introduce new schedule API
[isl.git] / isl_schedule.c
blob9f0a8ff0b1c56fa0fb497db7159344a6e16e5d9d
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
39 /* Construct an isl_schedule_constraints object for computing a schedule
40 * on "domain". The initial object does not impose any constraints.
42 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
43 __isl_take isl_union_set *domain)
45 isl_ctx *ctx;
46 isl_space *space;
47 isl_schedule_constraints *sc;
48 isl_union_map *empty;
49 enum isl_edge_type i;
51 if (!domain)
52 return NULL;
54 ctx = isl_union_set_get_ctx(domain);
55 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
56 if (!sc)
57 return isl_union_set_free(domain);
59 space = isl_union_set_get_space(domain);
60 sc->domain = domain;
61 empty = isl_union_map_empty(space);
62 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
63 sc->constraint[i] = isl_union_map_copy(empty);
64 if (!sc->constraint[i])
65 sc->domain = isl_union_set_free(sc->domain);
67 isl_union_map_free(empty);
69 if (!sc->domain)
70 return isl_schedule_constraints_free(sc);
72 return sc;
75 /* Replace the validity constraints of "sc" by "validity".
77 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
78 __isl_take isl_schedule_constraints *sc,
79 __isl_take isl_union_map *validity)
81 if (!sc || !validity)
82 goto error;
84 isl_union_map_free(sc->constraint[isl_edge_validity]);
85 sc->constraint[isl_edge_validity] = validity;
87 return sc;
88 error:
89 isl_schedule_constraints_free(sc);
90 isl_union_map_free(validity);
91 return NULL;
94 /* Replace the proximity constraints of "sc" by "proximity".
96 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
97 __isl_take isl_schedule_constraints *sc,
98 __isl_take isl_union_map *proximity)
100 if (!sc || !proximity)
101 goto error;
103 isl_union_map_free(sc->constraint[isl_edge_proximity]);
104 sc->constraint[isl_edge_proximity] = proximity;
106 return sc;
107 error:
108 isl_schedule_constraints_free(sc);
109 isl_union_map_free(proximity);
110 return NULL;
113 void *isl_schedule_constraints_free(__isl_take isl_schedule_constraints *sc)
115 enum isl_edge_type i;
117 if (!sc)
118 return NULL;
120 isl_union_set_free(sc->domain);
121 for (i = isl_edge_first; i <= isl_edge_last; ++i)
122 isl_union_map_free(sc->constraint[i]);
124 free(sc);
126 return NULL;
129 isl_ctx *isl_schedule_constraints_get_ctx(
130 __isl_keep isl_schedule_constraints *sc)
132 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
135 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
137 if (!sc)
138 return;
140 fprintf(stderr, "domain: ");
141 isl_union_set_dump(sc->domain);
142 fprintf(stderr, "validity: ");
143 isl_union_map_dump(sc->constraint[isl_edge_validity]);
144 fprintf(stderr, "proximity: ");
145 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
148 /* Align the parameters of the fields of "sc".
150 static __isl_give isl_schedule_constraints *
151 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
153 isl_space *space;
154 enum isl_edge_type i;
156 if (!sc)
157 return NULL;
159 space = isl_union_set_get_space(sc->domain);
160 for (i = isl_edge_first; i <= isl_edge_last; ++i)
161 space = isl_space_align_params(space,
162 isl_union_map_get_space(sc->constraint[i]));
164 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
165 sc->constraint[i] = isl_union_map_align_params(
166 sc->constraint[i], isl_space_copy(space));
167 if (!sc->constraint[i])
168 space = isl_space_free(space);
170 sc->domain = isl_union_set_align_params(sc->domain, space);
171 if (!sc->domain)
172 return isl_schedule_constraints_free(sc);
174 return sc;
177 /* Return the total number of isl_maps in the constraints of "sc".
179 static __isl_give int isl_schedule_constraints_n_map(
180 __isl_keep isl_schedule_constraints *sc)
182 enum isl_edge_type i;
183 int n = 0;
185 for (i = isl_edge_first; i <= isl_edge_last; ++i)
186 n += isl_union_map_n_map(sc->constraint[i]);
188 return n;
191 /* Internal information about a node that is used during the construction
192 * of a schedule.
193 * dim represents the space in which the domain lives
194 * sched is a matrix representation of the schedule being constructed
195 * for this node
196 * sched_map is an isl_map representation of the same (partial) schedule
197 * sched_map may be NULL
198 * rank is the number of linearly independent rows in the linear part
199 * of sched
200 * the columns of cmap represent a change of basis for the schedule
201 * coefficients; the first rank columns span the linear part of
202 * the schedule rows
203 * cinv is the inverse of cmap.
204 * start is the first variable in the LP problem in the sequences that
205 * represents the schedule coefficients of this node
206 * nvar is the dimension of the domain
207 * nparam is the number of parameters or 0 if we are not constructing
208 * a parametric schedule
210 * scc is the index of SCC (or WCC) this node belongs to
212 * band contains the band index for each of the rows of the schedule.
213 * band_id is used to differentiate between separate bands at the same
214 * level within the same parent band, i.e., bands that are separated
215 * by the parent band or bands that are independent of each other.
216 * zero contains a boolean for each of the rows of the schedule,
217 * indicating whether the corresponding scheduling dimension results
218 * in zero dependence distances within its band and with respect
219 * to the proximity edges.
221 struct isl_sched_node {
222 isl_space *dim;
223 isl_mat *sched;
224 isl_map *sched_map;
225 int rank;
226 isl_mat *cmap;
227 isl_mat *cinv;
228 int start;
229 int nvar;
230 int nparam;
232 int scc;
234 int *band;
235 int *band_id;
236 int *zero;
239 static int node_has_dim(const void *entry, const void *val)
241 struct isl_sched_node *node = (struct isl_sched_node *)entry;
242 isl_space *dim = (isl_space *)val;
244 return isl_space_is_equal(node->dim, dim);
247 /* An edge in the dependence graph. An edge may be used to
248 * ensure validity of the generated schedule, to minimize the dependence
249 * distance or both
251 * map is the dependence relation
252 * src is the source node
253 * dst is the sink node
254 * validity is set if the edge is used to ensure correctness
255 * proximity is set if the edge is used to minimize dependence distances
257 * For validity edges, start and end mark the sequence of inequality
258 * constraints in the LP problem that encode the validity constraint
259 * corresponding to this edge.
261 struct isl_sched_edge {
262 isl_map *map;
264 struct isl_sched_node *src;
265 struct isl_sched_node *dst;
267 int validity;
268 int proximity;
270 int start;
271 int end;
274 /* Internal information about the dependence graph used during
275 * the construction of the schedule.
277 * intra_hmap is a cache, mapping dependence relations to their dual,
278 * for dependences from a node to itself
279 * inter_hmap is a cache, mapping dependence relations to their dual,
280 * for dependences between distinct nodes
282 * n is the number of nodes
283 * node is the list of nodes
284 * maxvar is the maximal number of variables over all nodes
285 * max_row is the allocated number of rows in the schedule
286 * n_row is the current (maximal) number of linearly independent
287 * rows in the node schedules
288 * n_total_row is the current number of rows in the node schedules
289 * n_band is the current number of completed bands
290 * band_start is the starting row in the node schedules of the current band
291 * root is set if this graph is the original dependence graph,
292 * without any splitting
294 * sorted contains a list of node indices sorted according to the
295 * SCC to which a node belongs
297 * n_edge is the number of edges
298 * edge is the list of edges
299 * max_edge contains the maximal number of edges of each type;
300 * in particular, it contains the number of edges in the inital graph.
301 * edge_table contains pointers into the edge array, hashed on the source
302 * and sink spaces; there is one such table for each type;
303 * a given edge may be referenced from more than one table
304 * if the corresponding relation appears in more than of the
305 * sets of dependences
307 * node_table contains pointers into the node array, hashed on the space
309 * region contains a list of variable sequences that should be non-trivial
311 * lp contains the (I)LP problem used to obtain new schedule rows
313 * src_scc and dst_scc are the source and sink SCCs of an edge with
314 * conflicting constraints
316 * scc represents the number of components
318 struct isl_sched_graph {
319 isl_map_to_basic_set *intra_hmap;
320 isl_map_to_basic_set *inter_hmap;
322 struct isl_sched_node *node;
323 int n;
324 int maxvar;
325 int max_row;
326 int n_row;
328 int *sorted;
330 int n_band;
331 int n_total_row;
332 int band_start;
334 int root;
336 struct isl_sched_edge *edge;
337 int n_edge;
338 int max_edge[isl_edge_last + 1];
339 struct isl_hash_table *edge_table[isl_edge_last + 1];
341 struct isl_hash_table *node_table;
342 struct isl_region *region;
344 isl_basic_set *lp;
346 int src_scc;
347 int dst_scc;
349 int scc;
352 /* Initialize node_table based on the list of nodes.
354 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
356 int i;
358 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
359 if (!graph->node_table)
360 return -1;
362 for (i = 0; i < graph->n; ++i) {
363 struct isl_hash_table_entry *entry;
364 uint32_t hash;
366 hash = isl_space_get_hash(graph->node[i].dim);
367 entry = isl_hash_table_find(ctx, graph->node_table, hash,
368 &node_has_dim,
369 graph->node[i].dim, 1);
370 if (!entry)
371 return -1;
372 entry->data = &graph->node[i];
375 return 0;
378 /* Return a pointer to the node that lives within the given space,
379 * or NULL if there is no such node.
381 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
382 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
384 struct isl_hash_table_entry *entry;
385 uint32_t hash;
387 hash = isl_space_get_hash(dim);
388 entry = isl_hash_table_find(ctx, graph->node_table, hash,
389 &node_has_dim, dim, 0);
391 return entry ? entry->data : NULL;
394 static int edge_has_src_and_dst(const void *entry, const void *val)
396 const struct isl_sched_edge *edge = entry;
397 const struct isl_sched_edge *temp = val;
399 return edge->src == temp->src && edge->dst == temp->dst;
402 /* Add the given edge to graph->edge_table[type].
404 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
405 enum isl_edge_type type, struct isl_sched_edge *edge)
407 struct isl_hash_table_entry *entry;
408 uint32_t hash;
410 hash = isl_hash_init();
411 hash = isl_hash_builtin(hash, edge->src);
412 hash = isl_hash_builtin(hash, edge->dst);
413 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
414 &edge_has_src_and_dst, edge, 1);
415 if (!entry)
416 return -1;
417 entry->data = edge;
419 return 0;
422 /* Allocate the edge_tables based on the maximal number of edges of
423 * each type.
425 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
427 int i;
429 for (i = 0; i <= isl_edge_last; ++i) {
430 graph->edge_table[i] = isl_hash_table_alloc(ctx,
431 graph->max_edge[i]);
432 if (!graph->edge_table[i])
433 return -1;
436 return 0;
439 /* If graph->edge_table[type] contains an edge from the given source
440 * to the given destination, then return the hash table entry of this edge.
441 * Otherwise, return NULL.
443 static struct isl_hash_table_entry *graph_find_edge_entry(
444 struct isl_sched_graph *graph,
445 enum isl_edge_type type,
446 struct isl_sched_node *src, struct isl_sched_node *dst)
448 isl_ctx *ctx = isl_space_get_ctx(src->dim);
449 uint32_t hash;
450 struct isl_sched_edge temp = { .src = src, .dst = dst };
452 hash = isl_hash_init();
453 hash = isl_hash_builtin(hash, temp.src);
454 hash = isl_hash_builtin(hash, temp.dst);
455 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
456 &edge_has_src_and_dst, &temp, 0);
460 /* If graph->edge_table[type] contains an edge from the given source
461 * to the given destination, then return this edge.
462 * Otherwise, return NULL.
464 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
465 enum isl_edge_type type,
466 struct isl_sched_node *src, struct isl_sched_node *dst)
468 struct isl_hash_table_entry *entry;
470 entry = graph_find_edge_entry(graph, type, src, dst);
471 if (!entry)
472 return NULL;
474 return entry->data;
477 /* Check whether the dependence graph has an edge of the given type
478 * between the given two nodes.
480 static int graph_has_edge(struct isl_sched_graph *graph,
481 enum isl_edge_type type,
482 struct isl_sched_node *src, struct isl_sched_node *dst)
484 struct isl_sched_edge *edge;
485 int empty;
487 edge = graph_find_edge(graph, type, src, dst);
488 if (!edge)
489 return 0;
491 empty = isl_map_plain_is_empty(edge->map);
492 if (empty < 0)
493 return -1;
495 return !empty;
498 /* If there is an edge from the given source to the given destination
499 * of any type then return this edge.
500 * Otherwise, return NULL.
502 static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
503 struct isl_sched_node *src, struct isl_sched_node *dst)
505 enum isl_edge_type i;
506 struct isl_sched_edge *edge;
508 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
509 edge = graph_find_edge(graph, i, src, dst);
510 if (edge)
511 return edge;
514 return NULL;
517 /* Remove the given edge from all the edge_tables that refer to it.
519 static void graph_remove_edge(struct isl_sched_graph *graph,
520 struct isl_sched_edge *edge)
522 isl_ctx *ctx = isl_map_get_ctx(edge->map);
523 enum isl_edge_type i;
525 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
526 struct isl_hash_table_entry *entry;
528 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
529 if (!entry)
530 continue;
531 if (entry->data != edge)
532 continue;
533 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
537 /* Check whether the dependence graph has any edge
538 * between the given two nodes.
540 static int graph_has_any_edge(struct isl_sched_graph *graph,
541 struct isl_sched_node *src, struct isl_sched_node *dst)
543 enum isl_edge_type i;
544 int r;
546 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
547 r = graph_has_edge(graph, i, src, dst);
548 if (r < 0 || r)
549 return r;
552 return r;
555 /* Check whether the dependence graph has a validity edge
556 * between the given two nodes.
558 static int graph_has_validity_edge(struct isl_sched_graph *graph,
559 struct isl_sched_node *src, struct isl_sched_node *dst)
561 return graph_has_edge(graph, isl_edge_validity, src, dst);
564 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
565 int n_node, int n_edge)
567 int i;
569 graph->n = n_node;
570 graph->n_edge = n_edge;
571 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
572 graph->sorted = isl_calloc_array(ctx, int, graph->n);
573 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
574 graph->edge = isl_calloc_array(ctx,
575 struct isl_sched_edge, graph->n_edge);
577 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
578 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
580 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
581 !graph->sorted)
582 return -1;
584 for(i = 0; i < graph->n; ++i)
585 graph->sorted[i] = i;
587 return 0;
590 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
592 int i;
594 isl_map_to_basic_set_free(graph->intra_hmap);
595 isl_map_to_basic_set_free(graph->inter_hmap);
597 for (i = 0; i < graph->n; ++i) {
598 isl_space_free(graph->node[i].dim);
599 isl_mat_free(graph->node[i].sched);
600 isl_map_free(graph->node[i].sched_map);
601 isl_mat_free(graph->node[i].cmap);
602 isl_mat_free(graph->node[i].cinv);
603 if (graph->root) {
604 free(graph->node[i].band);
605 free(graph->node[i].band_id);
606 free(graph->node[i].zero);
609 free(graph->node);
610 free(graph->sorted);
611 for (i = 0; i < graph->n_edge; ++i)
612 isl_map_free(graph->edge[i].map);
613 free(graph->edge);
614 free(graph->region);
615 for (i = 0; i <= isl_edge_last; ++i)
616 isl_hash_table_free(ctx, graph->edge_table[i]);
617 isl_hash_table_free(ctx, graph->node_table);
618 isl_basic_set_free(graph->lp);
621 /* For each "set" on which this function is called, increment
622 * graph->n by one and update graph->maxvar.
624 static int init_n_maxvar(__isl_take isl_set *set, void *user)
626 struct isl_sched_graph *graph = user;
627 int nvar = isl_set_dim(set, isl_dim_set);
629 graph->n++;
630 if (nvar > graph->maxvar)
631 graph->maxvar = nvar;
633 isl_set_free(set);
635 return 0;
638 /* Compute the number of rows that should be allocated for the schedule.
639 * The graph can be split at most "n - 1" times, there can be at most
640 * two rows for each dimension in the iteration domains (in particular,
641 * we usually have one row, but it may be split by split_scaled),
642 * and there can be one extra row for ordering the statements.
643 * Note that if we have actually split "n - 1" times, then no ordering
644 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
646 static int compute_max_row(struct isl_sched_graph *graph,
647 __isl_keep isl_union_set *domain)
649 graph->n = 0;
650 graph->maxvar = 0;
651 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
652 return -1;
653 graph->max_row = graph->n + 2 * graph->maxvar;
655 return 0;
658 /* Add a new node to the graph representing the given set.
660 static int extract_node(__isl_take isl_set *set, void *user)
662 int nvar, nparam;
663 isl_ctx *ctx;
664 isl_space *dim;
665 isl_mat *sched;
666 struct isl_sched_graph *graph = user;
667 int *band, *band_id, *zero;
669 ctx = isl_set_get_ctx(set);
670 dim = isl_set_get_space(set);
671 isl_set_free(set);
672 nvar = isl_space_dim(dim, isl_dim_set);
673 nparam = isl_space_dim(dim, isl_dim_param);
674 if (!ctx->opt->schedule_parametric)
675 nparam = 0;
676 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
677 graph->node[graph->n].dim = dim;
678 graph->node[graph->n].nvar = nvar;
679 graph->node[graph->n].nparam = nparam;
680 graph->node[graph->n].sched = sched;
681 graph->node[graph->n].sched_map = NULL;
682 band = isl_alloc_array(ctx, int, graph->max_row);
683 graph->node[graph->n].band = band;
684 band_id = isl_calloc_array(ctx, int, graph->max_row);
685 graph->node[graph->n].band_id = band_id;
686 zero = isl_calloc_array(ctx, int, graph->max_row);
687 graph->node[graph->n].zero = zero;
688 graph->n++;
690 if (!sched || (graph->max_row && (!band || !band_id || !zero)))
691 return -1;
693 return 0;
696 struct isl_extract_edge_data {
697 enum isl_edge_type type;
698 struct isl_sched_graph *graph;
701 /* Add a new edge to the graph based on the given map
702 * and add it to data->graph->edge_table[data->type].
703 * If a dependence relation of a given type happens to be identical
704 * to one of the dependence relations of a type that was added before,
705 * then we don't create a new edge, but instead mark the original edge
706 * as also representing a dependence of the current type.
708 static int extract_edge(__isl_take isl_map *map, void *user)
710 isl_ctx *ctx = isl_map_get_ctx(map);
711 struct isl_extract_edge_data *data = user;
712 struct isl_sched_graph *graph = data->graph;
713 struct isl_sched_node *src, *dst;
714 isl_space *dim;
715 struct isl_sched_edge *edge;
716 int is_equal;
718 dim = isl_space_domain(isl_map_get_space(map));
719 src = graph_find_node(ctx, graph, dim);
720 isl_space_free(dim);
721 dim = isl_space_range(isl_map_get_space(map));
722 dst = graph_find_node(ctx, graph, dim);
723 isl_space_free(dim);
725 if (!src || !dst) {
726 isl_map_free(map);
727 return 0;
730 graph->edge[graph->n_edge].src = src;
731 graph->edge[graph->n_edge].dst = dst;
732 graph->edge[graph->n_edge].map = map;
733 if (data->type == isl_edge_validity) {
734 graph->edge[graph->n_edge].validity = 1;
735 graph->edge[graph->n_edge].proximity = 0;
737 if (data->type == isl_edge_proximity) {
738 graph->edge[graph->n_edge].validity = 0;
739 graph->edge[graph->n_edge].proximity = 1;
741 graph->n_edge++;
743 edge = graph_find_any_edge(graph, src, dst);
744 if (!edge)
745 return graph_edge_table_add(ctx, graph, data->type,
746 &graph->edge[graph->n_edge - 1]);
747 is_equal = isl_map_plain_is_equal(map, edge->map);
748 if (is_equal < 0)
749 return -1;
750 if (!is_equal)
751 return graph_edge_table_add(ctx, graph, data->type,
752 &graph->edge[graph->n_edge - 1]);
754 graph->n_edge--;
755 edge->validity |= graph->edge[graph->n_edge].validity;
756 edge->proximity |= graph->edge[graph->n_edge].proximity;
757 isl_map_free(map);
759 return graph_edge_table_add(ctx, graph, data->type, edge);
762 /* Check whether there is any dependence from node[j] to node[i]
763 * or from node[i] to node[j].
765 static int node_follows_weak(int i, int j, void *user)
767 int f;
768 struct isl_sched_graph *graph = user;
770 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
771 if (f < 0 || f)
772 return f;
773 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
776 /* Check whether there is a validity dependence from node[j] to node[i],
777 * forcing node[i] to follow node[j].
779 static int node_follows_strong(int i, int j, void *user)
781 struct isl_sched_graph *graph = user;
783 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
786 /* Use Tarjan's algorithm for computing the strongly connected components
787 * in the dependence graph (only validity edges).
788 * If weak is set, we consider the graph to be undirected and
789 * we effectively compute the (weakly) connected components.
790 * Additionally, we also consider other edges when weak is set.
792 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
794 int i, n;
795 struct isl_tarjan_graph *g = NULL;
797 g = isl_tarjan_graph_init(ctx, graph->n,
798 weak ? &node_follows_weak : &node_follows_strong, graph);
799 if (!g)
800 return -1;
802 graph->scc = 0;
803 i = 0;
804 n = graph->n;
805 while (n) {
806 while (g->order[i] != -1) {
807 graph->node[g->order[i]].scc = graph->scc;
808 --n;
809 ++i;
811 ++i;
812 graph->scc++;
815 isl_tarjan_graph_free(g);
817 return 0;
820 /* Apply Tarjan's algorithm to detect the strongly connected components
821 * in the dependence graph.
823 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
825 return detect_ccs(ctx, graph, 0);
828 /* Apply Tarjan's algorithm to detect the (weakly) connected components
829 * in the dependence graph.
831 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
833 return detect_ccs(ctx, graph, 1);
836 static int cmp_scc(const void *a, const void *b, void *data)
838 struct isl_sched_graph *graph = data;
839 const int *i1 = a;
840 const int *i2 = b;
842 return graph->node[*i1].scc - graph->node[*i2].scc;
845 /* Sort the elements of graph->sorted according to the corresponding SCCs.
847 static int sort_sccs(struct isl_sched_graph *graph)
849 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
852 /* Given a dependence relation R from a node to itself,
853 * construct the set of coefficients of valid constraints for elements
854 * in that dependence relation.
855 * In particular, the result contains tuples of coefficients
856 * c_0, c_n, c_x such that
858 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
860 * or, equivalently,
862 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
864 * We choose here to compute the dual of delta R.
865 * Alternatively, we could have computed the dual of R, resulting
866 * in a set of tuples c_0, c_n, c_x, c_y, and then
867 * plugged in (c_0, c_n, c_x, -c_x).
869 static __isl_give isl_basic_set *intra_coefficients(
870 struct isl_sched_graph *graph, __isl_take isl_map *map)
872 isl_set *delta;
873 isl_basic_set *coef;
875 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
876 return isl_map_to_basic_set_get(graph->intra_hmap, map);
878 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
879 coef = isl_set_coefficients(delta);
880 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, map,
881 isl_basic_set_copy(coef));
883 return coef;
886 /* Given a dependence relation R, * construct the set of coefficients
887 * of valid constraints for elements in that dependence relation.
888 * In particular, the result contains tuples of coefficients
889 * c_0, c_n, c_x, c_y such that
891 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
894 static __isl_give isl_basic_set *inter_coefficients(
895 struct isl_sched_graph *graph, __isl_take isl_map *map)
897 isl_set *set;
898 isl_basic_set *coef;
900 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
901 return isl_map_to_basic_set_get(graph->inter_hmap, map);
903 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
904 coef = isl_set_coefficients(set);
905 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, map,
906 isl_basic_set_copy(coef));
908 return coef;
911 /* Add constraints to graph->lp that force validity for the given
912 * dependence from a node i to itself.
913 * That is, add constraints that enforce
915 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
916 * = c_i_x (y - x) >= 0
918 * for each (x,y) in R.
919 * We obtain general constraints on coefficients (c_0, c_n, c_x)
920 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
921 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
922 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
924 * Actually, we do not construct constraints for the c_i_x themselves,
925 * but for the coefficients of c_i_x written as a linear combination
926 * of the columns in node->cmap.
928 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
929 struct isl_sched_edge *edge)
931 unsigned total;
932 isl_map *map = isl_map_copy(edge->map);
933 isl_ctx *ctx = isl_map_get_ctx(map);
934 isl_space *dim;
935 isl_dim_map *dim_map;
936 isl_basic_set *coef;
937 struct isl_sched_node *node = edge->src;
939 coef = intra_coefficients(graph, map);
941 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
943 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
944 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
945 if (!coef)
946 goto error;
948 total = isl_basic_set_total_dim(graph->lp);
949 dim_map = isl_dim_map_alloc(ctx, total);
950 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
951 isl_space_dim(dim, isl_dim_set), 1,
952 node->nvar, -1);
953 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
954 isl_space_dim(dim, isl_dim_set), 1,
955 node->nvar, 1);
956 graph->lp = isl_basic_set_extend_constraints(graph->lp,
957 coef->n_eq, coef->n_ineq);
958 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
959 coef, dim_map);
960 isl_space_free(dim);
962 return 0;
963 error:
964 isl_space_free(dim);
965 return -1;
968 /* Add constraints to graph->lp that force validity for the given
969 * dependence from node i to node j.
970 * That is, add constraints that enforce
972 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
974 * for each (x,y) in R.
975 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
976 * of valid constraints for R and then plug in
977 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
978 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
979 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
980 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
982 * Actually, we do not construct constraints for the c_*_x themselves,
983 * but for the coefficients of c_*_x written as a linear combination
984 * of the columns in node->cmap.
986 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
987 struct isl_sched_edge *edge)
989 unsigned total;
990 isl_map *map = isl_map_copy(edge->map);
991 isl_ctx *ctx = isl_map_get_ctx(map);
992 isl_space *dim;
993 isl_dim_map *dim_map;
994 isl_basic_set *coef;
995 struct isl_sched_node *src = edge->src;
996 struct isl_sched_node *dst = edge->dst;
998 coef = inter_coefficients(graph, map);
1000 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1002 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1003 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1004 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1005 isl_space_dim(dim, isl_dim_set) + src->nvar,
1006 isl_mat_copy(dst->cmap));
1007 if (!coef)
1008 goto error;
1010 total = isl_basic_set_total_dim(graph->lp);
1011 dim_map = isl_dim_map_alloc(ctx, total);
1013 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1014 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1015 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1016 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1017 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1018 dst->nvar, -1);
1019 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1020 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1021 dst->nvar, 1);
1023 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1024 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1025 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1026 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1027 isl_space_dim(dim, isl_dim_set), 1,
1028 src->nvar, 1);
1029 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1030 isl_space_dim(dim, isl_dim_set), 1,
1031 src->nvar, -1);
1033 edge->start = graph->lp->n_ineq;
1034 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1035 coef->n_eq, coef->n_ineq);
1036 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1037 coef, dim_map);
1038 if (!graph->lp)
1039 goto error;
1040 isl_space_free(dim);
1041 edge->end = graph->lp->n_ineq;
1043 return 0;
1044 error:
1045 isl_space_free(dim);
1046 return -1;
1049 /* Add constraints to graph->lp that bound the dependence distance for the given
1050 * dependence from a node i to itself.
1051 * If s = 1, we add the constraint
1053 * c_i_x (y - x) <= m_0 + m_n n
1055 * or
1057 * -c_i_x (y - x) + m_0 + m_n n >= 0
1059 * for each (x,y) in R.
1060 * If s = -1, we add the constraint
1062 * -c_i_x (y - x) <= m_0 + m_n n
1064 * or
1066 * c_i_x (y - x) + m_0 + m_n n >= 0
1068 * for each (x,y) in R.
1069 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1070 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1071 * with each coefficient (except m_0) represented as a pair of non-negative
1072 * coefficients.
1074 * Actually, we do not construct constraints for the c_i_x themselves,
1075 * but for the coefficients of c_i_x written as a linear combination
1076 * of the columns in node->cmap.
1078 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1079 struct isl_sched_edge *edge, int s)
1081 unsigned total;
1082 unsigned nparam;
1083 isl_map *map = isl_map_copy(edge->map);
1084 isl_ctx *ctx = isl_map_get_ctx(map);
1085 isl_space *dim;
1086 isl_dim_map *dim_map;
1087 isl_basic_set *coef;
1088 struct isl_sched_node *node = edge->src;
1090 coef = intra_coefficients(graph, map);
1092 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1094 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1095 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1096 if (!coef)
1097 goto error;
1099 nparam = isl_space_dim(node->dim, isl_dim_param);
1100 total = isl_basic_set_total_dim(graph->lp);
1101 dim_map = isl_dim_map_alloc(ctx, total);
1102 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1103 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1104 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1105 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1106 isl_space_dim(dim, isl_dim_set), 1,
1107 node->nvar, s);
1108 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1109 isl_space_dim(dim, isl_dim_set), 1,
1110 node->nvar, -s);
1111 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1112 coef->n_eq, coef->n_ineq);
1113 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1114 coef, dim_map);
1115 isl_space_free(dim);
1117 return 0;
1118 error:
1119 isl_space_free(dim);
1120 return -1;
1123 /* Add constraints to graph->lp that bound the dependence distance for the given
1124 * dependence from node i to node j.
1125 * If s = 1, we add the constraint
1127 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1128 * <= m_0 + m_n n
1130 * or
1132 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1133 * m_0 + m_n n >= 0
1135 * for each (x,y) in R.
1136 * If s = -1, we add the constraint
1138 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1139 * <= m_0 + m_n n
1141 * or
1143 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1144 * m_0 + m_n n >= 0
1146 * for each (x,y) in R.
1147 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1148 * of valid constraints for R and then plug in
1149 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1150 * -s*c_j_x+s*c_i_x)
1151 * with each coefficient (except m_0, c_j_0 and c_i_0)
1152 * represented as a pair of non-negative coefficients.
1154 * Actually, we do not construct constraints for the c_*_x themselves,
1155 * but for the coefficients of c_*_x written as a linear combination
1156 * of the columns in node->cmap.
1158 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1159 struct isl_sched_edge *edge, int s)
1161 unsigned total;
1162 unsigned nparam;
1163 isl_map *map = isl_map_copy(edge->map);
1164 isl_ctx *ctx = isl_map_get_ctx(map);
1165 isl_space *dim;
1166 isl_dim_map *dim_map;
1167 isl_basic_set *coef;
1168 struct isl_sched_node *src = edge->src;
1169 struct isl_sched_node *dst = edge->dst;
1171 coef = inter_coefficients(graph, map);
1173 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1175 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1176 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1177 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1178 isl_space_dim(dim, isl_dim_set) + src->nvar,
1179 isl_mat_copy(dst->cmap));
1180 if (!coef)
1181 goto error;
1183 nparam = isl_space_dim(src->dim, isl_dim_param);
1184 total = isl_basic_set_total_dim(graph->lp);
1185 dim_map = isl_dim_map_alloc(ctx, total);
1187 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1188 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1189 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1191 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1192 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1193 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1194 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1195 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1196 dst->nvar, s);
1197 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1198 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1199 dst->nvar, -s);
1201 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1202 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1203 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1204 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1205 isl_space_dim(dim, isl_dim_set), 1,
1206 src->nvar, -s);
1207 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1208 isl_space_dim(dim, isl_dim_set), 1,
1209 src->nvar, s);
1211 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1212 coef->n_eq, coef->n_ineq);
1213 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1214 coef, dim_map);
1215 isl_space_free(dim);
1217 return 0;
1218 error:
1219 isl_space_free(dim);
1220 return -1;
1223 static int add_all_validity_constraints(struct isl_sched_graph *graph)
1225 int i;
1227 for (i = 0; i < graph->n_edge; ++i) {
1228 struct isl_sched_edge *edge= &graph->edge[i];
1229 if (!edge->validity)
1230 continue;
1231 if (edge->src != edge->dst)
1232 continue;
1233 if (add_intra_validity_constraints(graph, edge) < 0)
1234 return -1;
1237 for (i = 0; i < graph->n_edge; ++i) {
1238 struct isl_sched_edge *edge = &graph->edge[i];
1239 if (!edge->validity)
1240 continue;
1241 if (edge->src == edge->dst)
1242 continue;
1243 if (add_inter_validity_constraints(graph, edge) < 0)
1244 return -1;
1247 return 0;
1250 /* Add constraints to graph->lp that bound the dependence distance
1251 * for all dependence relations.
1252 * If a given proximity dependence is identical to a validity
1253 * dependence, then the dependence distance is already bounded
1254 * from below (by zero), so we only need to bound the distance
1255 * from above.
1256 * Otherwise, we need to bound the distance both from above and from below.
1258 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
1260 int i;
1262 for (i = 0; i < graph->n_edge; ++i) {
1263 struct isl_sched_edge *edge= &graph->edge[i];
1264 if (!edge->proximity)
1265 continue;
1266 if (edge->src == edge->dst &&
1267 add_intra_proximity_constraints(graph, edge, 1) < 0)
1268 return -1;
1269 if (edge->src != edge->dst &&
1270 add_inter_proximity_constraints(graph, edge, 1) < 0)
1271 return -1;
1272 if (edge->validity)
1273 continue;
1274 if (edge->src == edge->dst &&
1275 add_intra_proximity_constraints(graph, edge, -1) < 0)
1276 return -1;
1277 if (edge->src != edge->dst &&
1278 add_inter_proximity_constraints(graph, edge, -1) < 0)
1279 return -1;
1282 return 0;
1285 /* Compute a basis for the rows in the linear part of the schedule
1286 * and extend this basis to a full basis. The remaining rows
1287 * can then be used to force linear independence from the rows
1288 * in the schedule.
1290 * In particular, given the schedule rows S, we compute
1292 * S = H Q
1293 * S U = H
1295 * with H the Hermite normal form of S. That is, all but the
1296 * first rank columns of H are zero and so each row in S is
1297 * a linear combination of the first rank rows of Q.
1298 * The matrix Q is then transposed because we will write the
1299 * coefficients of the next schedule row as a column vector s
1300 * and express this s as a linear combination s = Q c of the
1301 * computed basis.
1302 * Similarly, the matrix U is transposed such that we can
1303 * compute the coefficients c = U s from a schedule row s.
1305 static int node_update_cmap(struct isl_sched_node *node)
1307 isl_mat *H, *U, *Q;
1308 int n_row = isl_mat_rows(node->sched);
1310 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1311 1 + node->nparam, node->nvar);
1313 H = isl_mat_left_hermite(H, 0, &U, &Q);
1314 isl_mat_free(node->cmap);
1315 isl_mat_free(node->cinv);
1316 node->cmap = isl_mat_transpose(Q);
1317 node->cinv = isl_mat_transpose(U);
1318 node->rank = isl_mat_initial_non_zero_cols(H);
1319 isl_mat_free(H);
1321 if (!node->cmap || !node->cinv || node->rank < 0)
1322 return -1;
1323 return 0;
1326 /* Count the number of equality and inequality constraints
1327 * that will be added for the given map.
1328 * If carry is set, then we are counting the number of (validity)
1329 * constraints that will be added in setup_carry_lp and we count
1330 * each edge exactly once. Otherwise, we count as follows
1331 * validity -> 1 (>= 0)
1332 * validity+proximity -> 2 (>= 0 and upper bound)
1333 * proximity -> 2 (lower and upper bound)
1335 static int count_map_constraints(struct isl_sched_graph *graph,
1336 struct isl_sched_edge *edge, __isl_take isl_map *map,
1337 int *n_eq, int *n_ineq, int carry)
1339 isl_basic_set *coef;
1340 int f = carry ? 1 : edge->proximity ? 2 : 1;
1342 if (carry && !edge->validity) {
1343 isl_map_free(map);
1344 return 0;
1347 if (edge->src == edge->dst)
1348 coef = intra_coefficients(graph, map);
1349 else
1350 coef = inter_coefficients(graph, map);
1351 if (!coef)
1352 return -1;
1353 *n_eq += f * coef->n_eq;
1354 *n_ineq += f * coef->n_ineq;
1355 isl_basic_set_free(coef);
1357 return 0;
1360 /* Count the number of equality and inequality constraints
1361 * that will be added to the main lp problem.
1362 * We count as follows
1363 * validity -> 1 (>= 0)
1364 * validity+proximity -> 2 (>= 0 and upper bound)
1365 * proximity -> 2 (lower and upper bound)
1367 static int count_constraints(struct isl_sched_graph *graph,
1368 int *n_eq, int *n_ineq)
1370 int i;
1372 *n_eq = *n_ineq = 0;
1373 for (i = 0; i < graph->n_edge; ++i) {
1374 struct isl_sched_edge *edge= &graph->edge[i];
1375 isl_map *map = isl_map_copy(edge->map);
1377 if (count_map_constraints(graph, edge, map,
1378 n_eq, n_ineq, 0) < 0)
1379 return -1;
1382 return 0;
1385 /* Count the number of constraints that will be added by
1386 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1387 * accordingly.
1389 * In practice, add_bound_coefficient_constraints only adds inequalities.
1391 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1392 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1394 int i;
1396 if (ctx->opt->schedule_max_coefficient == -1)
1397 return 0;
1399 for (i = 0; i < graph->n; ++i)
1400 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1402 return 0;
1405 /* Add constraints that bound the values of the variable and parameter
1406 * coefficients of the schedule.
1408 * The maximal value of the coefficients is defined by the option
1409 * 'schedule_max_coefficient'.
1411 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1412 struct isl_sched_graph *graph)
1414 int i, j, k;
1415 int max_coefficient;
1416 int total;
1418 max_coefficient = ctx->opt->schedule_max_coefficient;
1420 if (max_coefficient == -1)
1421 return 0;
1423 total = isl_basic_set_total_dim(graph->lp);
1425 for (i = 0; i < graph->n; ++i) {
1426 struct isl_sched_node *node = &graph->node[i];
1427 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1428 int dim;
1429 k = isl_basic_set_alloc_inequality(graph->lp);
1430 if (k < 0)
1431 return -1;
1432 dim = 1 + node->start + 1 + j;
1433 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1434 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1435 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1439 return 0;
1442 /* Construct an ILP problem for finding schedule coefficients
1443 * that result in non-negative, but small dependence distances
1444 * over all dependences.
1445 * In particular, the dependence distances over proximity edges
1446 * are bounded by m_0 + m_n n and we compute schedule coefficients
1447 * with small values (preferably zero) of m_n and m_0.
1449 * All variables of the ILP are non-negative. The actual coefficients
1450 * may be negative, so each coefficient is represented as the difference
1451 * of two non-negative variables. The negative part always appears
1452 * immediately before the positive part.
1453 * Other than that, the variables have the following order
1455 * - sum of positive and negative parts of m_n coefficients
1456 * - m_0
1457 * - sum of positive and negative parts of all c_n coefficients
1458 * (unconstrained when computing non-parametric schedules)
1459 * - sum of positive and negative parts of all c_x coefficients
1460 * - positive and negative parts of m_n coefficients
1461 * - for each node
1462 * - c_i_0
1463 * - positive and negative parts of c_i_n (if parametric)
1464 * - positive and negative parts of c_i_x
1466 * The c_i_x are not represented directly, but through the columns of
1467 * node->cmap. That is, the computed values are for variable t_i_x
1468 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1470 * The constraints are those from the edges plus two or three equalities
1471 * to express the sums.
1473 * If force_zero is set, then we add equalities to ensure that
1474 * the sum of the m_n coefficients and m_0 are both zero.
1476 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1477 int force_zero)
1479 int i, j;
1480 int k;
1481 unsigned nparam;
1482 unsigned total;
1483 isl_space *dim;
1484 int parametric;
1485 int param_pos;
1486 int n_eq, n_ineq;
1487 int max_constant_term;
1489 max_constant_term = ctx->opt->schedule_max_constant_term;
1491 parametric = ctx->opt->schedule_parametric;
1492 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1493 param_pos = 4;
1494 total = param_pos + 2 * nparam;
1495 for (i = 0; i < graph->n; ++i) {
1496 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1497 if (node_update_cmap(node) < 0)
1498 return -1;
1499 node->start = total;
1500 total += 1 + 2 * (node->nparam + node->nvar);
1503 if (count_constraints(graph, &n_eq, &n_ineq) < 0)
1504 return -1;
1505 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1506 return -1;
1508 dim = isl_space_set_alloc(ctx, 0, total);
1509 isl_basic_set_free(graph->lp);
1510 n_eq += 2 + parametric + force_zero;
1511 if (max_constant_term != -1)
1512 n_ineq += graph->n;
1514 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1516 k = isl_basic_set_alloc_equality(graph->lp);
1517 if (k < 0)
1518 return -1;
1519 isl_seq_clr(graph->lp->eq[k], 1 + total);
1520 if (!force_zero)
1521 isl_int_set_si(graph->lp->eq[k][1], -1);
1522 for (i = 0; i < 2 * nparam; ++i)
1523 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1525 if (force_zero) {
1526 k = isl_basic_set_alloc_equality(graph->lp);
1527 if (k < 0)
1528 return -1;
1529 isl_seq_clr(graph->lp->eq[k], 1 + total);
1530 isl_int_set_si(graph->lp->eq[k][2], -1);
1533 if (parametric) {
1534 k = isl_basic_set_alloc_equality(graph->lp);
1535 if (k < 0)
1536 return -1;
1537 isl_seq_clr(graph->lp->eq[k], 1 + total);
1538 isl_int_set_si(graph->lp->eq[k][3], -1);
1539 for (i = 0; i < graph->n; ++i) {
1540 int pos = 1 + graph->node[i].start + 1;
1542 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1543 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1547 k = isl_basic_set_alloc_equality(graph->lp);
1548 if (k < 0)
1549 return -1;
1550 isl_seq_clr(graph->lp->eq[k], 1 + total);
1551 isl_int_set_si(graph->lp->eq[k][4], -1);
1552 for (i = 0; i < graph->n; ++i) {
1553 struct isl_sched_node *node = &graph->node[i];
1554 int pos = 1 + node->start + 1 + 2 * node->nparam;
1556 for (j = 0; j < 2 * node->nvar; ++j)
1557 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1560 if (max_constant_term != -1)
1561 for (i = 0; i < graph->n; ++i) {
1562 struct isl_sched_node *node = &graph->node[i];
1563 k = isl_basic_set_alloc_inequality(graph->lp);
1564 if (k < 0)
1565 return -1;
1566 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1567 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1568 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1571 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1572 return -1;
1573 if (add_all_validity_constraints(graph) < 0)
1574 return -1;
1575 if (add_all_proximity_constraints(graph) < 0)
1576 return -1;
1578 return 0;
1581 /* Analyze the conflicting constraint found by
1582 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1583 * constraint of one of the edges between distinct nodes, living, moreover
1584 * in distinct SCCs, then record the source and sink SCC as this may
1585 * be a good place to cut between SCCs.
1587 static int check_conflict(int con, void *user)
1589 int i;
1590 struct isl_sched_graph *graph = user;
1592 if (graph->src_scc >= 0)
1593 return 0;
1595 con -= graph->lp->n_eq;
1597 if (con >= graph->lp->n_ineq)
1598 return 0;
1600 for (i = 0; i < graph->n_edge; ++i) {
1601 if (!graph->edge[i].validity)
1602 continue;
1603 if (graph->edge[i].src == graph->edge[i].dst)
1604 continue;
1605 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1606 continue;
1607 if (graph->edge[i].start > con)
1608 continue;
1609 if (graph->edge[i].end <= con)
1610 continue;
1611 graph->src_scc = graph->edge[i].src->scc;
1612 graph->dst_scc = graph->edge[i].dst->scc;
1615 return 0;
1618 /* Check whether the next schedule row of the given node needs to be
1619 * non-trivial. Lower-dimensional domains may have some trivial rows,
1620 * but as soon as the number of remaining required non-trivial rows
1621 * is as large as the number or remaining rows to be computed,
1622 * all remaining rows need to be non-trivial.
1624 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1626 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1629 /* Solve the ILP problem constructed in setup_lp.
1630 * For each node such that all the remaining rows of its schedule
1631 * need to be non-trivial, we construct a non-triviality region.
1632 * This region imposes that the next row is independent of previous rows.
1633 * In particular the coefficients c_i_x are represented by t_i_x
1634 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1635 * its first columns span the rows of the previously computed part
1636 * of the schedule. The non-triviality region enforces that at least
1637 * one of the remaining components of t_i_x is non-zero, i.e.,
1638 * that the new schedule row depends on at least one of the remaining
1639 * columns of Q.
1641 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1643 int i;
1644 isl_vec *sol;
1645 isl_basic_set *lp;
1647 for (i = 0; i < graph->n; ++i) {
1648 struct isl_sched_node *node = &graph->node[i];
1649 int skip = node->rank;
1650 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1651 if (needs_row(graph, node))
1652 graph->region[i].len = 2 * (node->nvar - skip);
1653 else
1654 graph->region[i].len = 0;
1656 lp = isl_basic_set_copy(graph->lp);
1657 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1658 graph->region, &check_conflict, graph);
1659 return sol;
1662 /* Update the schedules of all nodes based on the given solution
1663 * of the LP problem.
1664 * The new row is added to the current band.
1665 * All possibly negative coefficients are encoded as a difference
1666 * of two non-negative variables, so we need to perform the subtraction
1667 * here. Moreover, if use_cmap is set, then the solution does
1668 * not refer to the actual coefficients c_i_x, but instead to variables
1669 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1670 * In this case, we then also need to perform this multiplication
1671 * to obtain the values of c_i_x.
1673 * If check_zero is set, then the first two coordinates of sol are
1674 * assumed to correspond to the dependence distance. If these two
1675 * coordinates are zero, then the corresponding scheduling dimension
1676 * is marked as being zero distance.
1678 static int update_schedule(struct isl_sched_graph *graph,
1679 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1681 int i, j;
1682 int zero = 0;
1683 isl_vec *csol = NULL;
1685 if (!sol)
1686 goto error;
1687 if (sol->size == 0)
1688 isl_die(sol->ctx, isl_error_internal,
1689 "no solution found", goto error);
1690 if (graph->n_total_row >= graph->max_row)
1691 isl_die(sol->ctx, isl_error_internal,
1692 "too many schedule rows", goto error);
1694 if (check_zero)
1695 zero = isl_int_is_zero(sol->el[1]) &&
1696 isl_int_is_zero(sol->el[2]);
1698 for (i = 0; i < graph->n; ++i) {
1699 struct isl_sched_node *node = &graph->node[i];
1700 int pos = node->start;
1701 int row = isl_mat_rows(node->sched);
1703 isl_vec_free(csol);
1704 csol = isl_vec_alloc(sol->ctx, node->nvar);
1705 if (!csol)
1706 goto error;
1708 isl_map_free(node->sched_map);
1709 node->sched_map = NULL;
1710 node->sched = isl_mat_add_rows(node->sched, 1);
1711 if (!node->sched)
1712 goto error;
1713 node->sched = isl_mat_set_element(node->sched, row, 0,
1714 sol->el[1 + pos]);
1715 for (j = 0; j < node->nparam + node->nvar; ++j)
1716 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1717 sol->el[1 + pos + 1 + 2 * j + 1],
1718 sol->el[1 + pos + 1 + 2 * j]);
1719 for (j = 0; j < node->nparam; ++j)
1720 node->sched = isl_mat_set_element(node->sched,
1721 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1722 for (j = 0; j < node->nvar; ++j)
1723 isl_int_set(csol->el[j],
1724 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1725 if (use_cmap)
1726 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1727 csol);
1728 if (!csol)
1729 goto error;
1730 for (j = 0; j < node->nvar; ++j)
1731 node->sched = isl_mat_set_element(node->sched,
1732 row, 1 + node->nparam + j, csol->el[j]);
1733 node->band[graph->n_total_row] = graph->n_band;
1734 node->zero[graph->n_total_row] = zero;
1736 isl_vec_free(sol);
1737 isl_vec_free(csol);
1739 graph->n_row++;
1740 graph->n_total_row++;
1742 return 0;
1743 error:
1744 isl_vec_free(sol);
1745 isl_vec_free(csol);
1746 return -1;
1749 /* Convert node->sched into a multi_aff and return this multi_aff.
1751 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
1752 struct isl_sched_node *node)
1754 int i, j;
1755 isl_space *space;
1756 isl_local_space *ls;
1757 isl_aff *aff;
1758 isl_multi_aff *ma;
1759 int nrow, ncol;
1760 isl_int v;
1762 nrow = isl_mat_rows(node->sched);
1763 ncol = isl_mat_cols(node->sched) - 1;
1764 space = isl_space_from_domain(isl_space_copy(node->dim));
1765 space = isl_space_add_dims(space, isl_dim_out, nrow);
1766 ma = isl_multi_aff_zero(space);
1767 ls = isl_local_space_from_space(isl_space_copy(node->dim));
1769 isl_int_init(v);
1771 for (i = 0; i < nrow; ++i) {
1772 aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1773 isl_mat_get_element(node->sched, i, 0, &v);
1774 aff = isl_aff_set_constant(aff, v);
1775 for (j = 0; j < node->nparam; ++j) {
1776 isl_mat_get_element(node->sched, i, 1 + j, &v);
1777 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
1779 for (j = 0; j < node->nvar; ++j) {
1780 isl_mat_get_element(node->sched,
1781 i, 1 + node->nparam + j, &v);
1782 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
1784 ma = isl_multi_aff_set_aff(ma, i, aff);
1787 isl_int_clear(v);
1789 isl_local_space_free(ls);
1791 return ma;
1794 /* Convert node->sched into a map and return this map.
1796 * The result is cached in node->sched_map, which needs to be released
1797 * whenever node->sched is updated.
1799 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1801 if (!node->sched_map) {
1802 isl_multi_aff *ma;
1804 ma = node_extract_schedule_multi_aff(node);
1805 node->sched_map = isl_map_from_multi_aff(ma);
1808 return isl_map_copy(node->sched_map);
1811 /* Update the given dependence relation based on the current schedule.
1812 * That is, intersect the dependence relation with a map expressing
1813 * that source and sink are executed within the same iteration of
1814 * the current schedule.
1815 * This is not the most efficient way, but this shouldn't be a critical
1816 * operation.
1818 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1819 struct isl_sched_node *src, struct isl_sched_node *dst)
1821 isl_map *src_sched, *dst_sched, *id;
1823 src_sched = node_extract_schedule(src);
1824 dst_sched = node_extract_schedule(dst);
1825 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1826 return isl_map_intersect(map, id);
1829 /* Update the dependence relations of all edges based on the current schedule.
1830 * If a dependence is carried completely by the current schedule, then
1831 * it is removed from the edge_tables. It is kept in the list of edges
1832 * as otherwise all edge_tables would have to be recomputed.
1834 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1836 int i;
1838 for (i = graph->n_edge - 1; i >= 0; --i) {
1839 struct isl_sched_edge *edge = &graph->edge[i];
1840 edge->map = specialize(edge->map, edge->src, edge->dst);
1841 if (!edge->map)
1842 return -1;
1844 if (isl_map_plain_is_empty(edge->map))
1845 graph_remove_edge(graph, edge);
1848 return 0;
1851 static void next_band(struct isl_sched_graph *graph)
1853 graph->band_start = graph->n_total_row;
1854 graph->n_band++;
1857 /* Topologically sort statements mapped to the same schedule iteration
1858 * and add a row to the schedule corresponding to this order.
1860 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1862 int i, j;
1864 if (graph->n <= 1)
1865 return 0;
1867 if (update_edges(ctx, graph) < 0)
1868 return -1;
1870 if (graph->n_edge == 0)
1871 return 0;
1873 if (detect_sccs(ctx, graph) < 0)
1874 return -1;
1876 if (graph->n_total_row >= graph->max_row)
1877 isl_die(ctx, isl_error_internal,
1878 "too many schedule rows", return -1);
1880 for (i = 0; i < graph->n; ++i) {
1881 struct isl_sched_node *node = &graph->node[i];
1882 int row = isl_mat_rows(node->sched);
1883 int cols = isl_mat_cols(node->sched);
1885 isl_map_free(node->sched_map);
1886 node->sched_map = NULL;
1887 node->sched = isl_mat_add_rows(node->sched, 1);
1888 if (!node->sched)
1889 return -1;
1890 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1891 node->scc);
1892 for (j = 1; j < cols; ++j)
1893 node->sched = isl_mat_set_element_si(node->sched,
1894 row, j, 0);
1895 node->band[graph->n_total_row] = graph->n_band;
1898 graph->n_total_row++;
1899 next_band(graph);
1901 return 0;
1904 /* Construct an isl_schedule based on the computed schedule stored
1905 * in graph and with parameters specified by dim.
1907 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1908 __isl_take isl_space *dim)
1910 int i;
1911 isl_ctx *ctx;
1912 isl_schedule *sched = NULL;
1914 if (!dim)
1915 return NULL;
1917 ctx = isl_space_get_ctx(dim);
1918 sched = isl_calloc(ctx, struct isl_schedule,
1919 sizeof(struct isl_schedule) +
1920 (graph->n - 1) * sizeof(struct isl_schedule_node));
1921 if (!sched)
1922 goto error;
1924 sched->ref = 1;
1925 sched->n = graph->n;
1926 sched->n_band = graph->n_band;
1927 sched->n_total_row = graph->n_total_row;
1929 for (i = 0; i < sched->n; ++i) {
1930 int r, b;
1931 int *band_end, *band_id, *zero;
1933 sched->node[i].sched =
1934 node_extract_schedule_multi_aff(&graph->node[i]);
1935 if (!sched->node[i].sched)
1936 goto error;
1938 sched->node[i].n_band = graph->n_band;
1939 if (graph->n_band == 0)
1940 continue;
1942 band_end = isl_alloc_array(ctx, int, graph->n_band);
1943 band_id = isl_alloc_array(ctx, int, graph->n_band);
1944 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1945 sched->node[i].band_end = band_end;
1946 sched->node[i].band_id = band_id;
1947 sched->node[i].zero = zero;
1948 if (!band_end || !band_id || !zero)
1949 goto error;
1951 for (r = 0; r < graph->n_total_row; ++r)
1952 zero[r] = graph->node[i].zero[r];
1953 for (r = b = 0; r < graph->n_total_row; ++r) {
1954 if (graph->node[i].band[r] == b)
1955 continue;
1956 band_end[b++] = r;
1957 if (graph->node[i].band[r] == -1)
1958 break;
1960 if (r == graph->n_total_row)
1961 band_end[b++] = r;
1962 sched->node[i].n_band = b;
1963 for (--b; b >= 0; --b)
1964 band_id[b] = graph->node[i].band_id[b];
1967 sched->dim = dim;
1969 return sched;
1970 error:
1971 isl_space_free(dim);
1972 isl_schedule_free(sched);
1973 return NULL;
1976 /* Copy nodes that satisfy node_pred from the src dependence graph
1977 * to the dst dependence graph.
1979 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1980 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1982 int i;
1984 dst->n = 0;
1985 for (i = 0; i < src->n; ++i) {
1986 if (!node_pred(&src->node[i], data))
1987 continue;
1988 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
1989 dst->node[dst->n].nvar = src->node[i].nvar;
1990 dst->node[dst->n].nparam = src->node[i].nparam;
1991 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1992 dst->node[dst->n].sched_map =
1993 isl_map_copy(src->node[i].sched_map);
1994 dst->node[dst->n].band = src->node[i].band;
1995 dst->node[dst->n].band_id = src->node[i].band_id;
1996 dst->node[dst->n].zero = src->node[i].zero;
1997 dst->n++;
2000 return 0;
2003 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2004 * to the dst dependence graph.
2005 * If the source or destination node of the edge is not in the destination
2006 * graph, then it must be a backward proximity edge and it should simply
2007 * be ignored.
2009 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2010 struct isl_sched_graph *src,
2011 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2013 int i;
2014 enum isl_edge_type t;
2016 dst->n_edge = 0;
2017 for (i = 0; i < src->n_edge; ++i) {
2018 struct isl_sched_edge *edge = &src->edge[i];
2019 isl_map *map;
2020 struct isl_sched_node *dst_src, *dst_dst;
2022 if (!edge_pred(edge, data))
2023 continue;
2025 if (isl_map_plain_is_empty(edge->map))
2026 continue;
2028 dst_src = graph_find_node(ctx, dst, edge->src->dim);
2029 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
2030 if (!dst_src || !dst_dst) {
2031 if (edge->validity)
2032 isl_die(ctx, isl_error_internal,
2033 "backward validity edge", return -1);
2034 continue;
2037 map = isl_map_copy(edge->map);
2039 dst->edge[dst->n_edge].src = dst_src;
2040 dst->edge[dst->n_edge].dst = dst_dst;
2041 dst->edge[dst->n_edge].map = map;
2042 dst->edge[dst->n_edge].validity = edge->validity;
2043 dst->edge[dst->n_edge].proximity = edge->proximity;
2044 dst->n_edge++;
2046 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2047 if (edge !=
2048 graph_find_edge(src, t, edge->src, edge->dst))
2049 continue;
2050 if (graph_edge_table_add(ctx, dst, t,
2051 &dst->edge[dst->n_edge - 1]) < 0)
2052 return -1;
2056 return 0;
2059 /* Given a "src" dependence graph that contains the nodes from "dst"
2060 * that satisfy node_pred, copy the schedule computed in "src"
2061 * for those nodes back to "dst".
2063 static int copy_schedule(struct isl_sched_graph *dst,
2064 struct isl_sched_graph *src,
2065 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2067 int i;
2069 src->n = 0;
2070 for (i = 0; i < dst->n; ++i) {
2071 if (!node_pred(&dst->node[i], data))
2072 continue;
2073 isl_mat_free(dst->node[i].sched);
2074 isl_map_free(dst->node[i].sched_map);
2075 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
2076 dst->node[i].sched_map =
2077 isl_map_copy(src->node[src->n].sched_map);
2078 src->n++;
2081 dst->max_row = src->max_row;
2082 dst->n_total_row = src->n_total_row;
2083 dst->n_band = src->n_band;
2085 return 0;
2088 /* Compute the maximal number of variables over all nodes.
2089 * This is the maximal number of linearly independent schedule
2090 * rows that we need to compute.
2091 * Just in case we end up in a part of the dependence graph
2092 * with only lower-dimensional domains, we make sure we will
2093 * compute the required amount of extra linearly independent rows.
2095 static int compute_maxvar(struct isl_sched_graph *graph)
2097 int i;
2099 graph->maxvar = 0;
2100 for (i = 0; i < graph->n; ++i) {
2101 struct isl_sched_node *node = &graph->node[i];
2102 int nvar;
2104 if (node_update_cmap(node) < 0)
2105 return -1;
2106 nvar = node->nvar + graph->n_row - node->rank;
2107 if (nvar > graph->maxvar)
2108 graph->maxvar = nvar;
2111 return 0;
2114 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
2115 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
2117 /* Compute a schedule for a subgraph of "graph". In particular, for
2118 * the graph composed of nodes that satisfy node_pred and edges that
2119 * that satisfy edge_pred. The caller should precompute the number
2120 * of nodes and edges that satisfy these predicates and pass them along
2121 * as "n" and "n_edge".
2122 * If the subgraph is known to consist of a single component, then wcc should
2123 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2124 * Otherwise, we call compute_schedule, which will check whether the subgraph
2125 * is connected.
2127 static int compute_sub_schedule(isl_ctx *ctx,
2128 struct isl_sched_graph *graph, int n, int n_edge,
2129 int (*node_pred)(struct isl_sched_node *node, int data),
2130 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2131 int data, int wcc)
2133 struct isl_sched_graph split = { 0 };
2134 int t;
2136 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2137 goto error;
2138 if (copy_nodes(&split, graph, node_pred, data) < 0)
2139 goto error;
2140 if (graph_init_table(ctx, &split) < 0)
2141 goto error;
2142 for (t = 0; t <= isl_edge_last; ++t)
2143 split.max_edge[t] = graph->max_edge[t];
2144 if (graph_init_edge_tables(ctx, &split) < 0)
2145 goto error;
2146 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2147 goto error;
2148 split.n_row = graph->n_row;
2149 split.max_row = graph->max_row;
2150 split.n_total_row = graph->n_total_row;
2151 split.n_band = graph->n_band;
2152 split.band_start = graph->band_start;
2154 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2155 goto error;
2156 if (!wcc && compute_schedule(ctx, &split) < 0)
2157 goto error;
2159 copy_schedule(graph, &split, node_pred, data);
2161 graph_free(ctx, &split);
2162 return 0;
2163 error:
2164 graph_free(ctx, &split);
2165 return -1;
2168 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2170 return node->scc == scc;
2173 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2175 return node->scc <= scc;
2178 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2180 return node->scc >= scc;
2183 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2185 return edge->src->scc == scc && edge->dst->scc == scc;
2188 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2190 return edge->dst->scc <= scc;
2193 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2195 return edge->src->scc >= scc;
2198 /* Pad the schedules of all nodes with zero rows such that in the end
2199 * they all have graph->n_total_row rows.
2200 * The extra rows don't belong to any band, so they get assigned band number -1.
2202 static int pad_schedule(struct isl_sched_graph *graph)
2204 int i, j;
2206 for (i = 0; i < graph->n; ++i) {
2207 struct isl_sched_node *node = &graph->node[i];
2208 int row = isl_mat_rows(node->sched);
2209 if (graph->n_total_row > row) {
2210 isl_map_free(node->sched_map);
2211 node->sched_map = NULL;
2213 node->sched = isl_mat_add_zero_rows(node->sched,
2214 graph->n_total_row - row);
2215 if (!node->sched)
2216 return -1;
2217 for (j = row; j < graph->n_total_row; ++j)
2218 node->band[j] = -1;
2221 return 0;
2224 /* Split the current graph into two parts and compute a schedule for each
2225 * part individually. In particular, one part consists of all SCCs up
2226 * to and including graph->src_scc, while the other part contains the other
2227 * SCCS.
2229 * The split is enforced in the schedule by constant rows with two different
2230 * values (0 and 1). These constant rows replace the previously computed rows
2231 * in the current band.
2232 * It would be possible to reuse them as the first rows in the next
2233 * band, but recomputing them may result in better rows as we are looking
2234 * at a smaller part of the dependence graph.
2235 * compute_split_schedule is only called when no zero-distance schedule row
2236 * could be found on the entire graph, so we wark the splitting row as
2237 * non zero-distance.
2239 * The band_id of the second group is set to n, where n is the number
2240 * of nodes in the first group. This ensures that the band_ids over
2241 * the two groups remain disjoint, even if either or both of the two
2242 * groups contain independent components.
2244 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2246 int i, j, n, e1, e2;
2247 int n_total_row, orig_total_row;
2248 int n_band, orig_band;
2249 int drop;
2251 if (graph->n_total_row >= graph->max_row)
2252 isl_die(ctx, isl_error_internal,
2253 "too many schedule rows", return -1);
2255 drop = graph->n_total_row - graph->band_start;
2256 graph->n_total_row -= drop;
2257 graph->n_row -= drop;
2259 n = 0;
2260 for (i = 0; i < graph->n; ++i) {
2261 struct isl_sched_node *node = &graph->node[i];
2262 int row = isl_mat_rows(node->sched) - drop;
2263 int cols = isl_mat_cols(node->sched);
2264 int before = node->scc <= graph->src_scc;
2266 if (before)
2267 n++;
2269 isl_map_free(node->sched_map);
2270 node->sched_map = NULL;
2271 node->sched = isl_mat_drop_rows(node->sched,
2272 graph->band_start, drop);
2273 node->sched = isl_mat_add_rows(node->sched, 1);
2274 if (!node->sched)
2275 return -1;
2276 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2277 !before);
2278 for (j = 1; j < cols; ++j)
2279 node->sched = isl_mat_set_element_si(node->sched,
2280 row, j, 0);
2281 node->band[graph->n_total_row] = graph->n_band;
2282 node->zero[graph->n_total_row] = 0;
2285 e1 = e2 = 0;
2286 for (i = 0; i < graph->n_edge; ++i) {
2287 if (graph->edge[i].dst->scc <= graph->src_scc)
2288 e1++;
2289 if (graph->edge[i].src->scc > graph->src_scc)
2290 e2++;
2293 graph->n_total_row++;
2294 next_band(graph);
2296 for (i = 0; i < graph->n; ++i) {
2297 struct isl_sched_node *node = &graph->node[i];
2298 if (node->scc > graph->src_scc)
2299 node->band_id[graph->n_band] = n;
2302 orig_total_row = graph->n_total_row;
2303 orig_band = graph->n_band;
2304 if (compute_sub_schedule(ctx, graph, n, e1,
2305 &node_scc_at_most, &edge_dst_scc_at_most,
2306 graph->src_scc, 0) < 0)
2307 return -1;
2308 n_total_row = graph->n_total_row;
2309 graph->n_total_row = orig_total_row;
2310 n_band = graph->n_band;
2311 graph->n_band = orig_band;
2312 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2313 &node_scc_at_least, &edge_src_scc_at_least,
2314 graph->src_scc + 1, 0) < 0)
2315 return -1;
2316 if (n_total_row > graph->n_total_row)
2317 graph->n_total_row = n_total_row;
2318 if (n_band > graph->n_band)
2319 graph->n_band = n_band;
2321 return pad_schedule(graph);
2324 /* Compute the next band of the schedule after updating the dependence
2325 * relations based on the the current schedule.
2327 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2329 if (update_edges(ctx, graph) < 0)
2330 return -1;
2331 next_band(graph);
2333 return compute_schedule(ctx, graph);
2336 /* Add constraints to graph->lp that force the dependence "map" (which
2337 * is part of the dependence relation of "edge")
2338 * to be respected and attempt to carry it, where the edge is one from
2339 * a node j to itself. "pos" is the sequence number of the given map.
2340 * That is, add constraints that enforce
2342 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2343 * = c_j_x (y - x) >= e_i
2345 * for each (x,y) in R.
2346 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2347 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2348 * with each coefficient in c_j_x represented as a pair of non-negative
2349 * coefficients.
2351 static int add_intra_constraints(struct isl_sched_graph *graph,
2352 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2354 unsigned total;
2355 isl_ctx *ctx = isl_map_get_ctx(map);
2356 isl_space *dim;
2357 isl_dim_map *dim_map;
2358 isl_basic_set *coef;
2359 struct isl_sched_node *node = edge->src;
2361 coef = intra_coefficients(graph, map);
2362 if (!coef)
2363 return -1;
2365 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2367 total = isl_basic_set_total_dim(graph->lp);
2368 dim_map = isl_dim_map_alloc(ctx, total);
2369 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2370 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2371 isl_space_dim(dim, isl_dim_set), 1,
2372 node->nvar, -1);
2373 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2374 isl_space_dim(dim, isl_dim_set), 1,
2375 node->nvar, 1);
2376 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2377 coef->n_eq, coef->n_ineq);
2378 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2379 coef, dim_map);
2380 isl_space_free(dim);
2382 return 0;
2385 /* Add constraints to graph->lp that force the dependence "map" (which
2386 * is part of the dependence relation of "edge")
2387 * to be respected and attempt to carry it, where the edge is one from
2388 * node j to node k. "pos" is the sequence number of the given map.
2389 * That is, add constraints that enforce
2391 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2393 * for each (x,y) in R.
2394 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2395 * of valid constraints for R and then plug in
2396 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2397 * with each coefficient (except e_i, c_k_0 and c_j_0)
2398 * represented as a pair of non-negative coefficients.
2400 static int add_inter_constraints(struct isl_sched_graph *graph,
2401 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2403 unsigned total;
2404 isl_ctx *ctx = isl_map_get_ctx(map);
2405 isl_space *dim;
2406 isl_dim_map *dim_map;
2407 isl_basic_set *coef;
2408 struct isl_sched_node *src = edge->src;
2409 struct isl_sched_node *dst = edge->dst;
2411 coef = inter_coefficients(graph, map);
2412 if (!coef)
2413 return -1;
2415 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2417 total = isl_basic_set_total_dim(graph->lp);
2418 dim_map = isl_dim_map_alloc(ctx, total);
2420 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2422 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2423 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2424 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2425 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2426 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2427 dst->nvar, -1);
2428 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2429 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2430 dst->nvar, 1);
2432 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2433 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2434 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2435 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2436 isl_space_dim(dim, isl_dim_set), 1,
2437 src->nvar, 1);
2438 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2439 isl_space_dim(dim, isl_dim_set), 1,
2440 src->nvar, -1);
2442 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2443 coef->n_eq, coef->n_ineq);
2444 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2445 coef, dim_map);
2446 isl_space_free(dim);
2448 return 0;
2451 /* Add constraints to graph->lp that force all validity dependences
2452 * to be respected and attempt to carry them.
2454 static int add_all_constraints(struct isl_sched_graph *graph)
2456 int i, j;
2457 int pos;
2459 pos = 0;
2460 for (i = 0; i < graph->n_edge; ++i) {
2461 struct isl_sched_edge *edge= &graph->edge[i];
2463 if (!edge->validity)
2464 continue;
2466 for (j = 0; j < edge->map->n; ++j) {
2467 isl_basic_map *bmap;
2468 isl_map *map;
2470 bmap = isl_basic_map_copy(edge->map->p[j]);
2471 map = isl_map_from_basic_map(bmap);
2473 if (edge->src == edge->dst &&
2474 add_intra_constraints(graph, edge, map, pos) < 0)
2475 return -1;
2476 if (edge->src != edge->dst &&
2477 add_inter_constraints(graph, edge, map, pos) < 0)
2478 return -1;
2479 ++pos;
2483 return 0;
2486 /* Count the number of equality and inequality constraints
2487 * that will be added to the carry_lp problem.
2488 * We count each edge exactly once.
2490 static int count_all_constraints(struct isl_sched_graph *graph,
2491 int *n_eq, int *n_ineq)
2493 int i, j;
2495 *n_eq = *n_ineq = 0;
2496 for (i = 0; i < graph->n_edge; ++i) {
2497 struct isl_sched_edge *edge= &graph->edge[i];
2498 for (j = 0; j < edge->map->n; ++j) {
2499 isl_basic_map *bmap;
2500 isl_map *map;
2502 bmap = isl_basic_map_copy(edge->map->p[j]);
2503 map = isl_map_from_basic_map(bmap);
2505 if (count_map_constraints(graph, edge, map,
2506 n_eq, n_ineq, 1) < 0)
2507 return -1;
2511 return 0;
2514 /* Construct an LP problem for finding schedule coefficients
2515 * such that the schedule carries as many dependences as possible.
2516 * In particular, for each dependence i, we bound the dependence distance
2517 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2518 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2519 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2520 * Note that if the dependence relation is a union of basic maps,
2521 * then we have to consider each basic map individually as it may only
2522 * be possible to carry the dependences expressed by some of those
2523 * basic maps and not all off them.
2524 * Below, we consider each of those basic maps as a separate "edge".
2526 * All variables of the LP are non-negative. The actual coefficients
2527 * may be negative, so each coefficient is represented as the difference
2528 * of two non-negative variables. The negative part always appears
2529 * immediately before the positive part.
2530 * Other than that, the variables have the following order
2532 * - sum of (1 - e_i) over all edges
2533 * - sum of positive and negative parts of all c_n coefficients
2534 * (unconstrained when computing non-parametric schedules)
2535 * - sum of positive and negative parts of all c_x coefficients
2536 * - for each edge
2537 * - e_i
2538 * - for each node
2539 * - c_i_0
2540 * - positive and negative parts of c_i_n (if parametric)
2541 * - positive and negative parts of c_i_x
2543 * The constraints are those from the (validity) edges plus three equalities
2544 * to express the sums and n_edge inequalities to express e_i <= 1.
2546 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2548 int i, j;
2549 int k;
2550 isl_space *dim;
2551 unsigned total;
2552 int n_eq, n_ineq;
2553 int n_edge;
2555 n_edge = 0;
2556 for (i = 0; i < graph->n_edge; ++i)
2557 n_edge += graph->edge[i].map->n;
2559 total = 3 + n_edge;
2560 for (i = 0; i < graph->n; ++i) {
2561 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2562 node->start = total;
2563 total += 1 + 2 * (node->nparam + node->nvar);
2566 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2567 return -1;
2568 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2569 return -1;
2571 dim = isl_space_set_alloc(ctx, 0, total);
2572 isl_basic_set_free(graph->lp);
2573 n_eq += 3;
2574 n_ineq += n_edge;
2575 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2576 graph->lp = isl_basic_set_set_rational(graph->lp);
2578 k = isl_basic_set_alloc_equality(graph->lp);
2579 if (k < 0)
2580 return -1;
2581 isl_seq_clr(graph->lp->eq[k], 1 + total);
2582 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2583 isl_int_set_si(graph->lp->eq[k][1], 1);
2584 for (i = 0; i < n_edge; ++i)
2585 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2587 k = isl_basic_set_alloc_equality(graph->lp);
2588 if (k < 0)
2589 return -1;
2590 isl_seq_clr(graph->lp->eq[k], 1 + total);
2591 isl_int_set_si(graph->lp->eq[k][2], -1);
2592 for (i = 0; i < graph->n; ++i) {
2593 int pos = 1 + graph->node[i].start + 1;
2595 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2596 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2599 k = isl_basic_set_alloc_equality(graph->lp);
2600 if (k < 0)
2601 return -1;
2602 isl_seq_clr(graph->lp->eq[k], 1 + total);
2603 isl_int_set_si(graph->lp->eq[k][3], -1);
2604 for (i = 0; i < graph->n; ++i) {
2605 struct isl_sched_node *node = &graph->node[i];
2606 int pos = 1 + node->start + 1 + 2 * node->nparam;
2608 for (j = 0; j < 2 * node->nvar; ++j)
2609 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2612 for (i = 0; i < n_edge; ++i) {
2613 k = isl_basic_set_alloc_inequality(graph->lp);
2614 if (k < 0)
2615 return -1;
2616 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2617 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2618 isl_int_set_si(graph->lp->ineq[k][0], 1);
2621 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2622 return -1;
2623 if (add_all_constraints(graph) < 0)
2624 return -1;
2626 return 0;
2629 /* If the schedule_split_scaled option is set and if the linear
2630 * parts of the scheduling rows for all nodes in the graphs have
2631 * non-trivial common divisor, then split off the constant term
2632 * from the linear part.
2633 * The constant term is then placed in a separate band and
2634 * the linear part is reduced.
2636 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2638 int i;
2639 int row;
2640 isl_int gcd, gcd_i;
2642 if (!ctx->opt->schedule_split_scaled)
2643 return 0;
2644 if (graph->n <= 1)
2645 return 0;
2647 if (graph->n_total_row >= graph->max_row)
2648 isl_die(ctx, isl_error_internal,
2649 "too many schedule rows", return -1);
2651 isl_int_init(gcd);
2652 isl_int_init(gcd_i);
2654 isl_int_set_si(gcd, 0);
2656 row = isl_mat_rows(graph->node[0].sched) - 1;
2658 for (i = 0; i < graph->n; ++i) {
2659 struct isl_sched_node *node = &graph->node[i];
2660 int cols = isl_mat_cols(node->sched);
2662 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2663 isl_int_gcd(gcd, gcd, gcd_i);
2666 isl_int_clear(gcd_i);
2668 if (isl_int_cmp_si(gcd, 1) <= 0) {
2669 isl_int_clear(gcd);
2670 return 0;
2673 next_band(graph);
2675 for (i = 0; i < graph->n; ++i) {
2676 struct isl_sched_node *node = &graph->node[i];
2678 isl_map_free(node->sched_map);
2679 node->sched_map = NULL;
2680 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2681 if (!node->sched)
2682 goto error;
2683 isl_int_fdiv_r(node->sched->row[row + 1][0],
2684 node->sched->row[row][0], gcd);
2685 isl_int_fdiv_q(node->sched->row[row][0],
2686 node->sched->row[row][0], gcd);
2687 isl_int_mul(node->sched->row[row][0],
2688 node->sched->row[row][0], gcd);
2689 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2690 if (!node->sched)
2691 goto error;
2692 node->band[graph->n_total_row] = graph->n_band;
2695 graph->n_total_row++;
2697 isl_int_clear(gcd);
2698 return 0;
2699 error:
2700 isl_int_clear(gcd);
2701 return -1;
2704 static int compute_component_schedule(isl_ctx *ctx,
2705 struct isl_sched_graph *graph);
2707 /* Is the schedule row "sol" trivial on node "node"?
2708 * That is, is the solution zero on the dimensions orthogonal to
2709 * the previously found solutions?
2710 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
2712 * Each coefficient is represented as the difference between
2713 * two non-negative values in "sol". "sol" has been computed
2714 * in terms of the original iterators (i.e., without use of cmap).
2715 * We construct the schedule row s and write it as a linear
2716 * combination of (linear combinations of) previously computed schedule rows.
2717 * s = Q c or c = U s.
2718 * If the final entries of c are all zero, then the solution is trivial.
2720 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
2722 int i;
2723 int pos;
2724 int trivial;
2725 isl_ctx *ctx;
2726 isl_vec *node_sol;
2728 if (!sol)
2729 return -1;
2730 if (node->nvar == node->rank)
2731 return 0;
2733 ctx = isl_vec_get_ctx(sol);
2734 node_sol = isl_vec_alloc(ctx, node->nvar);
2735 if (!node_sol)
2736 return -1;
2738 pos = 1 + node->start + 1 + 2 * node->nparam;
2740 for (i = 0; i < node->nvar; ++i)
2741 isl_int_sub(node_sol->el[i],
2742 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2744 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
2746 if (!node_sol)
2747 return -1;
2749 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
2750 node->nvar - node->rank) == -1;
2752 isl_vec_free(node_sol);
2754 return trivial;
2757 /* Is the schedule row "sol" trivial on any node where it should
2758 * not be trivial?
2759 * "sol" has been computed in terms of the original iterators
2760 * (i.e., without use of cmap).
2761 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
2763 static int is_any_trivial(struct isl_sched_graph *graph,
2764 __isl_keep isl_vec *sol)
2766 int i;
2768 for (i = 0; i < graph->n; ++i) {
2769 struct isl_sched_node *node = &graph->node[i];
2770 int trivial;
2772 if (!needs_row(graph, node))
2773 continue;
2774 trivial = is_trivial(node, sol);
2775 if (trivial < 0 || trivial)
2776 return trivial;
2779 return 0;
2782 /* Construct a schedule row for each node such that as many dependences
2783 * as possible are carried and then continue with the next band.
2785 * If the computed schedule row turns out to be trivial on one or
2786 * more nodes where it should not be trivial, then we throw it away
2787 * and try again on each component separately.
2789 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2791 int i;
2792 int n_edge;
2793 int trivial;
2794 isl_vec *sol;
2795 isl_basic_set *lp;
2797 n_edge = 0;
2798 for (i = 0; i < graph->n_edge; ++i)
2799 n_edge += graph->edge[i].map->n;
2801 if (setup_carry_lp(ctx, graph) < 0)
2802 return -1;
2804 lp = isl_basic_set_copy(graph->lp);
2805 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2806 if (!sol)
2807 return -1;
2809 if (sol->size == 0) {
2810 isl_vec_free(sol);
2811 isl_die(ctx, isl_error_internal,
2812 "error in schedule construction", return -1);
2815 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
2816 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2817 isl_vec_free(sol);
2818 isl_die(ctx, isl_error_unknown,
2819 "unable to carry dependences", return -1);
2822 trivial = is_any_trivial(graph, sol);
2823 if (trivial < 0) {
2824 sol = isl_vec_free(sol);
2825 } else if (trivial) {
2826 isl_vec_free(sol);
2827 if (graph->scc > 1)
2828 return compute_component_schedule(ctx, graph);
2829 isl_die(ctx, isl_error_unknown,
2830 "unable to construct non-trivial solution", return -1);
2833 if (update_schedule(graph, sol, 0, 0) < 0)
2834 return -1;
2836 if (split_scaled(ctx, graph) < 0)
2837 return -1;
2839 return compute_next_band(ctx, graph);
2842 /* Are there any (non-empty) validity edges in the graph?
2844 static int has_validity_edges(struct isl_sched_graph *graph)
2846 int i;
2848 for (i = 0; i < graph->n_edge; ++i) {
2849 int empty;
2851 empty = isl_map_plain_is_empty(graph->edge[i].map);
2852 if (empty < 0)
2853 return -1;
2854 if (empty)
2855 continue;
2856 if (graph->edge[i].validity)
2857 return 1;
2860 return 0;
2863 /* Should we apply a Feautrier step?
2864 * That is, did the user request the Feautrier algorithm and are
2865 * there any validity dependences (left)?
2867 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2869 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2870 return 0;
2872 return has_validity_edges(graph);
2875 /* Compute a schedule for a connected dependence graph using Feautrier's
2876 * multi-dimensional scheduling algorithm.
2877 * The original algorithm is described in [1].
2878 * The main idea is to minimize the number of scheduling dimensions, by
2879 * trying to satisfy as many dependences as possible per scheduling dimension.
2881 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2882 * Problem, Part II: Multi-Dimensional Time.
2883 * In Intl. Journal of Parallel Programming, 1992.
2885 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2886 struct isl_sched_graph *graph)
2888 return carry_dependences(ctx, graph);
2891 /* Compute a schedule for a connected dependence graph.
2892 * We try to find a sequence of as many schedule rows as possible that result
2893 * in non-negative dependence distances (independent of the previous rows
2894 * in the sequence, i.e., such that the sequence is tilable).
2895 * If we can't find any more rows we either
2896 * - split between SCCs and start over (assuming we found an interesting
2897 * pair of SCCs between which to split)
2898 * - continue with the next band (assuming the current band has at least
2899 * one row)
2900 * - try to carry as many dependences as possible and continue with the next
2901 * band
2903 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2904 * as many validity dependences as possible. When all validity dependences
2905 * are satisfied we extend the schedule to a full-dimensional schedule.
2907 * If we manage to complete the schedule, we finish off by topologically
2908 * sorting the statements based on the remaining dependences.
2910 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2911 * outermost dimension in the current band to be zero distance. If this
2912 * turns out to be impossible, we fall back on the general scheme above
2913 * and try to carry as many dependences as possible.
2915 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2917 int force_zero = 0;
2919 if (detect_sccs(ctx, graph) < 0)
2920 return -1;
2921 if (sort_sccs(graph) < 0)
2922 return -1;
2924 if (compute_maxvar(graph) < 0)
2925 return -1;
2927 if (need_feautrier_step(ctx, graph))
2928 return compute_schedule_wcc_feautrier(ctx, graph);
2930 if (ctx->opt->schedule_outer_zero_distance)
2931 force_zero = 1;
2933 while (graph->n_row < graph->maxvar) {
2934 isl_vec *sol;
2936 graph->src_scc = -1;
2937 graph->dst_scc = -1;
2939 if (setup_lp(ctx, graph, force_zero) < 0)
2940 return -1;
2941 sol = solve_lp(graph);
2942 if (!sol)
2943 return -1;
2944 if (sol->size == 0) {
2945 isl_vec_free(sol);
2946 if (!ctx->opt->schedule_maximize_band_depth &&
2947 graph->n_total_row > graph->band_start)
2948 return compute_next_band(ctx, graph);
2949 if (graph->src_scc >= 0)
2950 return compute_split_schedule(ctx, graph);
2951 if (graph->n_total_row > graph->band_start)
2952 return compute_next_band(ctx, graph);
2953 return carry_dependences(ctx, graph);
2955 if (update_schedule(graph, sol, 1, 1) < 0)
2956 return -1;
2957 force_zero = 0;
2960 if (graph->n_total_row > graph->band_start)
2961 next_band(graph);
2962 return sort_statements(ctx, graph);
2965 /* Add a row to the schedules that separates the SCCs and move
2966 * to the next band.
2968 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
2970 int i;
2972 if (graph->n_total_row >= graph->max_row)
2973 isl_die(ctx, isl_error_internal,
2974 "too many schedule rows", return -1);
2976 for (i = 0; i < graph->n; ++i) {
2977 struct isl_sched_node *node = &graph->node[i];
2978 int row = isl_mat_rows(node->sched);
2980 isl_map_free(node->sched_map);
2981 node->sched_map = NULL;
2982 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2983 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2984 node->scc);
2985 if (!node->sched)
2986 return -1;
2987 node->band[graph->n_total_row] = graph->n_band;
2990 graph->n_total_row++;
2991 next_band(graph);
2993 return 0;
2996 /* Compute a schedule for each component (identified by node->scc)
2997 * of the dependence graph separately and then combine the results.
2998 * Depending on the setting of schedule_fuse, a component may be
2999 * either weakly or strongly connected.
3001 * The band_id is adjusted such that each component has a separate id.
3002 * Note that the band_id may have already been set to a value different
3003 * from zero by compute_split_schedule.
3005 static int compute_component_schedule(isl_ctx *ctx,
3006 struct isl_sched_graph *graph)
3008 int wcc, i;
3009 int n, n_edge;
3010 int n_total_row, orig_total_row;
3011 int n_band, orig_band;
3013 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
3014 ctx->opt->schedule_separate_components)
3015 if (split_on_scc(ctx, graph) < 0)
3016 return -1;
3018 n_total_row = 0;
3019 orig_total_row = graph->n_total_row;
3020 n_band = 0;
3021 orig_band = graph->n_band;
3022 for (i = 0; i < graph->n; ++i)
3023 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
3024 for (wcc = 0; wcc < graph->scc; ++wcc) {
3025 n = 0;
3026 for (i = 0; i < graph->n; ++i)
3027 if (graph->node[i].scc == wcc)
3028 n++;
3029 n_edge = 0;
3030 for (i = 0; i < graph->n_edge; ++i)
3031 if (graph->edge[i].src->scc == wcc &&
3032 graph->edge[i].dst->scc == wcc)
3033 n_edge++;
3035 if (compute_sub_schedule(ctx, graph, n, n_edge,
3036 &node_scc_exactly,
3037 &edge_scc_exactly, wcc, 1) < 0)
3038 return -1;
3039 if (graph->n_total_row > n_total_row)
3040 n_total_row = graph->n_total_row;
3041 graph->n_total_row = orig_total_row;
3042 if (graph->n_band > n_band)
3043 n_band = graph->n_band;
3044 graph->n_band = orig_band;
3047 graph->n_total_row = n_total_row;
3048 graph->n_band = n_band;
3050 return pad_schedule(graph);
3053 /* Compute a schedule for the given dependence graph.
3054 * We first check if the graph is connected (through validity dependences)
3055 * and, if not, compute a schedule for each component separately.
3056 * If schedule_fuse is set to minimal fusion, then we check for strongly
3057 * connected components instead and compute a separate schedule for
3058 * each such strongly connected component.
3060 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
3062 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
3063 if (detect_sccs(ctx, graph) < 0)
3064 return -1;
3065 } else {
3066 if (detect_wccs(ctx, graph) < 0)
3067 return -1;
3070 if (graph->scc > 1)
3071 return compute_component_schedule(ctx, graph);
3073 return compute_schedule_wcc(ctx, graph);
3076 /* Compute a schedule on sc->domain that respects the given schedule
3077 * constraints.
3079 * In particular, the schedule respects all the validity dependences.
3080 * If the default isl scheduling algorithm is used, it tries to minimize
3081 * the dependence distances over the proximity dependences.
3082 * If Feautrier's scheduling algorithm is used, the proximity dependence
3083 * distances are only minimized during the extension to a full-dimensional
3084 * schedule.
3086 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
3087 __isl_take isl_schedule_constraints *sc)
3089 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
3090 struct isl_sched_graph graph = { 0 };
3091 isl_schedule *sched;
3092 struct isl_extract_edge_data data;
3093 enum isl_edge_type i;
3095 sc = isl_schedule_constraints_align_params(sc);
3096 if (!sc)
3097 return NULL;
3099 graph.n = isl_union_set_n_set(sc->domain);
3100 if (graph.n == 0)
3101 goto empty;
3102 if (graph_alloc(ctx, &graph, graph.n,
3103 isl_schedule_constraints_n_map(sc)) < 0)
3104 goto error;
3105 if (compute_max_row(&graph, sc->domain) < 0)
3106 goto error;
3107 graph.root = 1;
3108 graph.n = 0;
3109 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
3110 goto error;
3111 if (graph_init_table(ctx, &graph) < 0)
3112 goto error;
3113 for (i = isl_edge_first; i <= isl_edge_last; ++i)
3114 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
3115 if (graph_init_edge_tables(ctx, &graph) < 0)
3116 goto error;
3117 graph.n_edge = 0;
3118 data.graph = &graph;
3119 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
3120 data.type = i;
3121 if (isl_union_map_foreach_map(sc->constraint[i],
3122 &extract_edge, &data) < 0)
3123 goto error;
3126 if (compute_schedule(ctx, &graph) < 0)
3127 goto error;
3129 empty:
3130 sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
3132 graph_free(ctx, &graph);
3133 isl_schedule_constraints_free(sc);
3135 return sched;
3136 error:
3137 graph_free(ctx, &graph);
3138 isl_schedule_constraints_free(sc);
3139 return NULL;
3142 /* Compute a schedule for the given union of domains that respects
3143 * all the validity dependences and minimizes
3144 * the dependence distances over the proximity dependences.
3146 * This function is kept for backward compatibility.
3148 __isl_give isl_schedule *isl_union_set_compute_schedule(
3149 __isl_take isl_union_set *domain,
3150 __isl_take isl_union_map *validity,
3151 __isl_take isl_union_map *proximity)
3153 isl_schedule_constraints *sc;
3155 sc = isl_schedule_constraints_on_domain(domain);
3156 sc = isl_schedule_constraints_set_validity(sc, validity);
3157 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3159 return isl_schedule_constraints_compute_schedule(sc);
3162 void *isl_schedule_free(__isl_take isl_schedule *sched)
3164 int i;
3165 if (!sched)
3166 return NULL;
3168 if (--sched->ref > 0)
3169 return NULL;
3171 for (i = 0; i < sched->n; ++i) {
3172 isl_multi_aff_free(sched->node[i].sched);
3173 free(sched->node[i].band_end);
3174 free(sched->node[i].band_id);
3175 free(sched->node[i].zero);
3177 isl_space_free(sched->dim);
3178 isl_band_list_free(sched->band_forest);
3179 free(sched);
3180 return NULL;
3183 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
3185 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
3188 /* Set max_out to the maximal number of output dimensions over
3189 * all maps.
3191 static int update_max_out(__isl_take isl_map *map, void *user)
3193 int *max_out = user;
3194 int n_out = isl_map_dim(map, isl_dim_out);
3196 if (n_out > *max_out)
3197 *max_out = n_out;
3199 isl_map_free(map);
3200 return 0;
3203 /* Internal data structure for map_pad_range.
3205 * "max_out" is the maximal schedule dimension.
3206 * "res" collects the results.
3208 struct isl_pad_schedule_map_data {
3209 int max_out;
3210 isl_union_map *res;
3213 /* Pad the range of the given map with zeros to data->max_out and
3214 * then add the result to data->res.
3216 static int map_pad_range(__isl_take isl_map *map, void *user)
3218 struct isl_pad_schedule_map_data *data = user;
3219 int i;
3220 int n_out = isl_map_dim(map, isl_dim_out);
3222 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3223 for (i = n_out; i < data->max_out; ++i)
3224 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3226 data->res = isl_union_map_add_map(data->res, map);
3227 if (!data->res)
3228 return -1;
3230 return 0;
3233 /* Pad the ranges of the maps in the union map with zeros such they all have
3234 * the same dimension.
3236 static __isl_give isl_union_map *pad_schedule_map(
3237 __isl_take isl_union_map *umap)
3239 struct isl_pad_schedule_map_data data;
3241 if (!umap)
3242 return NULL;
3243 if (isl_union_map_n_map(umap) <= 1)
3244 return umap;
3246 data.max_out = 0;
3247 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3248 return isl_union_map_free(umap);
3250 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3251 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3252 data.res = isl_union_map_free(data.res);
3254 isl_union_map_free(umap);
3255 return data.res;
3258 /* Return an isl_union_map of the schedule. If we have already constructed
3259 * a band forest, then this band forest may have been modified so we need
3260 * to extract the isl_union_map from the forest rather than from
3261 * the originally computed schedule. This reconstructed schedule map
3262 * then needs to be padded with zeros to unify the schedule space
3263 * since the result of isl_band_list_get_suffix_schedule may not have
3264 * a unified schedule space.
3266 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3268 int i;
3269 isl_union_map *umap;
3271 if (!sched)
3272 return NULL;
3274 if (sched->band_forest) {
3275 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3276 return pad_schedule_map(umap);
3279 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3280 for (i = 0; i < sched->n; ++i) {
3281 isl_multi_aff *ma;
3283 ma = isl_multi_aff_copy(sched->node[i].sched);
3284 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
3287 return umap;
3290 static __isl_give isl_band_list *construct_band_list(
3291 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3292 int band_nr, int *parent_active, int n_active);
3294 /* Construct an isl_band structure for the band in the given schedule
3295 * with sequence number band_nr for the n_active nodes marked by active.
3296 * If the nodes don't have a band with the given sequence number,
3297 * then a band without members is created.
3299 * Because of the way the schedule is constructed, we know that
3300 * the position of the band inside the schedule of a node is the same
3301 * for all active nodes.
3303 * The partial schedule for the band is created before the children
3304 * are created to that construct_band_list can refer to the partial
3305 * schedule of the parent.
3307 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
3308 __isl_keep isl_band *parent,
3309 int band_nr, int *active, int n_active)
3311 int i, j;
3312 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3313 isl_band *band;
3314 unsigned start, end;
3316 band = isl_band_alloc(ctx);
3317 if (!band)
3318 return NULL;
3320 band->schedule = schedule;
3321 band->parent = parent;
3323 for (i = 0; i < schedule->n; ++i)
3324 if (active[i])
3325 break;
3327 if (i >= schedule->n)
3328 isl_die(ctx, isl_error_internal,
3329 "band without active statements", goto error);
3331 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
3332 end = band_nr < schedule->node[i].n_band ?
3333 schedule->node[i].band_end[band_nr] : start;
3334 band->n = end - start;
3336 band->zero = isl_alloc_array(ctx, int, band->n);
3337 if (band->n && !band->zero)
3338 goto error;
3340 for (j = 0; j < band->n; ++j)
3341 band->zero[j] = schedule->node[i].zero[start + j];
3343 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
3344 for (i = 0; i < schedule->n; ++i) {
3345 isl_multi_aff *ma;
3346 isl_pw_multi_aff *pma;
3347 unsigned n_out;
3349 if (!active[i])
3350 continue;
3352 ma = isl_multi_aff_copy(schedule->node[i].sched);
3353 n_out = isl_multi_aff_dim(ma, isl_dim_out);
3354 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
3355 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
3356 pma = isl_pw_multi_aff_from_multi_aff(ma);
3357 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
3358 pma);
3360 if (!band->pma)
3361 goto error;
3363 for (i = 0; i < schedule->n; ++i)
3364 if (active[i] && schedule->node[i].n_band > band_nr + 1)
3365 break;
3367 if (i < schedule->n) {
3368 band->children = construct_band_list(schedule, band,
3369 band_nr + 1, active, n_active);
3370 if (!band->children)
3371 goto error;
3374 return band;
3375 error:
3376 isl_band_free(band);
3377 return NULL;
3380 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
3382 * r is set to a negative value if anything goes wrong.
3384 * c1 stores the result of extract_int.
3385 * c2 is a temporary value used inside cmp_band_in_ancestor.
3386 * t is a temporary value used inside extract_int.
3388 * first and equal are used inside extract_int.
3389 * first is set if we are looking at the first isl_multi_aff inside
3390 * the isl_union_pw_multi_aff.
3391 * equal is set if all the isl_multi_affs have been equal so far.
3393 struct isl_cmp_band_data {
3394 int r;
3396 int first;
3397 int equal;
3399 isl_int t;
3400 isl_int c1;
3401 isl_int c2;
3404 /* Check if "ma" assigns a constant value.
3405 * Note that this function is only called on isl_multi_affs
3406 * with a single output dimension.
3408 * If "ma" assigns a constant value then we compare it to data->c1
3409 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
3410 * If "ma" does not assign a constant value or if it assigns a value
3411 * that is different from data->c1, then we set data->equal to zero
3412 * and terminate the check.
3414 static int multi_aff_extract_int(__isl_take isl_set *set,
3415 __isl_take isl_multi_aff *ma, void *user)
3417 isl_aff *aff;
3418 struct isl_cmp_band_data *data = user;
3420 aff = isl_multi_aff_get_aff(ma, 0);
3421 data->r = isl_aff_is_cst(aff);
3422 if (data->r >= 0 && data->r) {
3423 isl_aff_get_constant(aff, &data->t);
3424 if (data->first) {
3425 isl_int_set(data->c1, data->t);
3426 data->first = 0;
3427 } else if (!isl_int_eq(data->c1, data->t))
3428 data->equal = 0;
3429 } else if (data->r >= 0 && !data->r)
3430 data->equal = 0;
3432 isl_aff_free(aff);
3433 isl_set_free(set);
3434 isl_multi_aff_free(ma);
3436 if (data->r < 0)
3437 return -1;
3438 if (!data->equal)
3439 return -1;
3440 return 0;
3443 /* This function is called for each isl_pw_multi_aff in
3444 * the isl_union_pw_multi_aff checked by extract_int.
3445 * Check all the isl_multi_affs inside "pma".
3447 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
3448 void *user)
3450 int r;
3452 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
3453 isl_pw_multi_aff_free(pma);
3455 return r;
3458 /* Check if "upma" assigns a single constant value to its domain.
3459 * If so, return 1 and store the result in data->c1.
3460 * If not, return 0.
3462 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
3463 * means that either an error occurred or that we have broken off the check
3464 * because we already know the result is going to be negative.
3465 * In the latter case, data->equal is set to zero.
3467 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
3468 struct isl_cmp_band_data *data)
3470 data->first = 1;
3471 data->equal = 1;
3473 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
3474 &pw_multi_aff_extract_int, data) < 0) {
3475 if (!data->equal)
3476 return 0;
3477 return -1;
3480 return !data->first && data->equal;
3483 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
3484 * "ancestor".
3486 * If the parent of "ancestor" also has a single member, then we
3487 * first try to compare the two band based on the partial schedule
3488 * of this parent.
3490 * Otherwise, or if the result is inconclusive, we look at the partial schedule
3491 * of "ancestor" itself.
3492 * In particular, we specialize the parent schedule based
3493 * on the domains of the child schedules, check if both assign
3494 * a single constant value and, if so, compare the two constant values.
3495 * If the specialized parent schedules do not assign a constant value,
3496 * then they cannot be used to order the two bands and so in this case
3497 * we return 0.
3499 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
3500 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
3501 __isl_keep isl_band *ancestor)
3503 isl_union_pw_multi_aff *upma;
3504 isl_union_set *domain;
3505 int r;
3507 if (data->r < 0)
3508 return 0;
3510 if (ancestor->parent && ancestor->parent->n == 1) {
3511 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
3512 if (data->r < 0)
3513 return 0;
3514 if (r)
3515 return r;
3518 upma = isl_union_pw_multi_aff_copy(b1->pma);
3519 domain = isl_union_pw_multi_aff_domain(upma);
3520 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3521 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3522 r = extract_int(upma, data);
3523 isl_union_pw_multi_aff_free(upma);
3525 if (r < 0)
3526 data->r = -1;
3527 if (r < 0 || !r)
3528 return 0;
3530 isl_int_set(data->c2, data->c1);
3532 upma = isl_union_pw_multi_aff_copy(b2->pma);
3533 domain = isl_union_pw_multi_aff_domain(upma);
3534 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3535 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3536 r = extract_int(upma, data);
3537 isl_union_pw_multi_aff_free(upma);
3539 if (r < 0)
3540 data->r = -1;
3541 if (r < 0 || !r)
3542 return 0;
3544 return isl_int_cmp(data->c2, data->c1);
3547 /* Compare "a" and "b" based on the parent schedule of their parent.
3549 static int cmp_band(const void *a, const void *b, void *user)
3551 isl_band *b1 = *(isl_band * const *) a;
3552 isl_band *b2 = *(isl_band * const *) b;
3553 struct isl_cmp_band_data *data = user;
3555 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
3558 /* Sort the elements in "list" based on the partial schedules of its parent
3559 * (and ancestors). In particular if the parent assigns constant values
3560 * to the domains of the bands in "list", then the elements are sorted
3561 * according to that order.
3562 * This order should be a more "natural" order for the user, but otherwise
3563 * shouldn't have any effect.
3564 * If we would be constructing an isl_band forest directly in
3565 * isl_schedule_constraints_compute_schedule then there wouldn't be any need
3566 * for a reordering, since the children would be added to the list
3567 * in their natural order automatically.
3569 * If there is only one element in the list, then there is no need to sort
3570 * anything.
3571 * If the partial schedule of the parent has more than one member
3572 * (or if there is no parent), then it's
3573 * defnitely not assigning constant values to the different children in
3574 * the list and so we wouldn't be able to use it to sort the list.
3576 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
3577 __isl_keep isl_band *parent)
3579 struct isl_cmp_band_data data;
3581 if (!list)
3582 return NULL;
3583 if (list->n <= 1)
3584 return list;
3585 if (!parent || parent->n != 1)
3586 return list;
3588 data.r = 0;
3589 isl_int_init(data.c1);
3590 isl_int_init(data.c2);
3591 isl_int_init(data.t);
3592 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
3593 if (data.r < 0)
3594 list = isl_band_list_free(list);
3595 isl_int_clear(data.c1);
3596 isl_int_clear(data.c2);
3597 isl_int_clear(data.t);
3599 return list;
3602 /* Construct a list of bands that start at the same position (with
3603 * sequence number band_nr) in the schedules of the nodes that
3604 * were active in the parent band.
3606 * A separate isl_band structure is created for each band_id
3607 * and for each node that does not have a band with sequence
3608 * number band_nr. In the latter case, a band without members
3609 * is created.
3610 * This ensures that if a band has any children, then each node
3611 * that was active in the band is active in exactly one of the children.
3613 static __isl_give isl_band_list *construct_band_list(
3614 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3615 int band_nr, int *parent_active, int n_active)
3617 int i, j;
3618 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3619 int *active;
3620 int n_band;
3621 isl_band_list *list;
3623 n_band = 0;
3624 for (i = 0; i < n_active; ++i) {
3625 for (j = 0; j < schedule->n; ++j) {
3626 if (!parent_active[j])
3627 continue;
3628 if (schedule->node[j].n_band <= band_nr)
3629 continue;
3630 if (schedule->node[j].band_id[band_nr] == i) {
3631 n_band++;
3632 break;
3636 for (j = 0; j < schedule->n; ++j)
3637 if (schedule->node[j].n_band <= band_nr)
3638 n_band++;
3640 if (n_band == 1) {
3641 isl_band *band;
3642 list = isl_band_list_alloc(ctx, n_band);
3643 band = construct_band(schedule, parent, band_nr,
3644 parent_active, n_active);
3645 return isl_band_list_add(list, band);
3648 active = isl_alloc_array(ctx, int, schedule->n);
3649 if (schedule->n && !active)
3650 return NULL;
3652 list = isl_band_list_alloc(ctx, n_band);
3654 for (i = 0; i < n_active; ++i) {
3655 int n = 0;
3656 isl_band *band;
3658 for (j = 0; j < schedule->n; ++j) {
3659 active[j] = parent_active[j] &&
3660 schedule->node[j].n_band > band_nr &&
3661 schedule->node[j].band_id[band_nr] == i;
3662 if (active[j])
3663 n++;
3665 if (n == 0)
3666 continue;
3668 band = construct_band(schedule, parent, band_nr, active, n);
3670 list = isl_band_list_add(list, band);
3672 for (i = 0; i < schedule->n; ++i) {
3673 isl_band *band;
3674 if (!parent_active[i])
3675 continue;
3676 if (schedule->node[i].n_band > band_nr)
3677 continue;
3678 for (j = 0; j < schedule->n; ++j)
3679 active[j] = j == i;
3680 band = construct_band(schedule, parent, band_nr, active, 1);
3681 list = isl_band_list_add(list, band);
3684 free(active);
3686 list = sort_band_list(list, parent);
3688 return list;
3691 /* Construct a band forest representation of the schedule and
3692 * return the list of roots.
3694 static __isl_give isl_band_list *construct_forest(
3695 __isl_keep isl_schedule *schedule)
3697 int i;
3698 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3699 isl_band_list *forest;
3700 int *active;
3702 active = isl_alloc_array(ctx, int, schedule->n);
3703 if (schedule->n && !active)
3704 return NULL;
3706 for (i = 0; i < schedule->n; ++i)
3707 active[i] = 1;
3709 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
3711 free(active);
3713 return forest;
3716 /* Return the roots of a band forest representation of the schedule.
3718 __isl_give isl_band_list *isl_schedule_get_band_forest(
3719 __isl_keep isl_schedule *schedule)
3721 if (!schedule)
3722 return NULL;
3723 if (!schedule->band_forest)
3724 schedule->band_forest = construct_forest(schedule);
3725 return isl_band_list_dup(schedule->band_forest);
3728 /* Call "fn" on each band in the schedule in depth-first post-order.
3730 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
3731 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
3733 int r;
3734 isl_band_list *forest;
3736 if (!sched)
3737 return -1;
3739 forest = isl_schedule_get_band_forest(sched);
3740 r = isl_band_list_foreach_band(forest, fn, user);
3741 isl_band_list_free(forest);
3743 return r;
3746 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3747 __isl_keep isl_band_list *list);
3749 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
3750 __isl_keep isl_band *band)
3752 isl_band_list *children;
3754 p = isl_printer_start_line(p);
3755 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
3756 p = isl_printer_end_line(p);
3758 if (!isl_band_has_children(band))
3759 return p;
3761 children = isl_band_get_children(band);
3763 p = isl_printer_indent(p, 4);
3764 p = print_band_list(p, children);
3765 p = isl_printer_indent(p, -4);
3767 isl_band_list_free(children);
3769 return p;
3772 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3773 __isl_keep isl_band_list *list)
3775 int i, n;
3777 n = isl_band_list_n_band(list);
3778 for (i = 0; i < n; ++i) {
3779 isl_band *band;
3780 band = isl_band_list_get_band(list, i);
3781 p = print_band(p, band);
3782 isl_band_free(band);
3785 return p;
3788 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
3789 __isl_keep isl_schedule *schedule)
3791 isl_band_list *forest;
3793 forest = isl_schedule_get_band_forest(schedule);
3795 p = print_band_list(p, forest);
3797 isl_band_list_free(forest);
3799 return p;
3802 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
3804 isl_printer *printer;
3806 if (!schedule)
3807 return;
3809 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
3810 printer = isl_printer_print_schedule(printer, schedule);
3812 isl_printer_free(printer);