return
367 * l = ceil(-f(...)/a)
369 * However, if the current dimension is strided, then we need to make
370 * sure that the lower bound we construct is of the form
372 * f + s a
374 * with f the offset and s the stride.
375 * We therefore compute
377 * f + s * ceil((l - f)/s)
379 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
380 int pos, __isl_keep isl_ast_build *build)
382 isl_aff *aff;
384 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
385 aff = isl_aff_ceil(aff);
387 if (isl_ast_build_has_stride(build, pos)) {
388 isl_aff *offset;
389 isl_int stride;
391 isl_int_init(stride);
393 offset = isl_ast_build_get_offset(build, pos);
394 isl_ast_build_get_stride(build, pos, &stride);
396 aff = isl_aff_sub(aff, isl_aff_copy(offset));
397 aff = isl_aff_scale_down(aff, stride);
398 aff = isl_aff_ceil(aff);
399 aff = isl_aff_scale(aff, stride);
400 aff = isl_aff_add(aff, offset);
402 isl_int_clear(stride);
405 aff = isl_ast_build_compute_gist_aff(build, aff);
407 return aff;
410 /* Return the exact lower bound (or upper bound if "upper" is set)
411 * of "domain" as a piecewise affine expression.
413 * If we are computing a lower bound (of a strided dimension), then
414 * we need to make sure it is of the form
416 * f + s a
418 * where f is the offset and s is the stride.
419 * We therefore need to include the stride constraint before computing
420 * the minimum.
422 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
423 __isl_keep isl_ast_build *build, int upper)
425 isl_set *stride;
426 isl_map *it_map;
427 isl_pw_aff *pa;
428 isl_pw_multi_aff *pma;
430 domain = isl_set_copy(domain);
431 if (!upper) {
432 stride = isl_ast_build_get_stride_constraint(build);
433 domain = isl_set_intersect(domain, stride);
435 it_map = isl_ast_build_map_to_iterator(build, domain);
436 if (upper)
437 pma = isl_map_lexmax_pw_multi_aff(it_map);
438 else
439 pma = isl_map_lexmin_pw_multi_aff(it_map);
440 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
441 isl_pw_multi_aff_free(pma);
442 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
443 pa = isl_pw_aff_coalesce(pa);
445 return pa;
448 /* Return a list of "n" lower bounds on dimension "pos"
449 * extracted from the "n" constraints starting at "constraint".
450 * If "n" is zero, then we extract a lower bound from "domain" instead.
452 static __isl_give isl_pw_aff_list *lower_bounds(
453 __isl_keep isl_constraint **constraint, int n, int pos,
454 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
456 isl_ctx *ctx;
457 isl_pw_aff_list *list;
458 int i;
460 if (!build)
461 return NULL;
463 if (n == 0) {
464 isl_pw_aff *pa;
465 pa = exact_bound(domain, build, 0);
466 return isl_pw_aff_list_from_pw_aff(pa);
469 ctx = isl_ast_build_get_ctx(build);
470 list = isl_pw_aff_list_alloc(ctx,n);
472 for (i = 0; i < n; ++i) {
473 isl_aff *aff;
475 aff = lower_bound(constraint[i], pos, build);
476 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
479 return list;
482 /* Return a list of "n" upper bounds on dimension "pos"
483 * extracted from the "n" constraints starting at "constraint".
484 * If "n" is zero, then we extract an upper bound from "domain" instead.
486 static __isl_give isl_pw_aff_list *upper_bounds(
487 __isl_keep isl_constraint **constraint, int n, int pos,
488 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
490 isl_ctx *ctx;
491 isl_pw_aff_list *list;
492 int i;
494 if (n == 0) {
495 isl_pw_aff *pa;
496 pa = exact_bound(domain, build, 1);
497 return isl_pw_aff_list_from_pw_aff(pa);
500 ctx = isl_ast_build_get_ctx(build);
501 list = isl_pw_aff_list_alloc(ctx,n);
503 for (i = 0; i < n; ++i) {
504 isl_aff *aff;
506 aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
507 aff = isl_aff_floor(aff);
508 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
511 return list;
514 /* Return an isl_ast_expr that performs the reduction of type "type"
515 * on AST expressions corresponding to the elements in "list".
517 * The list is assumed to contain at least one element.
518 * If the list contains exactly one element, then the returned isl_ast_expr
519 * simply computes that affine expression.
521 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
522 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
524 int i, n;
525 isl_ctx *ctx;
526 isl_ast_expr *expr;
528 if (!list)
529 return NULL;
531 n = isl_pw_aff_list_n_pw_aff(list);
533 if (n == 1)
534 return isl_ast_build_expr_from_pw_aff_internal(build,
535 isl_pw_aff_list_get_pw_aff(list, 0));
537 ctx = isl_pw_aff_list_get_ctx(list);
538 expr = isl_ast_expr_alloc_op(ctx, type, n);
539 if (!expr)
540 return NULL;
542 for (i = 0; i < n; ++i) {
543 isl_ast_expr *expr_i;
545 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
546 isl_pw_aff_list_get_pw_aff(list, i));
547 if (!expr_i)
548 return isl_ast_expr_free(expr);
549 expr->u.op.args[i] = expr_i;
552 return expr;
555 /* Add a guard to "graft" based on "bound" in the case of a degenerate
556 * level (including the special case of an eliminated level).
558 * We eliminate the current dimension, simplify the result in the current
559 * build and add the result as guards to the graft.
561 * Note that we cannot simply drop the constraints on the current dimension
562 * even in the eliminated case, because the single affine expression may
563 * not be explicitly available in "bounds". Moreover, the single affine
564 * expression may only be defined on a subset of the build domain,
565 * so we do in some cases need to insert a guard even in the eliminated case.
567 static __isl_give isl_ast_graft *add_degenerate_guard(
568 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
569 __isl_keep isl_ast_build *build)
571 int depth;
572 isl_set *dom;
574 depth = isl_ast_build_get_depth(build);
576 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
577 if (isl_ast_build_has_stride(build, depth)) {
578 isl_set *stride;
580 stride = isl_ast_build_get_stride_constraint(build);
581 dom = isl_set_intersect(dom, stride);
583 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
584 dom = isl_ast_build_compute_gist(build, dom);
586 graft = isl_ast_graft_add_guard(graft, dom, build);
588 return graft;
591 /* Update "graft" based on "bounds" for the eliminated case.
593 * In the eliminated case, no for node is created, so we only need
594 * to check if "bounds" imply any guards that need to be inserted.
596 static __isl_give isl_ast_graft *refine_eliminated(
597 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
598 __isl_keep isl_ast_build *build)
600 return add_degenerate_guard(graft, bounds, build);
603 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
605 * "build" is the build in which graft->node was created
606 * "sub_build" contains information about the current level itself,
607 * including the single value attained.
609 * We first set the initialization part of the for loop to the single
610 * value attained by the current dimension.
611 * The increment and condition are not strictly needed as the are known
612 * to be "1" and "iterator <= value" respectively.
613 * Then we set the size of the iterator and
614 * check if "bounds" imply any guards that need to be inserted.
616 static __isl_give isl_ast_graft *refine_degenerate(
617 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
618 __isl_keep isl_ast_build *build,
619 __isl_keep isl_ast_build *sub_build)
621 isl_pw_aff *value;
623 if (!graft || !sub_build)
624 return isl_ast_graft_free(graft);
626 value = isl_pw_aff_copy(sub_build->value);
628 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
629 value);
630 if (!graft->node->u.f.init)
631 return isl_ast_graft_free(graft);
633 graft = add_degenerate_guard(graft, bounds, build);
635 return graft;
638 /* Return the intersection of the "n" constraints starting at "constraint"
639 * as a set.
641 static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
642 __isl_keep isl_constraint **constraint, int n)
644 int i;
645 isl_basic_set *bset;
647 if (n < 1)
648 isl_die(ctx, isl_error_internal,
649 "expecting at least one constraint", return NULL);
651 bset = isl_basic_set_from_constraint(
652 isl_constraint_copy(constraint[0]));
653 for (i = 1; i < n; ++i) {
654 isl_basic_set *bset_i;
656 bset_i = isl_basic_set_from_constraint(
657 isl_constraint_copy(constraint[i]));
658 bset = isl_basic_set_intersect(bset, bset_i);
661 return isl_set_from_basic_set(bset);
664 /* Compute the constraints on the outer dimensions enforced by
665 * graft->node and add those constraints to graft->enforced,
666 * in case the upper bound is expressed as a set "upper".
668 * In particular, if l(...) is a lower bound in "lower", and
670 * -a i + f(...) >= 0 or a i <= f(...)
672 * is an upper bound ocnstraint on the current dimension i,
673 * then the for loop enforces the constraint
675 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
677 * We therefore simply take each lower bound in turn, plug it into
678 * the upper bounds and compute the intersection over all lower bounds.
680 * If a lower bound is a rational expression, then
681 * isl_basic_set_preimage_multi_aff will force this rational
682 * expression to have only integer values. However, the loop
683 * itself does not enforce this integrality constraint. We therefore
684 * use the ceil of the lower bounds instead of the lower bounds themselves.
685 * Other constraints will make sure that the for loop is only executed
686 * when each of the lower bounds attains an integral value.
687 * In particular, potentially rational values only occur in
688 * lower_bound if the offset is a (seemingly) rational expression,
689 * but then outer conditions will make sure that this rational expression
690 * only attains integer values.
692 static __isl_give isl_ast_graft *set_enforced_from_set(
693 __isl_take isl_ast_graft *graft,
694 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
696 isl_space *space;
697 isl_basic_set *enforced;
698 isl_pw_multi_aff *pma;
699 int i, n;
701 if (!graft || !lower)
702 return isl_ast_graft_free(graft);
704 space = isl_set_get_space(upper);
705 enforced = isl_basic_set_universe(isl_space_copy(space));
707 space = isl_space_map_from_set(space);
708 pma = isl_pw_multi_aff_identity(space);
710 n = isl_pw_aff_list_n_pw_aff(lower);
711 for (i = 0; i < n; ++i) {
712 isl_pw_aff *pa;
713 isl_set *enforced_i;
714 isl_basic_set *hull;
715 isl_pw_multi_aff *pma_i;
717 pa = isl_pw_aff_list_get_pw_aff(lower, i);
718 pa = isl_pw_aff_ceil(pa);
719 pma_i = isl_pw_multi_aff_copy(pma);
720 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
721 enforced_i = isl_set_copy(upper);
722 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
723 hull = isl_set_simple_hull(enforced_i);
724 enforced = isl_basic_set_intersect(enforced, hull);
727 isl_pw_multi_aff_free(pma);
729 graft = isl_ast_graft_enforce(graft, enforced);
731 return graft;
734 /* Compute the constraints on the outer dimensions enforced by
735 * graft->node and add those constraints to graft->enforced,
736 * in case the upper bound is expressed as
737 * a list of affine expressions "upper".
739 * The enforced condition is that each lower bound expression is less
740 * than or equal to each upper bound expression.
742 static __isl_give isl_ast_graft *set_enforced_from_list(
743 __isl_take isl_ast_graft *graft,
744 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
746 isl_set *cond;
747 isl_basic_set *enforced;
749 lower = isl_pw_aff_list_copy(lower);
750 upper = isl_pw_aff_list_copy(upper);
751 cond = isl_pw_aff_list_le_set(lower, upper);
752 enforced = isl_set_simple_hull(cond);
753 graft = isl_ast_graft_enforce(graft, enforced);
755 return graft;
758 /* Does "aff" have a negative constant term?
760 static int aff_constant_is_negative(__isl_take isl_set *set,
761 __isl_take isl_aff *aff, void *user)
763 int *neg = user;
764 isl_int v;
766 isl_int_init(v);
767 isl_aff_get_constant(aff, &v);
768 *neg = isl_int_is_neg(v);
769 isl_int_clear(v);
770 isl_set_free(set);
771 isl_aff_free(aff);
773 return *neg ? 0 : -1;
776 /* Does "pa" have a negative constant term over its entire domain?
778 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
780 int r;
781 int *neg = user;
783 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
784 isl_pw_aff_free(pa);
786 return *neg ? 0 : -1;
789 /* Does each element in "list" have a negative constant term?
791 * The callback terminates the iteration as soon an element has been
792 * found that does not have a negative constant term.
794 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
796 int neg = 1;
798 if (isl_pw_aff_list_foreach(list,
799 &pw_aff_constant_is_negative, &neg) < 0 && neg)
800 return -1;
802 return neg;
805 /* Add 1 to each of the elements in "list", where each of these elements
806 * is defined over the internal schedule space of "build".
808 static __isl_give isl_pw_aff_list *list_add_one(
809 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
811 int i, n;
812 isl_space *space;
813 isl_aff *aff;
814 isl_pw_aff *one;
816 space = isl_ast_build_get_space(build, 1);
817 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
818 aff = isl_aff_add_constant_si(aff, 1);
819 one = isl_pw_aff_from_aff(aff);
821 n = isl_pw_aff_list_n_pw_aff(list);
822 for (i = 0; i < n; ++i) {
823 isl_pw_aff *pa;
824 pa = isl_pw_aff_list_get_pw_aff(list, i);
825 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
826 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
829 isl_pw_aff_free(one);
831 return list;
834 /* Set the condition part of the for node graft->node in case
835 * the upper bound is represented as a list of piecewise affine expressions.
837 * In particular, set the condition to
839 * iterator <= min(list of upper bounds)
841 * If each of the upper bounds has a negative constant term, then
842 * set the condition to
844 * iterator < min(list of (upper bound + 1)s)
847 static __isl_give isl_ast_graft *set_for_cond_from_list(
848 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
849 __isl_keep isl_ast_build *build)
851 int neg;
852 isl_ast_expr *bound, *iterator, *cond;
853 enum isl_ast_op_type type = isl_ast_op_le;
855 if (!graft || !list)
856 return isl_ast_graft_free(graft);
858 neg = list_constant_is_negative(list);
859 if (neg < 0)
860 return isl_ast_graft_free(graft);
861 list = isl_pw_aff_list_copy(list);
862 if (neg) {
863 list = list_add_one(list, build);
864 type = isl_ast_op_lt;
867 bound = reduce_list(isl_ast_op_min, list, build);
868 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
869 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
870 graft->node->u.f.cond = cond;
872 isl_pw_aff_list_free(list);
873 if (!graft->node->u.f.cond)
874 return isl_ast_graft_free(graft);
875 return graft;
878 /* Set the condition part of the for node graft->node in case
879 * the upper bound is represented as a set.
881 static __isl_give isl_ast_graft *set_for_cond_from_set(
882 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
883 __isl_keep isl_ast_build *build)
885 isl_ast_expr *cond;
887 if (!graft)
888 return NULL;
890 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
891 graft->node->u.f.cond = cond;
892 if (!graft->node->u.f.cond)
893 return isl_ast_graft_free(graft);
894 return graft;
897 /* Construct an isl_ast_expr for the increment (i.e., stride) of
898 * the current dimension.
900 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
902 int depth;
903 isl_int v;
904 isl_ctx *ctx;
905 isl_ast_expr *inc;
907 if (!build)
908 return NULL;
909 ctx = isl_ast_build_get_ctx(build);
910 depth = isl_ast_build_get_depth(build);
912 if (!isl_ast_build_has_stride(build, depth))
913 return isl_ast_expr_alloc_int_si(ctx, 1);
915 isl_int_init(v);
916 isl_ast_build_get_stride(build, depth, &v);
917 inc = isl_ast_expr_alloc_int(ctx, v);
918 isl_int_clear(v);
920 return inc;
923 /* Should we express the loop condition as
925 * iterator <= min(list of upper bounds)
927 * or as a conjunction of constraints?
929 * The first is constructed from a list of upper bounds.
930 * The second is constructed from a set.
932 * If there are no upper bounds in "constraints", then this could mean
933 * that "domain" simply doesn't have an upper bound or that we didn't
934 * pick any upper bound. In the first case, we want to generate the
935 * loop condition as a(n empty) conjunction of constraints
936 * In the second case, we will compute
937 * a single upper bound from "domain" and so we use the list form.
939 * If there are upper bounds in "constraints",
940 * then we use the list form iff the atomic_upper_bound option is set.
942 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
943 __isl_keep isl_set *domain, int depth)
945 if (n_upper > 0)
946 return isl_options_get_ast_build_atomic_upper_bound(ctx);
947 else
948 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
951 /* Fill in the expressions of the for node in graft->node.
953 * In particular,
954 * - set the initialization part of the loop to the maximum of the lower bounds
955 * - set the size of the iterator based on the values attained by the iterator
956 * - extract the increment from the stride of the current dimension
957 * - construct the for condition either based on a list of upper bounds
958 * or on a set of upper bound constraints.
960 static __isl_give isl_ast_graft *set_for_node_expressions(
961 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
962 int use_list, __isl_keep isl_pw_aff_list *upper_list,
963 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
965 isl_ast_node *node;
967 if (!graft)
968 return NULL;
970 build = isl_ast_build_copy(build);
971 build = isl_ast_build_set_enforced(build,
972 isl_ast_graft_get_enforced(graft));
974 node = graft->node;
975 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
976 node->u.f.inc = for_inc(build);
978 if (use_list)
979 graft = set_for_cond_from_list(graft, upper_list, build);
980 else
981 graft = set_for_cond_from_set(graft, upper_set, build);
983 isl_ast_build_free(build);
985 if (!node->u.f.iterator || !node->u.f.init ||
986 !node->u.f.cond || !node->u.f.inc)
987 return isl_ast_graft_free(graft);
989 return graft;
992 /* Update "graft" based on "bounds" and "domain" for the generic,
993 * non-degenerate, case.
995 * "constraints" contains the "n_lower" lower and "n_upper" upper bounds
996 * that the loop node should express.
997 * "domain" is the subset of the intersection of the constraints
998 * for which some code is executed.
1000 * There may be zero lower bounds or zero upper bounds in "constraints"
1001 * in case the list of constraints was created
1002 * based on the atomic option or based on separation with explicit bounds.
1003 * In that case, we use "domain" to derive lower and/or upper bounds.
1005 * We first compute a list of one or more lower bounds.
1007 * Then we decide if we want to express the condition as
1009 * iterator <= min(list of upper bounds)
1011 * or as a conjunction of constraints.
1013 * The set of enforced constraints is then computed either based on
1014 * a list of upper bounds or on a set of upper bound constraints.
1015 * We do not compute any enforced constraints if we were forced
1016 * to compute a lower or upper bound using exact_bound. The domains
1017 * of the resulting expressions may imply some bounds on outer dimensions
1018 * that we do not want to appear in the enforced constraints since
1019 * they are not actually enforced by the corresponding code.
1021 * Finally, we fill in the expressions of the for node.
1023 static __isl_give isl_ast_graft *refine_generic_bounds(
1024 __isl_take isl_ast_graft *graft,
1025 __isl_keep isl_constraint **constraint, int n_lower, int n_upper,
1026 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1028 int depth;
1029 isl_ctx *ctx;
1030 isl_pw_aff_list *lower;
1031 int use_list;
1032 isl_set *upper_set = NULL;
1033 isl_pw_aff_list *upper_list = NULL;
1035 if (!graft || !build)
1036 return isl_ast_graft_free(graft);
1038 depth = isl_ast_build_get_depth(build);
1039 ctx = isl_ast_graft_get_ctx(graft);
1041 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1043 lower = lower_bounds(constraint, n_lower, depth, domain, build);
1045 if (use_list)
1046 upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
1047 domain, build);
1048 else if (n_upper > 0)
1049 upper_set = intersect_constraints(ctx, constraint + n_lower,
1050 n_upper);
1051 else
1052 upper_set = isl_set_universe(isl_set_get_space(domain));
1054 if (n_lower == 0 || n_upper == 0)
1056 else if (use_list)
1057 graft = set_enforced_from_list(graft, lower, upper_list);
1058 else
1059 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1061 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1062 upper_set, build);
1064 isl_pw_aff_list_free(lower);
1065 isl_pw_aff_list_free(upper_list);
1066 isl_set_free(upper_set);
1068 return graft;
1071 /* How many constraints in the "constraint" array, starting at position "first"
1072 * are of the give type? "n" represents the total number of elements
1073 * in the array.
1075 static int count_constraints(isl_constraint **constraint, int n, int first,
1076 int pos, int type)
1078 int i;
1080 constraint += first;
1082 for (i = 0; first + i < n; i++)
1083 if (constraint_type(constraint[i], pos) != type)
1084 break;
1086 return i;
1089 /* Update "graft" based on "bounds" and "domain" for the generic,
1090 * non-degenerate, case.
1092 * "list" respresent the list of bounds that need to be encoded by
1093 * the for loop (or a guard around the for loop).
1094 * "domain" is the subset of the intersection of the constraints
1095 * for which some code is executed.
1096 * "build" is the build in which graft->node was created.
1098 * We separate lower bounds, upper bounds and constraints that
1099 * are independent of the loop iterator.
1101 * The actual for loop bounds are generated in refine_generic_bounds.
1102 * If there are any constraints that are independent of the loop iterator,
1103 * we need to put a guard around the for loop (which may get hoisted up
1104 * to higher levels) and we call refine_generic_bounds in a build
1105 * where this guard is enforced.
1107 static __isl_give isl_ast_graft *refine_generic_split(
1108 __isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
1109 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1111 isl_ctx *ctx;
1112 isl_ast_build *for_build;
1113 isl_set *guard;
1114 int n_indep, n_lower, n_upper;
1115 int pos;
1116 int n;
1118 if (!list)
1119 return isl_ast_graft_free(graft);
1121 pos = isl_ast_build_get_depth(build);
1123 if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
1124 &cmp_constraint, &pos) < 0)
1125 return isl_ast_graft_free(graft);
1127 n = list->n;
1128 n_indep = count_constraints(list->p, n, 0, pos, 0);
1129 n_lower = count_constraints(list->p, n, n_indep, pos, 1);
1130 n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
1132 if (n_indep == 0)
1133 return refine_generic_bounds(graft,
1134 list->p + n_indep, n_lower, n_upper, domain, build);
1136 ctx = isl_ast_graft_get_ctx(graft);
1137 guard = intersect_constraints(ctx, list->p, n_indep);
1139 for_build = isl_ast_build_copy(build);
1140 for_build = isl_ast_build_restrict_pending(for_build,
1141 isl_set_copy(guard));
1142 graft = refine_generic_bounds(graft,
1143 list->p + n_indep, n_lower, n_upper, domain, for_build);
1144 isl_ast_build_free(for_build);
1146 graft = isl_ast_graft_add_guard(graft, guard, build);
1148 return graft;
1151 /* Add the guard implied by the current stride constraint (if any),
1152 * but not (necessarily) enforced by the generated AST to "graft".
1154 static __isl_give isl_ast_graft *add_stride_guard(
1155 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
1157 int depth;
1158 isl_set *dom;
1160 depth = isl_ast_build_get_depth(build);
1161 if (!isl_ast_build_has_stride(build, depth))
1162 return graft;
1164 dom = isl_ast_build_get_stride_constraint(build);
1165 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
1166 dom = isl_ast_build_compute_gist(build, dom);
1168 graft = isl_ast_graft_add_guard(graft, dom, build);
1170 return graft;
1173 /* Update "graft" based on "bounds" and "domain" for the generic,
1174 * non-degenerate, case.
1176 * "bounds" respresent the bounds that need to be encoded by
1177 * the for loop (or a guard around the for loop).
1178 * "domain" is the subset of "bounds" for which some code is executed.
1179 * "build" is the build in which graft->node was created.
1181 * We break up "bounds" into a list of constraints and continue with
1182 * refine_generic_split.
1184 static __isl_give isl_ast_graft *refine_generic(
1185 __isl_take isl_ast_graft *graft,
1186 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1187 __isl_keep isl_ast_build *build)
1189 isl_constraint_list *list;
1191 if (!build || !graft)
1192 return isl_ast_graft_free(graft);
1194 bounds = isl_basic_set_copy(bounds);
1195 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1196 list = isl_constraint_list_from_basic_set(bounds);
1198 graft = refine_generic_split(graft, list, domain, build);
1199 graft = add_stride_guard(graft, build);
1201 isl_constraint_list_free(list);
1202 return graft;
1205 /* Create a for node for the current level.
1207 * Mark the for node degenerate if "degenerate" is set.
1209 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1210 int degenerate)
1212 int depth;
1213 isl_id *id;
1214 isl_ast_node *node;
1216 if (!build)
1217 return NULL;
1219 depth = isl_ast_build_get_depth(build);
1220 id = isl_ast_build_get_iterator_id(build, depth);
1221 node = isl_ast_node_alloc_for(id);
1222 if (degenerate)
1223 node = isl_ast_node_for_mark_degenerate(node);
1225 return node;
1228 /* Create an AST node for the current dimension based on
1229 * the schedule domain "bounds" and return the node encapsulated
1230 * in an isl_ast_graft.
1232 * "executed" is the current inverse schedule, taking into account
1233 * the bounds in "bounds"
1234 * "domain" is the domain of "executed", with inner dimensions projected out.
1235 * It may be a strict subset of "bounds" in case "bounds" was created
1236 * based on the atomic option or based on separation with explicit bounds.
1238 * "domain" may satisfy additional equalities that result
1239 * from intersecting "executed" with "bounds" in add_node.
1240 * It may also satisfy some global constraints that were dropped out because
1241 * we performed separation with explicit bounds.
1242 * The very first step is then to copy these constraints to "bounds".
1244 * Since we may be calling before_each_for and after_each_for
1245 * callbacks, we record the current inverse schedule in the build.
1247 * We consider three builds,
1248 * "build" is the one in which the current level is created,
1249 * "body_build" is the build in which the next level is created,
1250 * "sub_build" is essentially the same as "body_build", except that
1251 * the depth has not been increased yet.
1253 * "build" already contains information (in strides and offsets)
1254 * about the strides at the current level, but this information is not
1255 * reflected in the build->domain.
1256 * We first add this information and the "bounds" to the sub_build->domain.
1257 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1258 * only a single value and whether this single value can be represented using
1259 * a single affine expression.
1260 * In the first case, the current level is considered "degenerate".
1261 * In the second, sub-case, the current level is considered "eliminated".
1262 * Eliminated level don't need to be reflected in the AST since we can
1263 * simply plug in the affine expression. For degenerate, but non-eliminated,
1264 * levels, we do introduce a for node, but mark is as degenerate so that
1265 * it can be printed as an assignment of the single value to the loop
1266 * "iterator".
1268 * If the current level is eliminated, we explicitly plug in the value
1269 * for the current level found by isl_ast_build_set_loop_bounds in the
1270 * inverse schedule. This ensures that if we are working on a slice
1271 * of the domain based on information available in the inverse schedule
1272 * and the build domain, that then this information is also reflected
1273 * in the inverse schedule. This operation also eliminates the current
1274 * dimension from the inverse schedule making sure no inner dimensions depend
1275 * on the current dimension. Otherwise, we create a for node, marking
1276 * it degenerate if appropriate. The initial for node is still incomplete
1277 * and will be completed in either refine_degenerate or refine_generic.
1279 * We then generate a sequence of grafts for the next level,
1280 * create a surrounding graft for the current level and insert
1281 * the for node we created (if the current level is not eliminated).
1283 * Finally, we set the bounds of the for loop and insert guards
1284 * (either in the AST or in the graft) in one of
1285 * refine_eliminated, refine_degenerate or refine_generic.
1287 static __isl_give isl_ast_graft *create_node_scaled(
1288 __isl_take isl_union_map *executed,
1289 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1290 __isl_take isl_ast_build *build)
1292 int depth;
1293 int degenerate, eliminated;
1294 isl_basic_set *hull;
1295 isl_ast_node *node = NULL;
1296 isl_ast_graft *graft;
1297 isl_ast_graft_list *children;
1298 isl_ast_build *sub_build;
1299 isl_ast_build *body_build;
1301 domain = isl_ast_build_eliminate_divs(build, domain);
1302 domain = isl_set_detect_equalities(domain);
1303 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1304 bounds = isl_basic_set_intersect(bounds, hull);
1305 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1307 depth = isl_ast_build_get_depth(build);
1308 sub_build = isl_ast_build_copy(build);
1309 sub_build = isl_ast_build_include_stride(sub_build);
1310 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1311 isl_basic_set_copy(bounds));
1312 degenerate = isl_ast_build_has_value(sub_build);
1313 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1314 if (degenerate < 0 || eliminated < 0)
1315 executed = isl_union_map_free(executed);
1316 if (eliminated)
1317 executed = plug_in_values(executed, sub_build);
1318 else
1319 node = create_for(build, degenerate);
1321 body_build = isl_ast_build_copy(sub_build);
1322 body_build = isl_ast_build_increase_depth(body_build);
1323 if (!eliminated)
1324 node = before_each_for(node, body_build);
1325 children = generate_next_level(executed,
1326 isl_ast_build_copy(body_build));
1328 graft = isl_ast_graft_alloc_level(children, build, sub_build);
1329 if (!eliminated)
1330 graft = isl_ast_graft_insert_for(graft, node);
1331 if (eliminated)
1332 graft = refine_eliminated(graft, bounds, build);
1333 else if (degenerate)
1334 graft = refine_degenerate(graft, bounds, build, sub_build);
1335 else
1336 graft = refine_generic(graft, bounds, domain, build);
1337 if (!eliminated)
1338 graft = after_each_for(graft, body_build);
1340 isl_ast_build_free(body_build);
1341 isl_ast_build_free(sub_build);
1342 isl_ast_build_free(build);
1343 isl_basic_set_free(bounds);
1344 isl_set_free(domain);
1346 return graft;
1349 /* Internal data structure for checking if all constraints involving
1350 * the input dimension "depth" are such that the other coefficients
1351 * are multiples of "m", reducing "m" if they are not.
1352 * If "m" is reduced all the way down to "1", then the check has failed
1353 * and we break out of the iteration.
1354 * "d" is an initialized isl_int that can be used internally.
1356 struct isl_check_scaled_data {
1357 int depth;
1358 isl_int m, d;
1361 /* If constraint "c" involves the input dimension data->depth,
1362 * then make sure that all the other coefficients are multiples of data->m,
1363 * reducing data->m if needed.
1364 * Break out of the iteration if data->m has become equal to "1".
1366 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1368 struct isl_check_scaled_data *data = user;
1369 int i, j, n;
1370 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1371 isl_dim_div };
1373 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1374 isl_constraint_free(c);
1375 return 0;
1378 for (i = 0; i < 4; ++i) {
1379 n = isl_constraint_dim(c, t[i]);
1380 for (j = 0; j < n; ++j) {
1381 if (t[i] == isl_dim_in && j == data->depth)
1382 continue;
1383 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1384 continue;
1385 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1386 isl_int_gcd(data->m, data->m, data->d);
1387 if (isl_int_is_one(data->m))
1388 break;
1390 if (j < n)
1391 break;
1394 isl_constraint_free(c);
1396 return i < 4 ? -1 : 0;
1399 /* For each constraint of "bmap" that involves the input dimension data->depth,
1400 * make sure that all the other coefficients are multiples of data->m,
1401 * reducing data->m if needed.
1402 * Break out of the iteration if data->m has become equal to "1".
1404 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1406 int r;
1408 r = isl_basic_map_foreach_constraint(bmap,
1409 &constraint_check_scaled, user);
1410 isl_basic_map_free(bmap);
1412 return r;
1415 /* For each constraint of "map" that involves the input dimension data->depth,
1416 * make sure that all the other coefficients are multiples of data->m,
1417 * reducing data->m if needed.
1418 * Break out of the iteration if data->m has become equal to "1".
1420 static int map_check_scaled(__isl_take isl_map *map, void *user)
1422 int r;
1424 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1425 isl_map_free(map);
1427 return r;
1430 /* Create an AST node for the current dimension based on
1431 * the schedule domain "bounds" and return the node encapsulated
1432 * in an isl_ast_graft.
1434 * "executed" is the current inverse schedule, taking into account
1435 * the bounds in "bounds"
1436 * "domain" is the domain of "executed", with inner dimensions projected out.
1439 * Before moving on to the actual AST node construction in create_node_scaled,
1440 * we first check if the current dimension is strided and if we can scale
1441 * down this stride. Note that we only do this if the ast_build_scale_strides
1442 * option is set.
1444 * In particular, let the current dimension take on values
1446 * f + s a
1448 * with a an integer. We check if we can find an integer m that (obviouly)
1449 * divides both f and s.
1451 * If so, we check if the current dimension only appears in constraints
1452 * where the coefficients of the other variables are multiples of m.
1453 * We perform this extra check to avoid the risk of introducing
1454 * divisions by scaling down the current dimension.
1456 * If so, we scale the current dimension down by a factor of m.
1457 * That is, we plug in
1459 * i = m i' (1)
1461 * Note that in principle we could always scale down strided loops
1462 * by plugging in
1464 * i = f + s i'
1466 * but this may result in i' taking on larger values than the original i,
1467 * due to the shift by "f".
1468 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1470 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1471 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1472 __isl_take isl_ast_build *build)
1474 struct isl_check_scaled_data data;
1475 isl_ctx *ctx;
1476 isl_aff *offset;
1478 ctx = isl_ast_build_get_ctx(build);
1479 if (!isl_options_get_ast_build_scale_strides(ctx))
1480 return create_node_scaled(executed, bounds, domain, build);
1482 data.depth = isl_ast_build_get_depth(build);
1483 if (!isl_ast_build_has_stride(build, data.depth))
1484 return create_node_scaled(executed, bounds, domain, build);
1486 isl_int_init(data.m);
1487 isl_int_init(data.d);
1489 offset = isl_ast_build_get_offset(build, data.depth);
1490 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1491 offset = isl_aff_free(offset);
1492 offset = isl_aff_scale_down(offset, data.m);
1493 if (isl_aff_get_denominator(offset, &data.d) < 0)
1494 executed = isl_union_map_free(executed);
1496 if (executed && isl_int_is_divisible_by(data.m, data.d))
1497 isl_int_divexact(data.m, data.m, data.d);
1498 else
1499 isl_int_set_si(data.m, 1);
1501 if (!isl_int_is_one(data.m)) {
1502 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1503 &data) < 0 &&
1504 !isl_int_is_one(data.m))
1505 executed = isl_union_map_free(executed);
1508 if (!isl_int_is_one(data.m)) {
1509 isl_space *space;
1510 isl_multi_aff *ma;
1511 isl_aff *aff;
1512 isl_map *map;
1513 isl_union_map *umap;
1515 space = isl_ast_build_get_space(build, 1);
1516 space = isl_space_map_from_set(space);
1517 ma = isl_multi_aff_identity(space);
1518 aff = isl_multi_aff_get_aff(ma, data.depth);
1519 aff = isl_aff_scale(aff, data.m);
1520 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1522 bounds = isl_basic_set_preimage_multi_aff(bounds,
1523 isl_multi_aff_copy(ma));
1524 domain = isl_set_preimage_multi_aff(domain,
1525 isl_multi_aff_copy(ma));
1526 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1527 umap = isl_union_map_from_map(map);
1528 executed = isl_union_map_apply_domain(executed,
1529 isl_union_map_copy(umap));
1530 build = isl_ast_build_scale_down(build, data.m, umap);
1532 isl_aff_free(offset);
1534 isl_int_clear(data.d);
1535 isl_int_clear(data.m);
1537 return create_node_scaled(executed, bounds, domain, build);
1540 /* Add the basic set to the list that "user" points to.
1542 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1544 isl_basic_set_list **list = user;
1546 *list = isl_basic_set_list_add(*list, bset);
1548 return 0;
1551 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1553 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1554 __isl_take isl_set *set)
1556 int n;
1557 isl_ctx *ctx;
1558 isl_basic_set_list *list;
1560 if (!set)
1561 return NULL;
1563 ctx = isl_set_get_ctx(set);
1565 n = isl_set_n_basic_set(set);
1566 list = isl_basic_set_list_alloc(ctx, n);
1567 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1568 list = isl_basic_set_list_free(list);
1570 isl_set_free(set);
1571 return list;
1574 /* Generate code for the schedule domain "bounds"
1575 * and add the result to "list".
1577 * We mainly detect strides and additional equalities here
1578 * and then pass over control to create_node.
1580 * "bounds" reflects the bounds on the current dimension and possibly
1581 * some extra conditions on outer dimensions.
1582 * It does not, however, include any divs involving the current dimension,
1583 * so it does not capture any stride constraints.
1584 * We therefore need to compute that part of the schedule domain that
1585 * intersects with "bounds" and derive the strides from the result.
1587 static __isl_give isl_ast_graft_list *add_node(
1588 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1589 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1591 isl_ast_graft *graft;
1592 isl_set *domain = NULL;
1593 isl_union_set *uset;
1594 int empty;
1596 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1597 executed = isl_union_map_intersect_domain(executed, uset);
1598 empty = isl_union_map_is_empty(executed);
1599 if (empty < 0)
1600 goto error;
1601 if (empty)
1602 goto done;
1604 uset = isl_union_map_domain(isl_union_map_copy(executed));
1605 domain = isl_set_from_union_set(uset);
1606 domain = isl_ast_build_compute_gist(build, domain);
1607 empty = isl_set_is_empty(domain);
1608 if (empty < 0)
1609 goto error;
1610 if (empty)
1611 goto done;
1613 domain = isl_ast_build_eliminate_inner(build, domain);
1614 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1616 graft = create_node(executed, bounds, domain,
1617 isl_ast_build_copy(build));
1618 list = isl_ast_graft_list_add(list, graft);
1619 isl_ast_build_free(build);
1620 return list;
1621 error:
1622 list = isl_ast_graft_list_free(list);
1623 done:
1624 isl_set_free(domain);
1625 isl_basic_set_free(bounds);
1626 isl_union_map_free(executed);
1627 isl_ast_build_free(build);
1628 return list;
1631 struct isl_domain_follows_at_depth_data {
1632 int depth;
1633 isl_basic_set **piece;
1636 /* Does any element of i follow or coincide with any element of j
1637 * at the current depth (data->depth) for equal values of the outer
1638 * dimensions?
1640 static int domain_follows_at_depth(int i, int j, void *user)
1642 struct isl_domain_follows_at_depth_data *data = user;
1643 isl_basic_map *test;
1644 int empty;
1645 int l;
1647 test = isl_basic_map_from_domain_and_range(
1648 isl_basic_set_copy(data->piece[i]),
1649 isl_basic_set_copy(data->piece[j]));
1650 for (l = 0; l < data->depth; ++l)
1651 test = isl_basic_map_equate(test, isl_dim_in, l,
1652 isl_dim_out, l);
1653 test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
1654 isl_dim_out, data->depth);
1655 empty = isl_basic_map_is_empty(test);
1656 isl_basic_map_free(test);
1658 return empty < 0 ? -1 : !empty;
1661 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1662 __isl_keep isl_basic_set_list *domain_list,
1663 __isl_keep isl_union_map *executed,
1664 __isl_keep isl_ast_build *build);
1666 /* Generate code for the "n" schedule domains in "domain_list"
1667 * with positions specified by the entries of the "pos" array
1668 * and add the results to "list".
1670 * The "n" domains form a strongly connected component in the ordering.
1671 * If n is larger than 1, then this means that we cannot determine a valid
1672 * ordering for the n domains in the component. This should be fairly
1673 * rare because the individual domains have been made disjoint first.
1674 * The problem is that the domains may be integrally disjoint but not
1675 * rationally disjoint. For example, we may have domains
1677 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1679 * These two domains have an empty intersection, but their rational
1680 * relaxations do intersect. It is impossible to order these domains
1681 * in the second dimension because the first should be ordered before
1682 * the second for outer dimension equal to 0, while it should be ordered
1683 * after for outer dimension equal to 1.
1685 * This may happen in particular in case of unrolling since the domain
1686 * of each slice is replaced by its simple hull.
1688 * We collect the basic sets in the component, call isl_set_make_disjoint
1689 * and try again. Note that we rely here on isl_set_make_disjoint also
1690 * making the basic sets rationally disjoint. If the basic sets
1691 * are rationally disjoint, then the ordering problem does not occur.
1692 * To see this, there can only be a problem if there are points
1693 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1694 * a < c and b > d. This means that either the interval spanned
1695 * by a en b lies inside that spanned by c and or the other way around.
1696 * In either case, there is a point inside both intervals with the
1697 * convex combination in terms of a and b and in terms of c and d.
1698 * Taking the same combination of i and j gives a point in the intersection.
1700 static __isl_give isl_ast_graft_list *add_nodes(
1701 __isl_take isl_ast_graft_list *list, int *pos, int n,
1702 __isl_keep isl_basic_set_list *domain_list,
1703 __isl_keep isl_union_map *executed,
1704 __isl_keep isl_ast_build *build)
1706 int i;
1707 isl_basic_set *bset;
1708 isl_set *set;
1710 bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
1711 if (n == 1)
1712 return add_node(list, isl_union_map_copy(executed), bset,
1713 isl_ast_build_copy(build));
1715 set = isl_set_from_basic_set(bset);
1716 for (i = 1; i < n; ++i) {
1717 bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
1718 set = isl_set_union(set, isl_set_from_basic_set(bset));
1721 set = isl_set_make_disjoint(set);
1722 if (isl_set_n_basic_set(set) == n)
1723 isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
1724 "unable to separate loop parts", goto error);
1725 domain_list = isl_basic_set_list_from_set(set);
1726 list = isl_ast_graft_list_concat(list,
1727 generate_sorted_domains(domain_list, executed, build));
1728 isl_basic_set_list_free(domain_list);
1730 return list;
1731 error:
1732 isl_set_free(set);
1733 return isl_ast_graft_list_free(list);
1736 /* Sort the domains in "domain_list" according to the execution order
1737 * at the current depth (for equal values of the outer dimensions),
1738 * generate code for each of them, collecting the results in a list.
1739 * If no code is generated (because the intersection of the inverse schedule
1740 * with the domains turns out to be empty), then an empty list is returned.
1742 * The caller is responsible for ensuring that the basic sets in "domain_list"
1743 * are pair-wise disjoint. It can, however, in principle happen that
1744 * two basic sets should be ordered one way for one value of the outer
1745 * dimensions and the other way for some other value of the outer dimensions.
1746 * We therefore play safe and look for strongly connected components.
1747 * The function add_nodes takes care of handling non-trivial components.
1749 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1750 __isl_keep isl_basic_set_list *domain_list,
1751 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1753 isl_ctx *ctx;
1754 isl_ast_graft_list *list;
1755 struct isl_domain_follows_at_depth_data data;
1756 struct isl_tarjan_graph *g;
1757 int i, n;
1759 if (!domain_list)
1760 return NULL;
1762 ctx = isl_basic_set_list_get_ctx(domain_list);
1763 n = isl_basic_set_list_n_basic_set(domain_list);
1764 list = isl_ast_graft_list_alloc(ctx, n);
1765 if (n == 0)
1766 return list;
1767 if (n == 1)
1768 return add_node(list, isl_union_map_copy(executed),
1769 isl_basic_set_list_get_basic_set(domain_list, 0),
1770 isl_ast_build_copy(build));
1772 data.depth = isl_ast_build_get_depth(build);
1773 data.piece = domain_list->p;
1774 g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
1775 if (!g)
1776 goto error;
1778 i = 0;
1779 while (list && n) {
1780 int first;
1782 if (g->order[i] == -1)
1783 isl_die(ctx, isl_error_internal, "cannot happen",
1784 goto error);
1785 first = i;
1786 while (g->order[i] != -1) {
1787 ++i; --n;
1789 list = add_nodes(list, g->order + first, i - first,
1790 domain_list, executed, build);
1791 ++i;
1794 if (0)
1795 error: list = isl_ast_graft_list_free(list);
1796 isl_tarjan_graph_free(g);
1798 return list;
1801 struct isl_shared_outer_data {
1802 int depth;
1803 isl_basic_set **piece;
1806 /* Do elements i and j share any values for the outer dimensions?
1808 static int shared_outer(int i, int j, void *user)
1810 struct isl_shared_outer_data *data = user;
1811 isl_basic_map *test;
1812 int empty;
1813 int l;
1815 test = isl_basic_map_from_domain_and_range(
1816 isl_basic_set_copy(data->piece[i]),
1817 isl_basic_set_copy(data->piece[j]));
1818 for (l = 0; l < data->depth; ++l)
1819 test = isl_basic_map_equate(test, isl_dim_in, l,
1820 isl_dim_out, l);
1821 empty = isl_basic_map_is_empty(test);
1822 isl_basic_map_free(test);
1824 return empty < 0 ? -1 : !empty;
1827 /* Call generate_sorted_domains on a list containing the elements
1828 * of "domain_list indexed by the first "n" elements of "pos".
1830 static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
1831 __isl_keep isl_basic_set_list *domain_list, int *pos, int n,
1832 __isl_keep isl_union_map *executed,
1833 __isl_keep isl_ast_build *build)
1835 int i;
1836 isl_ctx *ctx;
1837 isl_basic_set_list *slice;
1838 isl_ast_graft_list *list;
1840 ctx = isl_ast_build_get_ctx(build);
1841 slice = isl_basic_set_list_alloc(ctx, n);
1842 for (i = 0; i < n; ++i) {
1843 isl_basic_set *bset;
1845 bset = isl_basic_set_copy(domain_list->p[pos[i]]);
1846 slice = isl_basic_set_list_add(slice, bset);
1849 list = generate_sorted_domains(slice, executed, build);
1850 isl_basic_set_list_free(slice);
1852 return list;
1855 /* Look for any (weakly connected) components in the "domain_list"
1856 * of domains that share some values of the outer dimensions.
1857 * That is, domains in different components do not share any values
1858 * of the outer dimensions. This means that these components
1859 * can be freely reordered.
1860 * Within each of the components, we sort the domains according
1861 * to the execution order at the current depth.
1863 * We fuse the result of each call to generate_sorted_domains_part
1864 * into a list with either zero or one graft and collect these (at most)
1865 * single element lists into a bigger list. This means that the elements of the
1866 * final list can be freely reordered. In particular, we sort them
1867 * according to an arbitrary but fixed ordering to ease merging of
1868 * graft lists from different components.
1870 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1871 __isl_keep isl_basic_set_list *domain_list,
1872 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1874 int i, n;
1875 isl_ctx *ctx;
1876 isl_ast_graft_list *list;
1877 struct isl_shared_outer_data data;
1878 struct isl_tarjan_graph *g;
1880 if (!domain_list)
1881 return NULL;
1883 n = isl_basic_set_list_n_basic_set(domain_list);
1884 if (n <= 1)
1885 return generate_sorted_domains(domain_list, executed, build);
1887 ctx = isl_basic_set_list_get_ctx(domain_list);
1889 data.depth = isl_ast_build_get_depth(build);
1890 data.piece = domain_list->p;
1891 g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
1892 if (!g)
1893 return NULL;
1895 i = 0;
1896 do {
1897 int first;
1898 isl_ast_graft_list *list_c;
1900 if (g->order[i] == -1)
1901 isl_die(ctx, isl_error_internal, "cannot happen",
1902 break);
1903 first = i;
1904 while (g->order[i] != -1) {
1905 ++i; --n;
1907 if (first == 0 && n == 0) {
1908 isl_tarjan_graph_free(g);
1909 return generate_sorted_domains(domain_list,
1910 executed, build);
1912 list_c = generate_sorted_domains_part(domain_list,
1913 g->order + first, i - first, executed, build);
1914 list_c = isl_ast_graft_list_fuse(list_c, build);
1915 if (first == 0)
1916 list = list_c;
1917 else
1918 list = isl_ast_graft_list_concat(list, list_c);
1919 ++i;
1920 } while (list && n);
1922 if (n > 0)
1923 list = isl_ast_graft_list_free(list);
1925 list = isl_ast_graft_list_sort_guard(list);
1927 isl_tarjan_graph_free(g);
1929 return list;
1932 /* Internal data for separate_domain.
1934 * "explicit" is set if we only want to use explicit bounds.
1936 * "domain" collects the separated domains.
1938 struct isl_separate_domain_data {
1939 isl_ast_build *build;
1940 int explicit;
1941 isl_set *domain;
1944 /* Extract implicit bounds on the current dimension for the executed "map".
1946 * The domain of "map" may involve inner dimensions, so we
1947 * need to eliminate them.
1949 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1950 __isl_keep isl_ast_build *build)
1952 isl_set *domain;
1954 domain = isl_map_domain(map);
1955 domain = isl_ast_build_eliminate(build, domain);
1957 return domain;
1960 /* Extract explicit bounds on the current dimension for the executed "map".
1962 * Rather than eliminating the inner dimensions as in implicit_bounds,
1963 * we simply drop any constraints involving those inner dimensions.
1964 * The idea is that most bounds that are implied by constraints on the
1965 * inner dimensions will be enforced by for loops and not by explicit guards.
1966 * There is then no need to separate along those bounds.
1968 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1969 __isl_keep isl_ast_build *build)
1971 isl_set *domain;
1972 int depth, dim;
1974 dim = isl_map_dim(map, isl_dim_out);
1975 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1977 domain = isl_map_domain(map);
1978 depth = isl_ast_build_get_depth(build);
1979 dim = isl_set_dim(domain, isl_dim_set);
1980 domain = isl_set_detect_equalities(domain);
1981 domain = isl_set_drop_constraints_involving_dims(domain,
1982 isl_dim_set, depth + 1, dim - (depth + 1));
1983 domain = isl_set_remove_divs_involving_dims(domain,
1984 isl_dim_set, depth, 1);
1985 domain = isl_set_remove_unknown_divs(domain);
1987 return domain;
1990 /* Split data->domain into pieces that intersect with the range of "map"
1991 * and pieces that do not intersect with the range of "map"
1992 * and then add that part of the range of "map" that does not intersect
1993 * with data->domain.
1995 static int separate_domain(__isl_take isl_map *map, void *user)
1997 struct isl_separate_domain_data *data = user;
1998 isl_set *domain;
1999 isl_set *d1, *d2;
2001 if (data->explicit)
2002 domain = explicit_bounds(map, data->build);
2003 else
2004 domain = implicit_bounds(map, data->build);
2006 domain = isl_set_coalesce(domain);
2007 domain = isl_set_make_disjoint(domain);
2008 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2009 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2010 data->domain = isl_set_intersect(data->domain, domain);
2011 data->domain = isl_set_union(data->domain, d1);
2012 data->domain = isl_set_union(data->domain, d2);
2014 return 0;
2017 /* Separate the schedule domains of "executed".
2019 * That is, break up the domain of "executed" into basic sets,
2020 * such that for each basic set S, every element in S is associated with
2021 * the same domain spaces.
2023 * "space" is the (single) domain space of "executed".
2025 static __isl_give isl_set *separate_schedule_domains(
2026 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2027 __isl_keep isl_ast_build *build)
2029 struct isl_separate_domain_data data = { build };
2030 isl_ctx *ctx;
2032 ctx = isl_ast_build_get_ctx(build);
2033 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2034 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2035 data.domain = isl_set_empty(space);
2036 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2037 data.domain = isl_set_free(data.domain);
2039 isl_union_map_free(executed);
2040 return data.domain;
2043 /* Temporary data used during the search for a lower bound for unrolling.
2045 * "domain" is the original set for which to find a lower bound
2046 * "depth" is the dimension for which to find a lower boudn
2048 * "lower" is the best lower bound found so far. It is NULL if we have not
2049 * found any yet.
2050 * "n" is the corresponding size. If lower is NULL, then the value of n
2051 * is undefined.
2053 * "tmp" is a temporary initialized isl_int.
2055 struct isl_find_unroll_data {
2056 isl_set *domain;
2057 int depth;
2059 isl_aff *lower;
2060 int *n;
2061 isl_int tmp;
2064 /* Check if we can use "c" as a lower bound and if it is better than
2065 * any previously found lower bound.
2067 * If "c" does not involve the dimension at the current depth,
2068 * then we cannot use it.
2069 * Otherwise, let "c" be of the form
2071 * i >= f(j)/a
2073 * We compute the maximal value of
2075 * -ceil(f(j)/a)) + i + 1
2077 * over the domain. If there is such a value "n", then we know
2079 * -ceil(f(j)/a)) + i + 1 <= n
2081 * or
2083 * i < ceil(f(j)/a)) + n
2085 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2086 * We just need to check if we have found any lower bound before and
2087 * if the new lower bound is better (smaller n) than the previously found
2088 * lower bounds.
2090 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2091 __isl_keep isl_constraint *c)
2093 isl_aff *aff, *lower;
2094 enum isl_lp_result res;
2096 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2097 return 0;
2099 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2100 lower = isl_aff_ceil(lower);
2101 aff = isl_aff_copy(lower);
2102 aff = isl_aff_neg(aff);
2103 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2104 aff = isl_aff_add_constant_si(aff, 1);
2105 res = isl_set_max(data->domain, aff, &data->tmp);
2106 isl_aff_free(aff);
2108 if (res == isl_lp_error)
2109 goto error;
2110 if (res == isl_lp_unbounded) {
2111 isl_aff_free(lower);
2112 return 0;
2115 if (isl_int_cmp_si(data->tmp, INT_MAX) <= 0 &&
2116 (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0)) {
2117 isl_aff_free(data->lower);
2118 data->lower = lower;
2119 *data->n = isl_int_get_si(data->tmp);
2120 } else
2121 isl_aff_free(lower);
2123 return 1;
2124 error:
2125 isl_aff_free(lower);
2126 return -1;
2129 /* Check if we can use "c" as a lower bound and if it is better than
2130 * any previously found lower bound.
2132 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2134 struct isl_find_unroll_data *data;
2135 int r;
2137 data = (struct isl_find_unroll_data *) user;
2138 r = update_unrolling_lower_bound(data, c);
2139 isl_constraint_free(c);
2141 return r;
2144 /* Look for a lower bound l(i) on the dimension at "depth"
2145 * and a size n such that "domain" is a subset of
2147 * { [i] : l(i) <= i_d < l(i) + n }
2149 * where d is "depth" and l(i) depends only on earlier dimensions.
2150 * Furthermore, try and find a lower bound such that n is as small as possible.
2151 * In particular, "n" needs to be finite.
2153 * Inner dimensions have been eliminated from "domain" by the caller.
2155 * We first construct a collection of lower bounds on the input set
2156 * by computing its simple hull. We then iterate through them,
2157 * discarding those that we cannot use (either because they do not
2158 * involve the dimension at "depth" or because they have no corresponding
2159 * upper bound, meaning that "n" would be unbounded) and pick out the
2160 * best from the remaining ones.
2162 * If we cannot find a suitable lower bound, then we consider that
2163 * to be an error.
2165 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2166 int depth, int *n)
2168 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2169 isl_basic_set *hull;
2171 isl_int_init(data.tmp);
2172 hull = isl_set_simple_hull(isl_set_copy(domain));
2174 if (isl_basic_set_foreach_constraint(hull,
2175 &constraint_find_unroll, &data) < 0)
2176 goto error;
2178 isl_basic_set_free(hull);
2179 isl_int_clear(data.tmp);
2181 if (!data.lower)
2182 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2183 "cannot find lower bound for unrolling", return NULL);
2185 return data.lower;
2186 error:
2187 isl_basic_set_free(hull);
2188 isl_int_clear(data.tmp);
2189 return isl_aff_free(data.lower);
2192 /* Return the constraint
2194 * i_"depth" = aff + offset
2196 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2197 int offset)
2199 aff = isl_aff_copy(aff);
2200 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2201 aff = isl_aff_add_constant_si(aff, offset);
2202 return isl_equality_from_aff(aff);
2205 /* Return a list of basic sets, one for each value of the current dimension
2206 * in "domain".
2207 * The divs that involve the current dimension have not been projected out
2208 * from this domain.
2210 * Since we are going to be iterating over the individual values,
2211 * we first check if there are any strides on the current dimension.
2212 * If there is, we rewrite the current dimension i as
2214 * i = stride i' + offset
2216 * and then iterate over individual values of i' instead.
2218 * We then look for a lower bound on i' and a size such that the domain
2219 * is a subset of
2221 * { [j,i'] : l(j) <= i' < l(j) + n }
2223 * and then take slices of the domain at values of i'
2224 * between l(j) and l(j) + n - 1.
2226 * We compute the unshifted simple hull of each slice to ensure that
2227 * we have a single basic set per offset. The slicing constraint
2228 * may get simplified away before the unshifted simple hull is taken
2229 * and may therefore in some rare cases disappear from the result.
2230 * We therefore explicitly add the constraint back after computing
2231 * the unshifted simple hull to ensure that the basic sets
2232 * remain disjoint. The constraints that are dropped by taking the hull
2233 * will be taken into account at the next level, as in the case of the
2234 * atomic option.
2236 * Finally, we map i' back to i and add each basic set to the list.
2238 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2239 __isl_keep isl_ast_build *build)
2241 int i, n;
2242 int depth;
2243 isl_ctx *ctx;
2244 isl_aff *lower;
2245 isl_basic_set_list *list;
2246 isl_multi_aff *expansion;
2247 isl_basic_map *bmap;
2249 if (!domain)
2250 return NULL;
2252 ctx = isl_set_get_ctx(domain);
2253 depth = isl_ast_build_get_depth(build);
2254 build = isl_ast_build_copy(build);
2255 domain = isl_ast_build_eliminate_inner(build, domain);
2256 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2257 expansion = isl_ast_build_get_stride_expansion(build);
2259 domain = isl_set_preimage_multi_aff(domain,
2260 isl_multi_aff_copy(expansion));
2261 domain = isl_ast_build_eliminate_divs(build, domain);
2263 isl_ast_build_free(build);
2265 list = isl_basic_set_list_alloc(ctx, 0);
2267 lower = find_unroll_lower_bound(domain, depth, &n);
2268 if (!lower)
2269 list = isl_basic_set_list_free(list);
2271 bmap = isl_basic_map_from_multi_aff(expansion);
2273 for (i = 0; list && i < n; ++i) {
2274 isl_set *set;
2275 isl_basic_set *bset;
2276 isl_constraint *slice;
2278 slice = at_offset(depth, lower, i);
2279 set = isl_set_copy(domain);
2280 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2281 bset = isl_set_unshifted_simple_hull(set);
2282 bset = isl_basic_set_add_constraint(bset, slice);
2283 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2284 list = isl_basic_set_list_add(list, bset);
2287 isl_aff_free(lower);
2288 isl_set_free(domain);
2289 isl_basic_map_free(bmap);
2291 return list;
2294 /* Data structure for storing the results and the intermediate objects
2295 * of compute_domains.
2297 * "list" is the main result of the function and contains a list
2298 * of disjoint basic sets for which code should be generated.
2300 * "executed" and "build" are inputs to compute_domains.
2301 * "schedule_domain" is the domain of "executed".
2303 * "option" constains the domains at the current depth that should by
2304 * atomic, separated or unrolled. These domains are as specified by
2305 * the user, except that inner dimensions have been eliminated and
2306 * that they have been made pair-wise disjoint.
2308 * "sep_class" contains the user-specified split into separation classes
2309 * specialized to the current depth.
2310 * "done" contains the union of the separation domains that have already
2311 * been handled.
2312 * "atomic" contains the domain that has effectively been made atomic.
2313 * This domain may be larger than the intersection of option[atomic]
2314 * and the schedule domain.
2316 struct isl_codegen_domains {
2317 isl_basic_set_list *list;
2319 isl_union_map *executed;
2320 isl_ast_build *build;
2321 isl_set *schedule_domain;
2323 isl_set *option[3];
2325 isl_map *sep_class;
2326 isl_set *done;
2327 isl_set *atomic;
2330 /* Add domains to domains->list for each individual value of the current
2331 * dimension, for that part of the schedule domain that lies in the
2332 * intersection of the option domain and the class domain.
2334 * "domain" is the intersection of the class domain and the schedule domain.
2335 * The divs that involve the current dimension have not been projected out
2336 * from this domain.
2338 * We first break up the unroll option domain into individual pieces
2339 * and then handle each of them separately. The unroll option domain
2340 * has been made disjoint in compute_domains_init_options,
2342 * Note that we actively want to combine different pieces of the
2343 * schedule domain that have the same value at the current dimension.
2344 * We therefore need to break up the unroll option domain before
2345 * intersecting with class and schedule domain, hoping that the
2346 * unroll option domain specified by the user is relatively simple.
2348 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2349 __isl_keep isl_set *domain)
2351 isl_set *unroll_domain;
2352 isl_basic_set_list *unroll_list;
2353 int i, n;
2354 int empty;
2356 empty = isl_set_is_empty(domains->option[unroll]);
2357 if (empty < 0)
2358 return -1;
2359 if (empty)
2360 return 0;
2362 unroll_domain = isl_set_copy(domains->option[unroll]);
2363 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2365 n = isl_basic_set_list_n_basic_set(unroll_list);
2366 for (i = 0; i < n; ++i) {
2367 isl_basic_set *bset;
2368 isl_basic_set_list *list;
2370 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2371 unroll_domain = isl_set_from_basic_set(bset);
2372 unroll_domain = isl_set_intersect(unroll_domain,
2373 isl_set_copy(domain));
2375 empty = isl_set_is_empty(unroll_domain);
2376 if (empty >= 0 && empty) {
2377 isl_set_free(unroll_domain);
2378 continue;
2381 list = do_unroll(unroll_domain, domains->build);
2382 domains->list = isl_basic_set_list_concat(domains->list, list);
2385 isl_basic_set_list_free(unroll_list);
2387 return 0;
2390 /* Construct a single basic set that includes the intersection of
2391 * the schedule domain, the atomic option domain and the class domain.
2392 * Add the resulting basic set to domains->list and save a copy
2393 * in domains->atomic for use in compute_partial_domains.
2395 * We construct a single domain rather than trying to combine
2396 * the schedule domains of individual domains because we are working
2397 * within a single component so that non-overlapping schedule domains
2398 * should already have been separated.
2399 * Note, though, that this does not take into account the class domain.
2400 * So, it is possible for a class domain to carve out a piece of the
2401 * schedule domain with independent pieces and then we would only
2402 * generate a single domain for them. If this proves to be problematic
2403 * for some users, then this function will have to be adjusted.
2405 * "domain" is the intersection of the schedule domain and the class domain,
2406 * with inner dimensions projected out.
2408 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2409 __isl_keep isl_set *domain)
2411 isl_basic_set *bset;
2412 isl_set *atomic_domain;
2413 int empty;
2415 atomic_domain = isl_set_copy(domains->option[atomic]);
2416 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2417 empty = isl_set_is_empty(atomic_domain);
2418 if (empty < 0 || empty) {
2419 domains->atomic = atomic_domain;
2420 return empty < 0 ? -1 : 0;
2423 atomic_domain = isl_set_coalesce(atomic_domain);
2424 bset = isl_set_unshifted_simple_hull(atomic_domain);
2425 domains->atomic = isl_set_from_basic_set(isl_basic_set_copy(bset));
2426 domains->list = isl_basic_set_list_add(domains->list, bset);
2428 return 0;
2431 /* Split up the schedule domain into uniform basic sets,
2432 * in the sense that each element in a basic set is associated to
2433 * elements of the same domains, and add the result to domains->list.
2434 * Do this for that part of the schedule domain that lies in the
2435 * intersection of "class_domain" and the separate option domain.
2437 * "class_domain" may or may not include the constraints
2438 * of the schedule domain, but this does not make a difference
2439 * since we are going to intersect it with the domain of the inverse schedule.
2440 * If it includes schedule domain constraints, then they may involve
2441 * inner dimensions, but we will eliminate them in separation_domain.
2443 static int compute_separate_domain(struct isl_codegen_domains *domains,
2444 __isl_keep isl_set *class_domain)
2446 isl_space *space;
2447 isl_set *domain;
2448 isl_union_map *executed;
2449 isl_basic_set_list *list;
2450 int empty;
2452 domain = isl_set_copy(domains->option[separate]);
2453 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2454 executed = isl_union_map_copy(domains->executed);
2455 executed = isl_union_map_intersect_domain(executed,
2456 isl_union_set_from_set(domain));
2457 empty = isl_union_map_is_empty(executed);
2458 if (empty < 0 || empty) {
2459 isl_union_map_free(executed);
2460 return empty < 0 ? -1 : 0;
2463 space = isl_set_get_space(class_domain);
2464 domain = separate_schedule_domains(space, executed, domains->build);
2466 list = isl_basic_set_list_from_set(domain);
2467 domains->list = isl_basic_set_list_concat(domains->list, list);
2469 return 0;
2472 /* Split up the domain at the current depth into disjoint
2473 * basic sets for which code should be generated separately
2474 * for the given separation class domain.
2476 * If any separation classes have been defined, then "class_domain"
2477 * is the domain of the current class and does not refer to inner dimensions.
2478 * Otherwise, "class_domain" is the universe domain.
2480 * We first make sure that the class domain is disjoint from
2481 * previously considered class domains.
2483 * The separate domains can be computed directly from the "class_domain".
2485 * The unroll, atomic and remainder domains need the constraints
2486 * from the schedule domain.
2488 * For unrolling, the actual schedule domain is needed (with divs that
2489 * may refer to the current dimension) so that stride detection can be
2490 * performed.
2492 * For atomic and remainder domains, inner dimensions and divs involving
2493 * the current dimensions should be eliminated.
2494 * In case we are working within a separation class, we need to intersect
2495 * the result with the current "class_domain" to ensure that the domains
2496 * are disjoint from those generated from other class domains.
2498 * The domain that has been made atomic may be larger than specified
2499 * by the user since it needs to be representable as a single basic set.
2500 * This possibly larger domain is stored in domains->atomic by
2501 * compute_atomic_domain.
2503 * If anything is left after handling separate, unroll and atomic,
2504 * we split it up into basic sets and append the basic sets to domains->list.
2506 static int compute_partial_domains(struct isl_codegen_domains *domains,
2507 __isl_take isl_set *class_domain)
2509 isl_basic_set_list *list;
2510 isl_set *domain;
2512 class_domain = isl_set_subtract(class_domain,
2513 isl_set_copy(domains->done));
2514 domains->done = isl_set_union(domains->done,
2515 isl_set_copy(class_domain));
2517 domain = isl_set_copy(class_domain);
2519 if (compute_separate_domain(domains, domain) < 0)
2520 goto error;
2521 domain = isl_set_subtract(domain,
2522 isl_set_copy(domains->option[separate]));
2524 domain = isl_set_intersect(domain,
2525 isl_set_copy(domains->schedule_domain));
2527 if (compute_unroll_domains(domains, domain) < 0)
2528 goto error;
2529 domain = isl_set_subtract(domain,
2530 isl_set_copy(domains->option[unroll]));
2532 domain = isl_ast_build_eliminate(domains->build, domain);
2533 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2535 if (compute_atomic_domain(domains, domain) < 0)
2536 domain = isl_set_free(domain);
2537 domain = isl_set_subtract(domain, domains->atomic);
2539 domain = isl_set_coalesce(domain);
2540 domain = isl_set_make_disjoint(domain);
2542 list = isl_basic_set_list_from_set(domain);
2543 domains->list = isl_basic_set_list_concat(domains->list, list);
2545 isl_set_free(class_domain);
2547 return 0;
2548 error:
2549 isl_set_free(domain);
2550 isl_set_free(class_domain);
2551 return -1;
2554 /* Split up the domain at the current depth into disjoint
2555 * basic sets for which code should be generated separately
2556 * for the separation class identified by "pnt".
2558 * We extract the corresponding class domain from domains->sep_class,
2559 * eliminate inner dimensions and pass control to compute_partial_domains.
2561 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2563 struct isl_codegen_domains *domains = user;
2564 isl_set *class_set;
2565 isl_set *domain;
2566 int disjoint;
2568 class_set = isl_set_from_point(pnt);
2569 domain = isl_map_domain(isl_map_intersect_range(
2570 isl_map_copy(domains->sep_class), class_set));
2571 domain = isl_ast_build_compute_gist(domains->build, domain);
2572 domain = isl_ast_build_eliminate(domains->build, domain);
2574 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2575 if (disjoint < 0)
2576 return -1;
2577 if (disjoint) {
2578 isl_set_free(domain);
2579 return 0;
2582 return compute_partial_domains(domains, domain);
2585 /* Extract the domains at the current depth that should be atomic,
2586 * separated or unrolled and store them in option.
2588 * The domains specified by the user might overlap, so we make
2589 * them disjoint by subtracting earlier domains from later domains.
2591 static void compute_domains_init_options(isl_set *option[3],
2592 __isl_keep isl_ast_build *build)
2594 enum isl_ast_build_domain_type type, type2;
2596 for (type = atomic; type <= separate; ++type) {
2597 option[type] = isl_ast_build_get_option_domain(build, type);
2598 for (type2 = atomic; type2 < type; ++type2)
2599 option[type] = isl_set_subtract(option[type],
2600 isl_set_copy(option[type2]));
2603 option[unroll] = isl_set_coalesce(option[unroll]);
2604 option[unroll] = isl_set_make_disjoint(option[unroll]);
2607 /* Split up the domain at the current depth into disjoint
2608 * basic sets for which code should be generated separately,
2609 * based on the user-specified options.
2610 * Return the list of disjoint basic sets.
2612 * There are three kinds of domains that we need to keep track of.
2613 * - the "schedule domain" is the domain of "executed"
2614 * - the "class domain" is the domain corresponding to the currrent
2615 * separation class
2616 * - the "option domain" is the domain corresponding to one of the options
2617 * atomic, unroll or separate
2619 * We first consider the individial values of the separation classes
2620 * and split up the domain for each of them separately.
2621 * Finally, we consider the remainder. If no separation classes were
2622 * specified, then we call compute_partial_domains with the universe
2623 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2624 * with inner dimensions removed. We do this because we want to
2625 * avoid computing the complement of the class domains (i.e., the difference
2626 * between the universe and domains->done).
2628 static __isl_give isl_basic_set_list *compute_domains(
2629 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2631 struct isl_codegen_domains domains;
2632 isl_ctx *ctx;
2633 isl_set *domain;
2634 isl_union_set *schedule_domain;
2635 isl_set *classes;
2636 isl_space *space;
2637 int n_param;
2638 enum isl_ast_build_domain_type type;
2639 int empty;
2641 if (!executed)
2642 return NULL;
2644 ctx = isl_union_map_get_ctx(executed);
2645 domains.list = isl_basic_set_list_alloc(ctx, 0);
2647 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2648 domain = isl_set_from_union_set(schedule_domain);
2650 compute_domains_init_options(domains.option, build);
2652 domains.sep_class = isl_ast_build_get_separation_class(build);
2653 classes = isl_map_range(isl_map_copy(domains.sep_class));
2654 n_param = isl_set_dim(classes, isl_dim_param);
2655 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2657 space = isl_set_get_space(domain);
2658 domains.build = build;
2659 domains.schedule_domain = isl_set_copy(domain);
2660 domains.executed = executed;
2661 domains.done = isl_set_empty(space);
2663 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2664 domains.list = isl_basic_set_list_free(domains.list);
2665 isl_set_free(classes);
2667 empty = isl_set_is_empty(domains.done);
2668 if (empty < 0) {
2669 domains.list = isl_basic_set_list_free(domains.list);
2670 domain = isl_set_free(domain);
2671 } else if (empty) {
2672 isl_set_free(domain);
2673 domain = isl_set_universe(isl_set_get_space(domains.done));
2674 } else {
2675 domain = isl_ast_build_eliminate(build, domain);
2677 if (compute_partial_domains(&domains, domain) < 0)
2678 domains.list = isl_basic_set_list_free(domains.list);
2680 isl_set_free(domains.schedule_domain);
2681 isl_set_free(domains.done);
2682 isl_map_free(domains.sep_class);
2683 for (type = atomic; type <= separate; ++type)
2684 isl_set_free(domains.option[type]);
2686 return domains.list;
2689 /* Generate code for a single component, after shifting (if any)
2690 * has been applied.
2692 * We first split up the domain at the current depth into disjoint
2693 * basic sets based on the user-specified options.
2694 * Then we generated code for each of them and concatenate the results.
2696 static __isl_give isl_ast_graft_list *generate_shifted_component(
2697 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2699 isl_basic_set_list *domain_list;
2700 isl_ast_graft_list *list = NULL;
2702 domain_list = compute_domains(executed, build);
2703 list = generate_parallel_domains(domain_list, executed, build);
2705 isl_basic_set_list_free(domain_list);
2706 isl_union_map_free(executed);
2707 isl_ast_build_free(build);
2709 return list;
2712 struct isl_set_map_pair {
2713 isl_set *set;
2714 isl_map *map;
2717 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2718 * of indices into the "domain" array,
2719 * return the union of the "map" fields of the elements
2720 * indexed by the first "n" elements of "order".
2722 static __isl_give isl_union_map *construct_component_executed(
2723 struct isl_set_map_pair *domain, int *order, int n)
2725 int i;
2726 isl_map *map;
2727 isl_union_map *executed;
2729 map = isl_map_copy(domain[order[0]].map);
2730 executed = isl_union_map_from_map(map);
2731 for (i = 1; i < n; ++i) {
2732 map = isl_map_copy(domain[order[i]].map);
2733 executed = isl_union_map_add_map(executed, map);
2736 return executed;
2739 /* Generate code for a single component, after shifting (if any)
2740 * has been applied.
2742 * The component inverse schedule is specified as the "map" fields
2743 * of the elements of "domain" indexed by the first "n" elements of "order".
2745 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2746 struct isl_set_map_pair *domain, int *order, int n,
2747 __isl_take isl_ast_build *build)
2749 isl_union_map *executed;
2751 executed = construct_component_executed(domain, order, n);
2752 return generate_shifted_component(executed, build);
2755 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2756 * of indices into the "domain" array,
2757 * do all (except for at most one) of the "set" field of the elements
2758 * indexed by the first "n" elements of "order" have a fixed value
2759 * at position "depth"?
2761 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2762 int *order, int n, int depth)
2764 int i;
2765 int non_fixed = -1;
2767 for (i = 0; i < n; ++i) {
2768 int f;
2770 f = isl_set_plain_is_fixed(domain[order[i]].set,
2771 isl_dim_set, depth, NULL);
2772 if (f < 0)
2773 return -1;
2774 if (f)
2775 continue;
2776 if (non_fixed >= 0)
2777 return 0;
2778 non_fixed = i;
2781 return 1;
2784 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2785 * of indices into the "domain" array,
2786 * eliminate the inner dimensions from the "set" field of the elements
2787 * indexed by the first "n" elements of "order", provided the current
2788 * dimension does not have a fixed value.
2790 * Return the index of the first element in "order" with a corresponding
2791 * "set" field that does not have an (obviously) fixed value.
2793 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2794 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2796 int i;
2797 int base = -1;
2799 for (i = n - 1; i >= 0; --i) {
2800 int f;
2801 f = isl_set_plain_is_fixed(domain[order[i]].set,
2802 isl_dim_set, depth, NULL);
2803 if (f < 0)
2804 return -1;
2805 if (f)
2806 continue;
2807 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2808 domain[order[i]].set);
2809 base = i;
2812 return base;
2815 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2816 * of indices into the "domain" array,
2817 * find the element of "domain" (amongst those indexed by the first "n"
2818 * elements of "order") with the "set" field that has the smallest
2819 * value for the current iterator.
2821 * Note that the domain with the smallest value may depend on the parameters
2822 * and/or outer loop dimension. Since the result of this function is only
2823 * used as heuristic, we only make a reasonable attempt at finding the best
2824 * domain, one that should work in case a single domain provides the smallest
2825 * value for the current dimension over all values of the parameters
2826 * and outer dimensions.
2828 * In particular, we compute the smallest value of the first domain
2829 * and replace it by that of any later domain if that later domain
2830 * has a smallest value that is smaller for at least some value
2831 * of the parameters and outer dimensions.
2833 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2834 __isl_keep isl_ast_build *build)
2836 int i;
2837 isl_map *min_first;
2838 int first = 0;
2840 min_first = isl_ast_build_map_to_iterator(build,
2841 isl_set_copy(domain[order[0]].set));
2842 min_first = isl_map_lexmin(min_first);
2844 for (i = 1; i < n; ++i) {
2845 isl_map *min, *test;
2846 int empty;
2848 min = isl_ast_build_map_to_iterator(build,
2849 isl_set_copy(domain[order[i]].set));
2850 min = isl_map_lexmin(min);
2851 test = isl_map_copy(min);
2852 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2853 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2854 empty = isl_map_is_empty(test);
2855 isl_map_free(test);
2856 if (empty >= 0 && !empty) {
2857 isl_map_free(min_first);
2858 first = i;
2859 min_first = min;
2860 } else
2861 isl_map_free(min);
2863 if (empty < 0)
2864 break;
2867 isl_map_free(min_first);
2869 return i < n ? -1 : first;
2872 /* Construct a shifted inverse schedule based on the original inverse schedule,
2873 * the stride and the offset.
2875 * The original inverse schedule is specified as the "map" fields
2876 * of the elements of "domain" indexed by the first "n" elements of "order".
2878 * "stride" and "offset" are such that the difference
2879 * between the values of the current dimension of domain "i"
2880 * and the values of the current dimension for some reference domain are
2881 * equal to
2883 * stride * integer + offset[i]
2885 * Moreover, 0 <= offset[i] < stride.
2887 * For each domain, we create a map
2889 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2891 * where j refers to the current dimension and the other dimensions are
2892 * unchanged, and apply this map to the original schedule domain.
2894 * For example, for the original schedule
2896 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2898 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2899 * we apply the mapping
2901 * { [j] -> [j, 0] }
2903 * to the schedule of the "A" domain and the mapping
2905 * { [j - 1] -> [j, 1] }
2907 * to the schedule of the "B" domain.
2910 * Note that after the transformation, the differences between pairs
2911 * of values of the current dimension over all domains are multiples
2912 * of stride and that we have therefore exposed the stride.
2915 * To see that the mapping preserves the lexicographic order,
2916 * first note that each of the individual maps above preserves the order.
2917 * If the value of the current iterator is j1 in one domain and j2 in another,
2918 * then if j1 = j2, we know that the same map is applied to both domains
2919 * and the order is preserved.
2920 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2921 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2923 * j1 - c1 < j2 - c2
2925 * and the order is preserved.
2926 * If c1 < c2, then we know
2928 * 0 <= c2 - c1 < s
2930 * We also have
2932 * j2 - j1 = n * s + r
2934 * with n >= 0 and 0 <= r < s.
2935 * In other words, r = c2 - c1.
2936 * If n > 0, then
2938 * j1 - c1 < j2 - c2
2940 * If n = 0, then
2942 * j1 - c1 = j2 - c2
2944 * and so
2946 * (j1 - c1, c1) << (j2 - c2, c2)
2948 * with "<<" the lexicographic order, proving that the order is preserved
2949 * in all cases.
2951 static __isl_give isl_union_map *contruct_shifted_executed(
2952 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2953 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2955 int i;
2956 isl_int v;
2957 isl_union_map *executed;
2958 isl_space *space;
2959 isl_map *map;
2960 int depth;
2961 isl_constraint *c;
2963 depth = isl_ast_build_get_depth(build);
2964 space = isl_ast_build_get_space(build, 1);
2965 executed = isl_union_map_empty(isl_space_copy(space));
2966 space = isl_space_map_from_set(space);
2967 map = isl_map_identity(isl_space_copy(space));
2968 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2969 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2970 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2972 c = isl_equality_alloc(isl_local_space_from_space(space));
2973 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2974 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2976 isl_int_init(v);
2978 for (i = 0; i < n; ++i) {
2979 isl_map *map_i;
2981 if (isl_vec_get_element(offset, i, &v) < 0)
2982 break;
2983 map_i = isl_map_copy(map);
2984 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2985 isl_int_neg(v, v);
2986 c = isl_constraint_set_constant(c, v);
2987 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
2989 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
2990 map_i);
2991 executed = isl_union_map_add_map(executed, map_i);
2994 isl_constraint_free(c);
2995 isl_map_free(map);
2997 isl_int_clear(v);
2999 if (i < n)
3000 executed = isl_union_map_free(executed);
3002 return executed;
3005 /* Generate code for a single component, after exposing the stride,
3006 * given that the schedule domain is "shifted strided".
3008 * The component inverse schedule is specified as the "map" fields
3009 * of the elements of "domain" indexed by the first "n" elements of "order".
3011 * The schedule domain being "shifted strided" means that the differences
3012 * between the values of the current dimension of domain "i"
3013 * and the values of the current dimension for some reference domain are
3014 * equal to
3016 * stride * integer + offset[i]
3018 * We first look for the domain with the "smallest" value for the current
3019 * dimension and adjust the offsets such that the offset of the "smallest"
3020 * domain is equal to zero. The other offsets are reduced modulo stride.
3022 * Based on this information, we construct a new inverse schedule in
3023 * contruct_shifted_executed that exposes the stride.
3024 * Since this involves the introduction of a new schedule dimension,
3025 * the build needs to be changed accodingly.
3026 * After computing the AST, the newly introduced dimension needs
3027 * to be removed again from the list of grafts. We do this by plugging
3028 * in a mapping that represents the new schedule domain in terms of the
3029 * old schedule domain.
3031 static __isl_give isl_ast_graft_list *generate_shift_component(
3032 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
3033 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
3035 isl_ast_graft_list *list;
3036 int first;
3037 int depth;
3038 isl_ctx *ctx;
3039 isl_int val;
3040 isl_vec *v;
3041 isl_space *space;
3042 isl_multi_aff *ma, *zero;
3043 isl_union_map *executed;
3045 ctx = isl_ast_build_get_ctx(build);
3046 depth = isl_ast_build_get_depth(build);
3048 first = first_offset(domain, order, n, build);
3049 if (first < 0)
3050 return isl_ast_build_free(build);
3052 isl_int_init(val);
3053 v = isl_vec_alloc(ctx, n);
3054 if (isl_vec_get_element(offset, first, &val) < 0)
3055 v = isl_vec_free(v);
3056 isl_int_neg(val, val);
3057 v = isl_vec_set(v, val);
3058 v = isl_vec_add(v, isl_vec_copy(offset));
3059 v = isl_vec_fdiv_r(v, stride);
3061 executed = contruct_shifted_executed(domain, order, n, stride, v,
3062 build);
3063 space = isl_ast_build_get_space(build, 1);
3064 space = isl_space_map_from_set(space);
3065 ma = isl_multi_aff_identity(isl_space_copy(space));
3066 space = isl_space_from_domain(isl_space_domain(space));
3067 space = isl_space_add_dims(space, isl_dim_out, 1);
3068 zero = isl_multi_aff_zero(space);
3069 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3070 build = isl_ast_build_insert_dim(build, depth + 1);
3071 list = generate_shifted_component(executed, build);
3073 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3075 isl_vec_free(v);
3076 isl_int_clear(val);
3078 return list;
3081 /* Generate code for a single component.
3083 * The component inverse schedule is specified as the "map" fields
3084 * of the elements of "domain" indexed by the first "n" elements of "order".
3086 * This function may modify the "set" fields of "domain".
3088 * Before proceeding with the actual code generation for the component,
3089 * we first check if there are any "shifted" strides, meaning that
3090 * the schedule domains of the individual domains are all strided,
3091 * but that they have different offsets, resulting in the union
3092 * of schedule domains not being strided anymore.
3094 * The simplest example is the schedule
3096 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3098 * Both schedule domains are strided, but their union is not.
3099 * This function detects such cases and then rewrites the schedule to
3101 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3103 * In the new schedule, the schedule domains have the same offset (modulo
3104 * the stride), ensuring that the union of schedule domains is also strided.
3107 * If there is only a single domain in the component, then there is
3108 * nothing to do. Similarly, if the current schedule dimension has
3109 * a fixed value for almost all domains then there is nothing to be done.
3110 * In particular, we need at least two domains where the current schedule
3111 * dimension does not have a fixed value.
3112 * Finally, if any of the options refer to the current schedule dimension,
3113 * then we bail out as well. It would be possible to reformulate the options
3114 * in terms of the new schedule domain, but that would introduce constraints
3115 * that separate the domains in the options and that is something we would
3116 * like to avoid.
3119 * To see if there is any shifted stride, we look at the differences
3120 * between the values of the current dimension in pairs of domains
3121 * for equal values of outer dimensions. These differences should be
3122 * of the form
3124 * m x + r
3126 * with "m" the stride and "r" a constant. Note that we cannot perform
3127 * this analysis on individual domains as the lower bound in each domain
3128 * may depend on parameters or outer dimensions and so the current dimension
3129 * itself may not have a fixed remainder on division by the stride.
3131 * In particular, we compare the first domain that does not have an
3132 * obviously fixed value for the current dimension to itself and all
3133 * other domains and collect the offsets and the gcd of the strides.
3134 * If the gcd becomes one, then we failed to find shifted strides.
3135 * If all the offsets are the same (for those domains that do not have
3136 * an obviously fixed value for the current dimension), then we do not
3137 * apply the transformation.
3138 * If none of the domains were skipped, then there is nothing to do.
3139 * If some of them were skipped, then if we apply separation, the schedule
3140 * domain should get split in pieces with a (non-shifted) stride.
3142 * Otherwise, we apply a shift to expose the stride in
3143 * generate_shift_component.
3145 static __isl_give isl_ast_graft_list *generate_component(
3146 struct isl_set_map_pair *domain, int *order, int n,
3147 __isl_take isl_ast_build *build)
3149 int i, d;
3150 int depth;
3151 isl_ctx *ctx;
3152 isl_map *map;
3153 isl_set *deltas;
3154 isl_int m, r, gcd;
3155 isl_vec *v;
3156 int fixed, skip;
3157 int base;
3158 isl_ast_graft_list *list;
3159 int res = 0;
3161 depth = isl_ast_build_get_depth(build);
3163 skip = n == 1;
3164 if (skip >= 0 && !skip)
3165 skip = at_most_one_non_fixed(domain, order, n, depth);
3166 if (skip >= 0 && !skip)
3167 skip = isl_ast_build_options_involve_depth(build);
3168 if (skip < 0)
3169 return isl_ast_build_free(build);
3170 if (skip)
3171 return generate_shifted_component_from_list(domain,
3172 order, n, build);
3174 base = eliminate_non_fixed(domain, order, n, depth, build);
3175 if (base < 0)
3176 return isl_ast_build_free(build);
3178 ctx = isl_ast_build_get_ctx(build);
3180 isl_int_init(m);
3181 isl_int_init(r);
3182 isl_int_init(gcd);
3183 v = isl_vec_alloc(ctx, n);
3185 fixed = 1;
3186 for (i = 0; i < n; ++i) {
3187 map = isl_map_from_domain_and_range(
3188 isl_set_copy(domain[order[base]].set),
3189 isl_set_copy(domain[order[i]].set));
3190 for (d = 0; d < depth; ++d)
3191 map = isl_map_equate(map, isl_dim_in, d,
3192 isl_dim_out, d);
3193 deltas = isl_map_deltas(map);
3194 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3195 isl_set_free(deltas);
3196 if (res < 0)
3197 break;
3199 if (i == 0)
3200 isl_int_set(gcd, m);
3201 else
3202 isl_int_gcd(gcd, gcd, m);
3203 if (isl_int_is_one(gcd))
3204 break;
3205 v = isl_vec_set_element(v, i, r);
3207 res = isl_set_plain_is_fixed(domain[order[i]].set,
3208 isl_dim_set, depth, NULL);
3209 if (res < 0)
3210 break;
3211 if (res)
3212 continue;
3214 if (fixed && i > base) {
3215 isl_vec_get_element(v, base, &m);
3216 if (isl_int_ne(m, r))
3217 fixed = 0;
3221 if (res < 0) {
3222 isl_ast_build_free(build);
3223 list = NULL;
3224 } else if (i < n || fixed) {
3225 list = generate_shifted_component_from_list(domain,
3226 order, n, build);
3227 } else {
3228 list = generate_shift_component(domain, order, n, gcd, v,
3229 build);
3232 isl_vec_free(v);
3233 isl_int_clear(gcd);
3234 isl_int_clear(r);
3235 isl_int_clear(m);
3237 return list;
3240 /* Store both "map" itself and its domain in the
3241 * structure pointed to by *next and advance to the next array element.
3243 static int extract_domain(__isl_take isl_map *map, void *user)
3245 struct isl_set_map_pair **next = user;
3247 (*next)->map = isl_map_copy(map);
3248 (*next)->set = isl_map_domain(map);
3249 (*next)++;
3251 return 0;
3254 /* Internal data for any_scheduled_after.
3256 * "depth" is the number of loops that have already been generated
3257 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3258 * "domain" is an array of set-map pairs corresponding to the different
3259 * iteration domains. The set is the schedule domain, i.e., the domain
3260 * of the inverse schedule, while the map is the inverse schedule itself.
3262 struct isl_any_scheduled_after_data {
3263 int depth;
3264 int group_coscheduled;
3265 struct isl_set_map_pair *domain;
3268 /* Is any element of domain "i" scheduled after any element of domain "j"
3269 * (for a common iteration of the first data->depth loops)?
3271 * data->domain[i].set contains the domain of the inverse schedule
3272 * for domain "i", i.e., elements in the schedule domain.
3274 * If data->group_coscheduled is set, then we also return 1 if there
3275 * is any pair of elements in the two domains that are scheduled together.
3277 static int any_scheduled_after(int i, int j, void *user)
3279 struct isl_any_scheduled_after_data *data = user;
3280 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3281 int pos;
3283 for (pos = data->depth; pos < dim; ++pos) {
3284 int follows;
3286 follows = isl_set_follows_at(data->domain[i].set,
3287 data->domain[j].set, pos);
3289 if (follows < -1)
3290 return -1;
3291 if (follows > 0)
3292 return 1;
3293 if (follows < 0)
3294 return 0;
3297 return data->group_coscheduled;
3300 /* Look for independent components at the current depth and generate code
3301 * for each component separately. The resulting lists of grafts are
3302 * merged in an attempt to combine grafts with identical guards.
3304 * Code for two domains can be generated separately if all the elements
3305 * of one domain are scheduled before (or together with) all the elements
3306 * of the other domain. We therefore consider the graph with as nodes
3307 * the domains and an edge between two nodes if any element of the first
3308 * node is scheduled after any element of the second node.
3309 * If the ast_build_group_coscheduled is set, then we also add an edge if
3310 * there is any pair of elements in the two domains that are scheduled
3311 * together.
3312 * Code is then generated (by generate_component)
3313 * for each of the strongly connected components in this graph
3314 * in their topological order.
3316 * Since the test is performed on the domain of the inverse schedules of
3317 * the different domains, we precompute these domains and store
3318 * them in data.domain.
3320 static __isl_give isl_ast_graft_list *generate_components(
3321 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3323 int i;
3324 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3325 int n = isl_union_map_n_map(executed);
3326 struct isl_any_scheduled_after_data data;
3327 struct isl_set_map_pair *next;
3328 struct isl_tarjan_graph *g = NULL;
3329 isl_ast_graft_list *list = NULL;
3330 int n_domain = 0;
3332 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3333 if (!data.domain)
3334 goto error;
3335 n_domain = n;
3337 next = data.domain;
3338 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3339 goto error;
3341 if (!build)
3342 goto error;
3343 data.depth = isl_ast_build_get_depth(build);
3344 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3345 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3347 list = isl_ast_graft_list_alloc(ctx, 0);
3349 i = 0;
3350 while (list && n) {
3351 isl_ast_graft_list *list_c;
3352 int first = i;
3354 if (g->order[i] == -1)
3355 isl_die(ctx, isl_error_internal, "cannot happen",
3356 goto error);
3357 ++i; --n;
3358 while (g->order[i] != -1) {
3359 ++i; --n;
3362 list_c = generate_component(data.domain,
3363 g->order + first, i - first,
3364 isl_ast_build_copy(build));
3365 list = isl_ast_graft_list_merge(list, list_c, build);
3367 ++i;
3370 if (0)
3371 error: list = isl_ast_graft_list_free(list);
3372 isl_tarjan_graph_free(g);
3373 for (i = 0; i < n_domain; ++i) {
3374 isl_map_free(data.domain[i].map);
3375 isl_set_free(data.domain[i].set);
3377 free(data.domain);
3378 isl_union_map_free(executed);
3379 isl_ast_build_free(build);
3381 return list;
3384 /* Generate code for the next level (and all inner levels).
3386 * If "executed" is empty, i.e., no code needs to be generated,
3387 * then we return an empty list.
3389 * If we have already generated code for all loop levels, then we pass
3390 * control to generate_inner_level.
3392 * If "executed" lives in a single space, i.e., if code needs to be
3393 * generated for a single domain, then there can only be a single
3394 * component and we go directly to generate_shifted_component.
3395 * Otherwise, we call generate_components to detect the components
3396 * and to call generate_component on each of them separately.
3398 static __isl_give isl_ast_graft_list *generate_next_level(
3399 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3401 int depth;
3403 if (!build || !executed)
3404 goto error;
3406 if (isl_union_map_is_empty(executed)) {
3407 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3408 isl_union_map_free(executed);
3409 isl_ast_build_free(build);
3410 return isl_ast_graft_list_alloc(ctx, 0);
3413 depth = isl_ast_build_get_depth(build);
3414 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3415 return generate_inner_level(executed, build);
3417 if (isl_union_map_n_map(executed) == 1)
3418 return generate_shifted_component(executed, build);
3420 return generate_components(executed, build);
3421 error:
3422 isl_union_map_free(executed);
3423 isl_ast_build_free(build);
3424 return NULL;
3427 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3428 * internal, executed and build are the inputs to generate_code.
3429 * list collects the output.
3431 struct isl_generate_code_data {
3432 int internal;
3433 isl_union_map *executed;
3434 isl_ast_build *build;
3436 isl_ast_graft_list *list;
3439 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3441 * [E -> S] -> D
3443 * with E the external build schedule and S the additional schedule "space",
3444 * reformulate the inverse schedule in terms of the internal schedule domain,
3445 * i.e., return
3447 * [I -> S] -> D
3449 * We first obtain a mapping
3451 * I -> E
3453 * take the inverse and the product with S -> S, resulting in
3455 * [I -> S] -> [E -> S]
3457 * Applying the map to the input produces the desired result.
3459 static __isl_give isl_union_map *internal_executed(
3460 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3461 __isl_keep isl_ast_build *build)
3463 isl_map *id, *proj;
3465 proj = isl_ast_build_get_schedule_map(build);
3466 proj = isl_map_reverse(proj);
3467 space = isl_space_map_from_set(isl_space_copy(space));
3468 id = isl_map_identity(space);
3469 proj = isl_map_product(proj, id);
3470 executed = isl_union_map_apply_domain(executed,
3471 isl_union_map_from_map(proj));
3472 return executed;
3475 /* Generate an AST that visits the elements in the range of data->executed
3476 * in the relative order specified by the corresponding image element(s)
3477 * for those image elements that belong to "set".
3478 * Add the result to data->list.
3480 * The caller ensures that "set" is a universe domain.
3481 * "space" is the space of the additional part of the schedule.
3482 * It is equal to the space of "set" if build->domain is parametric.
3483 * Otherwise, it is equal to the range of the wrapped space of "set".
3485 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3486 * was called from an outside user (data->internal not set), then
3487 * the (inverse) schedule refers to the external build domain and needs to
3488 * be transformed to refer to the internal build domain.
3490 * The build is extended to include the additional part of the schedule.
3491 * If the original build space was not parametric, then the options
3492 * in data->build refer only to the additional part of the schedule
3493 * and they need to be adjusted to refer to the complete AST build
3494 * domain.
3496 * After having adjusted inverse schedule and build, we start generating
3497 * code with the outer loop of the current code generation
3498 * in generate_next_level.
3500 * If the original build space was not parametric, we undo the embedding
3501 * on the resulting isl_ast_node_list so that it can be used within
3502 * the outer AST build.
3504 static int generate_code_in_space(struct isl_generate_code_data *data,
3505 __isl_take isl_set *set, __isl_take isl_space *space)
3507 isl_union_map *executed;
3508 isl_ast_build *build;
3509 isl_ast_graft_list *list;
3510 int embed;
3512 executed = isl_union_map_copy(data->executed);
3513 executed = isl_union_map_intersect_domain(executed,
3514 isl_union_set_from_set(set));
3516 embed = !isl_set_is_params(data->build->domain);
3517 if (embed && !data->internal)
3518 executed = internal_executed(executed, space, data->build);
3520 build = isl_ast_build_copy(data->build);
3521 build = isl_ast_build_product(build, space);
3523 list = generate_next_level(executed, build);
3525 list = isl_ast_graft_list_unembed(list, embed);
3527 data->list = isl_ast_graft_list_concat(data->list, list);
3529 return 0;
3532 /* Generate an AST that visits the elements in the range of data->executed
3533 * in the relative order specified by the corresponding domain element(s)
3534 * for those domain elements that belong to "set".
3535 * Add the result to data->list.
3537 * The caller ensures that "set" is a universe domain.
3539 * If the build space S is not parametric, then the space of "set"
3540 * need to be a wrapped relation with S as domain. That is, it needs
3541 * to be of the form
3543 * [S -> T]
3545 * Check this property and pass control to generate_code_in_space
3546 * passing along T.
3547 * If the build space is not parametric, then T is the space of "set".
3549 static int generate_code_set(__isl_take isl_set *set, void *user)
3551 struct isl_generate_code_data *data = user;
3552 isl_space *space, *build_space;
3553 int is_domain;
3555 space = isl_set_get_space(set);
3557 if (isl_set_is_params(data->build->domain))
3558 return generate_code_in_space(data, set, space);
3560 build_space = isl_ast_build_get_space(data->build, data->internal);
3561 space = isl_space_unwrap(space);
3562 is_domain = isl_space_is_domain(build_space, space);
3563 isl_space_free(build_space);
3564 space = isl_space_range(space);
3566 if (is_domain < 0)
3567 goto error;
3568 if (!is_domain)
3569 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3570 "invalid nested schedule space", goto error);
3572 return generate_code_in_space(data, set, space);
3573 error:
3574 isl_set_free(set);
3575 isl_space_free(space);
3576 return -1;
3579 /* Generate an AST that visits the elements in the range of "executed"
3580 * in the relative order specified by the corresponding domain element(s).
3582 * "build" is an isl_ast_build that has either been constructed by
3583 * isl_ast_build_from_context or passed to a callback set by
3584 * isl_ast_build_set_create_leaf.
3585 * In the first case, the space of the isl_ast_build is typically
3586 * a parametric space, although this is currently not enforced.
3587 * In the second case, the space is never a parametric space.
3588 * If the space S is not parametric, then the domain space(s) of "executed"
3589 * need to be wrapped relations with S as domain.
3591 * If the domain of "executed" consists of several spaces, then an AST
3592 * is generated for each of them (in arbitrary order) and the results
3593 * are concatenated.
3595 * If "internal" is set, then the domain "S" above refers to the internal
3596 * schedule domain representation. Otherwise, it refers to the external
3597 * representation, as returned by isl_ast_build_get_schedule_space.
3599 * We essentially run over all the spaces in the domain of "executed"
3600 * and call generate_code_set on each of them.
3602 static __isl_give isl_ast_graft_list *generate_code(
3603 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3604 int internal)
3606 isl_ctx *ctx;
3607 struct isl_generate_code_data data = { 0 };
3608 isl_space *space;
3609 isl_union_set *schedule_domain;
3610 isl_union_map *universe;
3612 if (!build)
3613 goto error;
3614 space = isl_ast_build_get_space(build, 1);
3615 space = isl_space_align_params(space,
3616 isl_union_map_get_space(executed));
3617 space = isl_space_align_params(space,
3618 isl_union_map_get_space(build->options));
3619 build = isl_ast_build_align_params(build, isl_space_copy(space));
3620 executed = isl_union_map_align_params(executed, space);
3621 if (!executed || !build)
3622 goto error;
3624 ctx = isl_ast_build_get_ctx(build);
3626 data.internal = internal;
3627 data.executed = executed;
3628 data.build = build;
3629 data.list = isl_ast_graft_list_alloc(ctx, 0);
3631 universe = isl_union_map_universe(isl_union_map_copy(executed));
3632 schedule_domain = isl_union_map_domain(universe);
3633 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3634 &data) < 0)
3635 data.list = isl_ast_graft_list_free(data.list);
3637 isl_union_set_free(schedule_domain);
3638 isl_union_map_free(executed);
3640 isl_ast_build_free(build);
3641 return data.list;
3642 error:
3643 isl_union_map_free(executed);
3644 isl_ast_build_free(build);
3645 return NULL;
3648 /* Generate an AST that visits the elements in the domain of "schedule"
3649 * in the relative order specified by the corresponding image element(s).
3651 * "build" is an isl_ast_build that has either been constructed by
3652 * isl_ast_build_from_context or passed to a callback set by
3653 * isl_ast_build_set_create_leaf.
3654 * In the first case, the space of the isl_ast_build is typically
3655 * a parametric space, although this is currently not enforced.
3656 * In the second case, the space is never a parametric space.
3657 * If the space S is not parametric, then the range space(s) of "schedule"
3658 * need to be wrapped relations with S as domain.
3660 * If the range of "schedule" consists of several spaces, then an AST
3661 * is generated for each of them (in arbitrary order) and the results
3662 * are concatenated.
3664 * We first initialize the local copies of the relevant options.
3665 * We do this here rather than when the isl_ast_build is created
3666 * because the options may have changed between the construction
3667 * of the isl_ast_build and the call to isl_generate_code.
3669 * The main computation is performed on an inverse schedule (with
3670 * the schedule domain in the domain and the elements to be executed
3671 * in the range) called "executed".
3673 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3674 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3676 isl_ast_graft_list *list;
3677 isl_ast_node *node;
3678 isl_union_map *executed;
3680 build = isl_ast_build_copy(build);
3681 build = isl_ast_build_set_single_valued(build, 0);
3682 executed = isl_union_map_reverse(schedule);
3683 list = generate_code(executed, isl_ast_build_copy(build), 0);
3684 node = isl_ast_node_from_graft_list(list, build);
3685 isl_ast_build_free(build);
3687 return node;