isl_basic_map_normalize: avoid invalid access on error
[isl.git] / isl_tab_pip.c
blobbf5810e790a65ace2b277d4ff9f812e8ca58c381
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
15 #include <isl/seq.h>
16 #include "isl_tab.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_options_private.h>
21 #include <isl_config.h>
24 * The implementation of parametric integer linear programming in this file
25 * was inspired by the paper "Parametric Integer Programming" and the
26 * report "Solving systems of affine (in)equalities" by Paul Feautrier
27 * (and others).
29 * The strategy used for obtaining a feasible solution is different
30 * from the one used in isl_tab.c. In particular, in isl_tab.c,
31 * upon finding a constraint that is not yet satisfied, we pivot
32 * in a row that increases the constant term of the row holding the
33 * constraint, making sure the sample solution remains feasible
34 * for all the constraints it already satisfied.
35 * Here, we always pivot in the row holding the constraint,
36 * choosing a column that induces the lexicographically smallest
37 * increment to the sample solution.
39 * By starting out from a sample value that is lexicographically
40 * smaller than any integer point in the problem space, the first
41 * feasible integer sample point we find will also be the lexicographically
42 * smallest. If all variables can be assumed to be non-negative,
43 * then the initial sample value may be chosen equal to zero.
44 * However, we will not make this assumption. Instead, we apply
45 * the "big parameter" trick. Any variable x is then not directly
46 * used in the tableau, but instead it is represented by another
47 * variable x' = M + x, where M is an arbitrarily large (positive)
48 * value. x' is therefore always non-negative, whatever the value of x.
49 * Taking as initial sample value x' = 0 corresponds to x = -M,
50 * which is always smaller than any possible value of x.
52 * The big parameter trick is used in the main tableau and
53 * also in the context tableau if isl_context_lex is used.
54 * In this case, each tableaus has its own big parameter.
55 * Before doing any real work, we check if all the parameters
56 * happen to be non-negative. If so, we drop the column corresponding
57 * to M from the initial context tableau.
58 * If isl_context_gbr is used, then the big parameter trick is only
59 * used in the main tableau.
62 struct isl_context;
63 struct isl_context_op {
64 /* detect nonnegative parameters in context and mark them in tab */
65 struct isl_tab *(*detect_nonnegative_parameters)(
66 struct isl_context *context, struct isl_tab *tab);
67 /* return temporary reference to basic set representation of context */
68 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
69 /* return temporary reference to tableau representation of context */
70 struct isl_tab *(*peek_tab)(struct isl_context *context);
71 /* add equality; check is 1 if eq may not be valid;
72 * update is 1 if we may want to call ineq_sign on context later.
74 void (*add_eq)(struct isl_context *context, isl_int *eq,
75 int check, int update);
76 /* add inequality; check is 1 if ineq may not be valid;
77 * update is 1 if we may want to call ineq_sign on context later.
79 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
80 int check, int update);
81 /* check sign of ineq based on previous information.
82 * strict is 1 if saturation should be treated as a positive sign.
84 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
85 isl_int *ineq, int strict);
86 /* check if inequality maintains feasibility */
87 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
88 /* return index of a div that corresponds to "div" */
89 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
90 struct isl_vec *div);
91 /* add div "div" to context and return non-negativity */
92 int (*add_div)(struct isl_context *context, struct isl_vec *div);
93 int (*detect_equalities)(struct isl_context *context,
94 struct isl_tab *tab);
95 /* return row index of "best" split */
96 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
97 /* check if context has already been determined to be empty */
98 int (*is_empty)(struct isl_context *context);
99 /* check if context is still usable */
100 int (*is_ok)(struct isl_context *context);
101 /* save a copy/snapshot of context */
102 void *(*save)(struct isl_context *context);
103 /* restore saved context */
104 void (*restore)(struct isl_context *context, void *);
105 /* discard saved context */
106 void (*discard)(void *);
107 /* invalidate context */
108 void (*invalidate)(struct isl_context *context);
109 /* free context */
110 void (*free)(struct isl_context *context);
113 struct isl_context {
114 struct isl_context_op *op;
117 struct isl_context_lex {
118 struct isl_context context;
119 struct isl_tab *tab;
122 struct isl_partial_sol {
123 int level;
124 struct isl_basic_set *dom;
125 struct isl_mat *M;
127 struct isl_partial_sol *next;
130 struct isl_sol;
131 struct isl_sol_callback {
132 struct isl_tab_callback callback;
133 struct isl_sol *sol;
136 /* isl_sol is an interface for constructing a solution to
137 * a parametric integer linear programming problem.
138 * Every time the algorithm reaches a state where a solution
139 * can be read off from the tableau (including cases where the tableau
140 * is empty), the function "add" is called on the isl_sol passed
141 * to find_solutions_main.
143 * The context tableau is owned by isl_sol and is updated incrementally.
145 * There are currently two implementations of this interface,
146 * isl_sol_map, which simply collects the solutions in an isl_map
147 * and (optionally) the parts of the context where there is no solution
148 * in an isl_set, and
149 * isl_sol_for, which calls a user-defined function for each part of
150 * the solution.
152 struct isl_sol {
153 int error;
154 int rational;
155 int level;
156 int max;
157 int n_out;
158 struct isl_context *context;
159 struct isl_partial_sol *partial;
160 void (*add)(struct isl_sol *sol,
161 struct isl_basic_set *dom, struct isl_mat *M);
162 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
163 void (*free)(struct isl_sol *sol);
164 struct isl_sol_callback dec_level;
167 static void sol_free(struct isl_sol *sol)
169 struct isl_partial_sol *partial, *next;
170 if (!sol)
171 return;
172 for (partial = sol->partial; partial; partial = next) {
173 next = partial->next;
174 isl_basic_set_free(partial->dom);
175 isl_mat_free(partial->M);
176 free(partial);
178 sol->free(sol);
181 /* Push a partial solution represented by a domain and mapping M
182 * onto the stack of partial solutions.
184 static void sol_push_sol(struct isl_sol *sol,
185 struct isl_basic_set *dom, struct isl_mat *M)
187 struct isl_partial_sol *partial;
189 if (sol->error || !dom)
190 goto error;
192 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
193 if (!partial)
194 goto error;
196 partial->level = sol->level;
197 partial->dom = dom;
198 partial->M = M;
199 partial->next = sol->partial;
201 sol->partial = partial;
203 return;
204 error:
205 isl_basic_set_free(dom);
206 isl_mat_free(M);
207 sol->error = 1;
210 /* Pop one partial solution from the partial solution stack and
211 * pass it on to sol->add or sol->add_empty.
213 static void sol_pop_one(struct isl_sol *sol)
215 struct isl_partial_sol *partial;
217 partial = sol->partial;
218 sol->partial = partial->next;
220 if (partial->M)
221 sol->add(sol, partial->dom, partial->M);
222 else
223 sol->add_empty(sol, partial->dom);
224 free(partial);
227 /* Return a fresh copy of the domain represented by the context tableau.
229 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
231 struct isl_basic_set *bset;
233 if (sol->error)
234 return NULL;
236 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
237 bset = isl_basic_set_update_from_tab(bset,
238 sol->context->op->peek_tab(sol->context));
240 return bset;
243 /* Check whether two partial solutions have the same mapping, where n_div
244 * is the number of divs that the two partial solutions have in common.
246 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
247 unsigned n_div)
249 int i;
250 unsigned dim;
252 if (!s1->M != !s2->M)
253 return 0;
254 if (!s1->M)
255 return 1;
257 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
259 for (i = 0; i < s1->M->n_row; ++i) {
260 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
261 s1->M->n_col-1-dim-n_div) != -1)
262 return 0;
263 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
264 s2->M->n_col-1-dim-n_div) != -1)
265 return 0;
266 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
267 return 0;
269 return 1;
272 /* Pop all solutions from the partial solution stack that were pushed onto
273 * the stack at levels that are deeper than the current level.
274 * If the two topmost elements on the stack have the same level
275 * and represent the same solution, then their domains are combined.
276 * This combined domain is the same as the current context domain
277 * as sol_pop is called each time we move back to a higher level.
279 static void sol_pop(struct isl_sol *sol)
281 struct isl_partial_sol *partial;
282 unsigned n_div;
284 if (sol->error)
285 return;
287 if (sol->level == 0) {
288 for (partial = sol->partial; partial; partial = sol->partial)
289 sol_pop_one(sol);
290 return;
293 partial = sol->partial;
294 if (!partial)
295 return;
297 if (partial->level <= sol->level)
298 return;
300 if (partial->next && partial->next->level == partial->level) {
301 n_div = isl_basic_set_dim(
302 sol->context->op->peek_basic_set(sol->context),
303 isl_dim_div);
305 if (!same_solution(partial, partial->next, n_div)) {
306 sol_pop_one(sol);
307 sol_pop_one(sol);
308 } else {
309 struct isl_basic_set *bset;
311 bset = sol_domain(sol);
313 isl_basic_set_free(partial->next->dom);
314 partial->next->dom = bset;
315 partial->next->level = sol->level;
317 sol->partial = partial->next;
318 isl_basic_set_free(partial->dom);
319 isl_mat_free(partial->M);
320 free(partial);
322 } else
323 sol_pop_one(sol);
326 static void sol_dec_level(struct isl_sol *sol)
328 if (sol->error)
329 return;
331 sol->level--;
333 sol_pop(sol);
336 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
338 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
340 sol_dec_level(callback->sol);
342 return callback->sol->error ? -1 : 0;
345 /* Move down to next level and push callback onto context tableau
346 * to decrease the level again when it gets rolled back across
347 * the current state. That is, dec_level will be called with
348 * the context tableau in the same state as it is when inc_level
349 * is called.
351 static void sol_inc_level(struct isl_sol *sol)
353 struct isl_tab *tab;
355 if (sol->error)
356 return;
358 sol->level++;
359 tab = sol->context->op->peek_tab(sol->context);
360 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
361 sol->error = 1;
364 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
366 int i;
368 if (isl_int_is_one(m))
369 return;
371 for (i = 0; i < n_row; ++i)
372 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
375 /* Add the solution identified by the tableau and the context tableau.
377 * The layout of the variables is as follows.
378 * tab->n_var is equal to the total number of variables in the input
379 * map (including divs that were copied from the context)
380 * + the number of extra divs constructed
381 * Of these, the first tab->n_param and the last tab->n_div variables
382 * correspond to the variables in the context, i.e.,
383 * tab->n_param + tab->n_div = context_tab->n_var
384 * tab->n_param is equal to the number of parameters and input
385 * dimensions in the input map
386 * tab->n_div is equal to the number of divs in the context
388 * If there is no solution, then call add_empty with a basic set
389 * that corresponds to the context tableau. (If add_empty is NULL,
390 * then do nothing).
392 * If there is a solution, then first construct a matrix that maps
393 * all dimensions of the context to the output variables, i.e.,
394 * the output dimensions in the input map.
395 * The divs in the input map (if any) that do not correspond to any
396 * div in the context do not appear in the solution.
397 * The algorithm will make sure that they have an integer value,
398 * but these values themselves are of no interest.
399 * We have to be careful not to drop or rearrange any divs in the
400 * context because that would change the meaning of the matrix.
402 * To extract the value of the output variables, it should be noted
403 * that we always use a big parameter M in the main tableau and so
404 * the variable stored in this tableau is not an output variable x itself, but
405 * x' = M + x (in case of minimization)
406 * or
407 * x' = M - x (in case of maximization)
408 * If x' appears in a column, then its optimal value is zero,
409 * which means that the optimal value of x is an unbounded number
410 * (-M for minimization and M for maximization).
411 * We currently assume that the output dimensions in the original map
412 * are bounded, so this cannot occur.
413 * Similarly, when x' appears in a row, then the coefficient of M in that
414 * row is necessarily 1.
415 * If the row in the tableau represents
416 * d x' = c + d M + e(y)
417 * then, in case of minimization, the corresponding row in the matrix
418 * will be
419 * a c + a e(y)
420 * with a d = m, the (updated) common denominator of the matrix.
421 * In case of maximization, the row will be
422 * -a c - a e(y)
424 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
426 struct isl_basic_set *bset = NULL;
427 struct isl_mat *mat = NULL;
428 unsigned off;
429 int row;
430 isl_int m;
432 if (sol->error || !tab)
433 goto error;
435 if (tab->empty && !sol->add_empty)
436 return;
437 if (sol->context->op->is_empty(sol->context))
438 return;
440 bset = sol_domain(sol);
442 if (tab->empty) {
443 sol_push_sol(sol, bset, NULL);
444 return;
447 off = 2 + tab->M;
449 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
450 1 + tab->n_param + tab->n_div);
451 if (!mat)
452 goto error;
454 isl_int_init(m);
456 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
457 isl_int_set_si(mat->row[0][0], 1);
458 for (row = 0; row < sol->n_out; ++row) {
459 int i = tab->n_param + row;
460 int r, j;
462 isl_seq_clr(mat->row[1 + row], mat->n_col);
463 if (!tab->var[i].is_row) {
464 if (tab->M)
465 isl_die(mat->ctx, isl_error_invalid,
466 "unbounded optimum", goto error2);
467 continue;
470 r = tab->var[i].index;
471 if (tab->M &&
472 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
473 isl_die(mat->ctx, isl_error_invalid,
474 "unbounded optimum", goto error2);
475 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
476 isl_int_divexact(m, tab->mat->row[r][0], m);
477 scale_rows(mat, m, 1 + row);
478 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
479 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
480 for (j = 0; j < tab->n_param; ++j) {
481 int col;
482 if (tab->var[j].is_row)
483 continue;
484 col = tab->var[j].index;
485 isl_int_mul(mat->row[1 + row][1 + j], m,
486 tab->mat->row[r][off + col]);
488 for (j = 0; j < tab->n_div; ++j) {
489 int col;
490 if (tab->var[tab->n_var - tab->n_div+j].is_row)
491 continue;
492 col = tab->var[tab->n_var - tab->n_div+j].index;
493 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
494 tab->mat->row[r][off + col]);
496 if (sol->max)
497 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
498 mat->n_col);
501 isl_int_clear(m);
503 sol_push_sol(sol, bset, mat);
504 return;
505 error2:
506 isl_int_clear(m);
507 error:
508 isl_basic_set_free(bset);
509 isl_mat_free(mat);
510 sol->error = 1;
513 struct isl_sol_map {
514 struct isl_sol sol;
515 struct isl_map *map;
516 struct isl_set *empty;
519 static void sol_map_free(struct isl_sol_map *sol_map)
521 if (!sol_map)
522 return;
523 if (sol_map->sol.context)
524 sol_map->sol.context->op->free(sol_map->sol.context);
525 isl_map_free(sol_map->map);
526 isl_set_free(sol_map->empty);
527 free(sol_map);
530 static void sol_map_free_wrap(struct isl_sol *sol)
532 sol_map_free((struct isl_sol_map *)sol);
535 /* This function is called for parts of the context where there is
536 * no solution, with "bset" corresponding to the context tableau.
537 * Simply add the basic set to the set "empty".
539 static void sol_map_add_empty(struct isl_sol_map *sol,
540 struct isl_basic_set *bset)
542 if (!bset)
543 goto error;
544 isl_assert(bset->ctx, sol->empty, goto error);
546 sol->empty = isl_set_grow(sol->empty, 1);
547 bset = isl_basic_set_simplify(bset);
548 bset = isl_basic_set_finalize(bset);
549 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
550 if (!sol->empty)
551 goto error;
552 isl_basic_set_free(bset);
553 return;
554 error:
555 isl_basic_set_free(bset);
556 sol->sol.error = 1;
559 static void sol_map_add_empty_wrap(struct isl_sol *sol,
560 struct isl_basic_set *bset)
562 sol_map_add_empty((struct isl_sol_map *)sol, bset);
565 /* Given a basic map "dom" that represents the context and an affine
566 * matrix "M" that maps the dimensions of the context to the
567 * output variables, construct a basic map with the same parameters
568 * and divs as the context, the dimensions of the context as input
569 * dimensions and a number of output dimensions that is equal to
570 * the number of output dimensions in the input map.
572 * The constraints and divs of the context are simply copied
573 * from "dom". For each row
574 * x = c + e(y)
575 * an equality
576 * c + e(y) - d x = 0
577 * is added, with d the common denominator of M.
579 static void sol_map_add(struct isl_sol_map *sol,
580 struct isl_basic_set *dom, struct isl_mat *M)
582 int i;
583 struct isl_basic_map *bmap = NULL;
584 unsigned n_eq;
585 unsigned n_ineq;
586 unsigned nparam;
587 unsigned total;
588 unsigned n_div;
589 unsigned n_out;
591 if (sol->sol.error || !dom || !M)
592 goto error;
594 n_out = sol->sol.n_out;
595 n_eq = dom->n_eq + n_out;
596 n_ineq = dom->n_ineq;
597 n_div = dom->n_div;
598 nparam = isl_basic_set_total_dim(dom) - n_div;
599 total = isl_map_dim(sol->map, isl_dim_all);
600 bmap = isl_basic_map_alloc_space(isl_map_get_space(sol->map),
601 n_div, n_eq, 2 * n_div + n_ineq);
602 if (!bmap)
603 goto error;
604 if (sol->sol.rational)
605 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
606 for (i = 0; i < dom->n_div; ++i) {
607 int k = isl_basic_map_alloc_div(bmap);
608 if (k < 0)
609 goto error;
610 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
611 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
612 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
613 dom->div[i] + 1 + 1 + nparam, i);
615 for (i = 0; i < dom->n_eq; ++i) {
616 int k = isl_basic_map_alloc_equality(bmap);
617 if (k < 0)
618 goto error;
619 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
620 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
621 isl_seq_cpy(bmap->eq[k] + 1 + total,
622 dom->eq[i] + 1 + nparam, n_div);
624 for (i = 0; i < dom->n_ineq; ++i) {
625 int k = isl_basic_map_alloc_inequality(bmap);
626 if (k < 0)
627 goto error;
628 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
629 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
630 isl_seq_cpy(bmap->ineq[k] + 1 + total,
631 dom->ineq[i] + 1 + nparam, n_div);
633 for (i = 0; i < M->n_row - 1; ++i) {
634 int k = isl_basic_map_alloc_equality(bmap);
635 if (k < 0)
636 goto error;
637 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
638 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
639 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
640 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
641 M->row[1 + i] + 1 + nparam, n_div);
643 bmap = isl_basic_map_simplify(bmap);
644 bmap = isl_basic_map_finalize(bmap);
645 sol->map = isl_map_grow(sol->map, 1);
646 sol->map = isl_map_add_basic_map(sol->map, bmap);
647 isl_basic_set_free(dom);
648 isl_mat_free(M);
649 if (!sol->map)
650 sol->sol.error = 1;
651 return;
652 error:
653 isl_basic_set_free(dom);
654 isl_mat_free(M);
655 isl_basic_map_free(bmap);
656 sol->sol.error = 1;
659 static void sol_map_add_wrap(struct isl_sol *sol,
660 struct isl_basic_set *dom, struct isl_mat *M)
662 sol_map_add((struct isl_sol_map *)sol, dom, M);
666 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
667 * i.e., the constant term and the coefficients of all variables that
668 * appear in the context tableau.
669 * Note that the coefficient of the big parameter M is NOT copied.
670 * The context tableau may not have a big parameter and even when it
671 * does, it is a different big parameter.
673 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
675 int i;
676 unsigned off = 2 + tab->M;
678 isl_int_set(line[0], tab->mat->row[row][1]);
679 for (i = 0; i < tab->n_param; ++i) {
680 if (tab->var[i].is_row)
681 isl_int_set_si(line[1 + i], 0);
682 else {
683 int col = tab->var[i].index;
684 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
687 for (i = 0; i < tab->n_div; ++i) {
688 if (tab->var[tab->n_var - tab->n_div + i].is_row)
689 isl_int_set_si(line[1 + tab->n_param + i], 0);
690 else {
691 int col = tab->var[tab->n_var - tab->n_div + i].index;
692 isl_int_set(line[1 + tab->n_param + i],
693 tab->mat->row[row][off + col]);
698 /* Check if rows "row1" and "row2" have identical "parametric constants",
699 * as explained above.
700 * In this case, we also insist that the coefficients of the big parameter
701 * be the same as the values of the constants will only be the same
702 * if these coefficients are also the same.
704 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
706 int i;
707 unsigned off = 2 + tab->M;
709 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
710 return 0;
712 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
713 tab->mat->row[row2][2]))
714 return 0;
716 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
717 int pos = i < tab->n_param ? i :
718 tab->n_var - tab->n_div + i - tab->n_param;
719 int col;
721 if (tab->var[pos].is_row)
722 continue;
723 col = tab->var[pos].index;
724 if (isl_int_ne(tab->mat->row[row1][off + col],
725 tab->mat->row[row2][off + col]))
726 return 0;
728 return 1;
731 /* Return an inequality that expresses that the "parametric constant"
732 * should be non-negative.
733 * This function is only called when the coefficient of the big parameter
734 * is equal to zero.
736 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
738 struct isl_vec *ineq;
740 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
741 if (!ineq)
742 return NULL;
744 get_row_parameter_line(tab, row, ineq->el);
745 if (ineq)
746 ineq = isl_vec_normalize(ineq);
748 return ineq;
751 /* Normalize a div expression of the form
753 * [(g*f(x) + c)/(g * m)]
755 * with c the constant term and f(x) the remaining coefficients, to
757 * [(f(x) + [c/g])/m]
759 static void normalize_div(__isl_keep isl_vec *div)
761 isl_ctx *ctx = isl_vec_get_ctx(div);
762 int len = div->size - 2;
764 isl_seq_gcd(div->el + 2, len, &ctx->normalize_gcd);
765 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0]);
767 if (isl_int_is_one(ctx->normalize_gcd))
768 return;
770 isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd);
771 isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd);
772 isl_seq_scale_down(div->el + 2, div->el + 2, ctx->normalize_gcd, len);
775 /* Return a integer division for use in a parametric cut based on the given row.
776 * In particular, let the parametric constant of the row be
778 * \sum_i a_i y_i
780 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
781 * The div returned is equal to
783 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
785 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
787 struct isl_vec *div;
789 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
790 if (!div)
791 return NULL;
793 isl_int_set(div->el[0], tab->mat->row[row][0]);
794 get_row_parameter_line(tab, row, div->el + 1);
795 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
796 normalize_div(div);
797 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
799 return div;
802 /* Return a integer division for use in transferring an integrality constraint
803 * to the context.
804 * In particular, let the parametric constant of the row be
806 * \sum_i a_i y_i
808 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
809 * The the returned div is equal to
811 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
813 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
815 struct isl_vec *div;
817 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
818 if (!div)
819 return NULL;
821 isl_int_set(div->el[0], tab->mat->row[row][0]);
822 get_row_parameter_line(tab, row, div->el + 1);
823 normalize_div(div);
824 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
826 return div;
829 /* Construct and return an inequality that expresses an upper bound
830 * on the given div.
831 * In particular, if the div is given by
833 * d = floor(e/m)
835 * then the inequality expresses
837 * m d <= e
839 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
841 unsigned total;
842 unsigned div_pos;
843 struct isl_vec *ineq;
845 if (!bset)
846 return NULL;
848 total = isl_basic_set_total_dim(bset);
849 div_pos = 1 + total - bset->n_div + div;
851 ineq = isl_vec_alloc(bset->ctx, 1 + total);
852 if (!ineq)
853 return NULL;
855 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
856 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
857 return ineq;
860 /* Given a row in the tableau and a div that was created
861 * using get_row_split_div and that has been constrained to equality, i.e.,
863 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
865 * replace the expression "\sum_i {a_i} y_i" in the row by d,
866 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
867 * The coefficients of the non-parameters in the tableau have been
868 * verified to be integral. We can therefore simply replace coefficient b
869 * by floor(b). For the coefficients of the parameters we have
870 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
871 * floor(b) = b.
873 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
875 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
876 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
878 isl_int_set_si(tab->mat->row[row][0], 1);
880 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
881 int drow = tab->var[tab->n_var - tab->n_div + div].index;
883 isl_assert(tab->mat->ctx,
884 isl_int_is_one(tab->mat->row[drow][0]), goto error);
885 isl_seq_combine(tab->mat->row[row] + 1,
886 tab->mat->ctx->one, tab->mat->row[row] + 1,
887 tab->mat->ctx->one, tab->mat->row[drow] + 1,
888 1 + tab->M + tab->n_col);
889 } else {
890 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
892 isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol],
893 tab->mat->row[row][2 + tab->M + dcol], 1);
896 return tab;
897 error:
898 isl_tab_free(tab);
899 return NULL;
902 /* Check if the (parametric) constant of the given row is obviously
903 * negative, meaning that we don't need to consult the context tableau.
904 * If there is a big parameter and its coefficient is non-zero,
905 * then this coefficient determines the outcome.
906 * Otherwise, we check whether the constant is negative and
907 * all non-zero coefficients of parameters are negative and
908 * belong to non-negative parameters.
910 static int is_obviously_neg(struct isl_tab *tab, int row)
912 int i;
913 int col;
914 unsigned off = 2 + tab->M;
916 if (tab->M) {
917 if (isl_int_is_pos(tab->mat->row[row][2]))
918 return 0;
919 if (isl_int_is_neg(tab->mat->row[row][2]))
920 return 1;
923 if (isl_int_is_nonneg(tab->mat->row[row][1]))
924 return 0;
925 for (i = 0; i < tab->n_param; ++i) {
926 /* Eliminated parameter */
927 if (tab->var[i].is_row)
928 continue;
929 col = tab->var[i].index;
930 if (isl_int_is_zero(tab->mat->row[row][off + col]))
931 continue;
932 if (!tab->var[i].is_nonneg)
933 return 0;
934 if (isl_int_is_pos(tab->mat->row[row][off + col]))
935 return 0;
937 for (i = 0; i < tab->n_div; ++i) {
938 if (tab->var[tab->n_var - tab->n_div + i].is_row)
939 continue;
940 col = tab->var[tab->n_var - tab->n_div + i].index;
941 if (isl_int_is_zero(tab->mat->row[row][off + col]))
942 continue;
943 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
944 return 0;
945 if (isl_int_is_pos(tab->mat->row[row][off + col]))
946 return 0;
948 return 1;
951 /* Check if the (parametric) constant of the given row is obviously
952 * non-negative, meaning that we don't need to consult the context tableau.
953 * If there is a big parameter and its coefficient is non-zero,
954 * then this coefficient determines the outcome.
955 * Otherwise, we check whether the constant is non-negative and
956 * all non-zero coefficients of parameters are positive and
957 * belong to non-negative parameters.
959 static int is_obviously_nonneg(struct isl_tab *tab, int row)
961 int i;
962 int col;
963 unsigned off = 2 + tab->M;
965 if (tab->M) {
966 if (isl_int_is_pos(tab->mat->row[row][2]))
967 return 1;
968 if (isl_int_is_neg(tab->mat->row[row][2]))
969 return 0;
972 if (isl_int_is_neg(tab->mat->row[row][1]))
973 return 0;
974 for (i = 0; i < tab->n_param; ++i) {
975 /* Eliminated parameter */
976 if (tab->var[i].is_row)
977 continue;
978 col = tab->var[i].index;
979 if (isl_int_is_zero(tab->mat->row[row][off + col]))
980 continue;
981 if (!tab->var[i].is_nonneg)
982 return 0;
983 if (isl_int_is_neg(tab->mat->row[row][off + col]))
984 return 0;
986 for (i = 0; i < tab->n_div; ++i) {
987 if (tab->var[tab->n_var - tab->n_div + i].is_row)
988 continue;
989 col = tab->var[tab->n_var - tab->n_div + i].index;
990 if (isl_int_is_zero(tab->mat->row[row][off + col]))
991 continue;
992 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
993 return 0;
994 if (isl_int_is_neg(tab->mat->row[row][off + col]))
995 return 0;
997 return 1;
1000 /* Given a row r and two columns, return the column that would
1001 * lead to the lexicographically smallest increment in the sample
1002 * solution when leaving the basis in favor of the row.
1003 * Pivoting with column c will increment the sample value by a non-negative
1004 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1005 * corresponding to the non-parametric variables.
1006 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
1007 * with all other entries in this virtual row equal to zero.
1008 * If variable v appears in a row, then a_{v,c} is the element in column c
1009 * of that row.
1011 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1012 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1013 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1014 * increment. Otherwise, it's c2.
1016 static int lexmin_col_pair(struct isl_tab *tab,
1017 int row, int col1, int col2, isl_int tmp)
1019 int i;
1020 isl_int *tr;
1022 tr = tab->mat->row[row] + 2 + tab->M;
1024 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1025 int s1, s2;
1026 isl_int *r;
1028 if (!tab->var[i].is_row) {
1029 if (tab->var[i].index == col1)
1030 return col2;
1031 if (tab->var[i].index == col2)
1032 return col1;
1033 continue;
1036 if (tab->var[i].index == row)
1037 continue;
1039 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1040 s1 = isl_int_sgn(r[col1]);
1041 s2 = isl_int_sgn(r[col2]);
1042 if (s1 == 0 && s2 == 0)
1043 continue;
1044 if (s1 < s2)
1045 return col1;
1046 if (s2 < s1)
1047 return col2;
1049 isl_int_mul(tmp, r[col2], tr[col1]);
1050 isl_int_submul(tmp, r[col1], tr[col2]);
1051 if (isl_int_is_pos(tmp))
1052 return col1;
1053 if (isl_int_is_neg(tmp))
1054 return col2;
1056 return -1;
1059 /* Given a row in the tableau, find and return the column that would
1060 * result in the lexicographically smallest, but positive, increment
1061 * in the sample point.
1062 * If there is no such column, then return tab->n_col.
1063 * If anything goes wrong, return -1.
1065 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1067 int j;
1068 int col = tab->n_col;
1069 isl_int *tr;
1070 isl_int tmp;
1072 tr = tab->mat->row[row] + 2 + tab->M;
1074 isl_int_init(tmp);
1076 for (j = tab->n_dead; j < tab->n_col; ++j) {
1077 if (tab->col_var[j] >= 0 &&
1078 (tab->col_var[j] < tab->n_param ||
1079 tab->col_var[j] >= tab->n_var - tab->n_div))
1080 continue;
1082 if (!isl_int_is_pos(tr[j]))
1083 continue;
1085 if (col == tab->n_col)
1086 col = j;
1087 else
1088 col = lexmin_col_pair(tab, row, col, j, tmp);
1089 isl_assert(tab->mat->ctx, col >= 0, goto error);
1092 isl_int_clear(tmp);
1093 return col;
1094 error:
1095 isl_int_clear(tmp);
1096 return -1;
1099 /* Return the first known violated constraint, i.e., a non-negative
1100 * constraint that currently has an either obviously negative value
1101 * or a previously determined to be negative value.
1103 * If any constraint has a negative coefficient for the big parameter,
1104 * if any, then we return one of these first.
1106 static int first_neg(struct isl_tab *tab)
1108 int row;
1110 if (tab->M)
1111 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1112 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1113 continue;
1114 if (!isl_int_is_neg(tab->mat->row[row][2]))
1115 continue;
1116 if (tab->row_sign)
1117 tab->row_sign[row] = isl_tab_row_neg;
1118 return row;
1120 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1121 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1122 continue;
1123 if (tab->row_sign) {
1124 if (tab->row_sign[row] == 0 &&
1125 is_obviously_neg(tab, row))
1126 tab->row_sign[row] = isl_tab_row_neg;
1127 if (tab->row_sign[row] != isl_tab_row_neg)
1128 continue;
1129 } else if (!is_obviously_neg(tab, row))
1130 continue;
1131 return row;
1133 return -1;
1136 /* Check whether the invariant that all columns are lexico-positive
1137 * is satisfied. This function is not called from the current code
1138 * but is useful during debugging.
1140 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
1141 static void check_lexpos(struct isl_tab *tab)
1143 unsigned off = 2 + tab->M;
1144 int col;
1145 int var;
1146 int row;
1148 for (col = tab->n_dead; col < tab->n_col; ++col) {
1149 if (tab->col_var[col] >= 0 &&
1150 (tab->col_var[col] < tab->n_param ||
1151 tab->col_var[col] >= tab->n_var - tab->n_div))
1152 continue;
1153 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1154 if (!tab->var[var].is_row) {
1155 if (tab->var[var].index == col)
1156 break;
1157 else
1158 continue;
1160 row = tab->var[var].index;
1161 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1162 continue;
1163 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1164 break;
1165 fprintf(stderr, "lexneg column %d (row %d)\n",
1166 col, row);
1168 if (var >= tab->n_var - tab->n_div)
1169 fprintf(stderr, "zero column %d\n", col);
1173 /* Report to the caller that the given constraint is part of an encountered
1174 * conflict.
1176 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1178 return tab->conflict(con, tab->conflict_user);
1181 /* Given a conflicting row in the tableau, report all constraints
1182 * involved in the row to the caller. That is, the row itself
1183 * (if it represents a constraint) and all constraint columns with
1184 * non-zero (and therefore negative) coefficients.
1186 static int report_conflict(struct isl_tab *tab, int row)
1188 int j;
1189 isl_int *tr;
1191 if (!tab->conflict)
1192 return 0;
1194 if (tab->row_var[row] < 0 &&
1195 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1196 return -1;
1198 tr = tab->mat->row[row] + 2 + tab->M;
1200 for (j = tab->n_dead; j < tab->n_col; ++j) {
1201 if (tab->col_var[j] >= 0 &&
1202 (tab->col_var[j] < tab->n_param ||
1203 tab->col_var[j] >= tab->n_var - tab->n_div))
1204 continue;
1206 if (!isl_int_is_neg(tr[j]))
1207 continue;
1209 if (tab->col_var[j] < 0 &&
1210 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1211 return -1;
1214 return 0;
1217 /* Resolve all known or obviously violated constraints through pivoting.
1218 * In particular, as long as we can find any violated constraint, we
1219 * look for a pivoting column that would result in the lexicographically
1220 * smallest increment in the sample point. If there is no such column
1221 * then the tableau is infeasible.
1223 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1224 static int restore_lexmin(struct isl_tab *tab)
1226 int row, col;
1228 if (!tab)
1229 return -1;
1230 if (tab->empty)
1231 return 0;
1232 while ((row = first_neg(tab)) != -1) {
1233 col = lexmin_pivot_col(tab, row);
1234 if (col >= tab->n_col) {
1235 if (report_conflict(tab, row) < 0)
1236 return -1;
1237 if (isl_tab_mark_empty(tab) < 0)
1238 return -1;
1239 return 0;
1241 if (col < 0)
1242 return -1;
1243 if (isl_tab_pivot(tab, row, col) < 0)
1244 return -1;
1246 return 0;
1249 /* Given a row that represents an equality, look for an appropriate
1250 * pivoting column.
1251 * In particular, if there are any non-zero coefficients among
1252 * the non-parameter variables, then we take the last of these
1253 * variables. Eliminating this variable in terms of the other
1254 * variables and/or parameters does not influence the property
1255 * that all column in the initial tableau are lexicographically
1256 * positive. The row corresponding to the eliminated variable
1257 * will only have non-zero entries below the diagonal of the
1258 * initial tableau. That is, we transform
1260 * I I
1261 * 1 into a
1262 * I I
1264 * If there is no such non-parameter variable, then we are dealing with
1265 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1266 * for elimination. This will ensure that the eliminated parameter
1267 * always has an integer value whenever all the other parameters are integral.
1268 * If there is no such parameter then we return -1.
1270 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1272 unsigned off = 2 + tab->M;
1273 int i;
1275 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1276 int col;
1277 if (tab->var[i].is_row)
1278 continue;
1279 col = tab->var[i].index;
1280 if (col <= tab->n_dead)
1281 continue;
1282 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1283 return col;
1285 for (i = tab->n_dead; i < tab->n_col; ++i) {
1286 if (isl_int_is_one(tab->mat->row[row][off + i]))
1287 return i;
1288 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1289 return i;
1291 return -1;
1294 /* Add an equality that is known to be valid to the tableau.
1295 * We first check if we can eliminate a variable or a parameter.
1296 * If not, we add the equality as two inequalities.
1297 * In this case, the equality was a pure parameter equality and there
1298 * is no need to resolve any constraint violations.
1300 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1302 int i;
1303 int r;
1305 if (!tab)
1306 return NULL;
1307 r = isl_tab_add_row(tab, eq);
1308 if (r < 0)
1309 goto error;
1311 r = tab->con[r].index;
1312 i = last_var_col_or_int_par_col(tab, r);
1313 if (i < 0) {
1314 tab->con[r].is_nonneg = 1;
1315 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1316 goto error;
1317 isl_seq_neg(eq, eq, 1 + tab->n_var);
1318 r = isl_tab_add_row(tab, eq);
1319 if (r < 0)
1320 goto error;
1321 tab->con[r].is_nonneg = 1;
1322 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1323 goto error;
1324 } else {
1325 if (isl_tab_pivot(tab, r, i) < 0)
1326 goto error;
1327 if (isl_tab_kill_col(tab, i) < 0)
1328 goto error;
1329 tab->n_eq++;
1332 return tab;
1333 error:
1334 isl_tab_free(tab);
1335 return NULL;
1338 /* Check if the given row is a pure constant.
1340 static int is_constant(struct isl_tab *tab, int row)
1342 unsigned off = 2 + tab->M;
1344 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1345 tab->n_col - tab->n_dead) == -1;
1348 /* Add an equality that may or may not be valid to the tableau.
1349 * If the resulting row is a pure constant, then it must be zero.
1350 * Otherwise, the resulting tableau is empty.
1352 * If the row is not a pure constant, then we add two inequalities,
1353 * each time checking that they can be satisfied.
1354 * In the end we try to use one of the two constraints to eliminate
1355 * a column.
1357 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1358 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1360 int r1, r2;
1361 int row;
1362 struct isl_tab_undo *snap;
1364 if (!tab)
1365 return -1;
1366 snap = isl_tab_snap(tab);
1367 r1 = isl_tab_add_row(tab, eq);
1368 if (r1 < 0)
1369 return -1;
1370 tab->con[r1].is_nonneg = 1;
1371 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1372 return -1;
1374 row = tab->con[r1].index;
1375 if (is_constant(tab, row)) {
1376 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1377 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1378 if (isl_tab_mark_empty(tab) < 0)
1379 return -1;
1380 return 0;
1382 if (isl_tab_rollback(tab, snap) < 0)
1383 return -1;
1384 return 0;
1387 if (restore_lexmin(tab) < 0)
1388 return -1;
1389 if (tab->empty)
1390 return 0;
1392 isl_seq_neg(eq, eq, 1 + tab->n_var);
1394 r2 = isl_tab_add_row(tab, eq);
1395 if (r2 < 0)
1396 return -1;
1397 tab->con[r2].is_nonneg = 1;
1398 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1399 return -1;
1401 if (restore_lexmin(tab) < 0)
1402 return -1;
1403 if (tab->empty)
1404 return 0;
1406 if (!tab->con[r1].is_row) {
1407 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1408 return -1;
1409 } else if (!tab->con[r2].is_row) {
1410 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1411 return -1;
1414 if (tab->bmap) {
1415 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1416 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1417 return -1;
1418 isl_seq_neg(eq, eq, 1 + tab->n_var);
1419 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1420 isl_seq_neg(eq, eq, 1 + tab->n_var);
1421 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1422 return -1;
1423 if (!tab->bmap)
1424 return -1;
1427 return 0;
1430 /* Add an inequality to the tableau, resolving violations using
1431 * restore_lexmin.
1433 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1435 int r;
1437 if (!tab)
1438 return NULL;
1439 if (tab->bmap) {
1440 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1441 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1442 goto error;
1443 if (!tab->bmap)
1444 goto error;
1446 r = isl_tab_add_row(tab, ineq);
1447 if (r < 0)
1448 goto error;
1449 tab->con[r].is_nonneg = 1;
1450 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1451 goto error;
1452 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1453 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1454 goto error;
1455 return tab;
1458 if (restore_lexmin(tab) < 0)
1459 goto error;
1460 if (!tab->empty && tab->con[r].is_row &&
1461 isl_tab_row_is_redundant(tab, tab->con[r].index))
1462 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1463 goto error;
1464 return tab;
1465 error:
1466 isl_tab_free(tab);
1467 return NULL;
1470 /* Check if the coefficients of the parameters are all integral.
1472 static int integer_parameter(struct isl_tab *tab, int row)
1474 int i;
1475 int col;
1476 unsigned off = 2 + tab->M;
1478 for (i = 0; i < tab->n_param; ++i) {
1479 /* Eliminated parameter */
1480 if (tab->var[i].is_row)
1481 continue;
1482 col = tab->var[i].index;
1483 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1484 tab->mat->row[row][0]))
1485 return 0;
1487 for (i = 0; i < tab->n_div; ++i) {
1488 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1489 continue;
1490 col = tab->var[tab->n_var - tab->n_div + i].index;
1491 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1492 tab->mat->row[row][0]))
1493 return 0;
1495 return 1;
1498 /* Check if the coefficients of the non-parameter variables are all integral.
1500 static int integer_variable(struct isl_tab *tab, int row)
1502 int i;
1503 unsigned off = 2 + tab->M;
1505 for (i = tab->n_dead; i < tab->n_col; ++i) {
1506 if (tab->col_var[i] >= 0 &&
1507 (tab->col_var[i] < tab->n_param ||
1508 tab->col_var[i] >= tab->n_var - tab->n_div))
1509 continue;
1510 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1511 tab->mat->row[row][0]))
1512 return 0;
1514 return 1;
1517 /* Check if the constant term is integral.
1519 static int integer_constant(struct isl_tab *tab, int row)
1521 return isl_int_is_divisible_by(tab->mat->row[row][1],
1522 tab->mat->row[row][0]);
1525 #define I_CST 1 << 0
1526 #define I_PAR 1 << 1
1527 #define I_VAR 1 << 2
1529 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1530 * that is non-integer and therefore requires a cut and return
1531 * the index of the variable.
1532 * For parametric tableaus, there are three parts in a row,
1533 * the constant, the coefficients of the parameters and the rest.
1534 * For each part, we check whether the coefficients in that part
1535 * are all integral and if so, set the corresponding flag in *f.
1536 * If the constant and the parameter part are integral, then the
1537 * current sample value is integral and no cut is required
1538 * (irrespective of whether the variable part is integral).
1540 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1542 var = var < 0 ? tab->n_param : var + 1;
1544 for (; var < tab->n_var - tab->n_div; ++var) {
1545 int flags = 0;
1546 int row;
1547 if (!tab->var[var].is_row)
1548 continue;
1549 row = tab->var[var].index;
1550 if (integer_constant(tab, row))
1551 ISL_FL_SET(flags, I_CST);
1552 if (integer_parameter(tab, row))
1553 ISL_FL_SET(flags, I_PAR);
1554 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1555 continue;
1556 if (integer_variable(tab, row))
1557 ISL_FL_SET(flags, I_VAR);
1558 *f = flags;
1559 return var;
1561 return -1;
1564 /* Check for first (non-parameter) variable that is non-integer and
1565 * therefore requires a cut and return the corresponding row.
1566 * For parametric tableaus, there are three parts in a row,
1567 * the constant, the coefficients of the parameters and the rest.
1568 * For each part, we check whether the coefficients in that part
1569 * are all integral and if so, set the corresponding flag in *f.
1570 * If the constant and the parameter part are integral, then the
1571 * current sample value is integral and no cut is required
1572 * (irrespective of whether the variable part is integral).
1574 static int first_non_integer_row(struct isl_tab *tab, int *f)
1576 int var = next_non_integer_var(tab, -1, f);
1578 return var < 0 ? -1 : tab->var[var].index;
1581 /* Add a (non-parametric) cut to cut away the non-integral sample
1582 * value of the given row.
1584 * If the row is given by
1586 * m r = f + \sum_i a_i y_i
1588 * then the cut is
1590 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1592 * The big parameter, if any, is ignored, since it is assumed to be big
1593 * enough to be divisible by any integer.
1594 * If the tableau is actually a parametric tableau, then this function
1595 * is only called when all coefficients of the parameters are integral.
1596 * The cut therefore has zero coefficients for the parameters.
1598 * The current value is known to be negative, so row_sign, if it
1599 * exists, is set accordingly.
1601 * Return the row of the cut or -1.
1603 static int add_cut(struct isl_tab *tab, int row)
1605 int i;
1606 int r;
1607 isl_int *r_row;
1608 unsigned off = 2 + tab->M;
1610 if (isl_tab_extend_cons(tab, 1) < 0)
1611 return -1;
1612 r = isl_tab_allocate_con(tab);
1613 if (r < 0)
1614 return -1;
1616 r_row = tab->mat->row[tab->con[r].index];
1617 isl_int_set(r_row[0], tab->mat->row[row][0]);
1618 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1619 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1620 isl_int_neg(r_row[1], r_row[1]);
1621 if (tab->M)
1622 isl_int_set_si(r_row[2], 0);
1623 for (i = 0; i < tab->n_col; ++i)
1624 isl_int_fdiv_r(r_row[off + i],
1625 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1627 tab->con[r].is_nonneg = 1;
1628 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1629 return -1;
1630 if (tab->row_sign)
1631 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1633 return tab->con[r].index;
1636 #define CUT_ALL 1
1637 #define CUT_ONE 0
1639 /* Given a non-parametric tableau, add cuts until an integer
1640 * sample point is obtained or until the tableau is determined
1641 * to be integer infeasible.
1642 * As long as there is any non-integer value in the sample point,
1643 * we add appropriate cuts, if possible, for each of these
1644 * non-integer values and then resolve the violated
1645 * cut constraints using restore_lexmin.
1646 * If one of the corresponding rows is equal to an integral
1647 * combination of variables/constraints plus a non-integral constant,
1648 * then there is no way to obtain an integer point and we return
1649 * a tableau that is marked empty.
1650 * The parameter cutting_strategy controls the strategy used when adding cuts
1651 * to remove non-integer points. CUT_ALL adds all possible cuts
1652 * before continuing the search. CUT_ONE adds only one cut at a time.
1654 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab,
1655 int cutting_strategy)
1657 int var;
1658 int row;
1659 int flags;
1661 if (!tab)
1662 return NULL;
1663 if (tab->empty)
1664 return tab;
1666 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1667 do {
1668 if (ISL_FL_ISSET(flags, I_VAR)) {
1669 if (isl_tab_mark_empty(tab) < 0)
1670 goto error;
1671 return tab;
1673 row = tab->var[var].index;
1674 row = add_cut(tab, row);
1675 if (row < 0)
1676 goto error;
1677 if (cutting_strategy == CUT_ONE)
1678 break;
1679 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1680 if (restore_lexmin(tab) < 0)
1681 goto error;
1682 if (tab->empty)
1683 break;
1685 return tab;
1686 error:
1687 isl_tab_free(tab);
1688 return NULL;
1691 /* Check whether all the currently active samples also satisfy the inequality
1692 * "ineq" (treated as an equality if eq is set).
1693 * Remove those samples that do not.
1695 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1697 int i;
1698 isl_int v;
1700 if (!tab)
1701 return NULL;
1703 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1704 isl_assert(tab->mat->ctx, tab->samples, goto error);
1705 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1707 isl_int_init(v);
1708 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1709 int sgn;
1710 isl_seq_inner_product(ineq, tab->samples->row[i],
1711 1 + tab->n_var, &v);
1712 sgn = isl_int_sgn(v);
1713 if (eq ? (sgn == 0) : (sgn >= 0))
1714 continue;
1715 tab = isl_tab_drop_sample(tab, i);
1716 if (!tab)
1717 break;
1719 isl_int_clear(v);
1721 return tab;
1722 error:
1723 isl_tab_free(tab);
1724 return NULL;
1727 /* Check whether the sample value of the tableau is finite,
1728 * i.e., either the tableau does not use a big parameter, or
1729 * all values of the variables are equal to the big parameter plus
1730 * some constant. This constant is the actual sample value.
1732 static int sample_is_finite(struct isl_tab *tab)
1734 int i;
1736 if (!tab->M)
1737 return 1;
1739 for (i = 0; i < tab->n_var; ++i) {
1740 int row;
1741 if (!tab->var[i].is_row)
1742 return 0;
1743 row = tab->var[i].index;
1744 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1745 return 0;
1747 return 1;
1750 /* Check if the context tableau of sol has any integer points.
1751 * Leave tab in empty state if no integer point can be found.
1752 * If an integer point can be found and if moreover it is finite,
1753 * then it is added to the list of sample values.
1755 * This function is only called when none of the currently active sample
1756 * values satisfies the most recently added constraint.
1758 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1760 struct isl_tab_undo *snap;
1762 if (!tab)
1763 return NULL;
1765 snap = isl_tab_snap(tab);
1766 if (isl_tab_push_basis(tab) < 0)
1767 goto error;
1769 tab = cut_to_integer_lexmin(tab, CUT_ALL);
1770 if (!tab)
1771 goto error;
1773 if (!tab->empty && sample_is_finite(tab)) {
1774 struct isl_vec *sample;
1776 sample = isl_tab_get_sample_value(tab);
1778 tab = isl_tab_add_sample(tab, sample);
1781 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1782 goto error;
1784 return tab;
1785 error:
1786 isl_tab_free(tab);
1787 return NULL;
1790 /* Check if any of the currently active sample values satisfies
1791 * the inequality "ineq" (an equality if eq is set).
1793 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1795 int i;
1796 isl_int v;
1798 if (!tab)
1799 return -1;
1801 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1802 isl_assert(tab->mat->ctx, tab->samples, return -1);
1803 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1805 isl_int_init(v);
1806 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1807 int sgn;
1808 isl_seq_inner_product(ineq, tab->samples->row[i],
1809 1 + tab->n_var, &v);
1810 sgn = isl_int_sgn(v);
1811 if (eq ? (sgn == 0) : (sgn >= 0))
1812 break;
1814 isl_int_clear(v);
1816 return i < tab->n_sample;
1819 /* Add a div specified by "div" to the tableau "tab" and return
1820 * 1 if the div is obviously non-negative.
1822 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1823 int (*add_ineq)(void *user, isl_int *), void *user)
1825 int i;
1826 int r;
1827 struct isl_mat *samples;
1828 int nonneg;
1830 r = isl_tab_add_div(tab, div, add_ineq, user);
1831 if (r < 0)
1832 return -1;
1833 nonneg = tab->var[r].is_nonneg;
1834 tab->var[r].frozen = 1;
1836 samples = isl_mat_extend(tab->samples,
1837 tab->n_sample, 1 + tab->n_var);
1838 tab->samples = samples;
1839 if (!samples)
1840 return -1;
1841 for (i = tab->n_outside; i < samples->n_row; ++i) {
1842 isl_seq_inner_product(div->el + 1, samples->row[i],
1843 div->size - 1, &samples->row[i][samples->n_col - 1]);
1844 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1845 samples->row[i][samples->n_col - 1], div->el[0]);
1848 return nonneg;
1851 /* Add a div specified by "div" to both the main tableau and
1852 * the context tableau. In case of the main tableau, we only
1853 * need to add an extra div. In the context tableau, we also
1854 * need to express the meaning of the div.
1855 * Return the index of the div or -1 if anything went wrong.
1857 static int add_div(struct isl_tab *tab, struct isl_context *context,
1858 struct isl_vec *div)
1860 int r;
1861 int nonneg;
1863 if ((nonneg = context->op->add_div(context, div)) < 0)
1864 goto error;
1866 if (!context->op->is_ok(context))
1867 goto error;
1869 if (isl_tab_extend_vars(tab, 1) < 0)
1870 goto error;
1871 r = isl_tab_allocate_var(tab);
1872 if (r < 0)
1873 goto error;
1874 if (nonneg)
1875 tab->var[r].is_nonneg = 1;
1876 tab->var[r].frozen = 1;
1877 tab->n_div++;
1879 return tab->n_div - 1;
1880 error:
1881 context->op->invalidate(context);
1882 return -1;
1885 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1887 int i;
1888 unsigned total = isl_basic_map_total_dim(tab->bmap);
1890 for (i = 0; i < tab->bmap->n_div; ++i) {
1891 if (isl_int_ne(tab->bmap->div[i][0], denom))
1892 continue;
1893 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1894 continue;
1895 return i;
1897 return -1;
1900 /* Return the index of a div that corresponds to "div".
1901 * We first check if we already have such a div and if not, we create one.
1903 static int get_div(struct isl_tab *tab, struct isl_context *context,
1904 struct isl_vec *div)
1906 int d;
1907 struct isl_tab *context_tab = context->op->peek_tab(context);
1909 if (!context_tab)
1910 return -1;
1912 d = find_div(context_tab, div->el + 1, div->el[0]);
1913 if (d != -1)
1914 return d;
1916 return add_div(tab, context, div);
1919 /* Add a parametric cut to cut away the non-integral sample value
1920 * of the give row.
1921 * Let a_i be the coefficients of the constant term and the parameters
1922 * and let b_i be the coefficients of the variables or constraints
1923 * in basis of the tableau.
1924 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1926 * The cut is expressed as
1928 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1930 * If q did not already exist in the context tableau, then it is added first.
1931 * If q is in a column of the main tableau then the "+ q" can be accomplished
1932 * by setting the corresponding entry to the denominator of the constraint.
1933 * If q happens to be in a row of the main tableau, then the corresponding
1934 * row needs to be added instead (taking care of the denominators).
1935 * Note that this is very unlikely, but perhaps not entirely impossible.
1937 * The current value of the cut is known to be negative (or at least
1938 * non-positive), so row_sign is set accordingly.
1940 * Return the row of the cut or -1.
1942 static int add_parametric_cut(struct isl_tab *tab, int row,
1943 struct isl_context *context)
1945 struct isl_vec *div;
1946 int d;
1947 int i;
1948 int r;
1949 isl_int *r_row;
1950 int col;
1951 int n;
1952 unsigned off = 2 + tab->M;
1954 if (!context)
1955 return -1;
1957 div = get_row_parameter_div(tab, row);
1958 if (!div)
1959 return -1;
1961 n = tab->n_div;
1962 d = context->op->get_div(context, tab, div);
1963 isl_vec_free(div);
1964 if (d < 0)
1965 return -1;
1967 if (isl_tab_extend_cons(tab, 1) < 0)
1968 return -1;
1969 r = isl_tab_allocate_con(tab);
1970 if (r < 0)
1971 return -1;
1973 r_row = tab->mat->row[tab->con[r].index];
1974 isl_int_set(r_row[0], tab->mat->row[row][0]);
1975 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1976 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1977 isl_int_neg(r_row[1], r_row[1]);
1978 if (tab->M)
1979 isl_int_set_si(r_row[2], 0);
1980 for (i = 0; i < tab->n_param; ++i) {
1981 if (tab->var[i].is_row)
1982 continue;
1983 col = tab->var[i].index;
1984 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1985 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1986 tab->mat->row[row][0]);
1987 isl_int_neg(r_row[off + col], r_row[off + col]);
1989 for (i = 0; i < tab->n_div; ++i) {
1990 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1991 continue;
1992 col = tab->var[tab->n_var - tab->n_div + i].index;
1993 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1994 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1995 tab->mat->row[row][0]);
1996 isl_int_neg(r_row[off + col], r_row[off + col]);
1998 for (i = 0; i < tab->n_col; ++i) {
1999 if (tab->col_var[i] >= 0 &&
2000 (tab->col_var[i] < tab->n_param ||
2001 tab->col_var[i] >= tab->n_var - tab->n_div))
2002 continue;
2003 isl_int_fdiv_r(r_row[off + i],
2004 tab->mat->row[row][off + i], tab->mat->row[row][0]);
2006 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
2007 isl_int gcd;
2008 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
2009 isl_int_init(gcd);
2010 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
2011 isl_int_divexact(r_row[0], r_row[0], gcd);
2012 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
2013 isl_seq_combine(r_row + 1, gcd, r_row + 1,
2014 r_row[0], tab->mat->row[d_row] + 1,
2015 off - 1 + tab->n_col);
2016 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
2017 isl_int_clear(gcd);
2018 } else {
2019 col = tab->var[tab->n_var - tab->n_div + d].index;
2020 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
2023 tab->con[r].is_nonneg = 1;
2024 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2025 return -1;
2026 if (tab->row_sign)
2027 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
2029 row = tab->con[r].index;
2031 if (d >= n && context->op->detect_equalities(context, tab) < 0)
2032 return -1;
2034 return row;
2037 /* Construct a tableau for bmap that can be used for computing
2038 * the lexicographic minimum (or maximum) of bmap.
2039 * If not NULL, then dom is the domain where the minimum
2040 * should be computed. In this case, we set up a parametric
2041 * tableau with row signs (initialized to "unknown").
2042 * If M is set, then the tableau will use a big parameter.
2043 * If max is set, then a maximum should be computed instead of a minimum.
2044 * This means that for each variable x, the tableau will contain the variable
2045 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2046 * of the variables in all constraints are negated prior to adding them
2047 * to the tableau.
2049 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2050 struct isl_basic_set *dom, unsigned M, int max)
2052 int i;
2053 struct isl_tab *tab;
2055 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2056 isl_basic_map_total_dim(bmap), M);
2057 if (!tab)
2058 return NULL;
2060 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2061 if (dom) {
2062 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2063 tab->n_div = dom->n_div;
2064 tab->row_sign = isl_calloc_array(bmap->ctx,
2065 enum isl_tab_row_sign, tab->mat->n_row);
2066 if (!tab->row_sign)
2067 goto error;
2069 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2070 if (isl_tab_mark_empty(tab) < 0)
2071 goto error;
2072 return tab;
2075 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2076 tab->var[i].is_nonneg = 1;
2077 tab->var[i].frozen = 1;
2079 for (i = 0; i < bmap->n_eq; ++i) {
2080 if (max)
2081 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2082 bmap->eq[i] + 1 + tab->n_param,
2083 tab->n_var - tab->n_param - tab->n_div);
2084 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2085 if (max)
2086 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2087 bmap->eq[i] + 1 + tab->n_param,
2088 tab->n_var - tab->n_param - tab->n_div);
2089 if (!tab || tab->empty)
2090 return tab;
2092 if (bmap->n_eq && restore_lexmin(tab) < 0)
2093 goto error;
2094 for (i = 0; i < bmap->n_ineq; ++i) {
2095 if (max)
2096 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2097 bmap->ineq[i] + 1 + tab->n_param,
2098 tab->n_var - tab->n_param - tab->n_div);
2099 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2100 if (max)
2101 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2102 bmap->ineq[i] + 1 + tab->n_param,
2103 tab->n_var - tab->n_param - tab->n_div);
2104 if (!tab || tab->empty)
2105 return tab;
2107 return tab;
2108 error:
2109 isl_tab_free(tab);
2110 return NULL;
2113 /* Given a main tableau where more than one row requires a split,
2114 * determine and return the "best" row to split on.
2116 * Given two rows in the main tableau, if the inequality corresponding
2117 * to the first row is redundant with respect to that of the second row
2118 * in the current tableau, then it is better to split on the second row,
2119 * since in the positive part, both row will be positive.
2120 * (In the negative part a pivot will have to be performed and just about
2121 * anything can happen to the sign of the other row.)
2123 * As a simple heuristic, we therefore select the row that makes the most
2124 * of the other rows redundant.
2126 * Perhaps it would also be useful to look at the number of constraints
2127 * that conflict with any given constraint.
2129 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2131 struct isl_tab_undo *snap;
2132 int split;
2133 int row;
2134 int best = -1;
2135 int best_r;
2137 if (isl_tab_extend_cons(context_tab, 2) < 0)
2138 return -1;
2140 snap = isl_tab_snap(context_tab);
2142 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2143 struct isl_tab_undo *snap2;
2144 struct isl_vec *ineq = NULL;
2145 int r = 0;
2146 int ok;
2148 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2149 continue;
2150 if (tab->row_sign[split] != isl_tab_row_any)
2151 continue;
2153 ineq = get_row_parameter_ineq(tab, split);
2154 if (!ineq)
2155 return -1;
2156 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2157 isl_vec_free(ineq);
2158 if (!ok)
2159 return -1;
2161 snap2 = isl_tab_snap(context_tab);
2163 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2164 struct isl_tab_var *var;
2166 if (row == split)
2167 continue;
2168 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2169 continue;
2170 if (tab->row_sign[row] != isl_tab_row_any)
2171 continue;
2173 ineq = get_row_parameter_ineq(tab, row);
2174 if (!ineq)
2175 return -1;
2176 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2177 isl_vec_free(ineq);
2178 if (!ok)
2179 return -1;
2180 var = &context_tab->con[context_tab->n_con - 1];
2181 if (!context_tab->empty &&
2182 !isl_tab_min_at_most_neg_one(context_tab, var))
2183 r++;
2184 if (isl_tab_rollback(context_tab, snap2) < 0)
2185 return -1;
2187 if (best == -1 || r > best_r) {
2188 best = split;
2189 best_r = r;
2191 if (isl_tab_rollback(context_tab, snap) < 0)
2192 return -1;
2195 return best;
2198 static struct isl_basic_set *context_lex_peek_basic_set(
2199 struct isl_context *context)
2201 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2202 if (!clex->tab)
2203 return NULL;
2204 return isl_tab_peek_bset(clex->tab);
2207 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2209 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2210 return clex->tab;
2213 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2214 int check, int update)
2216 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2217 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2218 goto error;
2219 if (add_lexmin_eq(clex->tab, eq) < 0)
2220 goto error;
2221 if (check) {
2222 int v = tab_has_valid_sample(clex->tab, eq, 1);
2223 if (v < 0)
2224 goto error;
2225 if (!v)
2226 clex->tab = check_integer_feasible(clex->tab);
2228 if (update)
2229 clex->tab = check_samples(clex->tab, eq, 1);
2230 return;
2231 error:
2232 isl_tab_free(clex->tab);
2233 clex->tab = NULL;
2236 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2237 int check, int update)
2239 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2240 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2241 goto error;
2242 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2243 if (check) {
2244 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2245 if (v < 0)
2246 goto error;
2247 if (!v)
2248 clex->tab = check_integer_feasible(clex->tab);
2250 if (update)
2251 clex->tab = check_samples(clex->tab, ineq, 0);
2252 return;
2253 error:
2254 isl_tab_free(clex->tab);
2255 clex->tab = NULL;
2258 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2260 struct isl_context *context = (struct isl_context *)user;
2261 context_lex_add_ineq(context, ineq, 0, 0);
2262 return context->op->is_ok(context) ? 0 : -1;
2265 /* Check which signs can be obtained by "ineq" on all the currently
2266 * active sample values. See row_sign for more information.
2268 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2269 int strict)
2271 int i;
2272 int sgn;
2273 isl_int tmp;
2274 enum isl_tab_row_sign res = isl_tab_row_unknown;
2276 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2277 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2278 return isl_tab_row_unknown);
2280 isl_int_init(tmp);
2281 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2282 isl_seq_inner_product(tab->samples->row[i], ineq,
2283 1 + tab->n_var, &tmp);
2284 sgn = isl_int_sgn(tmp);
2285 if (sgn > 0 || (sgn == 0 && strict)) {
2286 if (res == isl_tab_row_unknown)
2287 res = isl_tab_row_pos;
2288 if (res == isl_tab_row_neg)
2289 res = isl_tab_row_any;
2291 if (sgn < 0) {
2292 if (res == isl_tab_row_unknown)
2293 res = isl_tab_row_neg;
2294 if (res == isl_tab_row_pos)
2295 res = isl_tab_row_any;
2297 if (res == isl_tab_row_any)
2298 break;
2300 isl_int_clear(tmp);
2302 return res;
2305 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2306 isl_int *ineq, int strict)
2308 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2309 return tab_ineq_sign(clex->tab, ineq, strict);
2312 /* Check whether "ineq" can be added to the tableau without rendering
2313 * it infeasible.
2315 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2317 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2318 struct isl_tab_undo *snap;
2319 int feasible;
2321 if (!clex->tab)
2322 return -1;
2324 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2325 return -1;
2327 snap = isl_tab_snap(clex->tab);
2328 if (isl_tab_push_basis(clex->tab) < 0)
2329 return -1;
2330 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2331 clex->tab = check_integer_feasible(clex->tab);
2332 if (!clex->tab)
2333 return -1;
2334 feasible = !clex->tab->empty;
2335 if (isl_tab_rollback(clex->tab, snap) < 0)
2336 return -1;
2338 return feasible;
2341 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2342 struct isl_vec *div)
2344 return get_div(tab, context, div);
2347 /* Add a div specified by "div" to the context tableau and return
2348 * 1 if the div is obviously non-negative.
2349 * context_tab_add_div will always return 1, because all variables
2350 * in a isl_context_lex tableau are non-negative.
2351 * However, if we are using a big parameter in the context, then this only
2352 * reflects the non-negativity of the variable used to _encode_ the
2353 * div, i.e., div' = M + div, so we can't draw any conclusions.
2355 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2357 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2358 int nonneg;
2359 nonneg = context_tab_add_div(clex->tab, div,
2360 context_lex_add_ineq_wrap, context);
2361 if (nonneg < 0)
2362 return -1;
2363 if (clex->tab->M)
2364 return 0;
2365 return nonneg;
2368 static int context_lex_detect_equalities(struct isl_context *context,
2369 struct isl_tab *tab)
2371 return 0;
2374 static int context_lex_best_split(struct isl_context *context,
2375 struct isl_tab *tab)
2377 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2378 struct isl_tab_undo *snap;
2379 int r;
2381 snap = isl_tab_snap(clex->tab);
2382 if (isl_tab_push_basis(clex->tab) < 0)
2383 return -1;
2384 r = best_split(tab, clex->tab);
2386 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2387 return -1;
2389 return r;
2392 static int context_lex_is_empty(struct isl_context *context)
2394 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2395 if (!clex->tab)
2396 return -1;
2397 return clex->tab->empty;
2400 static void *context_lex_save(struct isl_context *context)
2402 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2403 struct isl_tab_undo *snap;
2405 snap = isl_tab_snap(clex->tab);
2406 if (isl_tab_push_basis(clex->tab) < 0)
2407 return NULL;
2408 if (isl_tab_save_samples(clex->tab) < 0)
2409 return NULL;
2411 return snap;
2414 static void context_lex_restore(struct isl_context *context, void *save)
2416 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2417 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2418 isl_tab_free(clex->tab);
2419 clex->tab = NULL;
2423 static void context_lex_discard(void *save)
2427 static int context_lex_is_ok(struct isl_context *context)
2429 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2430 return !!clex->tab;
2433 /* For each variable in the context tableau, check if the variable can
2434 * only attain non-negative values. If so, mark the parameter as non-negative
2435 * in the main tableau. This allows for a more direct identification of some
2436 * cases of violated constraints.
2438 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2439 struct isl_tab *context_tab)
2441 int i;
2442 struct isl_tab_undo *snap;
2443 struct isl_vec *ineq = NULL;
2444 struct isl_tab_var *var;
2445 int n;
2447 if (context_tab->n_var == 0)
2448 return tab;
2450 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2451 if (!ineq)
2452 goto error;
2454 if (isl_tab_extend_cons(context_tab, 1) < 0)
2455 goto error;
2457 snap = isl_tab_snap(context_tab);
2459 n = 0;
2460 isl_seq_clr(ineq->el, ineq->size);
2461 for (i = 0; i < context_tab->n_var; ++i) {
2462 isl_int_set_si(ineq->el[1 + i], 1);
2463 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2464 goto error;
2465 var = &context_tab->con[context_tab->n_con - 1];
2466 if (!context_tab->empty &&
2467 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2468 int j = i;
2469 if (i >= tab->n_param)
2470 j = i - tab->n_param + tab->n_var - tab->n_div;
2471 tab->var[j].is_nonneg = 1;
2472 n++;
2474 isl_int_set_si(ineq->el[1 + i], 0);
2475 if (isl_tab_rollback(context_tab, snap) < 0)
2476 goto error;
2479 if (context_tab->M && n == context_tab->n_var) {
2480 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2481 context_tab->M = 0;
2484 isl_vec_free(ineq);
2485 return tab;
2486 error:
2487 isl_vec_free(ineq);
2488 isl_tab_free(tab);
2489 return NULL;
2492 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2493 struct isl_context *context, struct isl_tab *tab)
2495 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2496 struct isl_tab_undo *snap;
2498 if (!tab)
2499 return NULL;
2501 snap = isl_tab_snap(clex->tab);
2502 if (isl_tab_push_basis(clex->tab) < 0)
2503 goto error;
2505 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2507 if (isl_tab_rollback(clex->tab, snap) < 0)
2508 goto error;
2510 return tab;
2511 error:
2512 isl_tab_free(tab);
2513 return NULL;
2516 static void context_lex_invalidate(struct isl_context *context)
2518 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2519 isl_tab_free(clex->tab);
2520 clex->tab = NULL;
2523 static void context_lex_free(struct isl_context *context)
2525 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2526 isl_tab_free(clex->tab);
2527 free(clex);
2530 struct isl_context_op isl_context_lex_op = {
2531 context_lex_detect_nonnegative_parameters,
2532 context_lex_peek_basic_set,
2533 context_lex_peek_tab,
2534 context_lex_add_eq,
2535 context_lex_add_ineq,
2536 context_lex_ineq_sign,
2537 context_lex_test_ineq,
2538 context_lex_get_div,
2539 context_lex_add_div,
2540 context_lex_detect_equalities,
2541 context_lex_best_split,
2542 context_lex_is_empty,
2543 context_lex_is_ok,
2544 context_lex_save,
2545 context_lex_restore,
2546 context_lex_discard,
2547 context_lex_invalidate,
2548 context_lex_free,
2551 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2553 struct isl_tab *tab;
2555 if (!bset)
2556 return NULL;
2557 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2558 if (!tab)
2559 goto error;
2560 if (isl_tab_track_bset(tab, bset) < 0)
2561 goto error;
2562 tab = isl_tab_init_samples(tab);
2563 return tab;
2564 error:
2565 isl_basic_set_free(bset);
2566 return NULL;
2569 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2571 struct isl_context_lex *clex;
2573 if (!dom)
2574 return NULL;
2576 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2577 if (!clex)
2578 return NULL;
2580 clex->context.op = &isl_context_lex_op;
2582 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2583 if (restore_lexmin(clex->tab) < 0)
2584 goto error;
2585 clex->tab = check_integer_feasible(clex->tab);
2586 if (!clex->tab)
2587 goto error;
2589 return &clex->context;
2590 error:
2591 clex->context.op->free(&clex->context);
2592 return NULL;
2595 struct isl_context_gbr {
2596 struct isl_context context;
2597 struct isl_tab *tab;
2598 struct isl_tab *shifted;
2599 struct isl_tab *cone;
2602 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2603 struct isl_context *context, struct isl_tab *tab)
2605 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2606 if (!tab)
2607 return NULL;
2608 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2611 static struct isl_basic_set *context_gbr_peek_basic_set(
2612 struct isl_context *context)
2614 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2615 if (!cgbr->tab)
2616 return NULL;
2617 return isl_tab_peek_bset(cgbr->tab);
2620 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2622 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2623 return cgbr->tab;
2626 /* Initialize the "shifted" tableau of the context, which
2627 * contains the constraints of the original tableau shifted
2628 * by the sum of all negative coefficients. This ensures
2629 * that any rational point in the shifted tableau can
2630 * be rounded up to yield an integer point in the original tableau.
2632 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2634 int i, j;
2635 struct isl_vec *cst;
2636 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2637 unsigned dim = isl_basic_set_total_dim(bset);
2639 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2640 if (!cst)
2641 return;
2643 for (i = 0; i < bset->n_ineq; ++i) {
2644 isl_int_set(cst->el[i], bset->ineq[i][0]);
2645 for (j = 0; j < dim; ++j) {
2646 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2647 continue;
2648 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2649 bset->ineq[i][1 + j]);
2653 cgbr->shifted = isl_tab_from_basic_set(bset, 0);
2655 for (i = 0; i < bset->n_ineq; ++i)
2656 isl_int_set(bset->ineq[i][0], cst->el[i]);
2658 isl_vec_free(cst);
2661 /* Check if the shifted tableau is non-empty, and if so
2662 * use the sample point to construct an integer point
2663 * of the context tableau.
2665 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2667 struct isl_vec *sample;
2669 if (!cgbr->shifted)
2670 gbr_init_shifted(cgbr);
2671 if (!cgbr->shifted)
2672 return NULL;
2673 if (cgbr->shifted->empty)
2674 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2676 sample = isl_tab_get_sample_value(cgbr->shifted);
2677 sample = isl_vec_ceil(sample);
2679 return sample;
2682 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2684 int i;
2686 if (!bset)
2687 return NULL;
2689 for (i = 0; i < bset->n_eq; ++i)
2690 isl_int_set_si(bset->eq[i][0], 0);
2692 for (i = 0; i < bset->n_ineq; ++i)
2693 isl_int_set_si(bset->ineq[i][0], 0);
2695 return bset;
2698 static int use_shifted(struct isl_context_gbr *cgbr)
2700 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2703 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2705 struct isl_basic_set *bset;
2706 struct isl_basic_set *cone;
2708 if (isl_tab_sample_is_integer(cgbr->tab))
2709 return isl_tab_get_sample_value(cgbr->tab);
2711 if (use_shifted(cgbr)) {
2712 struct isl_vec *sample;
2714 sample = gbr_get_shifted_sample(cgbr);
2715 if (!sample || sample->size > 0)
2716 return sample;
2718 isl_vec_free(sample);
2721 if (!cgbr->cone) {
2722 bset = isl_tab_peek_bset(cgbr->tab);
2723 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2724 if (!cgbr->cone)
2725 return NULL;
2726 if (isl_tab_track_bset(cgbr->cone,
2727 isl_basic_set_copy(bset)) < 0)
2728 return NULL;
2730 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2731 return NULL;
2733 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2734 struct isl_vec *sample;
2735 struct isl_tab_undo *snap;
2737 if (cgbr->tab->basis) {
2738 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2739 isl_mat_free(cgbr->tab->basis);
2740 cgbr->tab->basis = NULL;
2742 cgbr->tab->n_zero = 0;
2743 cgbr->tab->n_unbounded = 0;
2746 snap = isl_tab_snap(cgbr->tab);
2748 sample = isl_tab_sample(cgbr->tab);
2750 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2751 isl_vec_free(sample);
2752 return NULL;
2755 return sample;
2758 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2759 cone = drop_constant_terms(cone);
2760 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2761 cone = isl_basic_set_underlying_set(cone);
2762 cone = isl_basic_set_gauss(cone, NULL);
2764 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2765 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2766 bset = isl_basic_set_underlying_set(bset);
2767 bset = isl_basic_set_gauss(bset, NULL);
2769 return isl_basic_set_sample_with_cone(bset, cone);
2772 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2774 struct isl_vec *sample;
2776 if (!cgbr->tab)
2777 return;
2779 if (cgbr->tab->empty)
2780 return;
2782 sample = gbr_get_sample(cgbr);
2783 if (!sample)
2784 goto error;
2786 if (sample->size == 0) {
2787 isl_vec_free(sample);
2788 if (isl_tab_mark_empty(cgbr->tab) < 0)
2789 goto error;
2790 return;
2793 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2795 return;
2796 error:
2797 isl_tab_free(cgbr->tab);
2798 cgbr->tab = NULL;
2801 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2803 if (!tab)
2804 return NULL;
2806 if (isl_tab_extend_cons(tab, 2) < 0)
2807 goto error;
2809 if (isl_tab_add_eq(tab, eq) < 0)
2810 goto error;
2812 return tab;
2813 error:
2814 isl_tab_free(tab);
2815 return NULL;
2818 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2819 int check, int update)
2821 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2823 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2825 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2826 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2827 goto error;
2828 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2829 goto error;
2832 if (check) {
2833 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2834 if (v < 0)
2835 goto error;
2836 if (!v)
2837 check_gbr_integer_feasible(cgbr);
2839 if (update)
2840 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2841 return;
2842 error:
2843 isl_tab_free(cgbr->tab);
2844 cgbr->tab = NULL;
2847 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2849 if (!cgbr->tab)
2850 return;
2852 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2853 goto error;
2855 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2856 goto error;
2858 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2859 int i;
2860 unsigned dim;
2861 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2863 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2864 goto error;
2866 for (i = 0; i < dim; ++i) {
2867 if (!isl_int_is_neg(ineq[1 + i]))
2868 continue;
2869 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2872 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2873 goto error;
2875 for (i = 0; i < dim; ++i) {
2876 if (!isl_int_is_neg(ineq[1 + i]))
2877 continue;
2878 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2882 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2883 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2884 goto error;
2885 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2886 goto error;
2889 return;
2890 error:
2891 isl_tab_free(cgbr->tab);
2892 cgbr->tab = NULL;
2895 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2896 int check, int update)
2898 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2900 add_gbr_ineq(cgbr, ineq);
2901 if (!cgbr->tab)
2902 return;
2904 if (check) {
2905 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2906 if (v < 0)
2907 goto error;
2908 if (!v)
2909 check_gbr_integer_feasible(cgbr);
2911 if (update)
2912 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2913 return;
2914 error:
2915 isl_tab_free(cgbr->tab);
2916 cgbr->tab = NULL;
2919 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2921 struct isl_context *context = (struct isl_context *)user;
2922 context_gbr_add_ineq(context, ineq, 0, 0);
2923 return context->op->is_ok(context) ? 0 : -1;
2926 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2927 isl_int *ineq, int strict)
2929 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2930 return tab_ineq_sign(cgbr->tab, ineq, strict);
2933 /* Check whether "ineq" can be added to the tableau without rendering
2934 * it infeasible.
2936 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2938 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2939 struct isl_tab_undo *snap;
2940 struct isl_tab_undo *shifted_snap = NULL;
2941 struct isl_tab_undo *cone_snap = NULL;
2942 int feasible;
2944 if (!cgbr->tab)
2945 return -1;
2947 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2948 return -1;
2950 snap = isl_tab_snap(cgbr->tab);
2951 if (cgbr->shifted)
2952 shifted_snap = isl_tab_snap(cgbr->shifted);
2953 if (cgbr->cone)
2954 cone_snap = isl_tab_snap(cgbr->cone);
2955 add_gbr_ineq(cgbr, ineq);
2956 check_gbr_integer_feasible(cgbr);
2957 if (!cgbr->tab)
2958 return -1;
2959 feasible = !cgbr->tab->empty;
2960 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2961 return -1;
2962 if (shifted_snap) {
2963 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2964 return -1;
2965 } else if (cgbr->shifted) {
2966 isl_tab_free(cgbr->shifted);
2967 cgbr->shifted = NULL;
2969 if (cone_snap) {
2970 if (isl_tab_rollback(cgbr->cone, cone_snap))
2971 return -1;
2972 } else if (cgbr->cone) {
2973 isl_tab_free(cgbr->cone);
2974 cgbr->cone = NULL;
2977 return feasible;
2980 /* Return the column of the last of the variables associated to
2981 * a column that has a non-zero coefficient.
2982 * This function is called in a context where only coefficients
2983 * of parameters or divs can be non-zero.
2985 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2987 int i;
2988 int col;
2990 if (tab->n_var == 0)
2991 return -1;
2993 for (i = tab->n_var - 1; i >= 0; --i) {
2994 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2995 continue;
2996 if (tab->var[i].is_row)
2997 continue;
2998 col = tab->var[i].index;
2999 if (!isl_int_is_zero(p[col]))
3000 return col;
3003 return -1;
3006 /* Look through all the recently added equalities in the context
3007 * to see if we can propagate any of them to the main tableau.
3009 * The newly added equalities in the context are encoded as pairs
3010 * of inequalities starting at inequality "first".
3012 * We tentatively add each of these equalities to the main tableau
3013 * and if this happens to result in a row with a final coefficient
3014 * that is one or negative one, we use it to kill a column
3015 * in the main tableau. Otherwise, we discard the tentatively
3016 * added row.
3018 static void propagate_equalities(struct isl_context_gbr *cgbr,
3019 struct isl_tab *tab, unsigned first)
3021 int i;
3022 struct isl_vec *eq = NULL;
3024 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
3025 if (!eq)
3026 goto error;
3028 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
3029 goto error;
3031 isl_seq_clr(eq->el + 1 + tab->n_param,
3032 tab->n_var - tab->n_param - tab->n_div);
3033 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
3034 int j;
3035 int r;
3036 struct isl_tab_undo *snap;
3037 snap = isl_tab_snap(tab);
3039 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
3040 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
3041 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3042 tab->n_div);
3044 r = isl_tab_add_row(tab, eq->el);
3045 if (r < 0)
3046 goto error;
3047 r = tab->con[r].index;
3048 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3049 if (j < 0 || j < tab->n_dead ||
3050 !isl_int_is_one(tab->mat->row[r][0]) ||
3051 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3052 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3053 if (isl_tab_rollback(tab, snap) < 0)
3054 goto error;
3055 continue;
3057 if (isl_tab_pivot(tab, r, j) < 0)
3058 goto error;
3059 if (isl_tab_kill_col(tab, j) < 0)
3060 goto error;
3062 if (restore_lexmin(tab) < 0)
3063 goto error;
3066 isl_vec_free(eq);
3068 return;
3069 error:
3070 isl_vec_free(eq);
3071 isl_tab_free(cgbr->tab);
3072 cgbr->tab = NULL;
3075 static int context_gbr_detect_equalities(struct isl_context *context,
3076 struct isl_tab *tab)
3078 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3079 struct isl_ctx *ctx;
3080 unsigned n_ineq;
3082 ctx = cgbr->tab->mat->ctx;
3084 if (!cgbr->cone) {
3085 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3086 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3087 if (!cgbr->cone)
3088 goto error;
3089 if (isl_tab_track_bset(cgbr->cone,
3090 isl_basic_set_copy(bset)) < 0)
3091 goto error;
3093 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3094 goto error;
3096 n_ineq = cgbr->tab->bmap->n_ineq;
3097 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3098 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3099 propagate_equalities(cgbr, tab, n_ineq);
3101 return 0;
3102 error:
3103 isl_tab_free(cgbr->tab);
3104 cgbr->tab = NULL;
3105 return -1;
3108 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3109 struct isl_vec *div)
3111 return get_div(tab, context, div);
3114 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3116 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3117 if (cgbr->cone) {
3118 int k;
3120 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3121 return -1;
3122 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3123 return -1;
3124 if (isl_tab_allocate_var(cgbr->cone) <0)
3125 return -1;
3127 cgbr->cone->bmap = isl_basic_map_extend_space(cgbr->cone->bmap,
3128 isl_basic_map_get_space(cgbr->cone->bmap), 1, 0, 2);
3129 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3130 if (k < 0)
3131 return -1;
3132 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3133 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3134 return -1;
3136 return context_tab_add_div(cgbr->tab, div,
3137 context_gbr_add_ineq_wrap, context);
3140 static int context_gbr_best_split(struct isl_context *context,
3141 struct isl_tab *tab)
3143 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3144 struct isl_tab_undo *snap;
3145 int r;
3147 snap = isl_tab_snap(cgbr->tab);
3148 r = best_split(tab, cgbr->tab);
3150 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3151 return -1;
3153 return r;
3156 static int context_gbr_is_empty(struct isl_context *context)
3158 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3159 if (!cgbr->tab)
3160 return -1;
3161 return cgbr->tab->empty;
3164 struct isl_gbr_tab_undo {
3165 struct isl_tab_undo *tab_snap;
3166 struct isl_tab_undo *shifted_snap;
3167 struct isl_tab_undo *cone_snap;
3170 static void *context_gbr_save(struct isl_context *context)
3172 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3173 struct isl_gbr_tab_undo *snap;
3175 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3176 if (!snap)
3177 return NULL;
3179 snap->tab_snap = isl_tab_snap(cgbr->tab);
3180 if (isl_tab_save_samples(cgbr->tab) < 0)
3181 goto error;
3183 if (cgbr->shifted)
3184 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3185 else
3186 snap->shifted_snap = NULL;
3188 if (cgbr->cone)
3189 snap->cone_snap = isl_tab_snap(cgbr->cone);
3190 else
3191 snap->cone_snap = NULL;
3193 return snap;
3194 error:
3195 free(snap);
3196 return NULL;
3199 static void context_gbr_restore(struct isl_context *context, void *save)
3201 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3202 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3203 if (!snap)
3204 goto error;
3205 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3206 isl_tab_free(cgbr->tab);
3207 cgbr->tab = NULL;
3210 if (snap->shifted_snap) {
3211 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3212 goto error;
3213 } else if (cgbr->shifted) {
3214 isl_tab_free(cgbr->shifted);
3215 cgbr->shifted = NULL;
3218 if (snap->cone_snap) {
3219 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3220 goto error;
3221 } else if (cgbr->cone) {
3222 isl_tab_free(cgbr->cone);
3223 cgbr->cone = NULL;
3226 free(snap);
3228 return;
3229 error:
3230 free(snap);
3231 isl_tab_free(cgbr->tab);
3232 cgbr->tab = NULL;
3235 static void context_gbr_discard(void *save)
3237 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3238 free(snap);
3241 static int context_gbr_is_ok(struct isl_context *context)
3243 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3244 return !!cgbr->tab;
3247 static void context_gbr_invalidate(struct isl_context *context)
3249 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3250 isl_tab_free(cgbr->tab);
3251 cgbr->tab = NULL;
3254 static void context_gbr_free(struct isl_context *context)
3256 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3257 isl_tab_free(cgbr->tab);
3258 isl_tab_free(cgbr->shifted);
3259 isl_tab_free(cgbr->cone);
3260 free(cgbr);
3263 struct isl_context_op isl_context_gbr_op = {
3264 context_gbr_detect_nonnegative_parameters,
3265 context_gbr_peek_basic_set,
3266 context_gbr_peek_tab,
3267 context_gbr_add_eq,
3268 context_gbr_add_ineq,
3269 context_gbr_ineq_sign,
3270 context_gbr_test_ineq,
3271 context_gbr_get_div,
3272 context_gbr_add_div,
3273 context_gbr_detect_equalities,
3274 context_gbr_best_split,
3275 context_gbr_is_empty,
3276 context_gbr_is_ok,
3277 context_gbr_save,
3278 context_gbr_restore,
3279 context_gbr_discard,
3280 context_gbr_invalidate,
3281 context_gbr_free,
3284 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3286 struct isl_context_gbr *cgbr;
3288 if (!dom)
3289 return NULL;
3291 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3292 if (!cgbr)
3293 return NULL;
3295 cgbr->context.op = &isl_context_gbr_op;
3297 cgbr->shifted = NULL;
3298 cgbr->cone = NULL;
3299 cgbr->tab = isl_tab_from_basic_set(dom, 1);
3300 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3301 if (!cgbr->tab)
3302 goto error;
3303 check_gbr_integer_feasible(cgbr);
3305 return &cgbr->context;
3306 error:
3307 cgbr->context.op->free(&cgbr->context);
3308 return NULL;
3311 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3313 if (!dom)
3314 return NULL;
3316 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3317 return isl_context_lex_alloc(dom);
3318 else
3319 return isl_context_gbr_alloc(dom);
3322 /* Construct an isl_sol_map structure for accumulating the solution.
3323 * If track_empty is set, then we also keep track of the parts
3324 * of the context where there is no solution.
3325 * If max is set, then we are solving a maximization, rather than
3326 * a minimization problem, which means that the variables in the
3327 * tableau have value "M - x" rather than "M + x".
3329 static struct isl_sol *sol_map_init(struct isl_basic_map *bmap,
3330 struct isl_basic_set *dom, int track_empty, int max)
3332 struct isl_sol_map *sol_map = NULL;
3334 if (!bmap)
3335 goto error;
3337 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3338 if (!sol_map)
3339 goto error;
3341 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3342 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3343 sol_map->sol.dec_level.sol = &sol_map->sol;
3344 sol_map->sol.max = max;
3345 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3346 sol_map->sol.add = &sol_map_add_wrap;
3347 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3348 sol_map->sol.free = &sol_map_free_wrap;
3349 sol_map->map = isl_map_alloc_space(isl_basic_map_get_space(bmap), 1,
3350 ISL_MAP_DISJOINT);
3351 if (!sol_map->map)
3352 goto error;
3354 sol_map->sol.context = isl_context_alloc(dom);
3355 if (!sol_map->sol.context)
3356 goto error;
3358 if (track_empty) {
3359 sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
3360 1, ISL_SET_DISJOINT);
3361 if (!sol_map->empty)
3362 goto error;
3365 isl_basic_set_free(dom);
3366 return &sol_map->sol;
3367 error:
3368 isl_basic_set_free(dom);
3369 sol_map_free(sol_map);
3370 return NULL;
3373 /* Check whether all coefficients of (non-parameter) variables
3374 * are non-positive, meaning that no pivots can be performed on the row.
3376 static int is_critical(struct isl_tab *tab, int row)
3378 int j;
3379 unsigned off = 2 + tab->M;
3381 for (j = tab->n_dead; j < tab->n_col; ++j) {
3382 if (tab->col_var[j] >= 0 &&
3383 (tab->col_var[j] < tab->n_param ||
3384 tab->col_var[j] >= tab->n_var - tab->n_div))
3385 continue;
3387 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3388 return 0;
3391 return 1;
3394 /* Check whether the inequality represented by vec is strict over the integers,
3395 * i.e., there are no integer values satisfying the constraint with
3396 * equality. This happens if the gcd of the coefficients is not a divisor
3397 * of the constant term. If so, scale the constraint down by the gcd
3398 * of the coefficients.
3400 static int is_strict(struct isl_vec *vec)
3402 isl_int gcd;
3403 int strict = 0;
3405 isl_int_init(gcd);
3406 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3407 if (!isl_int_is_one(gcd)) {
3408 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3409 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3410 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3412 isl_int_clear(gcd);
3414 return strict;
3417 /* Determine the sign of the given row of the main tableau.
3418 * The result is one of
3419 * isl_tab_row_pos: always non-negative; no pivot needed
3420 * isl_tab_row_neg: always non-positive; pivot
3421 * isl_tab_row_any: can be both positive and negative; split
3423 * We first handle some simple cases
3424 * - the row sign may be known already
3425 * - the row may be obviously non-negative
3426 * - the parametric constant may be equal to that of another row
3427 * for which we know the sign. This sign will be either "pos" or
3428 * "any". If it had been "neg" then we would have pivoted before.
3430 * If none of these cases hold, we check the value of the row for each
3431 * of the currently active samples. Based on the signs of these values
3432 * we make an initial determination of the sign of the row.
3434 * all zero -> unk(nown)
3435 * all non-negative -> pos
3436 * all non-positive -> neg
3437 * both negative and positive -> all
3439 * If we end up with "all", we are done.
3440 * Otherwise, we perform a check for positive and/or negative
3441 * values as follows.
3443 * samples neg unk pos
3444 * <0 ? Y N Y N
3445 * pos any pos
3446 * >0 ? Y N Y N
3447 * any neg any neg
3449 * There is no special sign for "zero", because we can usually treat zero
3450 * as either non-negative or non-positive, whatever works out best.
3451 * However, if the row is "critical", meaning that pivoting is impossible
3452 * then we don't want to limp zero with the non-positive case, because
3453 * then we we would lose the solution for those values of the parameters
3454 * where the value of the row is zero. Instead, we treat 0 as non-negative
3455 * ensuring a split if the row can attain both zero and negative values.
3456 * The same happens when the original constraint was one that could not
3457 * be satisfied with equality by any integer values of the parameters.
3458 * In this case, we normalize the constraint, but then a value of zero
3459 * for the normalized constraint is actually a positive value for the
3460 * original constraint, so again we need to treat zero as non-negative.
3461 * In both these cases, we have the following decision tree instead:
3463 * all non-negative -> pos
3464 * all negative -> neg
3465 * both negative and non-negative -> all
3467 * samples neg pos
3468 * <0 ? Y N
3469 * any pos
3470 * >=0 ? Y N
3471 * any neg
3473 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3474 struct isl_sol *sol, int row)
3476 struct isl_vec *ineq = NULL;
3477 enum isl_tab_row_sign res = isl_tab_row_unknown;
3478 int critical;
3479 int strict;
3480 int row2;
3482 if (tab->row_sign[row] != isl_tab_row_unknown)
3483 return tab->row_sign[row];
3484 if (is_obviously_nonneg(tab, row))
3485 return isl_tab_row_pos;
3486 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3487 if (tab->row_sign[row2] == isl_tab_row_unknown)
3488 continue;
3489 if (identical_parameter_line(tab, row, row2))
3490 return tab->row_sign[row2];
3493 critical = is_critical(tab, row);
3495 ineq = get_row_parameter_ineq(tab, row);
3496 if (!ineq)
3497 goto error;
3499 strict = is_strict(ineq);
3501 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3502 critical || strict);
3504 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3505 /* test for negative values */
3506 int feasible;
3507 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3508 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3510 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3511 if (feasible < 0)
3512 goto error;
3513 if (!feasible)
3514 res = isl_tab_row_pos;
3515 else
3516 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3517 : isl_tab_row_any;
3518 if (res == isl_tab_row_neg) {
3519 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3520 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3524 if (res == isl_tab_row_neg) {
3525 /* test for positive values */
3526 int feasible;
3527 if (!critical && !strict)
3528 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3530 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3531 if (feasible < 0)
3532 goto error;
3533 if (feasible)
3534 res = isl_tab_row_any;
3537 isl_vec_free(ineq);
3538 return res;
3539 error:
3540 isl_vec_free(ineq);
3541 return isl_tab_row_unknown;
3544 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3546 /* Find solutions for values of the parameters that satisfy the given
3547 * inequality.
3549 * We currently take a snapshot of the context tableau that is reset
3550 * when we return from this function, while we make a copy of the main
3551 * tableau, leaving the original main tableau untouched.
3552 * These are fairly arbitrary choices. Making a copy also of the context
3553 * tableau would obviate the need to undo any changes made to it later,
3554 * while taking a snapshot of the main tableau could reduce memory usage.
3555 * If we were to switch to taking a snapshot of the main tableau,
3556 * we would have to keep in mind that we need to save the row signs
3557 * and that we need to do this before saving the current basis
3558 * such that the basis has been restore before we restore the row signs.
3560 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3562 void *saved;
3564 if (!sol->context)
3565 goto error;
3566 saved = sol->context->op->save(sol->context);
3568 tab = isl_tab_dup(tab);
3569 if (!tab)
3570 goto error;
3572 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3574 find_solutions(sol, tab);
3576 if (!sol->error)
3577 sol->context->op->restore(sol->context, saved);
3578 else
3579 sol->context->op->discard(saved);
3580 return;
3581 error:
3582 sol->error = 1;
3585 /* Record the absence of solutions for those values of the parameters
3586 * that do not satisfy the given inequality with equality.
3588 static void no_sol_in_strict(struct isl_sol *sol,
3589 struct isl_tab *tab, struct isl_vec *ineq)
3591 int empty;
3592 void *saved;
3594 if (!sol->context || sol->error)
3595 goto error;
3596 saved = sol->context->op->save(sol->context);
3598 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3600 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3601 if (!sol->context)
3602 goto error;
3604 empty = tab->empty;
3605 tab->empty = 1;
3606 sol_add(sol, tab);
3607 tab->empty = empty;
3609 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3611 sol->context->op->restore(sol->context, saved);
3612 return;
3613 error:
3614 sol->error = 1;
3617 /* Compute the lexicographic minimum of the set represented by the main
3618 * tableau "tab" within the context "sol->context_tab".
3619 * On entry the sample value of the main tableau is lexicographically
3620 * less than or equal to this lexicographic minimum.
3621 * Pivots are performed until a feasible point is found, which is then
3622 * necessarily equal to the minimum, or until the tableau is found to
3623 * be infeasible. Some pivots may need to be performed for only some
3624 * feasible values of the context tableau. If so, the context tableau
3625 * is split into a part where the pivot is needed and a part where it is not.
3627 * Whenever we enter the main loop, the main tableau is such that no
3628 * "obvious" pivots need to be performed on it, where "obvious" means
3629 * that the given row can be seen to be negative without looking at
3630 * the context tableau. In particular, for non-parametric problems,
3631 * no pivots need to be performed on the main tableau.
3632 * The caller of find_solutions is responsible for making this property
3633 * hold prior to the first iteration of the loop, while restore_lexmin
3634 * is called before every other iteration.
3636 * Inside the main loop, we first examine the signs of the rows of
3637 * the main tableau within the context of the context tableau.
3638 * If we find a row that is always non-positive for all values of
3639 * the parameters satisfying the context tableau and negative for at
3640 * least one value of the parameters, we perform the appropriate pivot
3641 * and start over. An exception is the case where no pivot can be
3642 * performed on the row. In this case, we require that the sign of
3643 * the row is negative for all values of the parameters (rather than just
3644 * non-positive). This special case is handled inside row_sign, which
3645 * will say that the row can have any sign if it determines that it can
3646 * attain both negative and zero values.
3648 * If we can't find a row that always requires a pivot, but we can find
3649 * one or more rows that require a pivot for some values of the parameters
3650 * (i.e., the row can attain both positive and negative signs), then we split
3651 * the context tableau into two parts, one where we force the sign to be
3652 * non-negative and one where we force is to be negative.
3653 * The non-negative part is handled by a recursive call (through find_in_pos).
3654 * Upon returning from this call, we continue with the negative part and
3655 * perform the required pivot.
3657 * If no such rows can be found, all rows are non-negative and we have
3658 * found a (rational) feasible point. If we only wanted a rational point
3659 * then we are done.
3660 * Otherwise, we check if all values of the sample point of the tableau
3661 * are integral for the variables. If so, we have found the minimal
3662 * integral point and we are done.
3663 * If the sample point is not integral, then we need to make a distinction
3664 * based on whether the constant term is non-integral or the coefficients
3665 * of the parameters. Furthermore, in order to decide how to handle
3666 * the non-integrality, we also need to know whether the coefficients
3667 * of the other columns in the tableau are integral. This leads
3668 * to the following table. The first two rows do not correspond
3669 * to a non-integral sample point and are only mentioned for completeness.
3671 * constant parameters other
3673 * int int int |
3674 * int int rat | -> no problem
3676 * rat int int -> fail
3678 * rat int rat -> cut
3680 * int rat rat |
3681 * rat rat rat | -> parametric cut
3683 * int rat int |
3684 * rat rat int | -> split context
3686 * If the parametric constant is completely integral, then there is nothing
3687 * to be done. If the constant term is non-integral, but all the other
3688 * coefficient are integral, then there is nothing that can be done
3689 * and the tableau has no integral solution.
3690 * If, on the other hand, one or more of the other columns have rational
3691 * coefficients, but the parameter coefficients are all integral, then
3692 * we can perform a regular (non-parametric) cut.
3693 * Finally, if there is any parameter coefficient that is non-integral,
3694 * then we need to involve the context tableau. There are two cases here.
3695 * If at least one other column has a rational coefficient, then we
3696 * can perform a parametric cut in the main tableau by adding a new
3697 * integer division in the context tableau.
3698 * If all other columns have integral coefficients, then we need to
3699 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3700 * is always integral. We do this by introducing an integer division
3701 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3702 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3703 * Since q is expressed in the tableau as
3704 * c + \sum a_i y_i - m q >= 0
3705 * -c - \sum a_i y_i + m q + m - 1 >= 0
3706 * it is sufficient to add the inequality
3707 * -c - \sum a_i y_i + m q >= 0
3708 * In the part of the context where this inequality does not hold, the
3709 * main tableau is marked as being empty.
3711 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3713 struct isl_context *context;
3714 int r;
3716 if (!tab || sol->error)
3717 goto error;
3719 context = sol->context;
3721 if (tab->empty)
3722 goto done;
3723 if (context->op->is_empty(context))
3724 goto done;
3726 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
3727 int flags;
3728 int row;
3729 enum isl_tab_row_sign sgn;
3730 int split = -1;
3731 int n_split = 0;
3733 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3734 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3735 continue;
3736 sgn = row_sign(tab, sol, row);
3737 if (!sgn)
3738 goto error;
3739 tab->row_sign[row] = sgn;
3740 if (sgn == isl_tab_row_any)
3741 n_split++;
3742 if (sgn == isl_tab_row_any && split == -1)
3743 split = row;
3744 if (sgn == isl_tab_row_neg)
3745 break;
3747 if (row < tab->n_row)
3748 continue;
3749 if (split != -1) {
3750 struct isl_vec *ineq;
3751 if (n_split != 1)
3752 split = context->op->best_split(context, tab);
3753 if (split < 0)
3754 goto error;
3755 ineq = get_row_parameter_ineq(tab, split);
3756 if (!ineq)
3757 goto error;
3758 is_strict(ineq);
3759 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3760 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3761 continue;
3762 if (tab->row_sign[row] == isl_tab_row_any)
3763 tab->row_sign[row] = isl_tab_row_unknown;
3765 tab->row_sign[split] = isl_tab_row_pos;
3766 sol_inc_level(sol);
3767 find_in_pos(sol, tab, ineq->el);
3768 tab->row_sign[split] = isl_tab_row_neg;
3769 row = split;
3770 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3771 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3772 if (!sol->error)
3773 context->op->add_ineq(context, ineq->el, 0, 1);
3774 isl_vec_free(ineq);
3775 if (sol->error)
3776 goto error;
3777 continue;
3779 if (tab->rational)
3780 break;
3781 row = first_non_integer_row(tab, &flags);
3782 if (row < 0)
3783 break;
3784 if (ISL_FL_ISSET(flags, I_PAR)) {
3785 if (ISL_FL_ISSET(flags, I_VAR)) {
3786 if (isl_tab_mark_empty(tab) < 0)
3787 goto error;
3788 break;
3790 row = add_cut(tab, row);
3791 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3792 struct isl_vec *div;
3793 struct isl_vec *ineq;
3794 int d;
3795 div = get_row_split_div(tab, row);
3796 if (!div)
3797 goto error;
3798 d = context->op->get_div(context, tab, div);
3799 isl_vec_free(div);
3800 if (d < 0)
3801 goto error;
3802 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3803 if (!ineq)
3804 goto error;
3805 sol_inc_level(sol);
3806 no_sol_in_strict(sol, tab, ineq);
3807 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3808 context->op->add_ineq(context, ineq->el, 1, 1);
3809 isl_vec_free(ineq);
3810 if (sol->error || !context->op->is_ok(context))
3811 goto error;
3812 tab = set_row_cst_to_div(tab, row, d);
3813 if (context->op->is_empty(context))
3814 break;
3815 } else
3816 row = add_parametric_cut(tab, row, context);
3817 if (row < 0)
3818 goto error;
3820 if (r < 0)
3821 goto error;
3822 done:
3823 sol_add(sol, tab);
3824 isl_tab_free(tab);
3825 return;
3826 error:
3827 isl_tab_free(tab);
3828 sol->error = 1;
3831 /* Compute the lexicographic minimum of the set represented by the main
3832 * tableau "tab" within the context "sol->context_tab".
3834 * As a preprocessing step, we first transfer all the purely parametric
3835 * equalities from the main tableau to the context tableau, i.e.,
3836 * parameters that have been pivoted to a row.
3837 * These equalities are ignored by the main algorithm, because the
3838 * corresponding rows may not be marked as being non-negative.
3839 * In parts of the context where the added equality does not hold,
3840 * the main tableau is marked as being empty.
3842 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3844 int row;
3846 if (!tab)
3847 goto error;
3849 sol->level = 0;
3851 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3852 int p;
3853 struct isl_vec *eq;
3855 if (tab->row_var[row] < 0)
3856 continue;
3857 if (tab->row_var[row] >= tab->n_param &&
3858 tab->row_var[row] < tab->n_var - tab->n_div)
3859 continue;
3860 if (tab->row_var[row] < tab->n_param)
3861 p = tab->row_var[row];
3862 else
3863 p = tab->row_var[row]
3864 + tab->n_param - (tab->n_var - tab->n_div);
3866 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3867 if (!eq)
3868 goto error;
3869 get_row_parameter_line(tab, row, eq->el);
3870 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3871 eq = isl_vec_normalize(eq);
3873 sol_inc_level(sol);
3874 no_sol_in_strict(sol, tab, eq);
3876 isl_seq_neg(eq->el, eq->el, eq->size);
3877 sol_inc_level(sol);
3878 no_sol_in_strict(sol, tab, eq);
3879 isl_seq_neg(eq->el, eq->el, eq->size);
3881 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3883 isl_vec_free(eq);
3885 if (isl_tab_mark_redundant(tab, row) < 0)
3886 goto error;
3888 if (sol->context->op->is_empty(sol->context))
3889 break;
3891 row = tab->n_redundant - 1;
3894 find_solutions(sol, tab);
3896 sol->level = 0;
3897 sol_pop(sol);
3899 return;
3900 error:
3901 isl_tab_free(tab);
3902 sol->error = 1;
3905 /* Check if integer division "div" of "dom" also occurs in "bmap".
3906 * If so, return its position within the divs.
3907 * If not, return -1.
3909 static int find_context_div(struct isl_basic_map *bmap,
3910 struct isl_basic_set *dom, unsigned div)
3912 int i;
3913 unsigned b_dim = isl_space_dim(bmap->dim, isl_dim_all);
3914 unsigned d_dim = isl_space_dim(dom->dim, isl_dim_all);
3916 if (isl_int_is_zero(dom->div[div][0]))
3917 return -1;
3918 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3919 return -1;
3921 for (i = 0; i < bmap->n_div; ++i) {
3922 if (isl_int_is_zero(bmap->div[i][0]))
3923 continue;
3924 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3925 (b_dim - d_dim) + bmap->n_div) != -1)
3926 continue;
3927 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3928 return i;
3930 return -1;
3933 /* The correspondence between the variables in the main tableau,
3934 * the context tableau, and the input map and domain is as follows.
3935 * The first n_param and the last n_div variables of the main tableau
3936 * form the variables of the context tableau.
3937 * In the basic map, these n_param variables correspond to the
3938 * parameters and the input dimensions. In the domain, they correspond
3939 * to the parameters and the set dimensions.
3940 * The n_div variables correspond to the integer divisions in the domain.
3941 * To ensure that everything lines up, we may need to copy some of the
3942 * integer divisions of the domain to the map. These have to be placed
3943 * in the same order as those in the context and they have to be placed
3944 * after any other integer divisions that the map may have.
3945 * This function performs the required reordering.
3947 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3948 struct isl_basic_set *dom)
3950 int i;
3951 int common = 0;
3952 int other;
3954 for (i = 0; i < dom->n_div; ++i)
3955 if (find_context_div(bmap, dom, i) != -1)
3956 common++;
3957 other = bmap->n_div - common;
3958 if (dom->n_div - common > 0) {
3959 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
3960 dom->n_div - common, 0, 0);
3961 if (!bmap)
3962 return NULL;
3964 for (i = 0; i < dom->n_div; ++i) {
3965 int pos = find_context_div(bmap, dom, i);
3966 if (pos < 0) {
3967 pos = isl_basic_map_alloc_div(bmap);
3968 if (pos < 0)
3969 goto error;
3970 isl_int_set_si(bmap->div[pos][0], 0);
3972 if (pos != other + i)
3973 isl_basic_map_swap_div(bmap, pos, other + i);
3975 return bmap;
3976 error:
3977 isl_basic_map_free(bmap);
3978 return NULL;
3981 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3982 * some obvious symmetries.
3984 * We make sure the divs in the domain are properly ordered,
3985 * because they will be added one by one in the given order
3986 * during the construction of the solution map.
3988 static struct isl_sol *basic_map_partial_lexopt_base(
3989 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3990 __isl_give isl_set **empty, int max,
3991 struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap,
3992 __isl_take isl_basic_set *dom, int track_empty, int max))
3994 struct isl_tab *tab;
3995 struct isl_sol *sol = NULL;
3996 struct isl_context *context;
3998 if (dom->n_div) {
3999 dom = isl_basic_set_order_divs(dom);
4000 bmap = align_context_divs(bmap, dom);
4002 sol = init(bmap, dom, !!empty, max);
4003 if (!sol)
4004 goto error;
4006 context = sol->context;
4007 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
4008 /* nothing */;
4009 else if (isl_basic_map_plain_is_empty(bmap)) {
4010 if (sol->add_empty)
4011 sol->add_empty(sol,
4012 isl_basic_set_copy(context->op->peek_basic_set(context)));
4013 } else {
4014 tab = tab_for_lexmin(bmap,
4015 context->op->peek_basic_set(context), 1, max);
4016 tab = context->op->detect_nonnegative_parameters(context, tab);
4017 find_solutions_main(sol, tab);
4019 if (sol->error)
4020 goto error;
4022 isl_basic_map_free(bmap);
4023 return sol;
4024 error:
4025 sol_free(sol);
4026 isl_basic_map_free(bmap);
4027 return NULL;
4030 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4031 * some obvious symmetries.
4033 * We call basic_map_partial_lexopt_base and extract the results.
4035 static __isl_give isl_map *basic_map_partial_lexopt_base_map(
4036 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4037 __isl_give isl_set **empty, int max)
4039 isl_map *result = NULL;
4040 struct isl_sol *sol;
4041 struct isl_sol_map *sol_map;
4043 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
4044 &sol_map_init);
4045 if (!sol)
4046 return NULL;
4047 sol_map = (struct isl_sol_map *) sol;
4049 result = isl_map_copy(sol_map->map);
4050 if (empty)
4051 *empty = isl_set_copy(sol_map->empty);
4052 sol_free(&sol_map->sol);
4053 return result;
4056 /* Structure used during detection of parallel constraints.
4057 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4058 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4059 * val: the coefficients of the output variables
4061 struct isl_constraint_equal_info {
4062 isl_basic_map *bmap;
4063 unsigned n_in;
4064 unsigned n_out;
4065 isl_int *val;
4068 /* Check whether the coefficients of the output variables
4069 * of the constraint in "entry" are equal to info->val.
4071 static int constraint_equal(const void *entry, const void *val)
4073 isl_int **row = (isl_int **)entry;
4074 const struct isl_constraint_equal_info *info = val;
4076 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4079 /* Check whether "bmap" has a pair of constraints that have
4080 * the same coefficients for the output variables.
4081 * Note that the coefficients of the existentially quantified
4082 * variables need to be zero since the existentially quantified
4083 * of the result are usually not the same as those of the input.
4084 * the isl_dim_out and isl_dim_div dimensions.
4085 * If so, return 1 and return the row indices of the two constraints
4086 * in *first and *second.
4088 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
4089 int *first, int *second)
4091 int i;
4092 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4093 struct isl_hash_table *table = NULL;
4094 struct isl_hash_table_entry *entry;
4095 struct isl_constraint_equal_info info;
4096 unsigned n_out;
4097 unsigned n_div;
4099 ctx = isl_basic_map_get_ctx(bmap);
4100 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4101 if (!table)
4102 goto error;
4104 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4105 isl_basic_map_dim(bmap, isl_dim_in);
4106 info.bmap = bmap;
4107 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4108 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4109 info.n_out = n_out + n_div;
4110 for (i = 0; i < bmap->n_ineq; ++i) {
4111 uint32_t hash;
4113 info.val = bmap->ineq[i] + 1 + info.n_in;
4114 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4115 continue;
4116 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4117 continue;
4118 hash = isl_seq_get_hash(info.val, info.n_out);
4119 entry = isl_hash_table_find(ctx, table, hash,
4120 constraint_equal, &info, 1);
4121 if (!entry)
4122 goto error;
4123 if (entry->data)
4124 break;
4125 entry->data = &bmap->ineq[i];
4128 if (i < bmap->n_ineq) {
4129 *first = ((isl_int **)entry->data) - bmap->ineq;
4130 *second = i;
4133 isl_hash_table_free(ctx, table);
4135 return i < bmap->n_ineq;
4136 error:
4137 isl_hash_table_free(ctx, table);
4138 return -1;
4141 /* Given a set of upper bounds in "var", add constraints to "bset"
4142 * that make the i-th bound smallest.
4144 * In particular, if there are n bounds b_i, then add the constraints
4146 * b_i <= b_j for j > i
4147 * b_i < b_j for j < i
4149 static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset,
4150 __isl_keep isl_mat *var, int i)
4152 isl_ctx *ctx;
4153 int j, k;
4155 ctx = isl_mat_get_ctx(var);
4157 for (j = 0; j < var->n_row; ++j) {
4158 if (j == i)
4159 continue;
4160 k = isl_basic_set_alloc_inequality(bset);
4161 if (k < 0)
4162 goto error;
4163 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4164 ctx->negone, var->row[i], var->n_col);
4165 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4166 if (j < i)
4167 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4170 bset = isl_basic_set_finalize(bset);
4172 return bset;
4173 error:
4174 isl_basic_set_free(bset);
4175 return NULL;
4178 /* Given a set of upper bounds on the last "input" variable m,
4179 * construct a set that assigns the minimal upper bound to m, i.e.,
4180 * construct a set that divides the space into cells where one
4181 * of the upper bounds is smaller than all the others and assign
4182 * this upper bound to m.
4184 * In particular, if there are n bounds b_i, then the result
4185 * consists of n basic sets, each one of the form
4187 * m = b_i
4188 * b_i <= b_j for j > i
4189 * b_i < b_j for j < i
4191 static __isl_give isl_set *set_minimum(__isl_take isl_space *dim,
4192 __isl_take isl_mat *var)
4194 int i, k;
4195 isl_basic_set *bset = NULL;
4196 isl_ctx *ctx;
4197 isl_set *set = NULL;
4199 if (!dim || !var)
4200 goto error;
4202 ctx = isl_space_get_ctx(dim);
4203 set = isl_set_alloc_space(isl_space_copy(dim),
4204 var->n_row, ISL_SET_DISJOINT);
4206 for (i = 0; i < var->n_row; ++i) {
4207 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0,
4208 1, var->n_row - 1);
4209 k = isl_basic_set_alloc_equality(bset);
4210 if (k < 0)
4211 goto error;
4212 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4213 isl_int_set_si(bset->eq[k][var->n_col], -1);
4214 bset = select_minimum(bset, var, i);
4215 set = isl_set_add_basic_set(set, bset);
4218 isl_space_free(dim);
4219 isl_mat_free(var);
4220 return set;
4221 error:
4222 isl_basic_set_free(bset);
4223 isl_set_free(set);
4224 isl_space_free(dim);
4225 isl_mat_free(var);
4226 return NULL;
4229 /* Given that the last input variable of "bmap" represents the minimum
4230 * of the bounds in "cst", check whether we need to split the domain
4231 * based on which bound attains the minimum.
4233 * A split is needed when the minimum appears in an integer division
4234 * or in an equality. Otherwise, it is only needed if it appears in
4235 * an upper bound that is different from the upper bounds on which it
4236 * is defined.
4238 static int need_split_basic_map(__isl_keep isl_basic_map *bmap,
4239 __isl_keep isl_mat *cst)
4241 int i, j;
4242 unsigned total;
4243 unsigned pos;
4245 pos = cst->n_col - 1;
4246 total = isl_basic_map_dim(bmap, isl_dim_all);
4248 for (i = 0; i < bmap->n_div; ++i)
4249 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4250 return 1;
4252 for (i = 0; i < bmap->n_eq; ++i)
4253 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4254 return 1;
4256 for (i = 0; i < bmap->n_ineq; ++i) {
4257 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4258 continue;
4259 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4260 return 1;
4261 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4262 total - pos - 1) >= 0)
4263 return 1;
4265 for (j = 0; j < cst->n_row; ++j)
4266 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4267 break;
4268 if (j >= cst->n_row)
4269 return 1;
4272 return 0;
4275 /* Given that the last set variable of "bset" represents the minimum
4276 * of the bounds in "cst", check whether we need to split the domain
4277 * based on which bound attains the minimum.
4279 * We simply call need_split_basic_map here. This is safe because
4280 * the position of the minimum is computed from "cst" and not
4281 * from "bmap".
4283 static int need_split_basic_set(__isl_keep isl_basic_set *bset,
4284 __isl_keep isl_mat *cst)
4286 return need_split_basic_map((isl_basic_map *)bset, cst);
4289 /* Given that the last set variable of "set" represents the minimum
4290 * of the bounds in "cst", check whether we need to split the domain
4291 * based on which bound attains the minimum.
4293 static int need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst)
4295 int i;
4297 for (i = 0; i < set->n; ++i)
4298 if (need_split_basic_set(set->p[i], cst))
4299 return 1;
4301 return 0;
4304 /* Given a set of which the last set variable is the minimum
4305 * of the bounds in "cst", split each basic set in the set
4306 * in pieces where one of the bounds is (strictly) smaller than the others.
4307 * This subdivision is given in "min_expr".
4308 * The variable is subsequently projected out.
4310 * We only do the split when it is needed.
4311 * For example if the last input variable m = min(a,b) and the only
4312 * constraints in the given basic set are lower bounds on m,
4313 * i.e., l <= m = min(a,b), then we can simply project out m
4314 * to obtain l <= a and l <= b, without having to split on whether
4315 * m is equal to a or b.
4317 static __isl_give isl_set *split(__isl_take isl_set *empty,
4318 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4320 int n_in;
4321 int i;
4322 isl_space *dim;
4323 isl_set *res;
4325 if (!empty || !min_expr || !cst)
4326 goto error;
4328 n_in = isl_set_dim(empty, isl_dim_set);
4329 dim = isl_set_get_space(empty);
4330 dim = isl_space_drop_dims(dim, isl_dim_set, n_in - 1, 1);
4331 res = isl_set_empty(dim);
4333 for (i = 0; i < empty->n; ++i) {
4334 isl_set *set;
4336 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4337 if (need_split_basic_set(empty->p[i], cst))
4338 set = isl_set_intersect(set, isl_set_copy(min_expr));
4339 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4341 res = isl_set_union_disjoint(res, set);
4344 isl_set_free(empty);
4345 isl_set_free(min_expr);
4346 isl_mat_free(cst);
4347 return res;
4348 error:
4349 isl_set_free(empty);
4350 isl_set_free(min_expr);
4351 isl_mat_free(cst);
4352 return NULL;
4355 /* Given a map of which the last input variable is the minimum
4356 * of the bounds in "cst", split each basic set in the set
4357 * in pieces where one of the bounds is (strictly) smaller than the others.
4358 * This subdivision is given in "min_expr".
4359 * The variable is subsequently projected out.
4361 * The implementation is essentially the same as that of "split".
4363 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4364 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4366 int n_in;
4367 int i;
4368 isl_space *dim;
4369 isl_map *res;
4371 if (!opt || !min_expr || !cst)
4372 goto error;
4374 n_in = isl_map_dim(opt, isl_dim_in);
4375 dim = isl_map_get_space(opt);
4376 dim = isl_space_drop_dims(dim, isl_dim_in, n_in - 1, 1);
4377 res = isl_map_empty(dim);
4379 for (i = 0; i < opt->n; ++i) {
4380 isl_map *map;
4382 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4383 if (need_split_basic_map(opt->p[i], cst))
4384 map = isl_map_intersect_domain(map,
4385 isl_set_copy(min_expr));
4386 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4388 res = isl_map_union_disjoint(res, map);
4391 isl_map_free(opt);
4392 isl_set_free(min_expr);
4393 isl_mat_free(cst);
4394 return res;
4395 error:
4396 isl_map_free(opt);
4397 isl_set_free(min_expr);
4398 isl_mat_free(cst);
4399 return NULL;
4402 static __isl_give isl_map *basic_map_partial_lexopt(
4403 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4404 __isl_give isl_set **empty, int max);
4406 union isl_lex_res {
4407 void *p;
4408 isl_map *map;
4409 isl_pw_multi_aff *pma;
4412 /* This function is called from basic_map_partial_lexopt_symm.
4413 * The last variable of "bmap" and "dom" corresponds to the minimum
4414 * of the bounds in "cst". "map_space" is the space of the original
4415 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4416 * is the space of the original domain.
4418 * We recursively call basic_map_partial_lexopt and then plug in
4419 * the definition of the minimum in the result.
4421 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_map_core(
4422 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4423 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
4424 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
4426 isl_map *opt;
4427 isl_set *min_expr;
4428 union isl_lex_res res;
4430 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
4432 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4434 if (empty) {
4435 *empty = split(*empty,
4436 isl_set_copy(min_expr), isl_mat_copy(cst));
4437 *empty = isl_set_reset_space(*empty, set_space);
4440 opt = split_domain(opt, min_expr, cst);
4441 opt = isl_map_reset_space(opt, map_space);
4443 res.map = opt;
4444 return res;
4447 /* Given a basic map with at least two parallel constraints (as found
4448 * by the function parallel_constraints), first look for more constraints
4449 * parallel to the two constraint and replace the found list of parallel
4450 * constraints by a single constraint with as "input" part the minimum
4451 * of the input parts of the list of constraints. Then, recursively call
4452 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4453 * and plug in the definition of the minimum in the result.
4455 * More specifically, given a set of constraints
4457 * a x + b_i(p) >= 0
4459 * Replace this set by a single constraint
4461 * a x + u >= 0
4463 * with u a new parameter with constraints
4465 * u <= b_i(p)
4467 * Any solution to the new system is also a solution for the original system
4468 * since
4470 * a x >= -u >= -b_i(p)
4472 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4473 * therefore be plugged into the solution.
4475 static union isl_lex_res basic_map_partial_lexopt_symm(
4476 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4477 __isl_give isl_set **empty, int max, int first, int second,
4478 __isl_give union isl_lex_res (*core)(__isl_take isl_basic_map *bmap,
4479 __isl_take isl_basic_set *dom,
4480 __isl_give isl_set **empty,
4481 int max, __isl_take isl_mat *cst,
4482 __isl_take isl_space *map_space,
4483 __isl_take isl_space *set_space))
4485 int i, n, k;
4486 int *list = NULL;
4487 unsigned n_in, n_out, n_div;
4488 isl_ctx *ctx;
4489 isl_vec *var = NULL;
4490 isl_mat *cst = NULL;
4491 isl_space *map_space, *set_space;
4492 union isl_lex_res res;
4494 map_space = isl_basic_map_get_space(bmap);
4495 set_space = empty ? isl_basic_set_get_space(dom) : NULL;
4497 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4498 isl_basic_map_dim(bmap, isl_dim_in);
4499 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4501 ctx = isl_basic_map_get_ctx(bmap);
4502 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4503 var = isl_vec_alloc(ctx, n_out);
4504 if (!list || !var)
4505 goto error;
4507 list[0] = first;
4508 list[1] = second;
4509 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4510 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4511 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4512 list[n++] = i;
4515 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4516 if (!cst)
4517 goto error;
4519 for (i = 0; i < n; ++i)
4520 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4522 bmap = isl_basic_map_cow(bmap);
4523 if (!bmap)
4524 goto error;
4525 for (i = n - 1; i >= 0; --i)
4526 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4527 goto error;
4529 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4530 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4531 k = isl_basic_map_alloc_inequality(bmap);
4532 if (k < 0)
4533 goto error;
4534 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4535 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4536 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4537 bmap = isl_basic_map_finalize(bmap);
4539 n_div = isl_basic_set_dim(dom, isl_dim_div);
4540 dom = isl_basic_set_add_dims(dom, isl_dim_set, 1);
4541 dom = isl_basic_set_extend_constraints(dom, 0, n);
4542 for (i = 0; i < n; ++i) {
4543 k = isl_basic_set_alloc_inequality(dom);
4544 if (k < 0)
4545 goto error;
4546 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4547 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4548 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4551 isl_vec_free(var);
4552 free(list);
4554 return core(bmap, dom, empty, max, cst, map_space, set_space);
4555 error:
4556 isl_space_free(map_space);
4557 isl_space_free(set_space);
4558 isl_mat_free(cst);
4559 isl_vec_free(var);
4560 free(list);
4561 isl_basic_set_free(dom);
4562 isl_basic_map_free(bmap);
4563 res.p = NULL;
4564 return res;
4567 static __isl_give isl_map *basic_map_partial_lexopt_symm_map(
4568 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4569 __isl_give isl_set **empty, int max, int first, int second)
4571 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4572 first, second, &basic_map_partial_lexopt_symm_map_core).map;
4575 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4576 * equalities and removing redundant constraints.
4578 * We first check if there are any parallel constraints (left).
4579 * If not, we are in the base case.
4580 * If there are parallel constraints, we replace them by a single
4581 * constraint in basic_map_partial_lexopt_symm and then call
4582 * this function recursively to look for more parallel constraints.
4584 static __isl_give isl_map *basic_map_partial_lexopt(
4585 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4586 __isl_give isl_set **empty, int max)
4588 int par = 0;
4589 int first, second;
4591 if (!bmap)
4592 goto error;
4594 if (bmap->ctx->opt->pip_symmetry)
4595 par = parallel_constraints(bmap, &first, &second);
4596 if (par < 0)
4597 goto error;
4598 if (!par)
4599 return basic_map_partial_lexopt_base_map(bmap, dom, empty, max);
4601 return basic_map_partial_lexopt_symm_map(bmap, dom, empty, max,
4602 first, second);
4603 error:
4604 isl_basic_set_free(dom);
4605 isl_basic_map_free(bmap);
4606 return NULL;
4609 /* Compute the lexicographic minimum (or maximum if "max" is set)
4610 * of "bmap" over the domain "dom" and return the result as a map.
4611 * If "empty" is not NULL, then *empty is assigned a set that
4612 * contains those parts of the domain where there is no solution.
4613 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4614 * then we compute the rational optimum. Otherwise, we compute
4615 * the integral optimum.
4617 * We perform some preprocessing. As the PILP solver does not
4618 * handle implicit equalities very well, we first make sure all
4619 * the equalities are explicitly available.
4621 * We also add context constraints to the basic map and remove
4622 * redundant constraints. This is only needed because of the
4623 * way we handle simple symmetries. In particular, we currently look
4624 * for symmetries on the constraints, before we set up the main tableau.
4625 * It is then no good to look for symmetries on possibly redundant constraints.
4627 struct isl_map *isl_tab_basic_map_partial_lexopt(
4628 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4629 struct isl_set **empty, int max)
4631 if (empty)
4632 *empty = NULL;
4633 if (!bmap || !dom)
4634 goto error;
4636 isl_assert(bmap->ctx,
4637 isl_basic_map_compatible_domain(bmap, dom), goto error);
4639 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4640 return basic_map_partial_lexopt(bmap, dom, empty, max);
4642 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4643 bmap = isl_basic_map_detect_equalities(bmap);
4644 bmap = isl_basic_map_remove_redundancies(bmap);
4646 return basic_map_partial_lexopt(bmap, dom, empty, max);
4647 error:
4648 isl_basic_set_free(dom);
4649 isl_basic_map_free(bmap);
4650 return NULL;
4653 struct isl_sol_for {
4654 struct isl_sol sol;
4655 int (*fn)(__isl_take isl_basic_set *dom,
4656 __isl_take isl_aff_list *list, void *user);
4657 void *user;
4660 static void sol_for_free(struct isl_sol_for *sol_for)
4662 if (sol_for->sol.context)
4663 sol_for->sol.context->op->free(sol_for->sol.context);
4664 free(sol_for);
4667 static void sol_for_free_wrap(struct isl_sol *sol)
4669 sol_for_free((struct isl_sol_for *)sol);
4672 /* Add the solution identified by the tableau and the context tableau.
4674 * See documentation of sol_add for more details.
4676 * Instead of constructing a basic map, this function calls a user
4677 * defined function with the current context as a basic set and
4678 * a list of affine expressions representing the relation between
4679 * the input and output. The space over which the affine expressions
4680 * are defined is the same as that of the domain. The number of
4681 * affine expressions in the list is equal to the number of output variables.
4683 static void sol_for_add(struct isl_sol_for *sol,
4684 struct isl_basic_set *dom, struct isl_mat *M)
4686 int i;
4687 isl_ctx *ctx;
4688 isl_local_space *ls;
4689 isl_aff *aff;
4690 isl_aff_list *list;
4692 if (sol->sol.error || !dom || !M)
4693 goto error;
4695 ctx = isl_basic_set_get_ctx(dom);
4696 ls = isl_basic_set_get_local_space(dom);
4697 list = isl_aff_list_alloc(ctx, M->n_row - 1);
4698 for (i = 1; i < M->n_row; ++i) {
4699 aff = isl_aff_alloc(isl_local_space_copy(ls));
4700 if (aff) {
4701 isl_int_set(aff->v->el[0], M->row[0][0]);
4702 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
4704 aff = isl_aff_normalize(aff);
4705 list = isl_aff_list_add(list, aff);
4707 isl_local_space_free(ls);
4709 dom = isl_basic_set_finalize(dom);
4711 if (sol->fn(isl_basic_set_copy(dom), list, sol->user) < 0)
4712 goto error;
4714 isl_basic_set_free(dom);
4715 isl_mat_free(M);
4716 return;
4717 error:
4718 isl_basic_set_free(dom);
4719 isl_mat_free(M);
4720 sol->sol.error = 1;
4723 static void sol_for_add_wrap(struct isl_sol *sol,
4724 struct isl_basic_set *dom, struct isl_mat *M)
4726 sol_for_add((struct isl_sol_for *)sol, dom, M);
4729 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4730 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4731 void *user),
4732 void *user)
4734 struct isl_sol_for *sol_for = NULL;
4735 isl_space *dom_dim;
4736 struct isl_basic_set *dom = NULL;
4738 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4739 if (!sol_for)
4740 goto error;
4742 dom_dim = isl_space_domain(isl_space_copy(bmap->dim));
4743 dom = isl_basic_set_universe(dom_dim);
4745 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4746 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4747 sol_for->sol.dec_level.sol = &sol_for->sol;
4748 sol_for->fn = fn;
4749 sol_for->user = user;
4750 sol_for->sol.max = max;
4751 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4752 sol_for->sol.add = &sol_for_add_wrap;
4753 sol_for->sol.add_empty = NULL;
4754 sol_for->sol.free = &sol_for_free_wrap;
4756 sol_for->sol.context = isl_context_alloc(dom);
4757 if (!sol_for->sol.context)
4758 goto error;
4760 isl_basic_set_free(dom);
4761 return sol_for;
4762 error:
4763 isl_basic_set_free(dom);
4764 sol_for_free(sol_for);
4765 return NULL;
4768 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4769 struct isl_tab *tab)
4771 find_solutions_main(&sol_for->sol, tab);
4774 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4775 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4776 void *user),
4777 void *user)
4779 struct isl_sol_for *sol_for = NULL;
4781 bmap = isl_basic_map_copy(bmap);
4782 if (!bmap)
4783 return -1;
4785 bmap = isl_basic_map_detect_equalities(bmap);
4786 sol_for = sol_for_init(bmap, max, fn, user);
4788 if (isl_basic_map_plain_is_empty(bmap))
4789 /* nothing */;
4790 else {
4791 struct isl_tab *tab;
4792 struct isl_context *context = sol_for->sol.context;
4793 tab = tab_for_lexmin(bmap,
4794 context->op->peek_basic_set(context), 1, max);
4795 tab = context->op->detect_nonnegative_parameters(context, tab);
4796 sol_for_find_solutions(sol_for, tab);
4797 if (sol_for->sol.error)
4798 goto error;
4801 sol_free(&sol_for->sol);
4802 isl_basic_map_free(bmap);
4803 return 0;
4804 error:
4805 sol_free(&sol_for->sol);
4806 isl_basic_map_free(bmap);
4807 return -1;
4810 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set *bset, int max,
4811 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4812 void *user),
4813 void *user)
4815 return isl_basic_map_foreach_lexopt(bset, max, fn, user);
4818 /* Check if the given sequence of len variables starting at pos
4819 * represents a trivial (i.e., zero) solution.
4820 * The variables are assumed to be non-negative and to come in pairs,
4821 * with each pair representing a variable of unrestricted sign.
4822 * The solution is trivial if each such pair in the sequence consists
4823 * of two identical values, meaning that the variable being represented
4824 * has value zero.
4826 static int region_is_trivial(struct isl_tab *tab, int pos, int len)
4828 int i;
4830 if (len == 0)
4831 return 0;
4833 for (i = 0; i < len; i += 2) {
4834 int neg_row;
4835 int pos_row;
4837 neg_row = tab->var[pos + i].is_row ?
4838 tab->var[pos + i].index : -1;
4839 pos_row = tab->var[pos + i + 1].is_row ?
4840 tab->var[pos + i + 1].index : -1;
4842 if ((neg_row < 0 ||
4843 isl_int_is_zero(tab->mat->row[neg_row][1])) &&
4844 (pos_row < 0 ||
4845 isl_int_is_zero(tab->mat->row[pos_row][1])))
4846 continue;
4848 if (neg_row < 0 || pos_row < 0)
4849 return 0;
4850 if (isl_int_ne(tab->mat->row[neg_row][1],
4851 tab->mat->row[pos_row][1]))
4852 return 0;
4855 return 1;
4858 /* Return the index of the first trivial region or -1 if all regions
4859 * are non-trivial.
4861 static int first_trivial_region(struct isl_tab *tab,
4862 int n_region, struct isl_region *region)
4864 int i;
4866 for (i = 0; i < n_region; ++i) {
4867 if (region_is_trivial(tab, region[i].pos, region[i].len))
4868 return i;
4871 return -1;
4874 /* Check if the solution is optimal, i.e., whether the first
4875 * n_op entries are zero.
4877 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
4879 int i;
4881 for (i = 0; i < n_op; ++i)
4882 if (!isl_int_is_zero(sol->el[1 + i]))
4883 return 0;
4884 return 1;
4887 /* Add constraints to "tab" that ensure that any solution is significantly
4888 * better that that represented by "sol". That is, find the first
4889 * relevant (within first n_op) non-zero coefficient and force it (along
4890 * with all previous coefficients) to be zero.
4891 * If the solution is already optimal (all relevant coefficients are zero),
4892 * then just mark the table as empty.
4894 static int force_better_solution(struct isl_tab *tab,
4895 __isl_keep isl_vec *sol, int n_op)
4897 int i;
4898 isl_ctx *ctx;
4899 isl_vec *v = NULL;
4901 if (!sol)
4902 return -1;
4904 for (i = 0; i < n_op; ++i)
4905 if (!isl_int_is_zero(sol->el[1 + i]))
4906 break;
4908 if (i == n_op) {
4909 if (isl_tab_mark_empty(tab) < 0)
4910 return -1;
4911 return 0;
4914 ctx = isl_vec_get_ctx(sol);
4915 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4916 if (!v)
4917 return -1;
4919 for (; i >= 0; --i) {
4920 v = isl_vec_clr(v);
4921 isl_int_set_si(v->el[1 + i], -1);
4922 if (add_lexmin_eq(tab, v->el) < 0)
4923 goto error;
4926 isl_vec_free(v);
4927 return 0;
4928 error:
4929 isl_vec_free(v);
4930 return -1;
4933 struct isl_trivial {
4934 int update;
4935 int region;
4936 int side;
4937 struct isl_tab_undo *snap;
4940 /* Return the lexicographically smallest non-trivial solution of the
4941 * given ILP problem.
4943 * All variables are assumed to be non-negative.
4945 * n_op is the number of initial coordinates to optimize.
4946 * That is, once a solution has been found, we will only continue looking
4947 * for solution that result in significantly better values for those
4948 * initial coordinates. That is, we only continue looking for solutions
4949 * that increase the number of initial zeros in this sequence.
4951 * A solution is non-trivial, if it is non-trivial on each of the
4952 * specified regions. Each region represents a sequence of pairs
4953 * of variables. A solution is non-trivial on such a region if
4954 * at least one of these pairs consists of different values, i.e.,
4955 * such that the non-negative variable represented by the pair is non-zero.
4957 * Whenever a conflict is encountered, all constraints involved are
4958 * reported to the caller through a call to "conflict".
4960 * We perform a simple branch-and-bound backtracking search.
4961 * Each level in the search represents initially trivial region that is forced
4962 * to be non-trivial.
4963 * At each level we consider n cases, where n is the length of the region.
4964 * In terms of the n/2 variables of unrestricted signs being encoded by
4965 * the region, we consider the cases
4966 * x_0 >= 1
4967 * x_0 <= -1
4968 * x_0 = 0 and x_1 >= 1
4969 * x_0 = 0 and x_1 <= -1
4970 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4971 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4972 * ...
4973 * The cases are considered in this order, assuming that each pair
4974 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4975 * That is, x_0 >= 1 is enforced by adding the constraint
4976 * x_0_b - x_0_a >= 1
4978 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
4979 __isl_take isl_basic_set *bset, int n_op, int n_region,
4980 struct isl_region *region,
4981 int (*conflict)(int con, void *user), void *user)
4983 int i, j;
4984 int r;
4985 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4986 isl_vec *v = NULL;
4987 isl_vec *sol = isl_vec_alloc(ctx, 0);
4988 struct isl_tab *tab;
4989 struct isl_trivial *triv = NULL;
4990 int level, init;
4992 tab = tab_for_lexmin(bset, NULL, 0, 0);
4993 if (!tab)
4994 goto error;
4995 tab->conflict = conflict;
4996 tab->conflict_user = user;
4998 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4999 triv = isl_calloc_array(ctx, struct isl_trivial, n_region);
5000 if (!v || !triv)
5001 goto error;
5003 level = 0;
5004 init = 1;
5006 while (level >= 0) {
5007 int side, base;
5009 if (init) {
5010 tab = cut_to_integer_lexmin(tab, CUT_ONE);
5011 if (!tab)
5012 goto error;
5013 if (tab->empty)
5014 goto backtrack;
5015 r = first_trivial_region(tab, n_region, region);
5016 if (r < 0) {
5017 for (i = 0; i < level; ++i)
5018 triv[i].update = 1;
5019 isl_vec_free(sol);
5020 sol = isl_tab_get_sample_value(tab);
5021 if (!sol)
5022 goto error;
5023 if (is_optimal(sol, n_op))
5024 break;
5025 goto backtrack;
5027 if (level >= n_region)
5028 isl_die(ctx, isl_error_internal,
5029 "nesting level too deep", goto error);
5030 if (isl_tab_extend_cons(tab,
5031 2 * region[r].len + 2 * n_op) < 0)
5032 goto error;
5033 triv[level].region = r;
5034 triv[level].side = 0;
5037 r = triv[level].region;
5038 side = triv[level].side;
5039 base = 2 * (side/2);
5041 if (side >= region[r].len) {
5042 backtrack:
5043 level--;
5044 init = 0;
5045 if (level >= 0)
5046 if (isl_tab_rollback(tab, triv[level].snap) < 0)
5047 goto error;
5048 continue;
5051 if (triv[level].update) {
5052 if (force_better_solution(tab, sol, n_op) < 0)
5053 goto error;
5054 triv[level].update = 0;
5057 if (side == base && base >= 2) {
5058 for (j = base - 2; j < base; ++j) {
5059 v = isl_vec_clr(v);
5060 isl_int_set_si(v->el[1 + region[r].pos + j], 1);
5061 if (add_lexmin_eq(tab, v->el) < 0)
5062 goto error;
5066 triv[level].snap = isl_tab_snap(tab);
5067 if (isl_tab_push_basis(tab) < 0)
5068 goto error;
5070 v = isl_vec_clr(v);
5071 isl_int_set_si(v->el[0], -1);
5072 isl_int_set_si(v->el[1 + region[r].pos + side], -1);
5073 isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1);
5074 tab = add_lexmin_ineq(tab, v->el);
5076 triv[level].side++;
5077 level++;
5078 init = 1;
5081 free(triv);
5082 isl_vec_free(v);
5083 isl_tab_free(tab);
5084 isl_basic_set_free(bset);
5086 return sol;
5087 error:
5088 free(triv);
5089 isl_vec_free(v);
5090 isl_tab_free(tab);
5091 isl_basic_set_free(bset);
5092 isl_vec_free(sol);
5093 return NULL;
5096 /* Return the lexicographically smallest rational point in "bset",
5097 * assuming that all variables are non-negative.
5098 * If "bset" is empty, then return a zero-length vector.
5100 __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin(
5101 __isl_take isl_basic_set *bset)
5103 struct isl_tab *tab;
5104 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
5105 isl_vec *sol;
5107 tab = tab_for_lexmin(bset, NULL, 0, 0);
5108 if (!tab)
5109 goto error;
5110 if (tab->empty)
5111 sol = isl_vec_alloc(ctx, 0);
5112 else
5113 sol = isl_tab_get_sample_value(tab);
5114 isl_tab_free(tab);
5115 isl_basic_set_free(bset);
5116 return sol;
5117 error:
5118 isl_tab_free(tab);
5119 isl_basic_set_free(bset);
5120 return NULL;
5123 struct isl_sol_pma {
5124 struct isl_sol sol;
5125 isl_pw_multi_aff *pma;
5126 isl_set *empty;
5129 static void sol_pma_free(struct isl_sol_pma *sol_pma)
5131 if (!sol_pma)
5132 return;
5133 if (sol_pma->sol.context)
5134 sol_pma->sol.context->op->free(sol_pma->sol.context);
5135 isl_pw_multi_aff_free(sol_pma->pma);
5136 isl_set_free(sol_pma->empty);
5137 free(sol_pma);
5140 /* This function is called for parts of the context where there is
5141 * no solution, with "bset" corresponding to the context tableau.
5142 * Simply add the basic set to the set "empty".
5144 static void sol_pma_add_empty(struct isl_sol_pma *sol,
5145 __isl_take isl_basic_set *bset)
5147 if (!bset)
5148 goto error;
5149 isl_assert(bset->ctx, sol->empty, goto error);
5151 sol->empty = isl_set_grow(sol->empty, 1);
5152 bset = isl_basic_set_simplify(bset);
5153 bset = isl_basic_set_finalize(bset);
5154 sol->empty = isl_set_add_basic_set(sol->empty, bset);
5155 if (!sol->empty)
5156 sol->sol.error = 1;
5157 return;
5158 error:
5159 isl_basic_set_free(bset);
5160 sol->sol.error = 1;
5163 /* Given a basic map "dom" that represents the context and an affine
5164 * matrix "M" that maps the dimensions of the context to the
5165 * output variables, construct an isl_pw_multi_aff with a single
5166 * cell corresponding to "dom" and affine expressions copied from "M".
5168 static void sol_pma_add(struct isl_sol_pma *sol,
5169 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5171 int i;
5172 isl_local_space *ls;
5173 isl_aff *aff;
5174 isl_multi_aff *maff;
5175 isl_pw_multi_aff *pma;
5177 maff = isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol->pma));
5178 ls = isl_basic_set_get_local_space(dom);
5179 for (i = 1; i < M->n_row; ++i) {
5180 aff = isl_aff_alloc(isl_local_space_copy(ls));
5181 if (aff) {
5182 isl_int_set(aff->v->el[0], M->row[0][0]);
5183 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
5185 aff = isl_aff_normalize(aff);
5186 maff = isl_multi_aff_set_aff(maff, i - 1, aff);
5188 isl_local_space_free(ls);
5189 isl_mat_free(M);
5190 dom = isl_basic_set_simplify(dom);
5191 dom = isl_basic_set_finalize(dom);
5192 pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff);
5193 sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma);
5194 if (!sol->pma)
5195 sol->sol.error = 1;
5198 static void sol_pma_free_wrap(struct isl_sol *sol)
5200 sol_pma_free((struct isl_sol_pma *)sol);
5203 static void sol_pma_add_empty_wrap(struct isl_sol *sol,
5204 __isl_take isl_basic_set *bset)
5206 sol_pma_add_empty((struct isl_sol_pma *)sol, bset);
5209 static void sol_pma_add_wrap(struct isl_sol *sol,
5210 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5212 sol_pma_add((struct isl_sol_pma *)sol, dom, M);
5215 /* Construct an isl_sol_pma structure for accumulating the solution.
5216 * If track_empty is set, then we also keep track of the parts
5217 * of the context where there is no solution.
5218 * If max is set, then we are solving a maximization, rather than
5219 * a minimization problem, which means that the variables in the
5220 * tableau have value "M - x" rather than "M + x".
5222 static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap,
5223 __isl_take isl_basic_set *dom, int track_empty, int max)
5225 struct isl_sol_pma *sol_pma = NULL;
5227 if (!bmap)
5228 goto error;
5230 sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma);
5231 if (!sol_pma)
5232 goto error;
5234 sol_pma->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
5235 sol_pma->sol.dec_level.callback.run = &sol_dec_level_wrap;
5236 sol_pma->sol.dec_level.sol = &sol_pma->sol;
5237 sol_pma->sol.max = max;
5238 sol_pma->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
5239 sol_pma->sol.add = &sol_pma_add_wrap;
5240 sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL;
5241 sol_pma->sol.free = &sol_pma_free_wrap;
5242 sol_pma->pma = isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap));
5243 if (!sol_pma->pma)
5244 goto error;
5246 sol_pma->sol.context = isl_context_alloc(dom);
5247 if (!sol_pma->sol.context)
5248 goto error;
5250 if (track_empty) {
5251 sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
5252 1, ISL_SET_DISJOINT);
5253 if (!sol_pma->empty)
5254 goto error;
5257 isl_basic_set_free(dom);
5258 return &sol_pma->sol;
5259 error:
5260 isl_basic_set_free(dom);
5261 sol_pma_free(sol_pma);
5262 return NULL;
5265 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5266 * some obvious symmetries.
5268 * We call basic_map_partial_lexopt_base and extract the results.
5270 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pma(
5271 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5272 __isl_give isl_set **empty, int max)
5274 isl_pw_multi_aff *result = NULL;
5275 struct isl_sol *sol;
5276 struct isl_sol_pma *sol_pma;
5278 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
5279 &sol_pma_init);
5280 if (!sol)
5281 return NULL;
5282 sol_pma = (struct isl_sol_pma *) sol;
5284 result = isl_pw_multi_aff_copy(sol_pma->pma);
5285 if (empty)
5286 *empty = isl_set_copy(sol_pma->empty);
5287 sol_free(&sol_pma->sol);
5288 return result;
5291 /* Given that the last input variable of "maff" represents the minimum
5292 * of some bounds, check whether we need to plug in the expression
5293 * of the minimum.
5295 * In particular, check if the last input variable appears in any
5296 * of the expressions in "maff".
5298 static int need_substitution(__isl_keep isl_multi_aff *maff)
5300 int i;
5301 unsigned pos;
5303 pos = isl_multi_aff_dim(maff, isl_dim_in) - 1;
5305 for (i = 0; i < maff->n; ++i)
5306 if (isl_aff_involves_dims(maff->p[i], isl_dim_in, pos, 1))
5307 return 1;
5309 return 0;
5312 /* Given a set of upper bounds on the last "input" variable m,
5313 * construct a piecewise affine expression that selects
5314 * the minimal upper bound to m, i.e.,
5315 * divide the space into cells where one
5316 * of the upper bounds is smaller than all the others and select
5317 * this upper bound on that cell.
5319 * In particular, if there are n bounds b_i, then the result
5320 * consists of n cell, each one of the form
5322 * b_i <= b_j for j > i
5323 * b_i < b_j for j < i
5325 * The affine expression on this cell is
5327 * b_i
5329 static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space,
5330 __isl_take isl_mat *var)
5332 int i;
5333 isl_aff *aff = NULL;
5334 isl_basic_set *bset = NULL;
5335 isl_ctx *ctx;
5336 isl_pw_aff *paff = NULL;
5337 isl_space *pw_space;
5338 isl_local_space *ls = NULL;
5340 if (!space || !var)
5341 goto error;
5343 ctx = isl_space_get_ctx(space);
5344 ls = isl_local_space_from_space(isl_space_copy(space));
5345 pw_space = isl_space_copy(space);
5346 pw_space = isl_space_from_domain(pw_space);
5347 pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1);
5348 paff = isl_pw_aff_alloc_size(pw_space, var->n_row);
5350 for (i = 0; i < var->n_row; ++i) {
5351 isl_pw_aff *paff_i;
5353 aff = isl_aff_alloc(isl_local_space_copy(ls));
5354 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
5355 0, var->n_row - 1);
5356 if (!aff || !bset)
5357 goto error;
5358 isl_int_set_si(aff->v->el[0], 1);
5359 isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col);
5360 isl_int_set_si(aff->v->el[1 + var->n_col], 0);
5361 bset = select_minimum(bset, var, i);
5362 paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff);
5363 paff = isl_pw_aff_add_disjoint(paff, paff_i);
5366 isl_local_space_free(ls);
5367 isl_space_free(space);
5368 isl_mat_free(var);
5369 return paff;
5370 error:
5371 isl_aff_free(aff);
5372 isl_basic_set_free(bset);
5373 isl_pw_aff_free(paff);
5374 isl_local_space_free(ls);
5375 isl_space_free(space);
5376 isl_mat_free(var);
5377 return NULL;
5380 /* Given a piecewise multi-affine expression of which the last input variable
5381 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5382 * This minimum expression is given in "min_expr_pa".
5383 * The set "min_expr" contains the same information, but in the form of a set.
5384 * The variable is subsequently projected out.
5386 * The implementation is similar to those of "split" and "split_domain".
5387 * If the variable appears in a given expression, then minimum expression
5388 * is plugged in. Otherwise, if the variable appears in the constraints
5389 * and a split is required, then the domain is split. Otherwise, no split
5390 * is performed.
5392 static __isl_give isl_pw_multi_aff *split_domain_pma(
5393 __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa,
5394 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
5396 int n_in;
5397 int i;
5398 isl_space *space;
5399 isl_pw_multi_aff *res;
5401 if (!opt || !min_expr || !cst)
5402 goto error;
5404 n_in = isl_pw_multi_aff_dim(opt, isl_dim_in);
5405 space = isl_pw_multi_aff_get_space(opt);
5406 space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
5407 res = isl_pw_multi_aff_empty(space);
5409 for (i = 0; i < opt->n; ++i) {
5410 isl_pw_multi_aff *pma;
5412 pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set),
5413 isl_multi_aff_copy(opt->p[i].maff));
5414 if (need_substitution(opt->p[i].maff))
5415 pma = isl_pw_multi_aff_substitute(pma,
5416 isl_dim_in, n_in - 1, min_expr_pa);
5417 else if (need_split_set(opt->p[i].set, cst))
5418 pma = isl_pw_multi_aff_intersect_domain(pma,
5419 isl_set_copy(min_expr));
5420 pma = isl_pw_multi_aff_project_out(pma,
5421 isl_dim_in, n_in - 1, 1);
5423 res = isl_pw_multi_aff_add_disjoint(res, pma);
5426 isl_pw_multi_aff_free(opt);
5427 isl_pw_aff_free(min_expr_pa);
5428 isl_set_free(min_expr);
5429 isl_mat_free(cst);
5430 return res;
5431 error:
5432 isl_pw_multi_aff_free(opt);
5433 isl_pw_aff_free(min_expr_pa);
5434 isl_set_free(min_expr);
5435 isl_mat_free(cst);
5436 return NULL;
5439 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5440 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5441 __isl_give isl_set **empty, int max);
5443 /* This function is called from basic_map_partial_lexopt_symm.
5444 * The last variable of "bmap" and "dom" corresponds to the minimum
5445 * of the bounds in "cst". "map_space" is the space of the original
5446 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5447 * is the space of the original domain.
5449 * We recursively call basic_map_partial_lexopt and then plug in
5450 * the definition of the minimum in the result.
5452 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_pma_core(
5453 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5454 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
5455 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
5457 isl_pw_multi_aff *opt;
5458 isl_pw_aff *min_expr_pa;
5459 isl_set *min_expr;
5460 union isl_lex_res res;
5462 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
5463 min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom),
5464 isl_mat_copy(cst));
5466 opt = basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5468 if (empty) {
5469 *empty = split(*empty,
5470 isl_set_copy(min_expr), isl_mat_copy(cst));
5471 *empty = isl_set_reset_space(*empty, set_space);
5474 opt = split_domain_pma(opt, min_expr_pa, min_expr, cst);
5475 opt = isl_pw_multi_aff_reset_space(opt, map_space);
5477 res.pma = opt;
5478 return res;
5481 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_symm_pma(
5482 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5483 __isl_give isl_set **empty, int max, int first, int second)
5485 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
5486 first, second, &basic_map_partial_lexopt_symm_pma_core).pma;
5489 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5490 * equalities and removing redundant constraints.
5492 * We first check if there are any parallel constraints (left).
5493 * If not, we are in the base case.
5494 * If there are parallel constraints, we replace them by a single
5495 * constraint in basic_map_partial_lexopt_symm_pma and then call
5496 * this function recursively to look for more parallel constraints.
5498 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5499 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5500 __isl_give isl_set **empty, int max)
5502 int par = 0;
5503 int first, second;
5505 if (!bmap)
5506 goto error;
5508 if (bmap->ctx->opt->pip_symmetry)
5509 par = parallel_constraints(bmap, &first, &second);
5510 if (par < 0)
5511 goto error;
5512 if (!par)
5513 return basic_map_partial_lexopt_base_pma(bmap, dom, empty, max);
5515 return basic_map_partial_lexopt_symm_pma(bmap, dom, empty, max,
5516 first, second);
5517 error:
5518 isl_basic_set_free(dom);
5519 isl_basic_map_free(bmap);
5520 return NULL;
5523 /* Compute the lexicographic minimum (or maximum if "max" is set)
5524 * of "bmap" over the domain "dom" and return the result as a piecewise
5525 * multi-affine expression.
5526 * If "empty" is not NULL, then *empty is assigned a set that
5527 * contains those parts of the domain where there is no solution.
5528 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5529 * then we compute the rational optimum. Otherwise, we compute
5530 * the integral optimum.
5532 * We perform some preprocessing. As the PILP solver does not
5533 * handle implicit equalities very well, we first make sure all
5534 * the equalities are explicitly available.
5536 * We also add context constraints to the basic map and remove
5537 * redundant constraints. This is only needed because of the
5538 * way we handle simple symmetries. In particular, we currently look
5539 * for symmetries on the constraints, before we set up the main tableau.
5540 * It is then no good to look for symmetries on possibly redundant constraints.
5542 __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexopt_pw_multi_aff(
5543 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5544 __isl_give isl_set **empty, int max)
5546 if (empty)
5547 *empty = NULL;
5548 if (!bmap || !dom)
5549 goto error;
5551 isl_assert(bmap->ctx,
5552 isl_basic_map_compatible_domain(bmap, dom), goto error);
5554 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
5555 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5557 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
5558 bmap = isl_basic_map_detect_equalities(bmap);
5559 bmap = isl_basic_map_remove_redundancies(bmap);
5561 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5562 error:
5563 isl_basic_set_free(dom);
5564 isl_basic_map_free(bmap);
5565 return NULL;