remove spurious include of isl/config.h
[isl.git] / isl_schedule.c
blobc2498f296a6b692097591c0e63805756e1a8a186
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
39 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
40 __isl_keep isl_schedule_constraints *sc)
42 isl_ctx *ctx;
43 isl_schedule_constraints *sc_copy;
44 enum isl_edge_type i;
46 ctx = isl_union_set_get_ctx(sc->domain);
47 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
48 if (!sc_copy)
49 return NULL;
51 sc_copy->domain = isl_union_set_copy(sc->domain);
52 if (!sc_copy->domain)
53 return isl_schedule_constraints_free(sc_copy);
55 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
56 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
57 if (!sc_copy->constraint[i])
58 return isl_schedule_constraints_free(sc_copy);
61 return sc_copy;
65 /* Construct an isl_schedule_constraints object for computing a schedule
66 * on "domain". The initial object does not impose any constraints.
68 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
69 __isl_take isl_union_set *domain)
71 isl_ctx *ctx;
72 isl_space *space;
73 isl_schedule_constraints *sc;
74 isl_union_map *empty;
75 enum isl_edge_type i;
77 if (!domain)
78 return NULL;
80 ctx = isl_union_set_get_ctx(domain);
81 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
82 if (!sc)
83 goto error;
85 space = isl_union_set_get_space(domain);
86 sc->domain = domain;
87 empty = isl_union_map_empty(space);
88 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
89 sc->constraint[i] = isl_union_map_copy(empty);
90 if (!sc->constraint[i])
91 sc->domain = isl_union_set_free(sc->domain);
93 isl_union_map_free(empty);
95 if (!sc->domain)
96 return isl_schedule_constraints_free(sc);
98 return sc;
99 error:
100 isl_union_set_free(domain);
101 return NULL;
104 /* Replace the validity constraints of "sc" by "validity".
106 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
107 __isl_take isl_schedule_constraints *sc,
108 __isl_take isl_union_map *validity)
110 if (!sc || !validity)
111 goto error;
113 isl_union_map_free(sc->constraint[isl_edge_validity]);
114 sc->constraint[isl_edge_validity] = validity;
116 return sc;
117 error:
118 isl_schedule_constraints_free(sc);
119 isl_union_map_free(validity);
120 return NULL;
123 /* Replace the coincidence constraints of "sc" by "coincidence".
125 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
126 __isl_take isl_schedule_constraints *sc,
127 __isl_take isl_union_map *coincidence)
129 if (!sc || !coincidence)
130 goto error;
132 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
133 sc->constraint[isl_edge_coincidence] = coincidence;
135 return sc;
136 error:
137 isl_schedule_constraints_free(sc);
138 isl_union_map_free(coincidence);
139 return NULL;
142 /* Replace the proximity constraints of "sc" by "proximity".
144 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
145 __isl_take isl_schedule_constraints *sc,
146 __isl_take isl_union_map *proximity)
148 if (!sc || !proximity)
149 goto error;
151 isl_union_map_free(sc->constraint[isl_edge_proximity]);
152 sc->constraint[isl_edge_proximity] = proximity;
154 return sc;
155 error:
156 isl_schedule_constraints_free(sc);
157 isl_union_map_free(proximity);
158 return NULL;
161 /* Replace the conditional validity constraints of "sc" by "condition"
162 * and "validity".
164 __isl_give isl_schedule_constraints *
165 isl_schedule_constraints_set_conditional_validity(
166 __isl_take isl_schedule_constraints *sc,
167 __isl_take isl_union_map *condition,
168 __isl_take isl_union_map *validity)
170 if (!sc || !condition || !validity)
171 goto error;
173 isl_union_map_free(sc->constraint[isl_edge_condition]);
174 sc->constraint[isl_edge_condition] = condition;
175 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
176 sc->constraint[isl_edge_conditional_validity] = validity;
178 return sc;
179 error:
180 isl_schedule_constraints_free(sc);
181 isl_union_map_free(condition);
182 isl_union_map_free(validity);
183 return NULL;
186 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
187 __isl_take isl_schedule_constraints *sc)
189 enum isl_edge_type i;
191 if (!sc)
192 return NULL;
194 isl_union_set_free(sc->domain);
195 for (i = isl_edge_first; i <= isl_edge_last; ++i)
196 isl_union_map_free(sc->constraint[i]);
198 free(sc);
200 return NULL;
203 isl_ctx *isl_schedule_constraints_get_ctx(
204 __isl_keep isl_schedule_constraints *sc)
206 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
209 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
211 if (!sc)
212 return;
214 fprintf(stderr, "domain: ");
215 isl_union_set_dump(sc->domain);
216 fprintf(stderr, "validity: ");
217 isl_union_map_dump(sc->constraint[isl_edge_validity]);
218 fprintf(stderr, "proximity: ");
219 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
220 fprintf(stderr, "coincidence: ");
221 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
222 fprintf(stderr, "condition: ");
223 isl_union_map_dump(sc->constraint[isl_edge_condition]);
224 fprintf(stderr, "conditional_validity: ");
225 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
228 /* Align the parameters of the fields of "sc".
230 static __isl_give isl_schedule_constraints *
231 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
233 isl_space *space;
234 enum isl_edge_type i;
236 if (!sc)
237 return NULL;
239 space = isl_union_set_get_space(sc->domain);
240 for (i = isl_edge_first; i <= isl_edge_last; ++i)
241 space = isl_space_align_params(space,
242 isl_union_map_get_space(sc->constraint[i]));
244 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
245 sc->constraint[i] = isl_union_map_align_params(
246 sc->constraint[i], isl_space_copy(space));
247 if (!sc->constraint[i])
248 space = isl_space_free(space);
250 sc->domain = isl_union_set_align_params(sc->domain, space);
251 if (!sc->domain)
252 return isl_schedule_constraints_free(sc);
254 return sc;
257 /* Return the total number of isl_maps in the constraints of "sc".
259 static __isl_give int isl_schedule_constraints_n_map(
260 __isl_keep isl_schedule_constraints *sc)
262 enum isl_edge_type i;
263 int n = 0;
265 for (i = isl_edge_first; i <= isl_edge_last; ++i)
266 n += isl_union_map_n_map(sc->constraint[i]);
268 return n;
271 /* Internal information about a node that is used during the construction
272 * of a schedule.
273 * dim represents the space in which the domain lives
274 * sched is a matrix representation of the schedule being constructed
275 * for this node
276 * sched_map is an isl_map representation of the same (partial) schedule
277 * sched_map may be NULL
278 * rank is the number of linearly independent rows in the linear part
279 * of sched
280 * the columns of cmap represent a change of basis for the schedule
281 * coefficients; the first rank columns span the linear part of
282 * the schedule rows
283 * cinv is the inverse of cmap.
284 * start is the first variable in the LP problem in the sequences that
285 * represents the schedule coefficients of this node
286 * nvar is the dimension of the domain
287 * nparam is the number of parameters or 0 if we are not constructing
288 * a parametric schedule
290 * scc is the index of SCC (or WCC) this node belongs to
292 * band contains the band index for each of the rows of the schedule.
293 * band_id is used to differentiate between separate bands at the same
294 * level within the same parent band, i.e., bands that are separated
295 * by the parent band or bands that are independent of each other.
296 * coincident contains a boolean for each of the rows of the schedule,
297 * indicating whether the corresponding scheduling dimension satisfies
298 * the coincidence constraints in the sense that the corresponding
299 * dependence distances are zero.
301 struct isl_sched_node {
302 isl_space *dim;
303 isl_mat *sched;
304 isl_map *sched_map;
305 int rank;
306 isl_mat *cmap;
307 isl_mat *cinv;
308 int start;
309 int nvar;
310 int nparam;
312 int scc;
314 int *band;
315 int *band_id;
316 int *coincident;
319 static int node_has_dim(const void *entry, const void *val)
321 struct isl_sched_node *node = (struct isl_sched_node *)entry;
322 isl_space *dim = (isl_space *)val;
324 return isl_space_is_equal(node->dim, dim);
327 /* An edge in the dependence graph. An edge may be used to
328 * ensure validity of the generated schedule, to minimize the dependence
329 * distance or both
331 * map is the dependence relation, with i -> j in the map if j depends on i
332 * tagged_condition and tagged_validity contain the union of all tagged
333 * condition or conditional validity dependence relations that
334 * specialize the dependence relation "map"; that is,
335 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
336 * or "tagged_validity", then i -> j is an element of "map".
337 * If these fields are NULL, then they represent the empty relation.
338 * src is the source node
339 * dst is the sink node
340 * validity is set if the edge is used to ensure correctness
341 * coincidence is used to enforce zero dependence distances
342 * proximity is set if the edge is used to minimize dependence distances
343 * condition is set if the edge represents a condition
344 * for a conditional validity schedule constraint
345 * local can only be set for condition edges and indicates that
346 * the dependence distance over the edge should be zero
347 * conditional_validity is set if the edge is used to conditionally
348 * ensure correctness
350 * For validity edges, start and end mark the sequence of inequality
351 * constraints in the LP problem that encode the validity constraint
352 * corresponding to this edge.
354 struct isl_sched_edge {
355 isl_map *map;
356 isl_union_map *tagged_condition;
357 isl_union_map *tagged_validity;
359 struct isl_sched_node *src;
360 struct isl_sched_node *dst;
362 unsigned validity : 1;
363 unsigned coincidence : 1;
364 unsigned proximity : 1;
365 unsigned local : 1;
366 unsigned condition : 1;
367 unsigned conditional_validity : 1;
369 int start;
370 int end;
373 /* Internal information about the dependence graph used during
374 * the construction of the schedule.
376 * intra_hmap is a cache, mapping dependence relations to their dual,
377 * for dependences from a node to itself
378 * inter_hmap is a cache, mapping dependence relations to their dual,
379 * for dependences between distinct nodes
381 * n is the number of nodes
382 * node is the list of nodes
383 * maxvar is the maximal number of variables over all nodes
384 * max_row is the allocated number of rows in the schedule
385 * n_row is the current (maximal) number of linearly independent
386 * rows in the node schedules
387 * n_total_row is the current number of rows in the node schedules
388 * n_band is the current number of completed bands
389 * band_start is the starting row in the node schedules of the current band
390 * root is set if this graph is the original dependence graph,
391 * without any splitting
393 * sorted contains a list of node indices sorted according to the
394 * SCC to which a node belongs
396 * n_edge is the number of edges
397 * edge is the list of edges
398 * max_edge contains the maximal number of edges of each type;
399 * in particular, it contains the number of edges in the inital graph.
400 * edge_table contains pointers into the edge array, hashed on the source
401 * and sink spaces; there is one such table for each type;
402 * a given edge may be referenced from more than one table
403 * if the corresponding relation appears in more than of the
404 * sets of dependences
406 * node_table contains pointers into the node array, hashed on the space
408 * region contains a list of variable sequences that should be non-trivial
410 * lp contains the (I)LP problem used to obtain new schedule rows
412 * src_scc and dst_scc are the source and sink SCCs of an edge with
413 * conflicting constraints
415 * scc represents the number of components
417 struct isl_sched_graph {
418 isl_map_to_basic_set *intra_hmap;
419 isl_map_to_basic_set *inter_hmap;
421 struct isl_sched_node *node;
422 int n;
423 int maxvar;
424 int max_row;
425 int n_row;
427 int *sorted;
429 int n_band;
430 int n_total_row;
431 int band_start;
433 int root;
435 struct isl_sched_edge *edge;
436 int n_edge;
437 int max_edge[isl_edge_last + 1];
438 struct isl_hash_table *edge_table[isl_edge_last + 1];
440 struct isl_hash_table *node_table;
441 struct isl_region *region;
443 isl_basic_set *lp;
445 int src_scc;
446 int dst_scc;
448 int scc;
451 /* Initialize node_table based on the list of nodes.
453 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
455 int i;
457 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
458 if (!graph->node_table)
459 return -1;
461 for (i = 0; i < graph->n; ++i) {
462 struct isl_hash_table_entry *entry;
463 uint32_t hash;
465 hash = isl_space_get_hash(graph->node[i].dim);
466 entry = isl_hash_table_find(ctx, graph->node_table, hash,
467 &node_has_dim,
468 graph->node[i].dim, 1);
469 if (!entry)
470 return -1;
471 entry->data = &graph->node[i];
474 return 0;
477 /* Return a pointer to the node that lives within the given space,
478 * or NULL if there is no such node.
480 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
481 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
483 struct isl_hash_table_entry *entry;
484 uint32_t hash;
486 hash = isl_space_get_hash(dim);
487 entry = isl_hash_table_find(ctx, graph->node_table, hash,
488 &node_has_dim, dim, 0);
490 return entry ? entry->data : NULL;
493 static int edge_has_src_and_dst(const void *entry, const void *val)
495 const struct isl_sched_edge *edge = entry;
496 const struct isl_sched_edge *temp = val;
498 return edge->src == temp->src && edge->dst == temp->dst;
501 /* Add the given edge to graph->edge_table[type].
503 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
504 enum isl_edge_type type, struct isl_sched_edge *edge)
506 struct isl_hash_table_entry *entry;
507 uint32_t hash;
509 hash = isl_hash_init();
510 hash = isl_hash_builtin(hash, edge->src);
511 hash = isl_hash_builtin(hash, edge->dst);
512 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
513 &edge_has_src_and_dst, edge, 1);
514 if (!entry)
515 return -1;
516 entry->data = edge;
518 return 0;
521 /* Allocate the edge_tables based on the maximal number of edges of
522 * each type.
524 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
526 int i;
528 for (i = 0; i <= isl_edge_last; ++i) {
529 graph->edge_table[i] = isl_hash_table_alloc(ctx,
530 graph->max_edge[i]);
531 if (!graph->edge_table[i])
532 return -1;
535 return 0;
538 /* If graph->edge_table[type] contains an edge from the given source
539 * to the given destination, then return the hash table entry of this edge.
540 * Otherwise, return NULL.
542 static struct isl_hash_table_entry *graph_find_edge_entry(
543 struct isl_sched_graph *graph,
544 enum isl_edge_type type,
545 struct isl_sched_node *src, struct isl_sched_node *dst)
547 isl_ctx *ctx = isl_space_get_ctx(src->dim);
548 uint32_t hash;
549 struct isl_sched_edge temp = { .src = src, .dst = dst };
551 hash = isl_hash_init();
552 hash = isl_hash_builtin(hash, temp.src);
553 hash = isl_hash_builtin(hash, temp.dst);
554 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
555 &edge_has_src_and_dst, &temp, 0);
559 /* If graph->edge_table[type] contains an edge from the given source
560 * to the given destination, then return this edge.
561 * Otherwise, return NULL.
563 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
564 enum isl_edge_type type,
565 struct isl_sched_node *src, struct isl_sched_node *dst)
567 struct isl_hash_table_entry *entry;
569 entry = graph_find_edge_entry(graph, type, src, dst);
570 if (!entry)
571 return NULL;
573 return entry->data;
576 /* Check whether the dependence graph has an edge of the given type
577 * between the given two nodes.
579 static int graph_has_edge(struct isl_sched_graph *graph,
580 enum isl_edge_type type,
581 struct isl_sched_node *src, struct isl_sched_node *dst)
583 struct isl_sched_edge *edge;
584 int empty;
586 edge = graph_find_edge(graph, type, src, dst);
587 if (!edge)
588 return 0;
590 empty = isl_map_plain_is_empty(edge->map);
591 if (empty < 0)
592 return -1;
594 return !empty;
597 /* Look for any edge with the same src, dst and map fields as "model".
599 * Return the matching edge if one can be found.
600 * Return "model" if no matching edge is found.
601 * Return NULL on error.
603 static struct isl_sched_edge *graph_find_matching_edge(
604 struct isl_sched_graph *graph, struct isl_sched_edge *model)
606 enum isl_edge_type i;
607 struct isl_sched_edge *edge;
609 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
610 int is_equal;
612 edge = graph_find_edge(graph, i, model->src, model->dst);
613 if (!edge)
614 continue;
615 is_equal = isl_map_plain_is_equal(model->map, edge->map);
616 if (is_equal < 0)
617 return NULL;
618 if (is_equal)
619 return edge;
622 return model;
625 /* Remove the given edge from all the edge_tables that refer to it.
627 static void graph_remove_edge(struct isl_sched_graph *graph,
628 struct isl_sched_edge *edge)
630 isl_ctx *ctx = isl_map_get_ctx(edge->map);
631 enum isl_edge_type i;
633 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
634 struct isl_hash_table_entry *entry;
636 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
637 if (!entry)
638 continue;
639 if (entry->data != edge)
640 continue;
641 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
645 /* Check whether the dependence graph has any edge
646 * between the given two nodes.
648 static int graph_has_any_edge(struct isl_sched_graph *graph,
649 struct isl_sched_node *src, struct isl_sched_node *dst)
651 enum isl_edge_type i;
652 int r;
654 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
655 r = graph_has_edge(graph, i, src, dst);
656 if (r < 0 || r)
657 return r;
660 return r;
663 /* Check whether the dependence graph has a validity edge
664 * between the given two nodes.
666 * Conditional validity edges are essentially validity edges that
667 * can be ignored if the corresponding condition edges are iteration private.
668 * Here, we are only checking for the presence of validity
669 * edges, so we need to consider the conditional validity edges too.
670 * In particular, this function is used during the detection
671 * of strongly connected components and we cannot ignore
672 * conditional validity edges during this detection.
674 static int graph_has_validity_edge(struct isl_sched_graph *graph,
675 struct isl_sched_node *src, struct isl_sched_node *dst)
677 int r;
679 r = graph_has_edge(graph, isl_edge_validity, src, dst);
680 if (r < 0 || r)
681 return r;
683 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
686 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
687 int n_node, int n_edge)
689 int i;
691 graph->n = n_node;
692 graph->n_edge = n_edge;
693 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
694 graph->sorted = isl_calloc_array(ctx, int, graph->n);
695 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
696 graph->edge = isl_calloc_array(ctx,
697 struct isl_sched_edge, graph->n_edge);
699 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
700 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
702 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
703 !graph->sorted)
704 return -1;
706 for(i = 0; i < graph->n; ++i)
707 graph->sorted[i] = i;
709 return 0;
712 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
714 int i;
716 isl_map_to_basic_set_free(graph->intra_hmap);
717 isl_map_to_basic_set_free(graph->inter_hmap);
719 if (graph->node)
720 for (i = 0; i < graph->n; ++i) {
721 isl_space_free(graph->node[i].dim);
722 isl_mat_free(graph->node[i].sched);
723 isl_map_free(graph->node[i].sched_map);
724 isl_mat_free(graph->node[i].cmap);
725 isl_mat_free(graph->node[i].cinv);
726 if (graph->root) {
727 free(graph->node[i].band);
728 free(graph->node[i].band_id);
729 free(graph->node[i].coincident);
732 free(graph->node);
733 free(graph->sorted);
734 if (graph->edge)
735 for (i = 0; i < graph->n_edge; ++i) {
736 isl_map_free(graph->edge[i].map);
737 isl_union_map_free(graph->edge[i].tagged_condition);
738 isl_union_map_free(graph->edge[i].tagged_validity);
740 free(graph->edge);
741 free(graph->region);
742 for (i = 0; i <= isl_edge_last; ++i)
743 isl_hash_table_free(ctx, graph->edge_table[i]);
744 isl_hash_table_free(ctx, graph->node_table);
745 isl_basic_set_free(graph->lp);
748 /* For each "set" on which this function is called, increment
749 * graph->n by one and update graph->maxvar.
751 static int init_n_maxvar(__isl_take isl_set *set, void *user)
753 struct isl_sched_graph *graph = user;
754 int nvar = isl_set_dim(set, isl_dim_set);
756 graph->n++;
757 if (nvar > graph->maxvar)
758 graph->maxvar = nvar;
760 isl_set_free(set);
762 return 0;
765 /* Compute the number of rows that should be allocated for the schedule.
766 * The graph can be split at most "n - 1" times, there can be at most
767 * two rows for each dimension in the iteration domains (in particular,
768 * we usually have one row, but it may be split by split_scaled),
769 * and there can be one extra row for ordering the statements.
770 * Note that if we have actually split "n - 1" times, then no ordering
771 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
773 static int compute_max_row(struct isl_sched_graph *graph,
774 __isl_keep isl_union_set *domain)
776 graph->n = 0;
777 graph->maxvar = 0;
778 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
779 return -1;
780 graph->max_row = graph->n + 2 * graph->maxvar;
782 return 0;
785 /* Add a new node to the graph representing the given set.
787 static int extract_node(__isl_take isl_set *set, void *user)
789 int nvar, nparam;
790 isl_ctx *ctx;
791 isl_space *dim;
792 isl_mat *sched;
793 struct isl_sched_graph *graph = user;
794 int *band, *band_id, *coincident;
796 ctx = isl_set_get_ctx(set);
797 dim = isl_set_get_space(set);
798 isl_set_free(set);
799 nvar = isl_space_dim(dim, isl_dim_set);
800 nparam = isl_space_dim(dim, isl_dim_param);
801 if (!ctx->opt->schedule_parametric)
802 nparam = 0;
803 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
804 graph->node[graph->n].dim = dim;
805 graph->node[graph->n].nvar = nvar;
806 graph->node[graph->n].nparam = nparam;
807 graph->node[graph->n].sched = sched;
808 graph->node[graph->n].sched_map = NULL;
809 band = isl_alloc_array(ctx, int, graph->max_row);
810 graph->node[graph->n].band = band;
811 band_id = isl_calloc_array(ctx, int, graph->max_row);
812 graph->node[graph->n].band_id = band_id;
813 coincident = isl_calloc_array(ctx, int, graph->max_row);
814 graph->node[graph->n].coincident = coincident;
815 graph->n++;
817 if (!sched || (graph->max_row && (!band || !band_id || !coincident)))
818 return -1;
820 return 0;
823 struct isl_extract_edge_data {
824 enum isl_edge_type type;
825 struct isl_sched_graph *graph;
828 /* Merge edge2 into edge1, freeing the contents of edge2.
829 * "type" is the type of the schedule constraint from which edge2 was
830 * extracted.
831 * Return 0 on success and -1 on failure.
833 * edge1 and edge2 are assumed to have the same value for the map field.
835 static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
836 struct isl_sched_edge *edge2)
838 edge1->validity |= edge2->validity;
839 edge1->coincidence |= edge2->coincidence;
840 edge1->proximity |= edge2->proximity;
841 edge1->condition |= edge2->condition;
842 edge1->conditional_validity |= edge2->conditional_validity;
843 isl_map_free(edge2->map);
845 if (type == isl_edge_condition) {
846 if (!edge1->tagged_condition)
847 edge1->tagged_condition = edge2->tagged_condition;
848 else
849 edge1->tagged_condition =
850 isl_union_map_union(edge1->tagged_condition,
851 edge2->tagged_condition);
854 if (type == isl_edge_conditional_validity) {
855 if (!edge1->tagged_validity)
856 edge1->tagged_validity = edge2->tagged_validity;
857 else
858 edge1->tagged_validity =
859 isl_union_map_union(edge1->tagged_validity,
860 edge2->tagged_validity);
863 if (type == isl_edge_condition && !edge1->tagged_condition)
864 return -1;
865 if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
866 return -1;
868 return 0;
871 /* Insert dummy tags in domain and range of "map".
873 * In particular, if "map" is of the form
875 * A -> B
877 * then return
879 * [A -> dummy_tag] -> [B -> dummy_tag]
881 * where the dummy_tags are identical and equal to any dummy tags
882 * introduced by any other call to this function.
884 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
886 static char dummy;
887 isl_ctx *ctx;
888 isl_id *id;
889 isl_space *space;
890 isl_set *domain, *range;
892 ctx = isl_map_get_ctx(map);
894 id = isl_id_alloc(ctx, NULL, &dummy);
895 space = isl_space_params(isl_map_get_space(map));
896 space = isl_space_set_from_params(space);
897 space = isl_space_set_tuple_id(space, isl_dim_set, id);
898 space = isl_space_map_from_set(space);
900 domain = isl_map_wrap(map);
901 range = isl_map_wrap(isl_map_universe(space));
902 map = isl_map_from_domain_and_range(domain, range);
903 map = isl_map_zip(map);
905 return map;
908 /* Add a new edge to the graph based on the given map
909 * and add it to data->graph->edge_table[data->type].
910 * If a dependence relation of a given type happens to be identical
911 * to one of the dependence relations of a type that was added before,
912 * then we don't create a new edge, but instead mark the original edge
913 * as also representing a dependence of the current type.
915 * Edges of type isl_edge_condition or isl_edge_conditional_validity
916 * may be specified as "tagged" dependence relations. That is, "map"
917 * may contain elements * (i -> a) -> (j -> b), where i -> j denotes
918 * the dependence on iterations and a and b are tags.
919 * edge->map is set to the relation containing the elements i -> j,
920 * while edge->tagged_condition and edge->tagged_validity contain
921 * the union of all the "map" relations
922 * for which extract_edge is called that result in the same edge->map.
924 static int extract_edge(__isl_take isl_map *map, void *user)
926 isl_ctx *ctx = isl_map_get_ctx(map);
927 struct isl_extract_edge_data *data = user;
928 struct isl_sched_graph *graph = data->graph;
929 struct isl_sched_node *src, *dst;
930 isl_space *dim;
931 struct isl_sched_edge *edge;
932 isl_map *tagged = NULL;
934 if (data->type == isl_edge_condition ||
935 data->type == isl_edge_conditional_validity) {
936 if (isl_map_can_zip(map)) {
937 tagged = isl_map_copy(map);
938 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
939 } else {
940 tagged = insert_dummy_tags(isl_map_copy(map));
944 dim = isl_space_domain(isl_map_get_space(map));
945 src = graph_find_node(ctx, graph, dim);
946 isl_space_free(dim);
947 dim = isl_space_range(isl_map_get_space(map));
948 dst = graph_find_node(ctx, graph, dim);
949 isl_space_free(dim);
951 if (!src || !dst) {
952 isl_map_free(map);
953 isl_map_free(tagged);
954 return 0;
957 graph->edge[graph->n_edge].src = src;
958 graph->edge[graph->n_edge].dst = dst;
959 graph->edge[graph->n_edge].map = map;
960 graph->edge[graph->n_edge].validity = 0;
961 graph->edge[graph->n_edge].coincidence = 0;
962 graph->edge[graph->n_edge].proximity = 0;
963 graph->edge[graph->n_edge].condition = 0;
964 graph->edge[graph->n_edge].local = 0;
965 graph->edge[graph->n_edge].conditional_validity = 0;
966 graph->edge[graph->n_edge].tagged_condition = NULL;
967 graph->edge[graph->n_edge].tagged_validity = NULL;
968 if (data->type == isl_edge_validity)
969 graph->edge[graph->n_edge].validity = 1;
970 if (data->type == isl_edge_coincidence)
971 graph->edge[graph->n_edge].coincidence = 1;
972 if (data->type == isl_edge_proximity)
973 graph->edge[graph->n_edge].proximity = 1;
974 if (data->type == isl_edge_condition) {
975 graph->edge[graph->n_edge].condition = 1;
976 graph->edge[graph->n_edge].tagged_condition =
977 isl_union_map_from_map(tagged);
979 if (data->type == isl_edge_conditional_validity) {
980 graph->edge[graph->n_edge].conditional_validity = 1;
981 graph->edge[graph->n_edge].tagged_validity =
982 isl_union_map_from_map(tagged);
985 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
986 if (!edge) {
987 graph->n_edge++;
988 return -1;
990 if (edge == &graph->edge[graph->n_edge])
991 return graph_edge_table_add(ctx, graph, data->type,
992 &graph->edge[graph->n_edge++]);
994 if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
995 return -1;
997 return graph_edge_table_add(ctx, graph, data->type, edge);
1000 /* Check whether there is any dependence from node[j] to node[i]
1001 * or from node[i] to node[j].
1003 static int node_follows_weak(int i, int j, void *user)
1005 int f;
1006 struct isl_sched_graph *graph = user;
1008 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1009 if (f < 0 || f)
1010 return f;
1011 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1014 /* Check whether there is a (conditional) validity dependence from node[j]
1015 * to node[i], forcing node[i] to follow node[j].
1017 static int node_follows_strong(int i, int j, void *user)
1019 struct isl_sched_graph *graph = user;
1021 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1024 /* Use Tarjan's algorithm for computing the strongly connected components
1025 * in the dependence graph (only validity edges).
1026 * If weak is set, we consider the graph to be undirected and
1027 * we effectively compute the (weakly) connected components.
1028 * Additionally, we also consider other edges when weak is set.
1030 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
1032 int i, n;
1033 struct isl_tarjan_graph *g = NULL;
1035 g = isl_tarjan_graph_init(ctx, graph->n,
1036 weak ? &node_follows_weak : &node_follows_strong, graph);
1037 if (!g)
1038 return -1;
1040 graph->scc = 0;
1041 i = 0;
1042 n = graph->n;
1043 while (n) {
1044 while (g->order[i] != -1) {
1045 graph->node[g->order[i]].scc = graph->scc;
1046 --n;
1047 ++i;
1049 ++i;
1050 graph->scc++;
1053 isl_tarjan_graph_free(g);
1055 return 0;
1058 /* Apply Tarjan's algorithm to detect the strongly connected components
1059 * in the dependence graph.
1061 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1063 return detect_ccs(ctx, graph, 0);
1066 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1067 * in the dependence graph.
1069 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1071 return detect_ccs(ctx, graph, 1);
1074 static int cmp_scc(const void *a, const void *b, void *data)
1076 struct isl_sched_graph *graph = data;
1077 const int *i1 = a;
1078 const int *i2 = b;
1080 return graph->node[*i1].scc - graph->node[*i2].scc;
1083 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1085 static int sort_sccs(struct isl_sched_graph *graph)
1087 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1090 /* Given a dependence relation R from a node to itself,
1091 * construct the set of coefficients of valid constraints for elements
1092 * in that dependence relation.
1093 * In particular, the result contains tuples of coefficients
1094 * c_0, c_n, c_x such that
1096 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1098 * or, equivalently,
1100 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1102 * We choose here to compute the dual of delta R.
1103 * Alternatively, we could have computed the dual of R, resulting
1104 * in a set of tuples c_0, c_n, c_x, c_y, and then
1105 * plugged in (c_0, c_n, c_x, -c_x).
1107 static __isl_give isl_basic_set *intra_coefficients(
1108 struct isl_sched_graph *graph, __isl_take isl_map *map)
1110 isl_set *delta;
1111 isl_basic_set *coef;
1113 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
1114 return isl_map_to_basic_set_get(graph->intra_hmap, map);
1116 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
1117 coef = isl_set_coefficients(delta);
1118 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, map,
1119 isl_basic_set_copy(coef));
1121 return coef;
1124 /* Given a dependence relation R, * construct the set of coefficients
1125 * of valid constraints for elements in that dependence relation.
1126 * In particular, the result contains tuples of coefficients
1127 * c_0, c_n, c_x, c_y such that
1129 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1132 static __isl_give isl_basic_set *inter_coefficients(
1133 struct isl_sched_graph *graph, __isl_take isl_map *map)
1135 isl_set *set;
1136 isl_basic_set *coef;
1138 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
1139 return isl_map_to_basic_set_get(graph->inter_hmap, map);
1141 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
1142 coef = isl_set_coefficients(set);
1143 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, map,
1144 isl_basic_set_copy(coef));
1146 return coef;
1149 /* Add constraints to graph->lp that force validity for the given
1150 * dependence from a node i to itself.
1151 * That is, add constraints that enforce
1153 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1154 * = c_i_x (y - x) >= 0
1156 * for each (x,y) in R.
1157 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1158 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1159 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1160 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1162 * Actually, we do not construct constraints for the c_i_x themselves,
1163 * but for the coefficients of c_i_x written as a linear combination
1164 * of the columns in node->cmap.
1166 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1167 struct isl_sched_edge *edge)
1169 unsigned total;
1170 isl_map *map = isl_map_copy(edge->map);
1171 isl_ctx *ctx = isl_map_get_ctx(map);
1172 isl_space *dim;
1173 isl_dim_map *dim_map;
1174 isl_basic_set *coef;
1175 struct isl_sched_node *node = edge->src;
1177 coef = intra_coefficients(graph, map);
1179 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1181 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1182 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1183 if (!coef)
1184 goto error;
1186 total = isl_basic_set_total_dim(graph->lp);
1187 dim_map = isl_dim_map_alloc(ctx, total);
1188 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1189 isl_space_dim(dim, isl_dim_set), 1,
1190 node->nvar, -1);
1191 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1192 isl_space_dim(dim, isl_dim_set), 1,
1193 node->nvar, 1);
1194 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1195 coef->n_eq, coef->n_ineq);
1196 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1197 coef, dim_map);
1198 isl_space_free(dim);
1200 return 0;
1201 error:
1202 isl_space_free(dim);
1203 return -1;
1206 /* Add constraints to graph->lp that force validity for the given
1207 * dependence from node i to node j.
1208 * That is, add constraints that enforce
1210 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1212 * for each (x,y) in R.
1213 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1214 * of valid constraints for R and then plug in
1215 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1216 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1217 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1218 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1220 * Actually, we do not construct constraints for the c_*_x themselves,
1221 * but for the coefficients of c_*_x written as a linear combination
1222 * of the columns in node->cmap.
1224 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1225 struct isl_sched_edge *edge)
1227 unsigned total;
1228 isl_map *map = isl_map_copy(edge->map);
1229 isl_ctx *ctx = isl_map_get_ctx(map);
1230 isl_space *dim;
1231 isl_dim_map *dim_map;
1232 isl_basic_set *coef;
1233 struct isl_sched_node *src = edge->src;
1234 struct isl_sched_node *dst = edge->dst;
1236 coef = inter_coefficients(graph, map);
1238 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1240 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1241 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1242 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1243 isl_space_dim(dim, isl_dim_set) + src->nvar,
1244 isl_mat_copy(dst->cmap));
1245 if (!coef)
1246 goto error;
1248 total = isl_basic_set_total_dim(graph->lp);
1249 dim_map = isl_dim_map_alloc(ctx, total);
1251 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1252 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1253 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1254 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1255 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1256 dst->nvar, -1);
1257 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1258 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1259 dst->nvar, 1);
1261 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1262 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1263 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1264 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1265 isl_space_dim(dim, isl_dim_set), 1,
1266 src->nvar, 1);
1267 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1268 isl_space_dim(dim, isl_dim_set), 1,
1269 src->nvar, -1);
1271 edge->start = graph->lp->n_ineq;
1272 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1273 coef->n_eq, coef->n_ineq);
1274 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1275 coef, dim_map);
1276 if (!graph->lp)
1277 goto error;
1278 isl_space_free(dim);
1279 edge->end = graph->lp->n_ineq;
1281 return 0;
1282 error:
1283 isl_space_free(dim);
1284 return -1;
1287 /* Add constraints to graph->lp that bound the dependence distance for the given
1288 * dependence from a node i to itself.
1289 * If s = 1, we add the constraint
1291 * c_i_x (y - x) <= m_0 + m_n n
1293 * or
1295 * -c_i_x (y - x) + m_0 + m_n n >= 0
1297 * for each (x,y) in R.
1298 * If s = -1, we add the constraint
1300 * -c_i_x (y - x) <= m_0 + m_n n
1302 * or
1304 * c_i_x (y - x) + m_0 + m_n n >= 0
1306 * for each (x,y) in R.
1307 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1308 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1309 * with each coefficient (except m_0) represented as a pair of non-negative
1310 * coefficients.
1312 * Actually, we do not construct constraints for the c_i_x themselves,
1313 * but for the coefficients of c_i_x written as a linear combination
1314 * of the columns in node->cmap.
1317 * If "local" is set, then we add constraints
1319 * c_i_x (y - x) <= 0
1321 * or
1323 * -c_i_x (y - x) <= 0
1325 * instead, forcing the dependence distance to be (less than or) equal to 0.
1326 * That is, we plug in (0, 0, -s * c_i_x),
1327 * Note that dependences marked local are treated as validity constraints
1328 * by add_all_validity_constraints and therefore also have
1329 * their distances bounded by 0 from below.
1331 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1332 struct isl_sched_edge *edge, int s, int local)
1334 unsigned total;
1335 unsigned nparam;
1336 isl_map *map = isl_map_copy(edge->map);
1337 isl_ctx *ctx = isl_map_get_ctx(map);
1338 isl_space *dim;
1339 isl_dim_map *dim_map;
1340 isl_basic_set *coef;
1341 struct isl_sched_node *node = edge->src;
1343 coef = intra_coefficients(graph, map);
1345 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1347 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1348 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1349 if (!coef)
1350 goto error;
1352 nparam = isl_space_dim(node->dim, isl_dim_param);
1353 total = isl_basic_set_total_dim(graph->lp);
1354 dim_map = isl_dim_map_alloc(ctx, total);
1356 if (!local) {
1357 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1358 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1359 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1361 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1362 isl_space_dim(dim, isl_dim_set), 1,
1363 node->nvar, s);
1364 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1365 isl_space_dim(dim, isl_dim_set), 1,
1366 node->nvar, -s);
1367 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1368 coef->n_eq, coef->n_ineq);
1369 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1370 coef, dim_map);
1371 isl_space_free(dim);
1373 return 0;
1374 error:
1375 isl_space_free(dim);
1376 return -1;
1379 /* Add constraints to graph->lp that bound the dependence distance for the given
1380 * dependence from node i to node j.
1381 * If s = 1, we add the constraint
1383 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1384 * <= m_0 + m_n n
1386 * or
1388 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1389 * m_0 + m_n n >= 0
1391 * for each (x,y) in R.
1392 * If s = -1, we add the constraint
1394 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1395 * <= m_0 + m_n n
1397 * or
1399 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1400 * m_0 + m_n n >= 0
1402 * for each (x,y) in R.
1403 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1404 * of valid constraints for R and then plug in
1405 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1406 * -s*c_j_x+s*c_i_x)
1407 * with each coefficient (except m_0, c_j_0 and c_i_0)
1408 * represented as a pair of non-negative coefficients.
1410 * Actually, we do not construct constraints for the c_*_x themselves,
1411 * but for the coefficients of c_*_x written as a linear combination
1412 * of the columns in node->cmap.
1415 * If "local" is set, then we add constraints
1417 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1419 * or
1421 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1423 * instead, forcing the dependence distance to be (less than or) equal to 0.
1424 * That is, we plug in
1425 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1426 * Note that dependences marked local are treated as validity constraints
1427 * by add_all_validity_constraints and therefore also have
1428 * their distances bounded by 0 from below.
1430 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1431 struct isl_sched_edge *edge, int s, int local)
1433 unsigned total;
1434 unsigned nparam;
1435 isl_map *map = isl_map_copy(edge->map);
1436 isl_ctx *ctx = isl_map_get_ctx(map);
1437 isl_space *dim;
1438 isl_dim_map *dim_map;
1439 isl_basic_set *coef;
1440 struct isl_sched_node *src = edge->src;
1441 struct isl_sched_node *dst = edge->dst;
1443 coef = inter_coefficients(graph, map);
1445 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1447 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1448 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1449 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1450 isl_space_dim(dim, isl_dim_set) + src->nvar,
1451 isl_mat_copy(dst->cmap));
1452 if (!coef)
1453 goto error;
1455 nparam = isl_space_dim(src->dim, isl_dim_param);
1456 total = isl_basic_set_total_dim(graph->lp);
1457 dim_map = isl_dim_map_alloc(ctx, total);
1459 if (!local) {
1460 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1461 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1462 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1465 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1466 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1467 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1468 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1469 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1470 dst->nvar, s);
1471 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1472 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1473 dst->nvar, -s);
1475 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1476 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1477 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1478 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1479 isl_space_dim(dim, isl_dim_set), 1,
1480 src->nvar, -s);
1481 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1482 isl_space_dim(dim, isl_dim_set), 1,
1483 src->nvar, s);
1485 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1486 coef->n_eq, coef->n_ineq);
1487 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1488 coef, dim_map);
1489 isl_space_free(dim);
1491 return 0;
1492 error:
1493 isl_space_free(dim);
1494 return -1;
1497 /* Add all validity constraints to graph->lp.
1499 * An edge that is forced to be local needs to have its dependence
1500 * distances equal to zero. We take care of bounding them by 0 from below
1501 * here. add_all_proximity_constraints takes care of bounding them by 0
1502 * from above.
1504 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1505 * Otherwise, we ignore them.
1507 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1508 int use_coincidence)
1510 int i;
1512 for (i = 0; i < graph->n_edge; ++i) {
1513 struct isl_sched_edge *edge= &graph->edge[i];
1514 int local;
1516 local = edge->local || (edge->coincidence && use_coincidence);
1517 if (!edge->validity && !local)
1518 continue;
1519 if (edge->src != edge->dst)
1520 continue;
1521 if (add_intra_validity_constraints(graph, edge) < 0)
1522 return -1;
1525 for (i = 0; i < graph->n_edge; ++i) {
1526 struct isl_sched_edge *edge = &graph->edge[i];
1527 int local;
1529 local = edge->local || (edge->coincidence && use_coincidence);
1530 if (!edge->validity && !local)
1531 continue;
1532 if (edge->src == edge->dst)
1533 continue;
1534 if (add_inter_validity_constraints(graph, edge) < 0)
1535 return -1;
1538 return 0;
1541 /* Add constraints to graph->lp that bound the dependence distance
1542 * for all dependence relations.
1543 * If a given proximity dependence is identical to a validity
1544 * dependence, then the dependence distance is already bounded
1545 * from below (by zero), so we only need to bound the distance
1546 * from above. (This includes the case of "local" dependences
1547 * which are treated as validity dependence by add_all_validity_constraints.)
1548 * Otherwise, we need to bound the distance both from above and from below.
1550 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1551 * Otherwise, we ignore them.
1553 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1554 int use_coincidence)
1556 int i;
1558 for (i = 0; i < graph->n_edge; ++i) {
1559 struct isl_sched_edge *edge= &graph->edge[i];
1560 int local;
1562 local = edge->local || (edge->coincidence && use_coincidence);
1563 if (!edge->proximity && !local)
1564 continue;
1565 if (edge->src == edge->dst &&
1566 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1567 return -1;
1568 if (edge->src != edge->dst &&
1569 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1570 return -1;
1571 if (edge->validity || local)
1572 continue;
1573 if (edge->src == edge->dst &&
1574 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1575 return -1;
1576 if (edge->src != edge->dst &&
1577 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1578 return -1;
1581 return 0;
1584 /* Compute a basis for the rows in the linear part of the schedule
1585 * and extend this basis to a full basis. The remaining rows
1586 * can then be used to force linear independence from the rows
1587 * in the schedule.
1589 * In particular, given the schedule rows S, we compute
1591 * S = H Q
1592 * S U = H
1594 * with H the Hermite normal form of S. That is, all but the
1595 * first rank columns of H are zero and so each row in S is
1596 * a linear combination of the first rank rows of Q.
1597 * The matrix Q is then transposed because we will write the
1598 * coefficients of the next schedule row as a column vector s
1599 * and express this s as a linear combination s = Q c of the
1600 * computed basis.
1601 * Similarly, the matrix U is transposed such that we can
1602 * compute the coefficients c = U s from a schedule row s.
1604 static int node_update_cmap(struct isl_sched_node *node)
1606 isl_mat *H, *U, *Q;
1607 int n_row = isl_mat_rows(node->sched);
1609 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1610 1 + node->nparam, node->nvar);
1612 H = isl_mat_left_hermite(H, 0, &U, &Q);
1613 isl_mat_free(node->cmap);
1614 isl_mat_free(node->cinv);
1615 node->cmap = isl_mat_transpose(Q);
1616 node->cinv = isl_mat_transpose(U);
1617 node->rank = isl_mat_initial_non_zero_cols(H);
1618 isl_mat_free(H);
1620 if (!node->cmap || !node->cinv || node->rank < 0)
1621 return -1;
1622 return 0;
1625 /* How many times should we count the constraints in "edge"?
1627 * If carry is set, then we are counting the number of
1628 * (validity or conditional validity) constraints that will be added
1629 * in setup_carry_lp and we count each edge exactly once.
1631 * Otherwise, we count as follows
1632 * validity -> 1 (>= 0)
1633 * validity+proximity -> 2 (>= 0 and upper bound)
1634 * proximity -> 2 (lower and upper bound)
1635 * local(+any) -> 2 (>= 0 and <= 0)
1637 * If an edge is only marked conditional_validity then it counts
1638 * as zero since it is only checked afterwards.
1640 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1641 * Otherwise, we ignore them.
1643 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
1644 int use_coincidence)
1646 if (carry && !edge->validity && !edge->conditional_validity)
1647 return 0;
1648 if (carry)
1649 return 1;
1650 if (edge->proximity || edge->local)
1651 return 2;
1652 if (use_coincidence && edge->coincidence)
1653 return 2;
1654 if (edge->validity)
1655 return 1;
1656 return 0;
1659 /* Count the number of equality and inequality constraints
1660 * that will be added for the given map.
1662 * "use_coincidence" is set if we should take into account coincidence edges.
1664 static int count_map_constraints(struct isl_sched_graph *graph,
1665 struct isl_sched_edge *edge, __isl_take isl_map *map,
1666 int *n_eq, int *n_ineq, int carry, int use_coincidence)
1668 isl_basic_set *coef;
1669 int f = edge_multiplicity(edge, carry, use_coincidence);
1671 if (f == 0) {
1672 isl_map_free(map);
1673 return 0;
1676 if (edge->src == edge->dst)
1677 coef = intra_coefficients(graph, map);
1678 else
1679 coef = inter_coefficients(graph, map);
1680 if (!coef)
1681 return -1;
1682 *n_eq += f * coef->n_eq;
1683 *n_ineq += f * coef->n_ineq;
1684 isl_basic_set_free(coef);
1686 return 0;
1689 /* Count the number of equality and inequality constraints
1690 * that will be added to the main lp problem.
1691 * We count as follows
1692 * validity -> 1 (>= 0)
1693 * validity+proximity -> 2 (>= 0 and upper bound)
1694 * proximity -> 2 (lower and upper bound)
1695 * local(+any) -> 2 (>= 0 and <= 0)
1697 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1698 * Otherwise, we ignore them.
1700 static int count_constraints(struct isl_sched_graph *graph,
1701 int *n_eq, int *n_ineq, int use_coincidence)
1703 int i;
1705 *n_eq = *n_ineq = 0;
1706 for (i = 0; i < graph->n_edge; ++i) {
1707 struct isl_sched_edge *edge= &graph->edge[i];
1708 isl_map *map = isl_map_copy(edge->map);
1710 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
1711 0, use_coincidence) < 0)
1712 return -1;
1715 return 0;
1718 /* Count the number of constraints that will be added by
1719 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1720 * accordingly.
1722 * In practice, add_bound_coefficient_constraints only adds inequalities.
1724 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1725 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1727 int i;
1729 if (ctx->opt->schedule_max_coefficient == -1)
1730 return 0;
1732 for (i = 0; i < graph->n; ++i)
1733 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1735 return 0;
1738 /* Add constraints that bound the values of the variable and parameter
1739 * coefficients of the schedule.
1741 * The maximal value of the coefficients is defined by the option
1742 * 'schedule_max_coefficient'.
1744 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1745 struct isl_sched_graph *graph)
1747 int i, j, k;
1748 int max_coefficient;
1749 int total;
1751 max_coefficient = ctx->opt->schedule_max_coefficient;
1753 if (max_coefficient == -1)
1754 return 0;
1756 total = isl_basic_set_total_dim(graph->lp);
1758 for (i = 0; i < graph->n; ++i) {
1759 struct isl_sched_node *node = &graph->node[i];
1760 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1761 int dim;
1762 k = isl_basic_set_alloc_inequality(graph->lp);
1763 if (k < 0)
1764 return -1;
1765 dim = 1 + node->start + 1 + j;
1766 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1767 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1768 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1772 return 0;
1775 /* Construct an ILP problem for finding schedule coefficients
1776 * that result in non-negative, but small dependence distances
1777 * over all dependences.
1778 * In particular, the dependence distances over proximity edges
1779 * are bounded by m_0 + m_n n and we compute schedule coefficients
1780 * with small values (preferably zero) of m_n and m_0.
1782 * All variables of the ILP are non-negative. The actual coefficients
1783 * may be negative, so each coefficient is represented as the difference
1784 * of two non-negative variables. The negative part always appears
1785 * immediately before the positive part.
1786 * Other than that, the variables have the following order
1788 * - sum of positive and negative parts of m_n coefficients
1789 * - m_0
1790 * - sum of positive and negative parts of all c_n coefficients
1791 * (unconstrained when computing non-parametric schedules)
1792 * - sum of positive and negative parts of all c_x coefficients
1793 * - positive and negative parts of m_n coefficients
1794 * - for each node
1795 * - c_i_0
1796 * - positive and negative parts of c_i_n (if parametric)
1797 * - positive and negative parts of c_i_x
1799 * The c_i_x are not represented directly, but through the columns of
1800 * node->cmap. That is, the computed values are for variable t_i_x
1801 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1803 * The constraints are those from the edges plus two or three equalities
1804 * to express the sums.
1806 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1807 * Otherwise, we ignore them.
1809 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1810 int use_coincidence)
1812 int i, j;
1813 int k;
1814 unsigned nparam;
1815 unsigned total;
1816 isl_space *dim;
1817 int parametric;
1818 int param_pos;
1819 int n_eq, n_ineq;
1820 int max_constant_term;
1822 max_constant_term = ctx->opt->schedule_max_constant_term;
1824 parametric = ctx->opt->schedule_parametric;
1825 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1826 param_pos = 4;
1827 total = param_pos + 2 * nparam;
1828 for (i = 0; i < graph->n; ++i) {
1829 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1830 if (node_update_cmap(node) < 0)
1831 return -1;
1832 node->start = total;
1833 total += 1 + 2 * (node->nparam + node->nvar);
1836 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
1837 return -1;
1838 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1839 return -1;
1841 dim = isl_space_set_alloc(ctx, 0, total);
1842 isl_basic_set_free(graph->lp);
1843 n_eq += 2 + parametric;
1844 if (max_constant_term != -1)
1845 n_ineq += graph->n;
1847 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1849 k = isl_basic_set_alloc_equality(graph->lp);
1850 if (k < 0)
1851 return -1;
1852 isl_seq_clr(graph->lp->eq[k], 1 + total);
1853 isl_int_set_si(graph->lp->eq[k][1], -1);
1854 for (i = 0; i < 2 * nparam; ++i)
1855 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1857 if (parametric) {
1858 k = isl_basic_set_alloc_equality(graph->lp);
1859 if (k < 0)
1860 return -1;
1861 isl_seq_clr(graph->lp->eq[k], 1 + total);
1862 isl_int_set_si(graph->lp->eq[k][3], -1);
1863 for (i = 0; i < graph->n; ++i) {
1864 int pos = 1 + graph->node[i].start + 1;
1866 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1867 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1871 k = isl_basic_set_alloc_equality(graph->lp);
1872 if (k < 0)
1873 return -1;
1874 isl_seq_clr(graph->lp->eq[k], 1 + total);
1875 isl_int_set_si(graph->lp->eq[k][4], -1);
1876 for (i = 0; i < graph->n; ++i) {
1877 struct isl_sched_node *node = &graph->node[i];
1878 int pos = 1 + node->start + 1 + 2 * node->nparam;
1880 for (j = 0; j < 2 * node->nvar; ++j)
1881 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1884 if (max_constant_term != -1)
1885 for (i = 0; i < graph->n; ++i) {
1886 struct isl_sched_node *node = &graph->node[i];
1887 k = isl_basic_set_alloc_inequality(graph->lp);
1888 if (k < 0)
1889 return -1;
1890 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1891 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1892 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1895 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1896 return -1;
1897 if (add_all_validity_constraints(graph, use_coincidence) < 0)
1898 return -1;
1899 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
1900 return -1;
1902 return 0;
1905 /* Analyze the conflicting constraint found by
1906 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1907 * constraint of one of the edges between distinct nodes, living, moreover
1908 * in distinct SCCs, then record the source and sink SCC as this may
1909 * be a good place to cut between SCCs.
1911 static int check_conflict(int con, void *user)
1913 int i;
1914 struct isl_sched_graph *graph = user;
1916 if (graph->src_scc >= 0)
1917 return 0;
1919 con -= graph->lp->n_eq;
1921 if (con >= graph->lp->n_ineq)
1922 return 0;
1924 for (i = 0; i < graph->n_edge; ++i) {
1925 if (!graph->edge[i].validity)
1926 continue;
1927 if (graph->edge[i].src == graph->edge[i].dst)
1928 continue;
1929 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1930 continue;
1931 if (graph->edge[i].start > con)
1932 continue;
1933 if (graph->edge[i].end <= con)
1934 continue;
1935 graph->src_scc = graph->edge[i].src->scc;
1936 graph->dst_scc = graph->edge[i].dst->scc;
1939 return 0;
1942 /* Check whether the next schedule row of the given node needs to be
1943 * non-trivial. Lower-dimensional domains may have some trivial rows,
1944 * but as soon as the number of remaining required non-trivial rows
1945 * is as large as the number or remaining rows to be computed,
1946 * all remaining rows need to be non-trivial.
1948 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1950 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1953 /* Solve the ILP problem constructed in setup_lp.
1954 * For each node such that all the remaining rows of its schedule
1955 * need to be non-trivial, we construct a non-triviality region.
1956 * This region imposes that the next row is independent of previous rows.
1957 * In particular the coefficients c_i_x are represented by t_i_x
1958 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1959 * its first columns span the rows of the previously computed part
1960 * of the schedule. The non-triviality region enforces that at least
1961 * one of the remaining components of t_i_x is non-zero, i.e.,
1962 * that the new schedule row depends on at least one of the remaining
1963 * columns of Q.
1965 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1967 int i;
1968 isl_vec *sol;
1969 isl_basic_set *lp;
1971 for (i = 0; i < graph->n; ++i) {
1972 struct isl_sched_node *node = &graph->node[i];
1973 int skip = node->rank;
1974 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1975 if (needs_row(graph, node))
1976 graph->region[i].len = 2 * (node->nvar - skip);
1977 else
1978 graph->region[i].len = 0;
1980 lp = isl_basic_set_copy(graph->lp);
1981 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1982 graph->region, &check_conflict, graph);
1983 return sol;
1986 /* Update the schedules of all nodes based on the given solution
1987 * of the LP problem.
1988 * The new row is added to the current band.
1989 * All possibly negative coefficients are encoded as a difference
1990 * of two non-negative variables, so we need to perform the subtraction
1991 * here. Moreover, if use_cmap is set, then the solution does
1992 * not refer to the actual coefficients c_i_x, but instead to variables
1993 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1994 * In this case, we then also need to perform this multiplication
1995 * to obtain the values of c_i_x.
1997 * If coincident is set, then the caller guarantees that the new
1998 * row satisfies the coincidence constraints.
2000 static int update_schedule(struct isl_sched_graph *graph,
2001 __isl_take isl_vec *sol, int use_cmap, int coincident)
2003 int i, j;
2004 isl_vec *csol = NULL;
2006 if (!sol)
2007 goto error;
2008 if (sol->size == 0)
2009 isl_die(sol->ctx, isl_error_internal,
2010 "no solution found", goto error);
2011 if (graph->n_total_row >= graph->max_row)
2012 isl_die(sol->ctx, isl_error_internal,
2013 "too many schedule rows", goto error);
2015 for (i = 0; i < graph->n; ++i) {
2016 struct isl_sched_node *node = &graph->node[i];
2017 int pos = node->start;
2018 int row = isl_mat_rows(node->sched);
2020 isl_vec_free(csol);
2021 csol = isl_vec_alloc(sol->ctx, node->nvar);
2022 if (!csol)
2023 goto error;
2025 isl_map_free(node->sched_map);
2026 node->sched_map = NULL;
2027 node->sched = isl_mat_add_rows(node->sched, 1);
2028 if (!node->sched)
2029 goto error;
2030 node->sched = isl_mat_set_element(node->sched, row, 0,
2031 sol->el[1 + pos]);
2032 for (j = 0; j < node->nparam + node->nvar; ++j)
2033 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
2034 sol->el[1 + pos + 1 + 2 * j + 1],
2035 sol->el[1 + pos + 1 + 2 * j]);
2036 for (j = 0; j < node->nparam; ++j)
2037 node->sched = isl_mat_set_element(node->sched,
2038 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2039 for (j = 0; j < node->nvar; ++j)
2040 isl_int_set(csol->el[j],
2041 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2042 if (use_cmap)
2043 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2044 csol);
2045 if (!csol)
2046 goto error;
2047 for (j = 0; j < node->nvar; ++j)
2048 node->sched = isl_mat_set_element(node->sched,
2049 row, 1 + node->nparam + j, csol->el[j]);
2050 node->band[graph->n_total_row] = graph->n_band;
2051 node->coincident[graph->n_total_row] = coincident;
2053 isl_vec_free(sol);
2054 isl_vec_free(csol);
2056 graph->n_row++;
2057 graph->n_total_row++;
2059 return 0;
2060 error:
2061 isl_vec_free(sol);
2062 isl_vec_free(csol);
2063 return -1;
2066 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2067 * and return this isl_aff.
2069 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2070 struct isl_sched_node *node, int row)
2072 int j;
2073 isl_int v;
2074 isl_aff *aff;
2076 isl_int_init(v);
2078 aff = isl_aff_zero_on_domain(ls);
2079 isl_mat_get_element(node->sched, row, 0, &v);
2080 aff = isl_aff_set_constant(aff, v);
2081 for (j = 0; j < node->nparam; ++j) {
2082 isl_mat_get_element(node->sched, row, 1 + j, &v);
2083 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2085 for (j = 0; j < node->nvar; ++j) {
2086 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2087 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2090 isl_int_clear(v);
2092 return aff;
2095 /* Convert node->sched into a multi_aff and return this multi_aff.
2097 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2098 struct isl_sched_node *node)
2100 int i;
2101 isl_space *space;
2102 isl_local_space *ls;
2103 isl_aff *aff;
2104 isl_multi_aff *ma;
2105 int nrow, ncol;
2107 nrow = isl_mat_rows(node->sched);
2108 ncol = isl_mat_cols(node->sched) - 1;
2109 space = isl_space_from_domain(isl_space_copy(node->dim));
2110 space = isl_space_add_dims(space, isl_dim_out, nrow);
2111 ma = isl_multi_aff_zero(space);
2112 ls = isl_local_space_from_space(isl_space_copy(node->dim));
2114 for (i = 0; i < nrow; ++i) {
2115 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2116 ma = isl_multi_aff_set_aff(ma, i, aff);
2119 isl_local_space_free(ls);
2121 return ma;
2124 /* Convert node->sched into a map and return this map.
2126 * The result is cached in node->sched_map, which needs to be released
2127 * whenever node->sched is updated.
2129 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2131 if (!node->sched_map) {
2132 isl_multi_aff *ma;
2134 ma = node_extract_schedule_multi_aff(node);
2135 node->sched_map = isl_map_from_multi_aff(ma);
2138 return isl_map_copy(node->sched_map);
2141 /* Construct a map that can be used to update dependence relation
2142 * based on the current schedule.
2143 * That is, construct a map expressing that source and sink
2144 * are executed within the same iteration of the current schedule.
2145 * This map can then be intersected with the dependence relation.
2146 * This is not the most efficient way, but this shouldn't be a critical
2147 * operation.
2149 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2150 struct isl_sched_node *dst)
2152 isl_map *src_sched, *dst_sched;
2154 src_sched = node_extract_schedule(src);
2155 dst_sched = node_extract_schedule(dst);
2156 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2159 /* Intersect the domains of the nested relations in domain and range
2160 * of "umap" with "map".
2162 static __isl_give isl_union_map *intersect_domains(
2163 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2165 isl_union_set *uset;
2167 umap = isl_union_map_zip(umap);
2168 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2169 umap = isl_union_map_intersect_domain(umap, uset);
2170 umap = isl_union_map_zip(umap);
2171 return umap;
2174 /* Update the dependence relation of the given edge based
2175 * on the current schedule.
2176 * If the dependence is carried completely by the current schedule, then
2177 * it is removed from the edge_tables. It is kept in the list of edges
2178 * as otherwise all edge_tables would have to be recomputed.
2180 static int update_edge(struct isl_sched_graph *graph,
2181 struct isl_sched_edge *edge)
2183 isl_map *id;
2185 id = specializer(edge->src, edge->dst);
2186 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2187 if (!edge->map)
2188 goto error;
2190 if (edge->tagged_condition) {
2191 edge->tagged_condition =
2192 intersect_domains(edge->tagged_condition, id);
2193 if (!edge->tagged_condition)
2194 goto error;
2196 if (edge->tagged_validity) {
2197 edge->tagged_validity =
2198 intersect_domains(edge->tagged_validity, id);
2199 if (!edge->tagged_validity)
2200 goto error;
2203 isl_map_free(id);
2204 if (isl_map_plain_is_empty(edge->map))
2205 graph_remove_edge(graph, edge);
2207 return 0;
2208 error:
2209 isl_map_free(id);
2210 return -1;
2213 /* Update the dependence relations of all edges based on the current schedule.
2215 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2217 int i;
2219 for (i = graph->n_edge - 1; i >= 0; --i) {
2220 if (update_edge(graph, &graph->edge[i]) < 0)
2221 return -1;
2224 return 0;
2227 static void next_band(struct isl_sched_graph *graph)
2229 graph->band_start = graph->n_total_row;
2230 graph->n_band++;
2233 /* Topologically sort statements mapped to the same schedule iteration
2234 * and add a row to the schedule corresponding to this order.
2236 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
2238 int i, j;
2240 if (graph->n <= 1)
2241 return 0;
2243 if (update_edges(ctx, graph) < 0)
2244 return -1;
2246 if (graph->n_edge == 0)
2247 return 0;
2249 if (detect_sccs(ctx, graph) < 0)
2250 return -1;
2252 if (graph->n_total_row >= graph->max_row)
2253 isl_die(ctx, isl_error_internal,
2254 "too many schedule rows", return -1);
2256 for (i = 0; i < graph->n; ++i) {
2257 struct isl_sched_node *node = &graph->node[i];
2258 int row = isl_mat_rows(node->sched);
2259 int cols = isl_mat_cols(node->sched);
2261 isl_map_free(node->sched_map);
2262 node->sched_map = NULL;
2263 node->sched = isl_mat_add_rows(node->sched, 1);
2264 if (!node->sched)
2265 return -1;
2266 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2267 node->scc);
2268 for (j = 1; j < cols; ++j)
2269 node->sched = isl_mat_set_element_si(node->sched,
2270 row, j, 0);
2271 node->band[graph->n_total_row] = graph->n_band;
2274 graph->n_total_row++;
2275 next_band(graph);
2277 return 0;
2280 /* Construct an isl_schedule based on the computed schedule stored
2281 * in graph and with parameters specified by dim.
2283 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
2284 __isl_take isl_space *dim)
2286 int i;
2287 isl_ctx *ctx;
2288 isl_schedule *sched = NULL;
2290 if (!dim)
2291 return NULL;
2293 ctx = isl_space_get_ctx(dim);
2294 sched = isl_calloc(ctx, struct isl_schedule,
2295 sizeof(struct isl_schedule) +
2296 (graph->n - 1) * sizeof(struct isl_schedule_node));
2297 if (!sched)
2298 goto error;
2300 sched->ref = 1;
2301 sched->n = graph->n;
2302 sched->n_band = graph->n_band;
2303 sched->n_total_row = graph->n_total_row;
2305 for (i = 0; i < sched->n; ++i) {
2306 int r, b;
2307 int *band_end, *band_id, *coincident;
2309 sched->node[i].sched =
2310 node_extract_schedule_multi_aff(&graph->node[i]);
2311 if (!sched->node[i].sched)
2312 goto error;
2314 sched->node[i].n_band = graph->n_band;
2315 if (graph->n_band == 0)
2316 continue;
2318 band_end = isl_alloc_array(ctx, int, graph->n_band);
2319 band_id = isl_alloc_array(ctx, int, graph->n_band);
2320 coincident = isl_alloc_array(ctx, int, graph->n_total_row);
2321 sched->node[i].band_end = band_end;
2322 sched->node[i].band_id = band_id;
2323 sched->node[i].coincident = coincident;
2324 if (!band_end || !band_id || !coincident)
2325 goto error;
2327 for (r = 0; r < graph->n_total_row; ++r)
2328 coincident[r] = graph->node[i].coincident[r];
2329 for (r = b = 0; r < graph->n_total_row; ++r) {
2330 if (graph->node[i].band[r] == b)
2331 continue;
2332 band_end[b++] = r;
2333 if (graph->node[i].band[r] == -1)
2334 break;
2336 if (r == graph->n_total_row)
2337 band_end[b++] = r;
2338 sched->node[i].n_band = b;
2339 for (--b; b >= 0; --b)
2340 band_id[b] = graph->node[i].band_id[b];
2343 sched->dim = dim;
2345 return sched;
2346 error:
2347 isl_space_free(dim);
2348 isl_schedule_free(sched);
2349 return NULL;
2352 /* Copy nodes that satisfy node_pred from the src dependence graph
2353 * to the dst dependence graph.
2355 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
2356 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2358 int i;
2360 dst->n = 0;
2361 for (i = 0; i < src->n; ++i) {
2362 if (!node_pred(&src->node[i], data))
2363 continue;
2364 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
2365 dst->node[dst->n].nvar = src->node[i].nvar;
2366 dst->node[dst->n].nparam = src->node[i].nparam;
2367 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
2368 dst->node[dst->n].sched_map =
2369 isl_map_copy(src->node[i].sched_map);
2370 dst->node[dst->n].band = src->node[i].band;
2371 dst->node[dst->n].band_id = src->node[i].band_id;
2372 dst->node[dst->n].coincident = src->node[i].coincident;
2373 dst->n++;
2376 return 0;
2379 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2380 * to the dst dependence graph.
2381 * If the source or destination node of the edge is not in the destination
2382 * graph, then it must be a backward proximity edge and it should simply
2383 * be ignored.
2385 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2386 struct isl_sched_graph *src,
2387 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2389 int i;
2390 enum isl_edge_type t;
2392 dst->n_edge = 0;
2393 for (i = 0; i < src->n_edge; ++i) {
2394 struct isl_sched_edge *edge = &src->edge[i];
2395 isl_map *map;
2396 isl_union_map *tagged_condition;
2397 isl_union_map *tagged_validity;
2398 struct isl_sched_node *dst_src, *dst_dst;
2400 if (!edge_pred(edge, data))
2401 continue;
2403 if (isl_map_plain_is_empty(edge->map))
2404 continue;
2406 dst_src = graph_find_node(ctx, dst, edge->src->dim);
2407 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
2408 if (!dst_src || !dst_dst) {
2409 if (edge->validity || edge->conditional_validity)
2410 isl_die(ctx, isl_error_internal,
2411 "backward (conditional) validity edge",
2412 return -1);
2413 continue;
2416 map = isl_map_copy(edge->map);
2417 tagged_condition = isl_union_map_copy(edge->tagged_condition);
2418 tagged_validity = isl_union_map_copy(edge->tagged_validity);
2420 dst->edge[dst->n_edge].src = dst_src;
2421 dst->edge[dst->n_edge].dst = dst_dst;
2422 dst->edge[dst->n_edge].map = map;
2423 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
2424 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
2425 dst->edge[dst->n_edge].validity = edge->validity;
2426 dst->edge[dst->n_edge].proximity = edge->proximity;
2427 dst->edge[dst->n_edge].coincidence = edge->coincidence;
2428 dst->edge[dst->n_edge].condition = edge->condition;
2429 dst->edge[dst->n_edge].conditional_validity =
2430 edge->conditional_validity;
2431 dst->n_edge++;
2433 if (edge->tagged_condition && !tagged_condition)
2434 return -1;
2435 if (edge->tagged_validity && !tagged_validity)
2436 return -1;
2438 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2439 if (edge !=
2440 graph_find_edge(src, t, edge->src, edge->dst))
2441 continue;
2442 if (graph_edge_table_add(ctx, dst, t,
2443 &dst->edge[dst->n_edge - 1]) < 0)
2444 return -1;
2448 return 0;
2451 /* Given a "src" dependence graph that contains the nodes from "dst"
2452 * that satisfy node_pred, copy the schedule computed in "src"
2453 * for those nodes back to "dst".
2455 static int copy_schedule(struct isl_sched_graph *dst,
2456 struct isl_sched_graph *src,
2457 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2459 int i;
2461 src->n = 0;
2462 for (i = 0; i < dst->n; ++i) {
2463 if (!node_pred(&dst->node[i], data))
2464 continue;
2465 isl_mat_free(dst->node[i].sched);
2466 isl_map_free(dst->node[i].sched_map);
2467 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
2468 dst->node[i].sched_map =
2469 isl_map_copy(src->node[src->n].sched_map);
2470 src->n++;
2473 dst->max_row = src->max_row;
2474 dst->n_total_row = src->n_total_row;
2475 dst->n_band = src->n_band;
2477 return 0;
2480 /* Compute the maximal number of variables over all nodes.
2481 * This is the maximal number of linearly independent schedule
2482 * rows that we need to compute.
2483 * Just in case we end up in a part of the dependence graph
2484 * with only lower-dimensional domains, we make sure we will
2485 * compute the required amount of extra linearly independent rows.
2487 static int compute_maxvar(struct isl_sched_graph *graph)
2489 int i;
2491 graph->maxvar = 0;
2492 for (i = 0; i < graph->n; ++i) {
2493 struct isl_sched_node *node = &graph->node[i];
2494 int nvar;
2496 if (node_update_cmap(node) < 0)
2497 return -1;
2498 nvar = node->nvar + graph->n_row - node->rank;
2499 if (nvar > graph->maxvar)
2500 graph->maxvar = nvar;
2503 return 0;
2506 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
2507 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
2509 /* Compute a schedule for a subgraph of "graph". In particular, for
2510 * the graph composed of nodes that satisfy node_pred and edges that
2511 * that satisfy edge_pred. The caller should precompute the number
2512 * of nodes and edges that satisfy these predicates and pass them along
2513 * as "n" and "n_edge".
2514 * If the subgraph is known to consist of a single component, then wcc should
2515 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2516 * Otherwise, we call compute_schedule, which will check whether the subgraph
2517 * is connected.
2519 static int compute_sub_schedule(isl_ctx *ctx,
2520 struct isl_sched_graph *graph, int n, int n_edge,
2521 int (*node_pred)(struct isl_sched_node *node, int data),
2522 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2523 int data, int wcc)
2525 struct isl_sched_graph split = { 0 };
2526 int t;
2528 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2529 goto error;
2530 if (copy_nodes(&split, graph, node_pred, data) < 0)
2531 goto error;
2532 if (graph_init_table(ctx, &split) < 0)
2533 goto error;
2534 for (t = 0; t <= isl_edge_last; ++t)
2535 split.max_edge[t] = graph->max_edge[t];
2536 if (graph_init_edge_tables(ctx, &split) < 0)
2537 goto error;
2538 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2539 goto error;
2540 split.n_row = graph->n_row;
2541 split.max_row = graph->max_row;
2542 split.n_total_row = graph->n_total_row;
2543 split.n_band = graph->n_band;
2544 split.band_start = graph->band_start;
2546 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2547 goto error;
2548 if (!wcc && compute_schedule(ctx, &split) < 0)
2549 goto error;
2551 copy_schedule(graph, &split, node_pred, data);
2553 graph_free(ctx, &split);
2554 return 0;
2555 error:
2556 graph_free(ctx, &split);
2557 return -1;
2560 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2562 return node->scc == scc;
2565 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2567 return node->scc <= scc;
2570 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2572 return node->scc >= scc;
2575 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2577 return edge->src->scc == scc && edge->dst->scc == scc;
2580 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2582 return edge->dst->scc <= scc;
2585 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2587 return edge->src->scc >= scc;
2590 /* Pad the schedules of all nodes with zero rows such that in the end
2591 * they all have graph->n_total_row rows.
2592 * The extra rows don't belong to any band, so they get assigned band number -1.
2594 static int pad_schedule(struct isl_sched_graph *graph)
2596 int i, j;
2598 for (i = 0; i < graph->n; ++i) {
2599 struct isl_sched_node *node = &graph->node[i];
2600 int row = isl_mat_rows(node->sched);
2601 if (graph->n_total_row > row) {
2602 isl_map_free(node->sched_map);
2603 node->sched_map = NULL;
2605 node->sched = isl_mat_add_zero_rows(node->sched,
2606 graph->n_total_row - row);
2607 if (!node->sched)
2608 return -1;
2609 for (j = row; j < graph->n_total_row; ++j)
2610 node->band[j] = -1;
2613 return 0;
2616 /* Reset the current band by dropping all its schedule rows.
2618 static int reset_band(struct isl_sched_graph *graph)
2620 int i;
2621 int drop;
2623 drop = graph->n_total_row - graph->band_start;
2624 graph->n_total_row -= drop;
2625 graph->n_row -= drop;
2627 for (i = 0; i < graph->n; ++i) {
2628 struct isl_sched_node *node = &graph->node[i];
2630 isl_map_free(node->sched_map);
2631 node->sched_map = NULL;
2633 node->sched = isl_mat_drop_rows(node->sched,
2634 graph->band_start, drop);
2636 if (!node->sched)
2637 return -1;
2640 return 0;
2643 /* Split the current graph into two parts and compute a schedule for each
2644 * part individually. In particular, one part consists of all SCCs up
2645 * to and including graph->src_scc, while the other part contains the other
2646 * SCCS.
2648 * The split is enforced in the schedule by constant rows with two different
2649 * values (0 and 1). These constant rows replace the previously computed rows
2650 * in the current band.
2651 * It would be possible to reuse them as the first rows in the next
2652 * band, but recomputing them may result in better rows as we are looking
2653 * at a smaller part of the dependence graph.
2655 * Since we do not enforce coincidence, we conservatively mark the
2656 * splitting row as not coincident.
2658 * The band_id of the second group is set to n, where n is the number
2659 * of nodes in the first group. This ensures that the band_ids over
2660 * the two groups remain disjoint, even if either or both of the two
2661 * groups contain independent components.
2663 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2665 int i, j, n, e1, e2;
2666 int n_total_row, orig_total_row;
2667 int n_band, orig_band;
2669 if (graph->n_total_row >= graph->max_row)
2670 isl_die(ctx, isl_error_internal,
2671 "too many schedule rows", return -1);
2673 if (reset_band(graph) < 0)
2674 return -1;
2676 n = 0;
2677 for (i = 0; i < graph->n; ++i) {
2678 struct isl_sched_node *node = &graph->node[i];
2679 int row = isl_mat_rows(node->sched);
2680 int cols = isl_mat_cols(node->sched);
2681 int before = node->scc <= graph->src_scc;
2683 if (before)
2684 n++;
2686 isl_map_free(node->sched_map);
2687 node->sched_map = NULL;
2688 node->sched = isl_mat_add_rows(node->sched, 1);
2689 if (!node->sched)
2690 return -1;
2691 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2692 !before);
2693 for (j = 1; j < cols; ++j)
2694 node->sched = isl_mat_set_element_si(node->sched,
2695 row, j, 0);
2696 node->band[graph->n_total_row] = graph->n_band;
2697 node->coincident[graph->n_total_row] = 0;
2700 e1 = e2 = 0;
2701 for (i = 0; i < graph->n_edge; ++i) {
2702 if (graph->edge[i].dst->scc <= graph->src_scc)
2703 e1++;
2704 if (graph->edge[i].src->scc > graph->src_scc)
2705 e2++;
2708 graph->n_total_row++;
2709 next_band(graph);
2711 for (i = 0; i < graph->n; ++i) {
2712 struct isl_sched_node *node = &graph->node[i];
2713 if (node->scc > graph->src_scc)
2714 node->band_id[graph->n_band] = n;
2717 orig_total_row = graph->n_total_row;
2718 orig_band = graph->n_band;
2719 if (compute_sub_schedule(ctx, graph, n, e1,
2720 &node_scc_at_most, &edge_dst_scc_at_most,
2721 graph->src_scc, 0) < 0)
2722 return -1;
2723 n_total_row = graph->n_total_row;
2724 graph->n_total_row = orig_total_row;
2725 n_band = graph->n_band;
2726 graph->n_band = orig_band;
2727 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2728 &node_scc_at_least, &edge_src_scc_at_least,
2729 graph->src_scc + 1, 0) < 0)
2730 return -1;
2731 if (n_total_row > graph->n_total_row)
2732 graph->n_total_row = n_total_row;
2733 if (n_band > graph->n_band)
2734 graph->n_band = n_band;
2736 return pad_schedule(graph);
2739 /* Compute the next band of the schedule after updating the dependence
2740 * relations based on the the current schedule.
2742 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2744 if (update_edges(ctx, graph) < 0)
2745 return -1;
2746 next_band(graph);
2748 return compute_schedule(ctx, graph);
2751 /* Add constraints to graph->lp that force the dependence "map" (which
2752 * is part of the dependence relation of "edge")
2753 * to be respected and attempt to carry it, where the edge is one from
2754 * a node j to itself. "pos" is the sequence number of the given map.
2755 * That is, add constraints that enforce
2757 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2758 * = c_j_x (y - x) >= e_i
2760 * for each (x,y) in R.
2761 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2762 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2763 * with each coefficient in c_j_x represented as a pair of non-negative
2764 * coefficients.
2766 static int add_intra_constraints(struct isl_sched_graph *graph,
2767 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2769 unsigned total;
2770 isl_ctx *ctx = isl_map_get_ctx(map);
2771 isl_space *dim;
2772 isl_dim_map *dim_map;
2773 isl_basic_set *coef;
2774 struct isl_sched_node *node = edge->src;
2776 coef = intra_coefficients(graph, map);
2777 if (!coef)
2778 return -1;
2780 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2782 total = isl_basic_set_total_dim(graph->lp);
2783 dim_map = isl_dim_map_alloc(ctx, total);
2784 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2785 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2786 isl_space_dim(dim, isl_dim_set), 1,
2787 node->nvar, -1);
2788 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2789 isl_space_dim(dim, isl_dim_set), 1,
2790 node->nvar, 1);
2791 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2792 coef->n_eq, coef->n_ineq);
2793 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2794 coef, dim_map);
2795 isl_space_free(dim);
2797 return 0;
2800 /* Add constraints to graph->lp that force the dependence "map" (which
2801 * is part of the dependence relation of "edge")
2802 * to be respected and attempt to carry it, where the edge is one from
2803 * node j to node k. "pos" is the sequence number of the given map.
2804 * That is, add constraints that enforce
2806 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2808 * for each (x,y) in R.
2809 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2810 * of valid constraints for R and then plug in
2811 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2812 * with each coefficient (except e_i, c_k_0 and c_j_0)
2813 * represented as a pair of non-negative coefficients.
2815 static int add_inter_constraints(struct isl_sched_graph *graph,
2816 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2818 unsigned total;
2819 isl_ctx *ctx = isl_map_get_ctx(map);
2820 isl_space *dim;
2821 isl_dim_map *dim_map;
2822 isl_basic_set *coef;
2823 struct isl_sched_node *src = edge->src;
2824 struct isl_sched_node *dst = edge->dst;
2826 coef = inter_coefficients(graph, map);
2827 if (!coef)
2828 return -1;
2830 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2832 total = isl_basic_set_total_dim(graph->lp);
2833 dim_map = isl_dim_map_alloc(ctx, total);
2835 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2837 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2838 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2839 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2840 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2841 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2842 dst->nvar, -1);
2843 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2844 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2845 dst->nvar, 1);
2847 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2848 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2849 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2850 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2851 isl_space_dim(dim, isl_dim_set), 1,
2852 src->nvar, 1);
2853 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2854 isl_space_dim(dim, isl_dim_set), 1,
2855 src->nvar, -1);
2857 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2858 coef->n_eq, coef->n_ineq);
2859 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2860 coef, dim_map);
2861 isl_space_free(dim);
2863 return 0;
2866 /* Add constraints to graph->lp that force all (conditional) validity
2867 * dependences to be respected and attempt to carry them.
2869 static int add_all_constraints(struct isl_sched_graph *graph)
2871 int i, j;
2872 int pos;
2874 pos = 0;
2875 for (i = 0; i < graph->n_edge; ++i) {
2876 struct isl_sched_edge *edge= &graph->edge[i];
2878 if (!edge->validity && !edge->conditional_validity)
2879 continue;
2881 for (j = 0; j < edge->map->n; ++j) {
2882 isl_basic_map *bmap;
2883 isl_map *map;
2885 bmap = isl_basic_map_copy(edge->map->p[j]);
2886 map = isl_map_from_basic_map(bmap);
2888 if (edge->src == edge->dst &&
2889 add_intra_constraints(graph, edge, map, pos) < 0)
2890 return -1;
2891 if (edge->src != edge->dst &&
2892 add_inter_constraints(graph, edge, map, pos) < 0)
2893 return -1;
2894 ++pos;
2898 return 0;
2901 /* Count the number of equality and inequality constraints
2902 * that will be added to the carry_lp problem.
2903 * We count each edge exactly once.
2905 static int count_all_constraints(struct isl_sched_graph *graph,
2906 int *n_eq, int *n_ineq)
2908 int i, j;
2910 *n_eq = *n_ineq = 0;
2911 for (i = 0; i < graph->n_edge; ++i) {
2912 struct isl_sched_edge *edge= &graph->edge[i];
2913 for (j = 0; j < edge->map->n; ++j) {
2914 isl_basic_map *bmap;
2915 isl_map *map;
2917 bmap = isl_basic_map_copy(edge->map->p[j]);
2918 map = isl_map_from_basic_map(bmap);
2920 if (count_map_constraints(graph, edge, map,
2921 n_eq, n_ineq, 1, 0) < 0)
2922 return -1;
2926 return 0;
2929 /* Construct an LP problem for finding schedule coefficients
2930 * such that the schedule carries as many dependences as possible.
2931 * In particular, for each dependence i, we bound the dependence distance
2932 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2933 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2934 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2935 * Note that if the dependence relation is a union of basic maps,
2936 * then we have to consider each basic map individually as it may only
2937 * be possible to carry the dependences expressed by some of those
2938 * basic maps and not all off them.
2939 * Below, we consider each of those basic maps as a separate "edge".
2941 * All variables of the LP are non-negative. The actual coefficients
2942 * may be negative, so each coefficient is represented as the difference
2943 * of two non-negative variables. The negative part always appears
2944 * immediately before the positive part.
2945 * Other than that, the variables have the following order
2947 * - sum of (1 - e_i) over all edges
2948 * - sum of positive and negative parts of all c_n coefficients
2949 * (unconstrained when computing non-parametric schedules)
2950 * - sum of positive and negative parts of all c_x coefficients
2951 * - for each edge
2952 * - e_i
2953 * - for each node
2954 * - c_i_0
2955 * - positive and negative parts of c_i_n (if parametric)
2956 * - positive and negative parts of c_i_x
2958 * The constraints are those from the (validity) edges plus three equalities
2959 * to express the sums and n_edge inequalities to express e_i <= 1.
2961 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2963 int i, j;
2964 int k;
2965 isl_space *dim;
2966 unsigned total;
2967 int n_eq, n_ineq;
2968 int n_edge;
2970 n_edge = 0;
2971 for (i = 0; i < graph->n_edge; ++i)
2972 n_edge += graph->edge[i].map->n;
2974 total = 3 + n_edge;
2975 for (i = 0; i < graph->n; ++i) {
2976 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2977 node->start = total;
2978 total += 1 + 2 * (node->nparam + node->nvar);
2981 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2982 return -1;
2983 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2984 return -1;
2986 dim = isl_space_set_alloc(ctx, 0, total);
2987 isl_basic_set_free(graph->lp);
2988 n_eq += 3;
2989 n_ineq += n_edge;
2990 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2991 graph->lp = isl_basic_set_set_rational(graph->lp);
2993 k = isl_basic_set_alloc_equality(graph->lp);
2994 if (k < 0)
2995 return -1;
2996 isl_seq_clr(graph->lp->eq[k], 1 + total);
2997 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2998 isl_int_set_si(graph->lp->eq[k][1], 1);
2999 for (i = 0; i < n_edge; ++i)
3000 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3002 k = isl_basic_set_alloc_equality(graph->lp);
3003 if (k < 0)
3004 return -1;
3005 isl_seq_clr(graph->lp->eq[k], 1 + total);
3006 isl_int_set_si(graph->lp->eq[k][2], -1);
3007 for (i = 0; i < graph->n; ++i) {
3008 int pos = 1 + graph->node[i].start + 1;
3010 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
3011 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3014 k = isl_basic_set_alloc_equality(graph->lp);
3015 if (k < 0)
3016 return -1;
3017 isl_seq_clr(graph->lp->eq[k], 1 + total);
3018 isl_int_set_si(graph->lp->eq[k][3], -1);
3019 for (i = 0; i < graph->n; ++i) {
3020 struct isl_sched_node *node = &graph->node[i];
3021 int pos = 1 + node->start + 1 + 2 * node->nparam;
3023 for (j = 0; j < 2 * node->nvar; ++j)
3024 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3027 for (i = 0; i < n_edge; ++i) {
3028 k = isl_basic_set_alloc_inequality(graph->lp);
3029 if (k < 0)
3030 return -1;
3031 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3032 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3033 isl_int_set_si(graph->lp->ineq[k][0], 1);
3036 if (add_bound_coefficient_constraints(ctx, graph) < 0)
3037 return -1;
3038 if (add_all_constraints(graph) < 0)
3039 return -1;
3041 return 0;
3044 /* If the schedule_split_scaled option is set and if the linear
3045 * parts of the scheduling rows for all nodes in the graphs have
3046 * non-trivial common divisor, then split off the constant term
3047 * from the linear part.
3048 * The constant term is then placed in a separate band and
3049 * the linear part is reduced.
3051 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
3053 int i;
3054 int row;
3055 isl_int gcd, gcd_i;
3057 if (!ctx->opt->schedule_split_scaled)
3058 return 0;
3059 if (graph->n <= 1)
3060 return 0;
3062 if (graph->n_total_row >= graph->max_row)
3063 isl_die(ctx, isl_error_internal,
3064 "too many schedule rows", return -1);
3066 isl_int_init(gcd);
3067 isl_int_init(gcd_i);
3069 isl_int_set_si(gcd, 0);
3071 row = isl_mat_rows(graph->node[0].sched) - 1;
3073 for (i = 0; i < graph->n; ++i) {
3074 struct isl_sched_node *node = &graph->node[i];
3075 int cols = isl_mat_cols(node->sched);
3077 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3078 isl_int_gcd(gcd, gcd, gcd_i);
3081 isl_int_clear(gcd_i);
3083 if (isl_int_cmp_si(gcd, 1) <= 0) {
3084 isl_int_clear(gcd);
3085 return 0;
3088 next_band(graph);
3090 for (i = 0; i < graph->n; ++i) {
3091 struct isl_sched_node *node = &graph->node[i];
3093 isl_map_free(node->sched_map);
3094 node->sched_map = NULL;
3095 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3096 if (!node->sched)
3097 goto error;
3098 isl_int_fdiv_r(node->sched->row[row + 1][0],
3099 node->sched->row[row][0], gcd);
3100 isl_int_fdiv_q(node->sched->row[row][0],
3101 node->sched->row[row][0], gcd);
3102 isl_int_mul(node->sched->row[row][0],
3103 node->sched->row[row][0], gcd);
3104 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3105 if (!node->sched)
3106 goto error;
3107 node->band[graph->n_total_row] = graph->n_band;
3110 graph->n_total_row++;
3112 isl_int_clear(gcd);
3113 return 0;
3114 error:
3115 isl_int_clear(gcd);
3116 return -1;
3119 static int compute_component_schedule(isl_ctx *ctx,
3120 struct isl_sched_graph *graph);
3122 /* Is the schedule row "sol" trivial on node "node"?
3123 * That is, is the solution zero on the dimensions orthogonal to
3124 * the previously found solutions?
3125 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3127 * Each coefficient is represented as the difference between
3128 * two non-negative values in "sol". "sol" has been computed
3129 * in terms of the original iterators (i.e., without use of cmap).
3130 * We construct the schedule row s and write it as a linear
3131 * combination of (linear combinations of) previously computed schedule rows.
3132 * s = Q c or c = U s.
3133 * If the final entries of c are all zero, then the solution is trivial.
3135 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3137 int i;
3138 int pos;
3139 int trivial;
3140 isl_ctx *ctx;
3141 isl_vec *node_sol;
3143 if (!sol)
3144 return -1;
3145 if (node->nvar == node->rank)
3146 return 0;
3148 ctx = isl_vec_get_ctx(sol);
3149 node_sol = isl_vec_alloc(ctx, node->nvar);
3150 if (!node_sol)
3151 return -1;
3153 pos = 1 + node->start + 1 + 2 * node->nparam;
3155 for (i = 0; i < node->nvar; ++i)
3156 isl_int_sub(node_sol->el[i],
3157 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3159 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3161 if (!node_sol)
3162 return -1;
3164 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3165 node->nvar - node->rank) == -1;
3167 isl_vec_free(node_sol);
3169 return trivial;
3172 /* Is the schedule row "sol" trivial on any node where it should
3173 * not be trivial?
3174 * "sol" has been computed in terms of the original iterators
3175 * (i.e., without use of cmap).
3176 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3178 static int is_any_trivial(struct isl_sched_graph *graph,
3179 __isl_keep isl_vec *sol)
3181 int i;
3183 for (i = 0; i < graph->n; ++i) {
3184 struct isl_sched_node *node = &graph->node[i];
3185 int trivial;
3187 if (!needs_row(graph, node))
3188 continue;
3189 trivial = is_trivial(node, sol);
3190 if (trivial < 0 || trivial)
3191 return trivial;
3194 return 0;
3197 /* Construct a schedule row for each node such that as many dependences
3198 * as possible are carried and then continue with the next band.
3200 * If the computed schedule row turns out to be trivial on one or
3201 * more nodes where it should not be trivial, then we throw it away
3202 * and try again on each component separately.
3204 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
3206 int i;
3207 int n_edge;
3208 int trivial;
3209 isl_vec *sol;
3210 isl_basic_set *lp;
3212 n_edge = 0;
3213 for (i = 0; i < graph->n_edge; ++i)
3214 n_edge += graph->edge[i].map->n;
3216 if (setup_carry_lp(ctx, graph) < 0)
3217 return -1;
3219 lp = isl_basic_set_copy(graph->lp);
3220 sol = isl_tab_basic_set_non_neg_lexmin(lp);
3221 if (!sol)
3222 return -1;
3224 if (sol->size == 0) {
3225 isl_vec_free(sol);
3226 isl_die(ctx, isl_error_internal,
3227 "error in schedule construction", return -1);
3230 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
3231 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
3232 isl_vec_free(sol);
3233 isl_die(ctx, isl_error_unknown,
3234 "unable to carry dependences", return -1);
3237 trivial = is_any_trivial(graph, sol);
3238 if (trivial < 0) {
3239 sol = isl_vec_free(sol);
3240 } else if (trivial) {
3241 isl_vec_free(sol);
3242 if (graph->scc > 1)
3243 return compute_component_schedule(ctx, graph);
3244 isl_die(ctx, isl_error_unknown,
3245 "unable to construct non-trivial solution", return -1);
3248 if (update_schedule(graph, sol, 0, 0) < 0)
3249 return -1;
3251 if (split_scaled(ctx, graph) < 0)
3252 return -1;
3254 return compute_next_band(ctx, graph);
3257 /* Are there any (non-empty) (conditional) validity edges in the graph?
3259 static int has_validity_edges(struct isl_sched_graph *graph)
3261 int i;
3263 for (i = 0; i < graph->n_edge; ++i) {
3264 int empty;
3266 empty = isl_map_plain_is_empty(graph->edge[i].map);
3267 if (empty < 0)
3268 return -1;
3269 if (empty)
3270 continue;
3271 if (graph->edge[i].validity ||
3272 graph->edge[i].conditional_validity)
3273 return 1;
3276 return 0;
3279 /* Should we apply a Feautrier step?
3280 * That is, did the user request the Feautrier algorithm and are
3281 * there any validity dependences (left)?
3283 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
3285 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
3286 return 0;
3288 return has_validity_edges(graph);
3291 /* Compute a schedule for a connected dependence graph using Feautrier's
3292 * multi-dimensional scheduling algorithm.
3293 * The original algorithm is described in [1].
3294 * The main idea is to minimize the number of scheduling dimensions, by
3295 * trying to satisfy as many dependences as possible per scheduling dimension.
3297 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3298 * Problem, Part II: Multi-Dimensional Time.
3299 * In Intl. Journal of Parallel Programming, 1992.
3301 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
3302 struct isl_sched_graph *graph)
3304 return carry_dependences(ctx, graph);
3307 /* Turn off the "local" bit on all (condition) edges.
3309 static void clear_local_edges(struct isl_sched_graph *graph)
3311 int i;
3313 for (i = 0; i < graph->n_edge; ++i)
3314 if (graph->edge[i].condition)
3315 graph->edge[i].local = 0;
3318 /* Does "graph" have both condition and conditional validity edges?
3320 static int need_condition_check(struct isl_sched_graph *graph)
3322 int i;
3323 int any_condition = 0;
3324 int any_conditional_validity = 0;
3326 for (i = 0; i < graph->n_edge; ++i) {
3327 if (graph->edge[i].condition)
3328 any_condition = 1;
3329 if (graph->edge[i].conditional_validity)
3330 any_conditional_validity = 1;
3333 return any_condition && any_conditional_validity;
3336 /* Does "graph" contain any coincidence edge?
3338 static int has_any_coincidence(struct isl_sched_graph *graph)
3340 int i;
3342 for (i = 0; i < graph->n_edge; ++i)
3343 if (graph->edge[i].coincidence)
3344 return 1;
3346 return 0;
3349 /* Extract the final schedule row as a map with the iteration domain
3350 * of "node" as domain.
3352 static __isl_give isl_map *final_row(struct isl_sched_node *node)
3354 isl_local_space *ls;
3355 isl_aff *aff;
3356 int row;
3358 row = isl_mat_rows(node->sched) - 1;
3359 ls = isl_local_space_from_space(isl_space_copy(node->dim));
3360 aff = extract_schedule_row(ls, node, row);
3361 return isl_map_from_aff(aff);
3364 /* Is the conditional validity dependence in the edge with index "edge_index"
3365 * violated by the latest (i.e., final) row of the schedule?
3366 * That is, is i scheduled after j
3367 * for any conditional validity dependence i -> j?
3369 static int is_violated(struct isl_sched_graph *graph, int edge_index)
3371 isl_map *src_sched, *dst_sched, *map;
3372 struct isl_sched_edge *edge = &graph->edge[edge_index];
3373 int empty;
3375 src_sched = final_row(edge->src);
3376 dst_sched = final_row(edge->dst);
3377 map = isl_map_copy(edge->map);
3378 map = isl_map_apply_domain(map, src_sched);
3379 map = isl_map_apply_range(map, dst_sched);
3380 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
3381 empty = isl_map_is_empty(map);
3382 isl_map_free(map);
3384 if (empty < 0)
3385 return -1;
3387 return !empty;
3390 /* Does the domain of "umap" intersect "uset"?
3392 static int domain_intersects(__isl_keep isl_union_map *umap,
3393 __isl_keep isl_union_set *uset)
3395 int empty;
3397 umap = isl_union_map_copy(umap);
3398 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3399 empty = isl_union_map_is_empty(umap);
3400 isl_union_map_free(umap);
3402 return empty < 0 ? -1 : !empty;
3405 /* Does the range of "umap" intersect "uset"?
3407 static int range_intersects(__isl_keep isl_union_map *umap,
3408 __isl_keep isl_union_set *uset)
3410 int empty;
3412 umap = isl_union_map_copy(umap);
3413 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3414 empty = isl_union_map_is_empty(umap);
3415 isl_union_map_free(umap);
3417 return empty < 0 ? -1 : !empty;
3420 /* Are the condition dependences of "edge" local with respect to
3421 * the current schedule?
3423 * That is, are domain and range of the condition dependences mapped
3424 * to the same point?
3426 * In other words, is the condition false?
3428 static int is_condition_false(struct isl_sched_edge *edge)
3430 isl_union_map *umap;
3431 isl_map *map, *sched, *test;
3432 int local;
3434 umap = isl_union_map_copy(edge->tagged_condition);
3435 umap = isl_union_map_zip(umap);
3436 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3437 map = isl_map_from_union_map(umap);
3439 sched = node_extract_schedule(edge->src);
3440 map = isl_map_apply_domain(map, sched);
3441 sched = node_extract_schedule(edge->dst);
3442 map = isl_map_apply_range(map, sched);
3444 test = isl_map_identity(isl_map_get_space(map));
3445 local = isl_map_is_subset(map, test);
3446 isl_map_free(map);
3447 isl_map_free(test);
3449 return local;
3452 /* Does "graph" have any satisfied condition edges that
3453 * are adjacent to the conditional validity constraint with
3454 * domain "conditional_source" and range "conditional_sink"?
3456 * A satisfied condition is one that is not local.
3457 * If a condition was forced to be local already (i.e., marked as local)
3458 * then there is no need to check if it is in fact local.
3460 * Additionally, mark all adjacent condition edges found as local.
3462 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
3463 __isl_keep isl_union_set *conditional_source,
3464 __isl_keep isl_union_set *conditional_sink)
3466 int i;
3467 int any = 0;
3469 for (i = 0; i < graph->n_edge; ++i) {
3470 int adjacent, local;
3471 isl_union_map *condition;
3473 if (!graph->edge[i].condition)
3474 continue;
3475 if (graph->edge[i].local)
3476 continue;
3478 condition = graph->edge[i].tagged_condition;
3479 adjacent = domain_intersects(condition, conditional_sink);
3480 if (adjacent >= 0 && !adjacent)
3481 adjacent = range_intersects(condition,
3482 conditional_source);
3483 if (adjacent < 0)
3484 return -1;
3485 if (!adjacent)
3486 continue;
3488 graph->edge[i].local = 1;
3490 local = is_condition_false(&graph->edge[i]);
3491 if (local < 0)
3492 return -1;
3493 if (!local)
3494 any = 1;
3497 return any;
3500 /* Are there any violated conditional validity dependences with
3501 * adjacent condition dependences that are not local with respect
3502 * to the current schedule?
3503 * That is, is the conditional validity constraint violated?
3505 * Additionally, mark all those adjacent condition dependences as local.
3506 * We also mark those adjacent condition dependences that were not marked
3507 * as local before, but just happened to be local already. This ensures
3508 * that they remain local if the schedule is recomputed.
3510 * We first collect domain and range of all violated conditional validity
3511 * dependences and then check if there are any adjacent non-local
3512 * condition dependences.
3514 static int has_violated_conditional_constraint(isl_ctx *ctx,
3515 struct isl_sched_graph *graph)
3517 int i;
3518 int any = 0;
3519 isl_union_set *source, *sink;
3521 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3522 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3523 for (i = 0; i < graph->n_edge; ++i) {
3524 isl_union_set *uset;
3525 isl_union_map *umap;
3526 int violated;
3528 if (!graph->edge[i].conditional_validity)
3529 continue;
3531 violated = is_violated(graph, i);
3532 if (violated < 0)
3533 goto error;
3534 if (!violated)
3535 continue;
3537 any = 1;
3539 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3540 uset = isl_union_map_domain(umap);
3541 source = isl_union_set_union(source, uset);
3542 source = isl_union_set_coalesce(source);
3544 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3545 uset = isl_union_map_range(umap);
3546 sink = isl_union_set_union(sink, uset);
3547 sink = isl_union_set_coalesce(sink);
3550 if (any)
3551 any = has_adjacent_true_conditions(graph, source, sink);
3553 isl_union_set_free(source);
3554 isl_union_set_free(sink);
3555 return any;
3556 error:
3557 isl_union_set_free(source);
3558 isl_union_set_free(sink);
3559 return -1;
3562 /* Compute a schedule for a connected dependence graph.
3563 * We try to find a sequence of as many schedule rows as possible that result
3564 * in non-negative dependence distances (independent of the previous rows
3565 * in the sequence, i.e., such that the sequence is tilable), with as
3566 * many of the initial rows as possible satisfying the coincidence constraints.
3567 * If we can't find any more rows we either
3568 * - split between SCCs and start over (assuming we found an interesting
3569 * pair of SCCs between which to split)
3570 * - continue with the next band (assuming the current band has at least
3571 * one row)
3572 * - try to carry as many dependences as possible and continue with the next
3573 * band
3575 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3576 * as many validity dependences as possible. When all validity dependences
3577 * are satisfied we extend the schedule to a full-dimensional schedule.
3579 * If we manage to complete the schedule, we finish off by topologically
3580 * sorting the statements based on the remaining dependences.
3582 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3583 * outermost dimension to satisfy the coincidence constraints. If this
3584 * turns out to be impossible, we fall back on the general scheme above
3585 * and try to carry as many dependences as possible.
3587 * If "graph" contains both condition and conditional validity dependences,
3588 * then we need to check that that the conditional schedule constraint
3589 * is satisfied, i.e., there are no violated conditional validity dependences
3590 * that are adjacent to any non-local condition dependences.
3591 * If there are, then we mark all those adjacent condition dependences
3592 * as local and recompute the current band. Those dependences that
3593 * are marked local will then be forced to be local.
3594 * The initial computation is performed with no dependences marked as local.
3595 * If we are lucky, then there will be no violated conditional validity
3596 * dependences adjacent to any non-local condition dependences.
3597 * Otherwise, we mark some additional condition dependences as local and
3598 * recompute. We continue this process until there are no violations left or
3599 * until we are no longer able to compute a schedule.
3600 * Since there are only a finite number of dependences,
3601 * there will only be a finite number of iterations.
3603 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
3605 int has_coincidence;
3606 int use_coincidence;
3607 int force_coincidence = 0;
3608 int check_conditional;
3610 if (detect_sccs(ctx, graph) < 0)
3611 return -1;
3612 if (sort_sccs(graph) < 0)
3613 return -1;
3615 if (compute_maxvar(graph) < 0)
3616 return -1;
3618 if (need_feautrier_step(ctx, graph))
3619 return compute_schedule_wcc_feautrier(ctx, graph);
3621 clear_local_edges(graph);
3622 check_conditional = need_condition_check(graph);
3623 has_coincidence = has_any_coincidence(graph);
3625 if (ctx->opt->schedule_outer_coincidence)
3626 force_coincidence = 1;
3628 use_coincidence = has_coincidence;
3629 while (graph->n_row < graph->maxvar) {
3630 isl_vec *sol;
3631 int violated;
3632 int coincident;
3634 graph->src_scc = -1;
3635 graph->dst_scc = -1;
3637 if (setup_lp(ctx, graph, use_coincidence) < 0)
3638 return -1;
3639 sol = solve_lp(graph);
3640 if (!sol)
3641 return -1;
3642 if (sol->size == 0) {
3643 int empty = graph->n_total_row == graph->band_start;
3645 isl_vec_free(sol);
3646 if (use_coincidence && (!force_coincidence || !empty)) {
3647 use_coincidence = 0;
3648 continue;
3650 if (!ctx->opt->schedule_maximize_band_depth && !empty)
3651 return compute_next_band(ctx, graph);
3652 if (graph->src_scc >= 0)
3653 return compute_split_schedule(ctx, graph);
3654 if (!empty)
3655 return compute_next_band(ctx, graph);
3656 return carry_dependences(ctx, graph);
3658 coincident = !has_coincidence || use_coincidence;
3659 if (update_schedule(graph, sol, 1, coincident) < 0)
3660 return -1;
3662 if (!check_conditional)
3663 continue;
3664 violated = has_violated_conditional_constraint(ctx, graph);
3665 if (violated < 0)
3666 return -1;
3667 if (!violated)
3668 continue;
3669 if (reset_band(graph) < 0)
3670 return -1;
3671 use_coincidence = has_coincidence;
3674 if (graph->n_total_row > graph->band_start)
3675 next_band(graph);
3676 return sort_statements(ctx, graph);
3679 /* Add a row to the schedules that separates the SCCs and move
3680 * to the next band.
3682 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
3684 int i;
3686 if (graph->n_total_row >= graph->max_row)
3687 isl_die(ctx, isl_error_internal,
3688 "too many schedule rows", return -1);
3690 for (i = 0; i < graph->n; ++i) {
3691 struct isl_sched_node *node = &graph->node[i];
3692 int row = isl_mat_rows(node->sched);
3694 isl_map_free(node->sched_map);
3695 node->sched_map = NULL;
3696 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3697 node->sched = isl_mat_set_element_si(node->sched, row, 0,
3698 node->scc);
3699 if (!node->sched)
3700 return -1;
3701 node->band[graph->n_total_row] = graph->n_band;
3704 graph->n_total_row++;
3705 next_band(graph);
3707 return 0;
3710 /* Compute a schedule for each component (identified by node->scc)
3711 * of the dependence graph separately and then combine the results.
3712 * Depending on the setting of schedule_fuse, a component may be
3713 * either weakly or strongly connected.
3715 * The band_id is adjusted such that each component has a separate id.
3716 * Note that the band_id may have already been set to a value different
3717 * from zero by compute_split_schedule.
3719 static int compute_component_schedule(isl_ctx *ctx,
3720 struct isl_sched_graph *graph)
3722 int wcc, i;
3723 int n, n_edge;
3724 int n_total_row, orig_total_row;
3725 int n_band, orig_band;
3727 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
3728 ctx->opt->schedule_separate_components)
3729 if (split_on_scc(ctx, graph) < 0)
3730 return -1;
3732 n_total_row = 0;
3733 orig_total_row = graph->n_total_row;
3734 n_band = 0;
3735 orig_band = graph->n_band;
3736 for (i = 0; i < graph->n; ++i)
3737 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
3738 for (wcc = 0; wcc < graph->scc; ++wcc) {
3739 n = 0;
3740 for (i = 0; i < graph->n; ++i)
3741 if (graph->node[i].scc == wcc)
3742 n++;
3743 n_edge = 0;
3744 for (i = 0; i < graph->n_edge; ++i)
3745 if (graph->edge[i].src->scc == wcc &&
3746 graph->edge[i].dst->scc == wcc)
3747 n_edge++;
3749 if (compute_sub_schedule(ctx, graph, n, n_edge,
3750 &node_scc_exactly,
3751 &edge_scc_exactly, wcc, 1) < 0)
3752 return -1;
3753 if (graph->n_total_row > n_total_row)
3754 n_total_row = graph->n_total_row;
3755 graph->n_total_row = orig_total_row;
3756 if (graph->n_band > n_band)
3757 n_band = graph->n_band;
3758 graph->n_band = orig_band;
3761 graph->n_total_row = n_total_row;
3762 graph->n_band = n_band;
3764 return pad_schedule(graph);
3767 /* Compute a schedule for the given dependence graph.
3768 * We first check if the graph is connected (through validity and conditional
3769 * validity dependences) and, if not, compute a schedule
3770 * for each component separately.
3771 * If schedule_fuse is set to minimal fusion, then we check for strongly
3772 * connected components instead and compute a separate schedule for
3773 * each such strongly connected component.
3775 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
3777 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
3778 if (detect_sccs(ctx, graph) < 0)
3779 return -1;
3780 } else {
3781 if (detect_wccs(ctx, graph) < 0)
3782 return -1;
3785 if (graph->scc > 1)
3786 return compute_component_schedule(ctx, graph);
3788 return compute_schedule_wcc(ctx, graph);
3791 /* Compute a schedule on sc->domain that respects the given schedule
3792 * constraints.
3794 * In particular, the schedule respects all the validity dependences.
3795 * If the default isl scheduling algorithm is used, it tries to minimize
3796 * the dependence distances over the proximity dependences.
3797 * If Feautrier's scheduling algorithm is used, the proximity dependence
3798 * distances are only minimized during the extension to a full-dimensional
3799 * schedule.
3801 * If there are any condition and conditional validity dependences,
3802 * then the conditional validity dependences may be violated inside
3803 * a tilable band, provided they have no adjacent non-local
3804 * condition dependences.
3806 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
3807 __isl_take isl_schedule_constraints *sc)
3809 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
3810 struct isl_sched_graph graph = { 0 };
3811 isl_schedule *sched;
3812 struct isl_extract_edge_data data;
3813 enum isl_edge_type i;
3815 sc = isl_schedule_constraints_align_params(sc);
3816 if (!sc)
3817 return NULL;
3819 graph.n = isl_union_set_n_set(sc->domain);
3820 if (graph.n == 0)
3821 goto empty;
3822 if (graph_alloc(ctx, &graph, graph.n,
3823 isl_schedule_constraints_n_map(sc)) < 0)
3824 goto error;
3825 if (compute_max_row(&graph, sc->domain) < 0)
3826 goto error;
3827 graph.root = 1;
3828 graph.n = 0;
3829 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
3830 goto error;
3831 if (graph_init_table(ctx, &graph) < 0)
3832 goto error;
3833 for (i = isl_edge_first; i <= isl_edge_last; ++i)
3834 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
3835 if (graph_init_edge_tables(ctx, &graph) < 0)
3836 goto error;
3837 graph.n_edge = 0;
3838 data.graph = &graph;
3839 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
3840 data.type = i;
3841 if (isl_union_map_foreach_map(sc->constraint[i],
3842 &extract_edge, &data) < 0)
3843 goto error;
3846 if (compute_schedule(ctx, &graph) < 0)
3847 goto error;
3849 empty:
3850 sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
3852 graph_free(ctx, &graph);
3853 isl_schedule_constraints_free(sc);
3855 return sched;
3856 error:
3857 graph_free(ctx, &graph);
3858 isl_schedule_constraints_free(sc);
3859 return NULL;
3862 /* Compute a schedule for the given union of domains that respects
3863 * all the validity dependences and minimizes
3864 * the dependence distances over the proximity dependences.
3866 * This function is kept for backward compatibility.
3868 __isl_give isl_schedule *isl_union_set_compute_schedule(
3869 __isl_take isl_union_set *domain,
3870 __isl_take isl_union_map *validity,
3871 __isl_take isl_union_map *proximity)
3873 isl_schedule_constraints *sc;
3875 sc = isl_schedule_constraints_on_domain(domain);
3876 sc = isl_schedule_constraints_set_validity(sc, validity);
3877 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3879 return isl_schedule_constraints_compute_schedule(sc);
3882 __isl_null isl_schedule *isl_schedule_free(__isl_take isl_schedule *sched)
3884 int i;
3885 if (!sched)
3886 return NULL;
3888 if (--sched->ref > 0)
3889 return NULL;
3891 for (i = 0; i < sched->n; ++i) {
3892 isl_multi_aff_free(sched->node[i].sched);
3893 free(sched->node[i].band_end);
3894 free(sched->node[i].band_id);
3895 free(sched->node[i].coincident);
3897 isl_space_free(sched->dim);
3898 isl_band_list_free(sched->band_forest);
3899 free(sched);
3900 return NULL;
3903 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
3905 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
3908 /* Set max_out to the maximal number of output dimensions over
3909 * all maps.
3911 static int update_max_out(__isl_take isl_map *map, void *user)
3913 int *max_out = user;
3914 int n_out = isl_map_dim(map, isl_dim_out);
3916 if (n_out > *max_out)
3917 *max_out = n_out;
3919 isl_map_free(map);
3920 return 0;
3923 /* Internal data structure for map_pad_range.
3925 * "max_out" is the maximal schedule dimension.
3926 * "res" collects the results.
3928 struct isl_pad_schedule_map_data {
3929 int max_out;
3930 isl_union_map *res;
3933 /* Pad the range of the given map with zeros to data->max_out and
3934 * then add the result to data->res.
3936 static int map_pad_range(__isl_take isl_map *map, void *user)
3938 struct isl_pad_schedule_map_data *data = user;
3939 int i;
3940 int n_out = isl_map_dim(map, isl_dim_out);
3942 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3943 for (i = n_out; i < data->max_out; ++i)
3944 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3946 data->res = isl_union_map_add_map(data->res, map);
3947 if (!data->res)
3948 return -1;
3950 return 0;
3953 /* Pad the ranges of the maps in the union map with zeros such they all have
3954 * the same dimension.
3956 static __isl_give isl_union_map *pad_schedule_map(
3957 __isl_take isl_union_map *umap)
3959 struct isl_pad_schedule_map_data data;
3961 if (!umap)
3962 return NULL;
3963 if (isl_union_map_n_map(umap) <= 1)
3964 return umap;
3966 data.max_out = 0;
3967 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3968 return isl_union_map_free(umap);
3970 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3971 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3972 data.res = isl_union_map_free(data.res);
3974 isl_union_map_free(umap);
3975 return data.res;
3978 /* Return an isl_union_map of the schedule. If we have already constructed
3979 * a band forest, then this band forest may have been modified so we need
3980 * to extract the isl_union_map from the forest rather than from
3981 * the originally computed schedule. This reconstructed schedule map
3982 * then needs to be padded with zeros to unify the schedule space
3983 * since the result of isl_band_list_get_suffix_schedule may not have
3984 * a unified schedule space.
3986 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3988 int i;
3989 isl_union_map *umap;
3991 if (!sched)
3992 return NULL;
3994 if (sched->band_forest) {
3995 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3996 return pad_schedule_map(umap);
3999 umap = isl_union_map_empty(isl_space_copy(sched->dim));
4000 for (i = 0; i < sched->n; ++i) {
4001 isl_multi_aff *ma;
4003 ma = isl_multi_aff_copy(sched->node[i].sched);
4004 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
4007 return umap;
4010 static __isl_give isl_band_list *construct_band_list(
4011 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4012 int band_nr, int *parent_active, int n_active);
4014 /* Construct an isl_band structure for the band in the given schedule
4015 * with sequence number band_nr for the n_active nodes marked by active.
4016 * If the nodes don't have a band with the given sequence number,
4017 * then a band without members is created.
4019 * Because of the way the schedule is constructed, we know that
4020 * the position of the band inside the schedule of a node is the same
4021 * for all active nodes.
4023 * The partial schedule for the band is created before the children
4024 * are created to that construct_band_list can refer to the partial
4025 * schedule of the parent.
4027 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
4028 __isl_keep isl_band *parent,
4029 int band_nr, int *active, int n_active)
4031 int i, j;
4032 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4033 isl_band *band;
4034 unsigned start, end;
4036 band = isl_band_alloc(ctx);
4037 if (!band)
4038 return NULL;
4040 band->schedule = schedule;
4041 band->parent = parent;
4043 for (i = 0; i < schedule->n; ++i)
4044 if (active[i])
4045 break;
4047 if (i >= schedule->n)
4048 isl_die(ctx, isl_error_internal,
4049 "band without active statements", goto error);
4051 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
4052 end = band_nr < schedule->node[i].n_band ?
4053 schedule->node[i].band_end[band_nr] : start;
4054 band->n = end - start;
4056 band->coincident = isl_alloc_array(ctx, int, band->n);
4057 if (band->n && !band->coincident)
4058 goto error;
4060 for (j = 0; j < band->n; ++j)
4061 band->coincident[j] = schedule->node[i].coincident[start + j];
4063 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
4064 for (i = 0; i < schedule->n; ++i) {
4065 isl_multi_aff *ma;
4066 isl_pw_multi_aff *pma;
4067 unsigned n_out;
4069 if (!active[i])
4070 continue;
4072 ma = isl_multi_aff_copy(schedule->node[i].sched);
4073 n_out = isl_multi_aff_dim(ma, isl_dim_out);
4074 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
4075 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
4076 pma = isl_pw_multi_aff_from_multi_aff(ma);
4077 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
4078 pma);
4080 if (!band->pma)
4081 goto error;
4083 for (i = 0; i < schedule->n; ++i)
4084 if (active[i] && schedule->node[i].n_band > band_nr + 1)
4085 break;
4087 if (i < schedule->n) {
4088 band->children = construct_band_list(schedule, band,
4089 band_nr + 1, active, n_active);
4090 if (!band->children)
4091 goto error;
4094 return band;
4095 error:
4096 isl_band_free(band);
4097 return NULL;
4100 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
4102 * r is set to a negative value if anything goes wrong.
4104 * c1 stores the result of extract_int.
4105 * c2 is a temporary value used inside cmp_band_in_ancestor.
4106 * t is a temporary value used inside extract_int.
4108 * first and equal are used inside extract_int.
4109 * first is set if we are looking at the first isl_multi_aff inside
4110 * the isl_union_pw_multi_aff.
4111 * equal is set if all the isl_multi_affs have been equal so far.
4113 struct isl_cmp_band_data {
4114 int r;
4116 int first;
4117 int equal;
4119 isl_int t;
4120 isl_int c1;
4121 isl_int c2;
4124 /* Check if "ma" assigns a constant value.
4125 * Note that this function is only called on isl_multi_affs
4126 * with a single output dimension.
4128 * If "ma" assigns a constant value then we compare it to data->c1
4129 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
4130 * If "ma" does not assign a constant value or if it assigns a value
4131 * that is different from data->c1, then we set data->equal to zero
4132 * and terminate the check.
4134 static int multi_aff_extract_int(__isl_take isl_set *set,
4135 __isl_take isl_multi_aff *ma, void *user)
4137 isl_aff *aff;
4138 struct isl_cmp_band_data *data = user;
4140 aff = isl_multi_aff_get_aff(ma, 0);
4141 data->r = isl_aff_is_cst(aff);
4142 if (data->r >= 0 && data->r) {
4143 isl_aff_get_constant(aff, &data->t);
4144 if (data->first) {
4145 isl_int_set(data->c1, data->t);
4146 data->first = 0;
4147 } else if (!isl_int_eq(data->c1, data->t))
4148 data->equal = 0;
4149 } else if (data->r >= 0 && !data->r)
4150 data->equal = 0;
4152 isl_aff_free(aff);
4153 isl_set_free(set);
4154 isl_multi_aff_free(ma);
4156 if (data->r < 0)
4157 return -1;
4158 if (!data->equal)
4159 return -1;
4160 return 0;
4163 /* This function is called for each isl_pw_multi_aff in
4164 * the isl_union_pw_multi_aff checked by extract_int.
4165 * Check all the isl_multi_affs inside "pma".
4167 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
4168 void *user)
4170 int r;
4172 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
4173 isl_pw_multi_aff_free(pma);
4175 return r;
4178 /* Check if "upma" assigns a single constant value to its domain.
4179 * If so, return 1 and store the result in data->c1.
4180 * If not, return 0.
4182 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
4183 * means that either an error occurred or that we have broken off the check
4184 * because we already know the result is going to be negative.
4185 * In the latter case, data->equal is set to zero.
4187 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
4188 struct isl_cmp_band_data *data)
4190 data->first = 1;
4191 data->equal = 1;
4193 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
4194 &pw_multi_aff_extract_int, data) < 0) {
4195 if (!data->equal)
4196 return 0;
4197 return -1;
4200 return !data->first && data->equal;
4203 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
4204 * "ancestor".
4206 * If the parent of "ancestor" also has a single member, then we
4207 * first try to compare the two band based on the partial schedule
4208 * of this parent.
4210 * Otherwise, or if the result is inconclusive, we look at the partial schedule
4211 * of "ancestor" itself.
4212 * In particular, we specialize the parent schedule based
4213 * on the domains of the child schedules, check if both assign
4214 * a single constant value and, if so, compare the two constant values.
4215 * If the specialized parent schedules do not assign a constant value,
4216 * then they cannot be used to order the two bands and so in this case
4217 * we return 0.
4219 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
4220 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
4221 __isl_keep isl_band *ancestor)
4223 isl_union_pw_multi_aff *upma;
4224 isl_union_set *domain;
4225 int r;
4227 if (data->r < 0)
4228 return 0;
4230 if (ancestor->parent && ancestor->parent->n == 1) {
4231 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
4232 if (data->r < 0)
4233 return 0;
4234 if (r)
4235 return r;
4238 upma = isl_union_pw_multi_aff_copy(b1->pma);
4239 domain = isl_union_pw_multi_aff_domain(upma);
4240 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4241 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4242 r = extract_int(upma, data);
4243 isl_union_pw_multi_aff_free(upma);
4245 if (r < 0)
4246 data->r = -1;
4247 if (r < 0 || !r)
4248 return 0;
4250 isl_int_set(data->c2, data->c1);
4252 upma = isl_union_pw_multi_aff_copy(b2->pma);
4253 domain = isl_union_pw_multi_aff_domain(upma);
4254 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4255 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4256 r = extract_int(upma, data);
4257 isl_union_pw_multi_aff_free(upma);
4259 if (r < 0)
4260 data->r = -1;
4261 if (r < 0 || !r)
4262 return 0;
4264 return isl_int_cmp(data->c2, data->c1);
4267 /* Compare "a" and "b" based on the parent schedule of their parent.
4269 static int cmp_band(const void *a, const void *b, void *user)
4271 isl_band *b1 = *(isl_band * const *) a;
4272 isl_band *b2 = *(isl_band * const *) b;
4273 struct isl_cmp_band_data *data = user;
4275 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
4278 /* Sort the elements in "list" based on the partial schedules of its parent
4279 * (and ancestors). In particular if the parent assigns constant values
4280 * to the domains of the bands in "list", then the elements are sorted
4281 * according to that order.
4282 * This order should be a more "natural" order for the user, but otherwise
4283 * shouldn't have any effect.
4284 * If we would be constructing an isl_band forest directly in
4285 * isl_schedule_constraints_compute_schedule then there wouldn't be any need
4286 * for a reordering, since the children would be added to the list
4287 * in their natural order automatically.
4289 * If there is only one element in the list, then there is no need to sort
4290 * anything.
4291 * If the partial schedule of the parent has more than one member
4292 * (or if there is no parent), then it's
4293 * defnitely not assigning constant values to the different children in
4294 * the list and so we wouldn't be able to use it to sort the list.
4296 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
4297 __isl_keep isl_band *parent)
4299 struct isl_cmp_band_data data;
4301 if (!list)
4302 return NULL;
4303 if (list->n <= 1)
4304 return list;
4305 if (!parent || parent->n != 1)
4306 return list;
4308 data.r = 0;
4309 isl_int_init(data.c1);
4310 isl_int_init(data.c2);
4311 isl_int_init(data.t);
4312 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
4313 if (data.r < 0)
4314 list = isl_band_list_free(list);
4315 isl_int_clear(data.c1);
4316 isl_int_clear(data.c2);
4317 isl_int_clear(data.t);
4319 return list;
4322 /* Construct a list of bands that start at the same position (with
4323 * sequence number band_nr) in the schedules of the nodes that
4324 * were active in the parent band.
4326 * A separate isl_band structure is created for each band_id
4327 * and for each node that does not have a band with sequence
4328 * number band_nr. In the latter case, a band without members
4329 * is created.
4330 * This ensures that if a band has any children, then each node
4331 * that was active in the band is active in exactly one of the children.
4333 static __isl_give isl_band_list *construct_band_list(
4334 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4335 int band_nr, int *parent_active, int n_active)
4337 int i, j;
4338 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4339 int *active;
4340 int n_band;
4341 isl_band_list *list;
4343 n_band = 0;
4344 for (i = 0; i < n_active; ++i) {
4345 for (j = 0; j < schedule->n; ++j) {
4346 if (!parent_active[j])
4347 continue;
4348 if (schedule->node[j].n_band <= band_nr)
4349 continue;
4350 if (schedule->node[j].band_id[band_nr] == i) {
4351 n_band++;
4352 break;
4356 for (j = 0; j < schedule->n; ++j)
4357 if (schedule->node[j].n_band <= band_nr)
4358 n_band++;
4360 if (n_band == 1) {
4361 isl_band *band;
4362 list = isl_band_list_alloc(ctx, n_band);
4363 band = construct_band(schedule, parent, band_nr,
4364 parent_active, n_active);
4365 return isl_band_list_add(list, band);
4368 active = isl_alloc_array(ctx, int, schedule->n);
4369 if (schedule->n && !active)
4370 return NULL;
4372 list = isl_band_list_alloc(ctx, n_band);
4374 for (i = 0; i < n_active; ++i) {
4375 int n = 0;
4376 isl_band *band;
4378 for (j = 0; j < schedule->n; ++j) {
4379 active[j] = parent_active[j] &&
4380 schedule->node[j].n_band > band_nr &&
4381 schedule->node[j].band_id[band_nr] == i;
4382 if (active[j])
4383 n++;
4385 if (n == 0)
4386 continue;
4388 band = construct_band(schedule, parent, band_nr, active, n);
4390 list = isl_band_list_add(list, band);
4392 for (i = 0; i < schedule->n; ++i) {
4393 isl_band *band;
4394 if (!parent_active[i])
4395 continue;
4396 if (schedule->node[i].n_band > band_nr)
4397 continue;
4398 for (j = 0; j < schedule->n; ++j)
4399 active[j] = j == i;
4400 band = construct_band(schedule, parent, band_nr, active, 1);
4401 list = isl_band_list_add(list, band);
4404 free(active);
4406 list = sort_band_list(list, parent);
4408 return list;
4411 /* Construct a band forest representation of the schedule and
4412 * return the list of roots.
4414 static __isl_give isl_band_list *construct_forest(
4415 __isl_keep isl_schedule *schedule)
4417 int i;
4418 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4419 isl_band_list *forest;
4420 int *active;
4422 active = isl_alloc_array(ctx, int, schedule->n);
4423 if (schedule->n && !active)
4424 return NULL;
4426 for (i = 0; i < schedule->n; ++i)
4427 active[i] = 1;
4429 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
4431 free(active);
4433 return forest;
4436 /* Return the roots of a band forest representation of the schedule.
4438 __isl_give isl_band_list *isl_schedule_get_band_forest(
4439 __isl_keep isl_schedule *schedule)
4441 if (!schedule)
4442 return NULL;
4443 if (!schedule->band_forest)
4444 schedule->band_forest = construct_forest(schedule);
4445 return isl_band_list_dup(schedule->band_forest);
4448 /* Call "fn" on each band in the schedule in depth-first post-order.
4450 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
4451 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
4453 int r;
4454 isl_band_list *forest;
4456 if (!sched)
4457 return -1;
4459 forest = isl_schedule_get_band_forest(sched);
4460 r = isl_band_list_foreach_band(forest, fn, user);
4461 isl_band_list_free(forest);
4463 return r;
4466 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4467 __isl_keep isl_band_list *list);
4469 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
4470 __isl_keep isl_band *band)
4472 isl_band_list *children;
4474 p = isl_printer_start_line(p);
4475 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
4476 p = isl_printer_end_line(p);
4478 if (!isl_band_has_children(band))
4479 return p;
4481 children = isl_band_get_children(band);
4483 p = isl_printer_indent(p, 4);
4484 p = print_band_list(p, children);
4485 p = isl_printer_indent(p, -4);
4487 isl_band_list_free(children);
4489 return p;
4492 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4493 __isl_keep isl_band_list *list)
4495 int i, n;
4497 n = isl_band_list_n_band(list);
4498 for (i = 0; i < n; ++i) {
4499 isl_band *band;
4500 band = isl_band_list_get_band(list, i);
4501 p = print_band(p, band);
4502 isl_band_free(band);
4505 return p;
4508 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
4509 __isl_keep isl_schedule *schedule)
4511 isl_band_list *forest;
4513 forest = isl_schedule_get_band_forest(schedule);
4515 p = print_band_list(p, forest);
4517 isl_band_list_free(forest);
4519 return p;
4522 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
4524 isl_printer *printer;
4526 if (!schedule)
4527 return;
4529 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
4530 printer = isl_printer_print_schedule(printer, schedule);
4532 isl_printer_free(printer);