isl_ast_node_print: avoid dangling else warnings on printed AST
[isl.git] / isl_map_simplify.c
blob2504966dde55cccf6f2422cc848225af8deaf14e
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl_seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
23 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
25 isl_int *t = bmap->eq[a];
26 bmap->eq[a] = bmap->eq[b];
27 bmap->eq[b] = t;
30 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
32 if (a != b) {
33 isl_int *t = bmap->ineq[a];
34 bmap->ineq[a] = bmap->ineq[b];
35 bmap->ineq[b] = t;
39 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
41 isl_seq_cpy(c, c + n, rem);
42 isl_seq_clr(c + rem, n);
45 /* Drop n dimensions starting at first.
47 * In principle, this frees up some extra variables as the number
48 * of columns remains constant, but we would have to extend
49 * the div array too as the number of rows in this array is assumed
50 * to be equal to extra.
52 struct isl_basic_set *isl_basic_set_drop_dims(
53 struct isl_basic_set *bset, unsigned first, unsigned n)
55 int i;
57 if (!bset)
58 goto error;
60 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
62 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
63 return bset;
65 bset = isl_basic_set_cow(bset);
66 if (!bset)
67 return NULL;
69 for (i = 0; i < bset->n_eq; ++i)
70 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
71 (bset->dim->n_out-first-n)+bset->extra);
73 for (i = 0; i < bset->n_ineq; ++i)
74 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
75 (bset->dim->n_out-first-n)+bset->extra);
77 for (i = 0; i < bset->n_div; ++i)
78 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
79 (bset->dim->n_out-first-n)+bset->extra);
81 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
82 if (!bset->dim)
83 goto error;
85 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
86 bset = isl_basic_set_simplify(bset);
87 return isl_basic_set_finalize(bset);
88 error:
89 isl_basic_set_free(bset);
90 return NULL;
93 struct isl_set *isl_set_drop_dims(
94 struct isl_set *set, unsigned first, unsigned n)
96 int i;
98 if (!set)
99 goto error;
101 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
103 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
104 return set;
105 set = isl_set_cow(set);
106 if (!set)
107 goto error;
108 set->dim = isl_space_drop_outputs(set->dim, first, n);
109 if (!set->dim)
110 goto error;
112 for (i = 0; i < set->n; ++i) {
113 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
114 if (!set->p[i])
115 goto error;
118 ISL_F_CLR(set, ISL_SET_NORMALIZED);
119 return set;
120 error:
121 isl_set_free(set);
122 return NULL;
125 /* Move "n" divs starting at "first" to the end of the list of divs.
127 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
128 unsigned first, unsigned n)
130 isl_int **div;
131 int i;
133 if (first + n == bmap->n_div)
134 return bmap;
136 div = isl_alloc_array(bmap->ctx, isl_int *, n);
137 if (!div)
138 goto error;
139 for (i = 0; i < n; ++i)
140 div[i] = bmap->div[first + i];
141 for (i = 0; i < bmap->n_div - first - n; ++i)
142 bmap->div[first + i] = bmap->div[first + n + i];
143 for (i = 0; i < n; ++i)
144 bmap->div[bmap->n_div - n + i] = div[i];
145 free(div);
146 return bmap;
147 error:
148 isl_basic_map_free(bmap);
149 return NULL;
152 /* Drop "n" dimensions of type "type" starting at "first".
154 * In principle, this frees up some extra variables as the number
155 * of columns remains constant, but we would have to extend
156 * the div array too as the number of rows in this array is assumed
157 * to be equal to extra.
159 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
160 enum isl_dim_type type, unsigned first, unsigned n)
162 int i;
163 unsigned dim;
164 unsigned offset;
165 unsigned left;
167 if (!bmap)
168 goto error;
170 dim = isl_basic_map_dim(bmap, type);
171 isl_assert(bmap->ctx, first + n <= dim, goto error);
173 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
174 return bmap;
176 bmap = isl_basic_map_cow(bmap);
177 if (!bmap)
178 return NULL;
180 offset = isl_basic_map_offset(bmap, type) + first;
181 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
182 for (i = 0; i < bmap->n_eq; ++i)
183 constraint_drop_vars(bmap->eq[i]+offset, n, left);
185 for (i = 0; i < bmap->n_ineq; ++i)
186 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
188 for (i = 0; i < bmap->n_div; ++i)
189 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
191 if (type == isl_dim_div) {
192 bmap = move_divs_last(bmap, first, n);
193 if (!bmap)
194 goto error;
195 isl_basic_map_free_div(bmap, n);
196 } else
197 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
198 if (!bmap->dim)
199 goto error;
201 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
202 bmap = isl_basic_map_simplify(bmap);
203 return isl_basic_map_finalize(bmap);
204 error:
205 isl_basic_map_free(bmap);
206 return NULL;
209 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
210 enum isl_dim_type type, unsigned first, unsigned n)
212 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
213 type, first, n);
216 struct isl_basic_map *isl_basic_map_drop_inputs(
217 struct isl_basic_map *bmap, unsigned first, unsigned n)
219 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
222 struct isl_map *isl_map_drop(struct isl_map *map,
223 enum isl_dim_type type, unsigned first, unsigned n)
225 int i;
227 if (!map)
228 goto error;
230 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
232 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
233 return map;
234 map = isl_map_cow(map);
235 if (!map)
236 goto error;
237 map->dim = isl_space_drop_dims(map->dim, type, first, n);
238 if (!map->dim)
239 goto error;
241 for (i = 0; i < map->n; ++i) {
242 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
243 if (!map->p[i])
244 goto error;
246 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
248 return map;
249 error:
250 isl_map_free(map);
251 return NULL;
254 struct isl_set *isl_set_drop(struct isl_set *set,
255 enum isl_dim_type type, unsigned first, unsigned n)
257 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
260 struct isl_map *isl_map_drop_inputs(
261 struct isl_map *map, unsigned first, unsigned n)
263 return isl_map_drop(map, isl_dim_in, first, n);
267 * We don't cow, as the div is assumed to be redundant.
269 static struct isl_basic_map *isl_basic_map_drop_div(
270 struct isl_basic_map *bmap, unsigned div)
272 int i;
273 unsigned pos;
275 if (!bmap)
276 goto error;
278 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
280 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
282 for (i = 0; i < bmap->n_eq; ++i)
283 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
285 for (i = 0; i < bmap->n_ineq; ++i) {
286 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
287 isl_basic_map_drop_inequality(bmap, i);
288 --i;
289 continue;
291 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
294 for (i = 0; i < bmap->n_div; ++i)
295 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
297 if (div != bmap->n_div - 1) {
298 int j;
299 isl_int *t = bmap->div[div];
301 for (j = div; j < bmap->n_div - 1; ++j)
302 bmap->div[j] = bmap->div[j+1];
304 bmap->div[bmap->n_div - 1] = t;
306 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
307 isl_basic_map_free_div(bmap, 1);
309 return bmap;
310 error:
311 isl_basic_map_free(bmap);
312 return NULL;
315 struct isl_basic_map *isl_basic_map_normalize_constraints(
316 struct isl_basic_map *bmap)
318 int i;
319 isl_int gcd;
320 unsigned total = isl_basic_map_total_dim(bmap);
322 if (!bmap)
323 return NULL;
325 isl_int_init(gcd);
326 for (i = bmap->n_eq - 1; i >= 0; --i) {
327 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
328 if (isl_int_is_zero(gcd)) {
329 if (!isl_int_is_zero(bmap->eq[i][0])) {
330 bmap = isl_basic_map_set_to_empty(bmap);
331 break;
333 isl_basic_map_drop_equality(bmap, i);
334 continue;
336 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
337 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
338 if (isl_int_is_one(gcd))
339 continue;
340 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
341 bmap = isl_basic_map_set_to_empty(bmap);
342 break;
344 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
347 for (i = bmap->n_ineq - 1; i >= 0; --i) {
348 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
349 if (isl_int_is_zero(gcd)) {
350 if (isl_int_is_neg(bmap->ineq[i][0])) {
351 bmap = isl_basic_map_set_to_empty(bmap);
352 break;
354 isl_basic_map_drop_inequality(bmap, i);
355 continue;
357 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
358 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
359 if (isl_int_is_one(gcd))
360 continue;
361 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
362 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
364 isl_int_clear(gcd);
366 return bmap;
369 struct isl_basic_set *isl_basic_set_normalize_constraints(
370 struct isl_basic_set *bset)
372 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
373 (struct isl_basic_map *)bset);
376 /* Remove any common factor in numerator and denominator of the div expression,
377 * not taking into account the constant term.
378 * That is, if the div is of the form
380 * floor((a + m f(x))/(m d))
382 * then replace it by
384 * floor((floor(a/m) + f(x))/d)
386 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
387 * and can therefore not influence the result of the floor.
389 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
391 unsigned total = isl_basic_map_total_dim(bmap);
392 isl_ctx *ctx = bmap->ctx;
394 if (isl_int_is_zero(bmap->div[div][0]))
395 return;
396 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
397 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
398 if (isl_int_is_one(ctx->normalize_gcd))
399 return;
400 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
401 ctx->normalize_gcd);
402 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
403 ctx->normalize_gcd);
404 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
405 ctx->normalize_gcd, total);
408 /* Remove any common factor in numerator and denominator of a div expression,
409 * not taking into account the constant term.
410 * That is, look for any div of the form
412 * floor((a + m f(x))/(m d))
414 * and replace it by
416 * floor((floor(a/m) + f(x))/d)
418 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
419 * and can therefore not influence the result of the floor.
421 static __isl_give isl_basic_map *normalize_div_expressions(
422 __isl_take isl_basic_map *bmap)
424 int i;
426 if (!bmap)
427 return NULL;
428 if (bmap->n_div == 0)
429 return bmap;
431 for (i = 0; i < bmap->n_div; ++i)
432 normalize_div_expression(bmap, i);
434 return bmap;
437 /* Assumes divs have been ordered if keep_divs is set.
439 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
440 unsigned pos, isl_int *eq, int keep_divs, int *progress)
442 unsigned total;
443 unsigned space_total;
444 int k;
445 int last_div;
447 total = isl_basic_map_total_dim(bmap);
448 space_total = isl_space_dim(bmap->dim, isl_dim_all);
449 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
450 for (k = 0; k < bmap->n_eq; ++k) {
451 if (bmap->eq[k] == eq)
452 continue;
453 if (isl_int_is_zero(bmap->eq[k][1+pos]))
454 continue;
455 if (progress)
456 *progress = 1;
457 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
458 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
461 for (k = 0; k < bmap->n_ineq; ++k) {
462 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
463 continue;
464 if (progress)
465 *progress = 1;
466 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
467 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
468 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
471 for (k = 0; k < bmap->n_div; ++k) {
472 if (isl_int_is_zero(bmap->div[k][0]))
473 continue;
474 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
475 continue;
476 if (progress)
477 *progress = 1;
478 /* We need to be careful about circular definitions,
479 * so for now we just remove the definition of div k
480 * if the equality contains any divs.
481 * If keep_divs is set, then the divs have been ordered
482 * and we can keep the definition as long as the result
483 * is still ordered.
485 if (last_div == -1 || (keep_divs && last_div < k)) {
486 isl_seq_elim(bmap->div[k]+1, eq,
487 1+pos, 1+total, &bmap->div[k][0]);
488 normalize_div_expression(bmap, k);
489 } else
490 isl_seq_clr(bmap->div[k], 1 + total);
491 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
495 /* Assumes divs have been ordered if keep_divs is set.
497 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
498 unsigned div, int keep_divs)
500 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
502 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
504 isl_basic_map_drop_div(bmap, div);
507 /* Check if elimination of div "div" using equality "eq" would not
508 * result in a div depending on a later div.
510 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
511 unsigned div)
513 int k;
514 int last_div;
515 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
516 unsigned pos = space_total + div;
518 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
519 if (last_div < 0 || last_div <= div)
520 return 1;
522 for (k = 0; k <= last_div; ++k) {
523 if (isl_int_is_zero(bmap->div[k][0]))
524 return 1;
525 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
526 return 0;
529 return 1;
532 /* Elimininate divs based on equalities
534 static struct isl_basic_map *eliminate_divs_eq(
535 struct isl_basic_map *bmap, int *progress)
537 int d;
538 int i;
539 int modified = 0;
540 unsigned off;
542 bmap = isl_basic_map_order_divs(bmap);
544 if (!bmap)
545 return NULL;
547 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
549 for (d = bmap->n_div - 1; d >= 0 ; --d) {
550 for (i = 0; i < bmap->n_eq; ++i) {
551 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
552 !isl_int_is_negone(bmap->eq[i][off + d]))
553 continue;
554 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
555 continue;
556 modified = 1;
557 *progress = 1;
558 eliminate_div(bmap, bmap->eq[i], d, 1);
559 isl_basic_map_drop_equality(bmap, i);
560 break;
563 if (modified)
564 return eliminate_divs_eq(bmap, progress);
565 return bmap;
568 /* Elimininate divs based on inequalities
570 static struct isl_basic_map *eliminate_divs_ineq(
571 struct isl_basic_map *bmap, int *progress)
573 int d;
574 int i;
575 unsigned off;
576 struct isl_ctx *ctx;
578 if (!bmap)
579 return NULL;
581 ctx = bmap->ctx;
582 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
584 for (d = bmap->n_div - 1; d >= 0 ; --d) {
585 for (i = 0; i < bmap->n_eq; ++i)
586 if (!isl_int_is_zero(bmap->eq[i][off + d]))
587 break;
588 if (i < bmap->n_eq)
589 continue;
590 for (i = 0; i < bmap->n_ineq; ++i)
591 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
592 break;
593 if (i < bmap->n_ineq)
594 continue;
595 *progress = 1;
596 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
597 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
598 break;
599 bmap = isl_basic_map_drop_div(bmap, d);
600 if (!bmap)
601 break;
603 return bmap;
606 struct isl_basic_map *isl_basic_map_gauss(
607 struct isl_basic_map *bmap, int *progress)
609 int k;
610 int done;
611 int last_var;
612 unsigned total_var;
613 unsigned total;
615 bmap = isl_basic_map_order_divs(bmap);
617 if (!bmap)
618 return NULL;
620 total = isl_basic_map_total_dim(bmap);
621 total_var = total - bmap->n_div;
623 last_var = total - 1;
624 for (done = 0; done < bmap->n_eq; ++done) {
625 for (; last_var >= 0; --last_var) {
626 for (k = done; k < bmap->n_eq; ++k)
627 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
628 break;
629 if (k < bmap->n_eq)
630 break;
632 if (last_var < 0)
633 break;
634 if (k != done)
635 swap_equality(bmap, k, done);
636 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
637 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
639 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
640 progress);
642 if (last_var >= total_var &&
643 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
644 unsigned div = last_var - total_var;
645 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
646 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
647 isl_int_set(bmap->div[div][0],
648 bmap->eq[done][1+last_var]);
649 if (progress)
650 *progress = 1;
651 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
654 if (done == bmap->n_eq)
655 return bmap;
656 for (k = done; k < bmap->n_eq; ++k) {
657 if (isl_int_is_zero(bmap->eq[k][0]))
658 continue;
659 return isl_basic_map_set_to_empty(bmap);
661 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
662 return bmap;
665 struct isl_basic_set *isl_basic_set_gauss(
666 struct isl_basic_set *bset, int *progress)
668 return (struct isl_basic_set*)isl_basic_map_gauss(
669 (struct isl_basic_map *)bset, progress);
673 static unsigned int round_up(unsigned int v)
675 int old_v = v;
677 while (v) {
678 old_v = v;
679 v ^= v & -v;
681 return old_v << 1;
684 static int hash_index(isl_int ***index, unsigned int size, int bits,
685 struct isl_basic_map *bmap, int k)
687 int h;
688 unsigned total = isl_basic_map_total_dim(bmap);
689 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
690 for (h = hash; index[h]; h = (h+1) % size)
691 if (&bmap->ineq[k] != index[h] &&
692 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
693 break;
694 return h;
697 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
698 struct isl_basic_set *bset, int k)
700 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
703 /* If we can eliminate more than one div, then we need to make
704 * sure we do it from last div to first div, in order not to
705 * change the position of the other divs that still need to
706 * be removed.
708 static struct isl_basic_map *remove_duplicate_divs(
709 struct isl_basic_map *bmap, int *progress)
711 unsigned int size;
712 int *index;
713 int *elim_for;
714 int k, l, h;
715 int bits;
716 struct isl_blk eq;
717 unsigned total_var;
718 unsigned total;
719 struct isl_ctx *ctx;
721 bmap = isl_basic_map_order_divs(bmap);
722 if (!bmap || bmap->n_div <= 1)
723 return bmap;
725 total_var = isl_space_dim(bmap->dim, isl_dim_all);
726 total = total_var + bmap->n_div;
728 ctx = bmap->ctx;
729 for (k = bmap->n_div - 1; k >= 0; --k)
730 if (!isl_int_is_zero(bmap->div[k][0]))
731 break;
732 if (k <= 0)
733 return bmap;
735 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
736 size = round_up(4 * bmap->n_div / 3 - 1);
737 bits = ffs(size) - 1;
738 index = isl_calloc_array(ctx, int, size);
739 if (!index)
740 return bmap;
741 eq = isl_blk_alloc(ctx, 1+total);
742 if (isl_blk_is_error(eq))
743 goto out;
745 isl_seq_clr(eq.data, 1+total);
746 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
747 for (--k; k >= 0; --k) {
748 uint32_t hash;
750 if (isl_int_is_zero(bmap->div[k][0]))
751 continue;
753 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
754 for (h = hash; index[h]; h = (h+1) % size)
755 if (isl_seq_eq(bmap->div[k],
756 bmap->div[index[h]-1], 2+total))
757 break;
758 if (index[h]) {
759 *progress = 1;
760 l = index[h] - 1;
761 elim_for[l] = k + 1;
763 index[h] = k+1;
765 for (l = bmap->n_div - 1; l >= 0; --l) {
766 if (!elim_for[l])
767 continue;
768 k = elim_for[l] - 1;
769 isl_int_set_si(eq.data[1+total_var+k], -1);
770 isl_int_set_si(eq.data[1+total_var+l], 1);
771 eliminate_div(bmap, eq.data, l, 1);
772 isl_int_set_si(eq.data[1+total_var+k], 0);
773 isl_int_set_si(eq.data[1+total_var+l], 0);
776 isl_blk_free(ctx, eq);
777 out:
778 free(index);
779 free(elim_for);
780 return bmap;
783 static int n_pure_div_eq(struct isl_basic_map *bmap)
785 int i, j;
786 unsigned total;
788 total = isl_space_dim(bmap->dim, isl_dim_all);
789 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
790 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
791 --j;
792 if (j < 0)
793 break;
794 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
795 return 0;
797 return i;
800 /* Normalize divs that appear in equalities.
802 * In particular, we assume that bmap contains some equalities
803 * of the form
805 * a x = m * e_i
807 * and we want to replace the set of e_i by a minimal set and
808 * such that the new e_i have a canonical representation in terms
809 * of the vector x.
810 * If any of the equalities involves more than one divs, then
811 * we currently simply bail out.
813 * Let us first additionally assume that all equalities involve
814 * a div. The equalities then express modulo constraints on the
815 * remaining variables and we can use "parameter compression"
816 * to find a minimal set of constraints. The result is a transformation
818 * x = T(x') = x_0 + G x'
820 * with G a lower-triangular matrix with all elements below the diagonal
821 * non-negative and smaller than the diagonal element on the same row.
822 * We first normalize x_0 by making the same property hold in the affine
823 * T matrix.
824 * The rows i of G with a 1 on the diagonal do not impose any modulo
825 * constraint and simply express x_i = x'_i.
826 * For each of the remaining rows i, we introduce a div and a corresponding
827 * equality. In particular
829 * g_ii e_j = x_i - g_i(x')
831 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
832 * corresponding div (if g_kk != 1).
834 * If there are any equalities not involving any div, then we
835 * first apply a variable compression on the variables x:
837 * x = C x'' x'' = C_2 x
839 * and perform the above parameter compression on A C instead of on A.
840 * The resulting compression is then of the form
842 * x'' = T(x') = x_0 + G x'
844 * and in constructing the new divs and the corresponding equalities,
845 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
846 * by the corresponding row from C_2.
848 static struct isl_basic_map *normalize_divs(
849 struct isl_basic_map *bmap, int *progress)
851 int i, j, k;
852 int total;
853 int div_eq;
854 struct isl_mat *B;
855 struct isl_vec *d;
856 struct isl_mat *T = NULL;
857 struct isl_mat *C = NULL;
858 struct isl_mat *C2 = NULL;
859 isl_int v;
860 int *pos;
861 int dropped, needed;
863 if (!bmap)
864 return NULL;
866 if (bmap->n_div == 0)
867 return bmap;
869 if (bmap->n_eq == 0)
870 return bmap;
872 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
873 return bmap;
875 total = isl_space_dim(bmap->dim, isl_dim_all);
876 div_eq = n_pure_div_eq(bmap);
877 if (div_eq == 0)
878 return bmap;
880 if (div_eq < bmap->n_eq) {
881 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
882 bmap->n_eq - div_eq, 0, 1 + total);
883 C = isl_mat_variable_compression(B, &C2);
884 if (!C || !C2)
885 goto error;
886 if (C->n_col == 0) {
887 bmap = isl_basic_map_set_to_empty(bmap);
888 isl_mat_free(C);
889 isl_mat_free(C2);
890 goto done;
894 d = isl_vec_alloc(bmap->ctx, div_eq);
895 if (!d)
896 goto error;
897 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
898 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
899 --j;
900 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
902 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
904 if (C) {
905 B = isl_mat_product(B, C);
906 C = NULL;
909 T = isl_mat_parameter_compression(B, d);
910 if (!T)
911 goto error;
912 if (T->n_col == 0) {
913 bmap = isl_basic_map_set_to_empty(bmap);
914 isl_mat_free(C2);
915 isl_mat_free(T);
916 goto done;
918 isl_int_init(v);
919 for (i = 0; i < T->n_row - 1; ++i) {
920 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
921 if (isl_int_is_zero(v))
922 continue;
923 isl_mat_col_submul(T, 0, v, 1 + i);
925 isl_int_clear(v);
926 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
927 if (!pos)
928 goto error;
929 /* We have to be careful because dropping equalities may reorder them */
930 dropped = 0;
931 for (j = bmap->n_div - 1; j >= 0; --j) {
932 for (i = 0; i < bmap->n_eq; ++i)
933 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
934 break;
935 if (i < bmap->n_eq) {
936 bmap = isl_basic_map_drop_div(bmap, j);
937 isl_basic_map_drop_equality(bmap, i);
938 ++dropped;
941 pos[0] = 0;
942 needed = 0;
943 for (i = 1; i < T->n_row; ++i) {
944 if (isl_int_is_one(T->row[i][i]))
945 pos[i] = i;
946 else
947 needed++;
949 if (needed > dropped) {
950 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
951 needed, needed, 0);
952 if (!bmap)
953 goto error;
955 for (i = 1; i < T->n_row; ++i) {
956 if (isl_int_is_one(T->row[i][i]))
957 continue;
958 k = isl_basic_map_alloc_div(bmap);
959 pos[i] = 1 + total + k;
960 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
961 isl_int_set(bmap->div[k][0], T->row[i][i]);
962 if (C2)
963 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
964 else
965 isl_int_set_si(bmap->div[k][1 + i], 1);
966 for (j = 0; j < i; ++j) {
967 if (isl_int_is_zero(T->row[i][j]))
968 continue;
969 if (pos[j] < T->n_row && C2)
970 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
971 C2->row[pos[j]], 1 + total);
972 else
973 isl_int_neg(bmap->div[k][1 + pos[j]],
974 T->row[i][j]);
976 j = isl_basic_map_alloc_equality(bmap);
977 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
978 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
980 free(pos);
981 isl_mat_free(C2);
982 isl_mat_free(T);
984 if (progress)
985 *progress = 1;
986 done:
987 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
989 return bmap;
990 error:
991 isl_mat_free(C);
992 isl_mat_free(C2);
993 isl_mat_free(T);
994 return bmap;
997 static struct isl_basic_map *set_div_from_lower_bound(
998 struct isl_basic_map *bmap, int div, int ineq)
1000 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1002 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1003 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1004 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1005 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1006 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1008 return bmap;
1011 /* Check whether it is ok to define a div based on an inequality.
1012 * To avoid the introduction of circular definitions of divs, we
1013 * do not allow such a definition if the resulting expression would refer to
1014 * any other undefined divs or if any known div is defined in
1015 * terms of the unknown div.
1017 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1018 int div, int ineq)
1020 int j;
1021 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1023 /* Not defined in terms of unknown divs */
1024 for (j = 0; j < bmap->n_div; ++j) {
1025 if (div == j)
1026 continue;
1027 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1028 continue;
1029 if (isl_int_is_zero(bmap->div[j][0]))
1030 return 0;
1033 /* No other div defined in terms of this one => avoid loops */
1034 for (j = 0; j < bmap->n_div; ++j) {
1035 if (div == j)
1036 continue;
1037 if (isl_int_is_zero(bmap->div[j][0]))
1038 continue;
1039 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1040 return 0;
1043 return 1;
1046 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1047 * be a better expression than the current one?
1049 * If we do not have any expression yet, then any expression would be better.
1050 * Otherwise we check if the last variable involved in the inequality
1051 * (disregarding the div that it would define) is in an earlier position
1052 * than the last variable involved in the current div expression.
1054 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1055 int div, int ineq)
1057 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1058 int last_div;
1059 int last_ineq;
1061 if (isl_int_is_zero(bmap->div[div][0]))
1062 return 1;
1064 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1065 bmap->n_div - (div + 1)) >= 0)
1066 return 0;
1068 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1069 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1070 total + bmap->n_div);
1072 return last_ineq < last_div;
1075 /* Given two constraints "k" and "l" that are opposite to each other,
1076 * except for the constant term, check if we can use them
1077 * to obtain an expression for one of the hitherto unknown divs or
1078 * a "better" expression for a div for which we already have an expression.
1079 * "sum" is the sum of the constant terms of the constraints.
1080 * If this sum is strictly smaller than the coefficient of one
1081 * of the divs, then this pair can be used define the div.
1082 * To avoid the introduction of circular definitions of divs, we
1083 * do not use the pair if the resulting expression would refer to
1084 * any other undefined divs or if any known div is defined in
1085 * terms of the unknown div.
1087 static struct isl_basic_map *check_for_div_constraints(
1088 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1090 int i;
1091 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1093 for (i = 0; i < bmap->n_div; ++i) {
1094 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1095 continue;
1096 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1097 continue;
1098 if (!better_div_constraint(bmap, i, k))
1099 continue;
1100 if (!ok_to_set_div_from_bound(bmap, i, k))
1101 break;
1102 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1103 bmap = set_div_from_lower_bound(bmap, i, k);
1104 else
1105 bmap = set_div_from_lower_bound(bmap, i, l);
1106 if (progress)
1107 *progress = 1;
1108 break;
1110 return bmap;
1113 static struct isl_basic_map *remove_duplicate_constraints(
1114 struct isl_basic_map *bmap, int *progress, int detect_divs)
1116 unsigned int size;
1117 isl_int ***index;
1118 int k, l, h;
1119 int bits;
1120 unsigned total = isl_basic_map_total_dim(bmap);
1121 isl_int sum;
1122 isl_ctx *ctx;
1124 if (!bmap || bmap->n_ineq <= 1)
1125 return bmap;
1127 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1128 bits = ffs(size) - 1;
1129 ctx = isl_basic_map_get_ctx(bmap);
1130 index = isl_calloc_array(ctx, isl_int **, size);
1131 if (!index)
1132 return bmap;
1134 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1135 for (k = 1; k < bmap->n_ineq; ++k) {
1136 h = hash_index(index, size, bits, bmap, k);
1137 if (!index[h]) {
1138 index[h] = &bmap->ineq[k];
1139 continue;
1141 if (progress)
1142 *progress = 1;
1143 l = index[h] - &bmap->ineq[0];
1144 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1145 swap_inequality(bmap, k, l);
1146 isl_basic_map_drop_inequality(bmap, k);
1147 --k;
1149 isl_int_init(sum);
1150 for (k = 0; k < bmap->n_ineq-1; ++k) {
1151 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1152 h = hash_index(index, size, bits, bmap, k);
1153 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1154 if (!index[h])
1155 continue;
1156 l = index[h] - &bmap->ineq[0];
1157 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1158 if (isl_int_is_pos(sum)) {
1159 if (detect_divs)
1160 bmap = check_for_div_constraints(bmap, k, l,
1161 sum, progress);
1162 continue;
1164 if (isl_int_is_zero(sum)) {
1165 /* We need to break out of the loop after these
1166 * changes since the contents of the hash
1167 * will no longer be valid.
1168 * Plus, we probably we want to regauss first.
1170 if (progress)
1171 *progress = 1;
1172 isl_basic_map_drop_inequality(bmap, l);
1173 isl_basic_map_inequality_to_equality(bmap, k);
1174 } else
1175 bmap = isl_basic_map_set_to_empty(bmap);
1176 break;
1178 isl_int_clear(sum);
1180 free(index);
1181 return bmap;
1185 /* Eliminate knowns divs from constraints where they appear with
1186 * a (positive or negative) unit coefficient.
1188 * That is, replace
1190 * floor(e/m) + f >= 0
1192 * by
1194 * e + m f >= 0
1196 * and
1198 * -floor(e/m) + f >= 0
1200 * by
1202 * -e + m f + m - 1 >= 0
1204 * The first conversion is valid because floor(e/m) >= -f is equivalent
1205 * to e/m >= -f because -f is an integral expression.
1206 * The second conversion follows from the fact that
1208 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1211 * We skip integral divs, i.e., those with denominator 1, as we would
1212 * risk eliminating the div from the div constraints. We do not need
1213 * to handle those divs here anyway since the div constraints will turn
1214 * out to form an equality and this equality can then be use to eliminate
1215 * the div from all constraints.
1217 static __isl_give isl_basic_map *eliminate_unit_divs(
1218 __isl_take isl_basic_map *bmap, int *progress)
1220 int i, j;
1221 isl_ctx *ctx;
1222 unsigned total;
1224 if (!bmap)
1225 return NULL;
1227 ctx = isl_basic_map_get_ctx(bmap);
1228 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1230 for (i = 0; i < bmap->n_div; ++i) {
1231 if (isl_int_is_zero(bmap->div[i][0]))
1232 continue;
1233 if (isl_int_is_one(bmap->div[i][0]))
1234 continue;
1235 for (j = 0; j < bmap->n_ineq; ++j) {
1236 int s;
1238 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1239 !isl_int_is_negone(bmap->ineq[j][total + i]))
1240 continue;
1242 *progress = 1;
1244 s = isl_int_sgn(bmap->ineq[j][total + i]);
1245 isl_int_set_si(bmap->ineq[j][total + i], 0);
1246 if (s < 0)
1247 isl_seq_combine(bmap->ineq[j],
1248 ctx->negone, bmap->div[i] + 1,
1249 bmap->div[i][0], bmap->ineq[j],
1250 total + bmap->n_div);
1251 else
1252 isl_seq_combine(bmap->ineq[j],
1253 ctx->one, bmap->div[i] + 1,
1254 bmap->div[i][0], bmap->ineq[j],
1255 total + bmap->n_div);
1256 if (s < 0) {
1257 isl_int_add(bmap->ineq[j][0],
1258 bmap->ineq[j][0], bmap->div[i][0]);
1259 isl_int_sub_ui(bmap->ineq[j][0],
1260 bmap->ineq[j][0], 1);
1265 return bmap;
1268 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1270 int progress = 1;
1271 if (!bmap)
1272 return NULL;
1273 while (progress) {
1274 progress = 0;
1275 if (!bmap)
1276 break;
1277 if (isl_basic_map_plain_is_empty(bmap))
1278 break;
1279 bmap = isl_basic_map_normalize_constraints(bmap);
1280 bmap = normalize_div_expressions(bmap);
1281 bmap = remove_duplicate_divs(bmap, &progress);
1282 bmap = eliminate_unit_divs(bmap, &progress);
1283 bmap = eliminate_divs_eq(bmap, &progress);
1284 bmap = eliminate_divs_ineq(bmap, &progress);
1285 bmap = isl_basic_map_gauss(bmap, &progress);
1286 /* requires equalities in normal form */
1287 bmap = normalize_divs(bmap, &progress);
1288 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1290 return bmap;
1293 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1295 return (struct isl_basic_set *)
1296 isl_basic_map_simplify((struct isl_basic_map *)bset);
1300 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1301 isl_int *constraint, unsigned div)
1303 unsigned pos;
1305 if (!bmap)
1306 return -1;
1308 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1310 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1311 int neg;
1312 isl_int_sub(bmap->div[div][1],
1313 bmap->div[div][1], bmap->div[div][0]);
1314 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1315 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1316 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1317 isl_int_add(bmap->div[div][1],
1318 bmap->div[div][1], bmap->div[div][0]);
1319 if (!neg)
1320 return 0;
1321 if (isl_seq_first_non_zero(constraint+pos+1,
1322 bmap->n_div-div-1) != -1)
1323 return 0;
1324 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1325 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1326 return 0;
1327 if (isl_seq_first_non_zero(constraint+pos+1,
1328 bmap->n_div-div-1) != -1)
1329 return 0;
1330 } else
1331 return 0;
1333 return 1;
1336 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1337 isl_int *constraint, unsigned div)
1339 return isl_basic_map_is_div_constraint(bset, constraint, div);
1343 /* If the only constraints a div d=floor(f/m)
1344 * appears in are its two defining constraints
1346 * f - m d >=0
1347 * -(f - (m - 1)) + m d >= 0
1349 * then it can safely be removed.
1351 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1353 int i;
1354 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1356 for (i = 0; i < bmap->n_eq; ++i)
1357 if (!isl_int_is_zero(bmap->eq[i][pos]))
1358 return 0;
1360 for (i = 0; i < bmap->n_ineq; ++i) {
1361 if (isl_int_is_zero(bmap->ineq[i][pos]))
1362 continue;
1363 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1364 return 0;
1367 for (i = 0; i < bmap->n_div; ++i) {
1368 if (isl_int_is_zero(bmap->div[i][0]))
1369 continue;
1370 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1371 return 0;
1374 return 1;
1378 * Remove divs that don't occur in any of the constraints or other divs.
1379 * These can arise when dropping some of the variables in a quast
1380 * returned by piplib.
1382 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1384 int i;
1386 if (!bmap)
1387 return NULL;
1389 for (i = bmap->n_div-1; i >= 0; --i) {
1390 if (!div_is_redundant(bmap, i))
1391 continue;
1392 bmap = isl_basic_map_drop_div(bmap, i);
1394 return bmap;
1397 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1399 bmap = remove_redundant_divs(bmap);
1400 if (!bmap)
1401 return NULL;
1402 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1403 return bmap;
1406 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1408 return (struct isl_basic_set *)
1409 isl_basic_map_finalize((struct isl_basic_map *)bset);
1412 struct isl_set *isl_set_finalize(struct isl_set *set)
1414 int i;
1416 if (!set)
1417 return NULL;
1418 for (i = 0; i < set->n; ++i) {
1419 set->p[i] = isl_basic_set_finalize(set->p[i]);
1420 if (!set->p[i])
1421 goto error;
1423 return set;
1424 error:
1425 isl_set_free(set);
1426 return NULL;
1429 struct isl_map *isl_map_finalize(struct isl_map *map)
1431 int i;
1433 if (!map)
1434 return NULL;
1435 for (i = 0; i < map->n; ++i) {
1436 map->p[i] = isl_basic_map_finalize(map->p[i]);
1437 if (!map->p[i])
1438 goto error;
1440 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1441 return map;
1442 error:
1443 isl_map_free(map);
1444 return NULL;
1448 /* Remove definition of any div that is defined in terms of the given variable.
1449 * The div itself is not removed. Functions such as
1450 * eliminate_divs_ineq depend on the other divs remaining in place.
1452 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1453 int pos)
1455 int i;
1457 if (!bmap)
1458 return NULL;
1460 for (i = 0; i < bmap->n_div; ++i) {
1461 if (isl_int_is_zero(bmap->div[i][0]))
1462 continue;
1463 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1464 continue;
1465 isl_int_set_si(bmap->div[i][0], 0);
1467 return bmap;
1470 /* Eliminate the specified variables from the constraints using
1471 * Fourier-Motzkin. The variables themselves are not removed.
1473 struct isl_basic_map *isl_basic_map_eliminate_vars(
1474 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1476 int d;
1477 int i, j, k;
1478 unsigned total;
1479 int need_gauss = 0;
1481 if (n == 0)
1482 return bmap;
1483 if (!bmap)
1484 return NULL;
1485 total = isl_basic_map_total_dim(bmap);
1487 bmap = isl_basic_map_cow(bmap);
1488 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1489 bmap = remove_dependent_vars(bmap, d);
1490 if (!bmap)
1491 return NULL;
1493 for (d = pos + n - 1;
1494 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1495 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1496 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1497 int n_lower, n_upper;
1498 if (!bmap)
1499 return NULL;
1500 for (i = 0; i < bmap->n_eq; ++i) {
1501 if (isl_int_is_zero(bmap->eq[i][1+d]))
1502 continue;
1503 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1504 isl_basic_map_drop_equality(bmap, i);
1505 need_gauss = 1;
1506 break;
1508 if (i < bmap->n_eq)
1509 continue;
1510 n_lower = 0;
1511 n_upper = 0;
1512 for (i = 0; i < bmap->n_ineq; ++i) {
1513 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1514 n_lower++;
1515 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1516 n_upper++;
1518 bmap = isl_basic_map_extend_constraints(bmap,
1519 0, n_lower * n_upper);
1520 if (!bmap)
1521 goto error;
1522 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1523 int last;
1524 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1525 continue;
1526 last = -1;
1527 for (j = 0; j < i; ++j) {
1528 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1529 continue;
1530 last = j;
1531 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1532 isl_int_sgn(bmap->ineq[j][1+d]))
1533 continue;
1534 k = isl_basic_map_alloc_inequality(bmap);
1535 if (k < 0)
1536 goto error;
1537 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1538 1+total);
1539 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1540 1+d, 1+total, NULL);
1542 isl_basic_map_drop_inequality(bmap, i);
1543 i = last + 1;
1545 if (n_lower > 0 && n_upper > 0) {
1546 bmap = isl_basic_map_normalize_constraints(bmap);
1547 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1548 bmap = isl_basic_map_gauss(bmap, NULL);
1549 bmap = isl_basic_map_remove_redundancies(bmap);
1550 need_gauss = 0;
1551 if (!bmap)
1552 goto error;
1553 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1554 break;
1557 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1558 if (need_gauss)
1559 bmap = isl_basic_map_gauss(bmap, NULL);
1560 return bmap;
1561 error:
1562 isl_basic_map_free(bmap);
1563 return NULL;
1566 struct isl_basic_set *isl_basic_set_eliminate_vars(
1567 struct isl_basic_set *bset, unsigned pos, unsigned n)
1569 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1570 (struct isl_basic_map *)bset, pos, n);
1573 /* Eliminate the specified n dimensions starting at first from the
1574 * constraints, without removing the dimensions from the space.
1575 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1576 * Otherwise, they are projected out and the original space is restored.
1578 __isl_give isl_basic_map *isl_basic_map_eliminate(
1579 __isl_take isl_basic_map *bmap,
1580 enum isl_dim_type type, unsigned first, unsigned n)
1582 isl_space *space;
1584 if (!bmap)
1585 return NULL;
1586 if (n == 0)
1587 return bmap;
1589 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1590 isl_die(bmap->ctx, isl_error_invalid,
1591 "index out of bounds", goto error);
1593 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1594 first += isl_basic_map_offset(bmap, type) - 1;
1595 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1596 return isl_basic_map_finalize(bmap);
1599 space = isl_basic_map_get_space(bmap);
1600 bmap = isl_basic_map_project_out(bmap, type, first, n);
1601 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1602 bmap = isl_basic_map_reset_space(bmap, space);
1603 return bmap;
1604 error:
1605 isl_basic_map_free(bmap);
1606 return NULL;
1609 __isl_give isl_basic_set *isl_basic_set_eliminate(
1610 __isl_take isl_basic_set *bset,
1611 enum isl_dim_type type, unsigned first, unsigned n)
1613 return isl_basic_map_eliminate(bset, type, first, n);
1616 /* Don't assume equalities are in order, because align_divs
1617 * may have changed the order of the divs.
1619 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1621 int d, i;
1622 unsigned total;
1624 total = isl_space_dim(bmap->dim, isl_dim_all);
1625 for (d = 0; d < total; ++d)
1626 elim[d] = -1;
1627 for (i = 0; i < bmap->n_eq; ++i) {
1628 for (d = total - 1; d >= 0; --d) {
1629 if (isl_int_is_zero(bmap->eq[i][1+d]))
1630 continue;
1631 elim[d] = i;
1632 break;
1637 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1639 compute_elimination_index((struct isl_basic_map *)bset, elim);
1642 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1643 struct isl_basic_map *bmap, int *elim)
1645 int d;
1646 int copied = 0;
1647 unsigned total;
1649 total = isl_space_dim(bmap->dim, isl_dim_all);
1650 for (d = total - 1; d >= 0; --d) {
1651 if (isl_int_is_zero(src[1+d]))
1652 continue;
1653 if (elim[d] == -1)
1654 continue;
1655 if (!copied) {
1656 isl_seq_cpy(dst, src, 1 + total);
1657 copied = 1;
1659 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1661 return copied;
1664 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1665 struct isl_basic_set *bset, int *elim)
1667 return reduced_using_equalities(dst, src,
1668 (struct isl_basic_map *)bset, elim);
1671 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1672 struct isl_basic_set *bset, struct isl_basic_set *context)
1674 int i;
1675 int *elim;
1677 if (!bset || !context)
1678 goto error;
1680 if (context->n_eq == 0) {
1681 isl_basic_set_free(context);
1682 return bset;
1685 bset = isl_basic_set_cow(bset);
1686 if (!bset)
1687 goto error;
1689 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1690 if (!elim)
1691 goto error;
1692 set_compute_elimination_index(context, elim);
1693 for (i = 0; i < bset->n_eq; ++i)
1694 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1695 context, elim);
1696 for (i = 0; i < bset->n_ineq; ++i)
1697 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1698 context, elim);
1699 isl_basic_set_free(context);
1700 free(elim);
1701 bset = isl_basic_set_simplify(bset);
1702 bset = isl_basic_set_finalize(bset);
1703 return bset;
1704 error:
1705 isl_basic_set_free(bset);
1706 isl_basic_set_free(context);
1707 return NULL;
1710 static struct isl_basic_set *remove_shifted_constraints(
1711 struct isl_basic_set *bset, struct isl_basic_set *context)
1713 unsigned int size;
1714 isl_int ***index;
1715 int bits;
1716 int k, h, l;
1717 isl_ctx *ctx;
1719 if (!bset)
1720 return NULL;
1722 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1723 bits = ffs(size) - 1;
1724 ctx = isl_basic_set_get_ctx(bset);
1725 index = isl_calloc_array(ctx, isl_int **, size);
1726 if (!index)
1727 return bset;
1729 for (k = 0; k < context->n_ineq; ++k) {
1730 h = set_hash_index(index, size, bits, context, k);
1731 index[h] = &context->ineq[k];
1733 for (k = 0; k < bset->n_ineq; ++k) {
1734 h = set_hash_index(index, size, bits, bset, k);
1735 if (!index[h])
1736 continue;
1737 l = index[h] - &context->ineq[0];
1738 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1739 continue;
1740 bset = isl_basic_set_cow(bset);
1741 if (!bset)
1742 goto error;
1743 isl_basic_set_drop_inequality(bset, k);
1744 --k;
1746 free(index);
1747 return bset;
1748 error:
1749 free(index);
1750 return bset;
1753 /* Does the (linear part of a) constraint "c" involve any of the "len"
1754 * "relevant" dimensions?
1756 static int is_related(isl_int *c, int len, int *relevant)
1758 int i;
1760 for (i = 0; i < len; ++i) {
1761 if (!relevant[i])
1762 continue;
1763 if (!isl_int_is_zero(c[i]))
1764 return 1;
1767 return 0;
1770 /* Drop constraints from "bset" that do not involve any of
1771 * the dimensions marked "relevant".
1773 static __isl_give isl_basic_set *drop_unrelated_constraints(
1774 __isl_take isl_basic_set *bset, int *relevant)
1776 int i, dim;
1778 dim = isl_basic_set_dim(bset, isl_dim_set);
1779 for (i = 0; i < dim; ++i)
1780 if (!relevant[i])
1781 break;
1782 if (i >= dim)
1783 return bset;
1785 for (i = bset->n_eq - 1; i >= 0; --i)
1786 if (!is_related(bset->eq[i] + 1, dim, relevant))
1787 isl_basic_set_drop_equality(bset, i);
1789 for (i = bset->n_ineq - 1; i >= 0; --i)
1790 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1791 isl_basic_set_drop_inequality(bset, i);
1793 return bset;
1796 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1798 * In particular, for any variable involved in the constraint,
1799 * find the actual group id from before and replace the group
1800 * of the corresponding variable by the minimal group of all
1801 * the variables involved in the constraint considered so far
1802 * (if this minimum is smaller) or replace the minimum by this group
1803 * (if the minimum is larger).
1805 * At the end, all the variables in "c" will (indirectly) point
1806 * to the minimal of the groups that they referred to originally.
1808 static void update_groups(int dim, int *group, isl_int *c)
1810 int j;
1811 int min = dim;
1813 for (j = 0; j < dim; ++j) {
1814 if (isl_int_is_zero(c[j]))
1815 continue;
1816 while (group[j] >= 0 && group[group[j]] != group[j])
1817 group[j] = group[group[j]];
1818 if (group[j] == min)
1819 continue;
1820 if (group[j] < min) {
1821 if (min >= 0 && min < dim)
1822 group[min] = group[j];
1823 min = group[j];
1824 } else
1825 group[group[j]] = min;
1829 /* Drop constraints from "context" that are irrelevant for computing
1830 * the gist of "bset".
1832 * In particular, drop constraints in variables that are not related
1833 * to any of the variables involved in the constraints of "bset"
1834 * in the sense that there is no sequence of constraints that connects them.
1836 * We construct groups of variables that collect variables that
1837 * (indirectly) appear in some common constraint of "context".
1838 * Each group is identified by the first variable in the group,
1839 * except for the special group of variables that appear in "bset"
1840 * (or are related to those variables), which is identified by -1.
1841 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1842 * otherwise the group of i is the group of group[i].
1844 * We first initialize the -1 group with the variables that appear in "bset".
1845 * Then we initialize groups for the remaining variables.
1846 * Then we iterate over the constraints of "context" and update the
1847 * group of the variables in the constraint by the smallest group.
1848 * Finally, we resolve indirect references to groups by running over
1849 * the variables.
1851 * After computing the groups, we drop constraints that do not involve
1852 * any variables in the -1 group.
1854 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1855 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1857 isl_ctx *ctx;
1858 int *group;
1859 int dim;
1860 int i, j;
1861 int last;
1863 if (!context || !bset)
1864 return isl_basic_set_free(context);
1866 dim = isl_basic_set_dim(bset, isl_dim_set);
1867 ctx = isl_basic_set_get_ctx(bset);
1868 group = isl_calloc_array(ctx, int, dim);
1870 if (!group)
1871 goto error;
1873 for (i = 0; i < dim; ++i) {
1874 for (j = 0; j < bset->n_eq; ++j)
1875 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1876 break;
1877 if (j < bset->n_eq) {
1878 group[i] = -1;
1879 continue;
1881 for (j = 0; j < bset->n_ineq; ++j)
1882 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1883 break;
1884 if (j < bset->n_ineq)
1885 group[i] = -1;
1888 last = -1;
1889 for (i = 0; i < dim; ++i)
1890 if (group[i] >= 0)
1891 last = group[i] = i;
1892 if (last < 0) {
1893 free(group);
1894 return context;
1897 for (i = 0; i < context->n_eq; ++i)
1898 update_groups(dim, group, context->eq[i] + 1);
1899 for (i = 0; i < context->n_ineq; ++i)
1900 update_groups(dim, group, context->ineq[i] + 1);
1902 for (i = 0; i < dim; ++i)
1903 if (group[i] >= 0)
1904 group[i] = group[group[i]];
1906 for (i = 0; i < dim; ++i)
1907 group[i] = group[i] == -1;
1909 context = drop_unrelated_constraints(context, group);
1911 free(group);
1912 return context;
1913 error:
1914 free(group);
1915 return isl_basic_set_free(context);
1918 /* Remove all information from bset that is redundant in the context
1919 * of context. Both bset and context are assumed to be full-dimensional.
1921 * We first remove the inequalities from "bset"
1922 * that are obviously redundant with respect to some inequality in "context".
1923 * Then we remove those constraints from "context" that have become
1924 * irrelevant for computing the gist of "bset".
1925 * Note that this removal of constraints cannot be replaced by
1926 * a factorization because factors in "bset" may still be connected
1927 * to each other through constraints in "context".
1929 * If there are any inequalities left, we construct a tableau for
1930 * the context and then add the inequalities of "bset".
1931 * Before adding these inequalities, we freeze all constraints such that
1932 * they won't be considered redundant in terms of the constraints of "bset".
1933 * Then we detect all redundant constraints (among the
1934 * constraints that weren't frozen), first by checking for redundancy in the
1935 * the tableau and then by checking if replacing a constraint by its negation
1936 * would lead to an empty set. This last step is fairly expensive
1937 * and could be optimized by more reuse of the tableau.
1938 * Finally, we update bset according to the results.
1940 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1941 __isl_take isl_basic_set *context)
1943 int i, k;
1944 isl_basic_set *combined = NULL;
1945 struct isl_tab *tab = NULL;
1946 unsigned context_ineq;
1947 unsigned total;
1949 if (!bset || !context)
1950 goto error;
1952 if (isl_basic_set_is_universe(bset)) {
1953 isl_basic_set_free(context);
1954 return bset;
1957 if (isl_basic_set_is_universe(context)) {
1958 isl_basic_set_free(context);
1959 return bset;
1962 bset = remove_shifted_constraints(bset, context);
1963 if (!bset)
1964 goto error;
1965 if (bset->n_ineq == 0)
1966 goto done;
1968 context = drop_irrelevant_constraints(context, bset);
1969 if (!context)
1970 goto error;
1971 if (isl_basic_set_is_universe(context)) {
1972 isl_basic_set_free(context);
1973 return bset;
1976 context_ineq = context->n_ineq;
1977 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1978 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1979 tab = isl_tab_from_basic_set(combined, 0);
1980 for (i = 0; i < context_ineq; ++i)
1981 if (isl_tab_freeze_constraint(tab, i) < 0)
1982 goto error;
1983 tab = isl_tab_extend(tab, bset->n_ineq);
1984 for (i = 0; i < bset->n_ineq; ++i)
1985 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1986 goto error;
1987 bset = isl_basic_set_add_constraints(combined, bset, 0);
1988 combined = NULL;
1989 if (!bset)
1990 goto error;
1991 if (isl_tab_detect_redundant(tab) < 0)
1992 goto error;
1993 total = isl_basic_set_total_dim(bset);
1994 for (i = context_ineq; i < bset->n_ineq; ++i) {
1995 int is_empty;
1996 if (tab->con[i].is_redundant)
1997 continue;
1998 tab->con[i].is_redundant = 1;
1999 combined = isl_basic_set_dup(bset);
2000 combined = isl_basic_set_update_from_tab(combined, tab);
2001 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2002 k = isl_basic_set_alloc_inequality(combined);
2003 if (k < 0)
2004 goto error;
2005 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2006 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2007 is_empty = isl_basic_set_is_empty(combined);
2008 if (is_empty < 0)
2009 goto error;
2010 isl_basic_set_free(combined);
2011 combined = NULL;
2012 if (!is_empty)
2013 tab->con[i].is_redundant = 0;
2015 for (i = 0; i < context_ineq; ++i)
2016 tab->con[i].is_redundant = 1;
2017 bset = isl_basic_set_update_from_tab(bset, tab);
2018 if (bset) {
2019 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2020 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2023 isl_tab_free(tab);
2024 done:
2025 bset = isl_basic_set_simplify(bset);
2026 bset = isl_basic_set_finalize(bset);
2027 isl_basic_set_free(context);
2028 return bset;
2029 error:
2030 isl_tab_free(tab);
2031 isl_basic_set_free(combined);
2032 isl_basic_set_free(context);
2033 isl_basic_set_free(bset);
2034 return NULL;
2037 /* Remove all information from bset that is redundant in the context
2038 * of context. In particular, equalities that are linear combinations
2039 * of those in context are removed. Then the inequalities that are
2040 * redundant in the context of the equalities and inequalities of
2041 * context are removed.
2043 * First of all, we drop those constraints from "context"
2044 * that are irrelevant for computing the gist of "bset".
2045 * Alternatively, we could factorize the intersection of "context" and "bset".
2047 * We first compute the integer affine hull of the intersection,
2048 * compute the gist inside this affine hull and then add back
2049 * those equalities that are not implied by the context.
2051 * If two constraints are mutually redundant, then uset_gist_full
2052 * will remove the second of those constraints. We therefore first
2053 * sort the constraints so that constraints not involving existentially
2054 * quantified variables are given precedence over those that do.
2055 * We have to perform this sorting before the variable compression,
2056 * because that may effect the order of the variables.
2058 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2059 __isl_take isl_basic_set *context)
2061 isl_mat *eq;
2062 isl_mat *T, *T2;
2063 isl_basic_set *aff;
2064 isl_basic_set *aff_context;
2065 unsigned total;
2067 if (!bset || !context)
2068 goto error;
2070 context = drop_irrelevant_constraints(context, bset);
2072 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2073 if (isl_basic_set_plain_is_empty(bset)) {
2074 isl_basic_set_free(context);
2075 return bset;
2077 bset = isl_basic_set_sort_constraints(bset);
2078 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2079 if (!aff)
2080 goto error;
2081 if (isl_basic_set_plain_is_empty(aff)) {
2082 isl_basic_set_free(aff);
2083 isl_basic_set_free(context);
2084 return bset;
2086 if (aff->n_eq == 0) {
2087 isl_basic_set_free(aff);
2088 return uset_gist_full(bset, context);
2090 total = isl_basic_set_total_dim(bset);
2091 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2092 eq = isl_mat_cow(eq);
2093 T = isl_mat_variable_compression(eq, &T2);
2094 if (T && T->n_col == 0) {
2095 isl_mat_free(T);
2096 isl_mat_free(T2);
2097 isl_basic_set_free(context);
2098 isl_basic_set_free(aff);
2099 return isl_basic_set_set_to_empty(bset);
2102 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2104 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2105 context = isl_basic_set_preimage(context, T);
2107 bset = uset_gist_full(bset, context);
2108 bset = isl_basic_set_preimage(bset, T2);
2109 bset = isl_basic_set_intersect(bset, aff);
2110 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2112 if (bset) {
2113 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2114 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2117 return bset;
2118 error:
2119 isl_basic_set_free(bset);
2120 isl_basic_set_free(context);
2121 return NULL;
2124 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2125 * We simply add the equalities in context to bmap and then do a regular
2126 * div normalizations. Better results can be obtained by normalizing
2127 * only the divs in bmap than do not also appear in context.
2128 * We need to be careful to reduce the divs using the equalities
2129 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2130 * spurious constraints.
2132 static struct isl_basic_map *normalize_divs_in_context(
2133 struct isl_basic_map *bmap, struct isl_basic_map *context)
2135 int i;
2136 unsigned total_context;
2137 int div_eq;
2139 div_eq = n_pure_div_eq(bmap);
2140 if (div_eq == 0)
2141 return bmap;
2143 if (context->n_div > 0)
2144 bmap = isl_basic_map_align_divs(bmap, context);
2146 total_context = isl_basic_map_total_dim(context);
2147 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2148 for (i = 0; i < context->n_eq; ++i) {
2149 int k;
2150 k = isl_basic_map_alloc_equality(bmap);
2151 if (k < 0)
2152 return isl_basic_map_free(bmap);
2153 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2154 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2155 isl_basic_map_total_dim(bmap) - total_context);
2157 bmap = isl_basic_map_gauss(bmap, NULL);
2158 bmap = normalize_divs(bmap, NULL);
2159 bmap = isl_basic_map_gauss(bmap, NULL);
2160 return bmap;
2163 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2164 struct isl_basic_map *context)
2166 struct isl_basic_set *bset;
2168 if (!bmap || !context)
2169 goto error;
2171 if (isl_basic_map_is_universe(bmap)) {
2172 isl_basic_map_free(context);
2173 return bmap;
2175 if (isl_basic_map_plain_is_empty(context)) {
2176 isl_basic_map_free(bmap);
2177 return context;
2179 if (isl_basic_map_plain_is_empty(bmap)) {
2180 isl_basic_map_free(context);
2181 return bmap;
2184 bmap = isl_basic_map_remove_redundancies(bmap);
2185 context = isl_basic_map_remove_redundancies(context);
2186 if (!context)
2187 goto error;
2189 if (context->n_eq)
2190 bmap = normalize_divs_in_context(bmap, context);
2192 context = isl_basic_map_align_divs(context, bmap);
2193 bmap = isl_basic_map_align_divs(bmap, context);
2195 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2196 isl_basic_map_underlying_set(context));
2198 return isl_basic_map_overlying_set(bset, bmap);
2199 error:
2200 isl_basic_map_free(bmap);
2201 isl_basic_map_free(context);
2202 return NULL;
2206 * Assumes context has no implicit divs.
2208 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2209 __isl_take isl_basic_map *context)
2211 int i;
2213 if (!map || !context)
2214 goto error;;
2216 if (isl_basic_map_plain_is_empty(context)) {
2217 isl_map_free(map);
2218 return isl_map_from_basic_map(context);
2221 context = isl_basic_map_remove_redundancies(context);
2222 map = isl_map_cow(map);
2223 if (!map || !context)
2224 goto error;;
2225 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2226 map = isl_map_compute_divs(map);
2227 if (!map)
2228 goto error;
2229 for (i = map->n - 1; i >= 0; --i) {
2230 map->p[i] = isl_basic_map_gist(map->p[i],
2231 isl_basic_map_copy(context));
2232 if (!map->p[i])
2233 goto error;
2234 if (isl_basic_map_plain_is_empty(map->p[i])) {
2235 isl_basic_map_free(map->p[i]);
2236 if (i != map->n - 1)
2237 map->p[i] = map->p[map->n - 1];
2238 map->n--;
2241 isl_basic_map_free(context);
2242 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2243 return map;
2244 error:
2245 isl_map_free(map);
2246 isl_basic_map_free(context);
2247 return NULL;
2250 /* Return a map that has the same intersection with "context" as "map"
2251 * and that as "simple" as possible.
2253 * If "map" is already the universe, then we cannot make it any simpler.
2254 * Similarly, if "context" is the universe, then we cannot exploit it
2255 * to simplify "map"
2256 * If "map" and "context" are identical to each other, then we can
2257 * return the corresponding universe.
2259 * If none of these cases apply, we have to work a bit harder.
2261 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2262 __isl_take isl_map *context)
2264 int equal;
2265 int is_universe;
2267 is_universe = isl_map_plain_is_universe(map);
2268 if (is_universe >= 0 && !is_universe)
2269 is_universe = isl_map_plain_is_universe(context);
2270 if (is_universe < 0)
2271 goto error;
2272 if (is_universe) {
2273 isl_map_free(context);
2274 return map;
2277 equal = isl_map_plain_is_equal(map, context);
2278 if (equal < 0)
2279 goto error;
2280 if (equal) {
2281 isl_map *res = isl_map_universe(isl_map_get_space(map));
2282 isl_map_free(map);
2283 isl_map_free(context);
2284 return res;
2287 context = isl_map_compute_divs(context);
2288 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2289 error:
2290 isl_map_free(map);
2291 isl_map_free(context);
2292 return NULL;
2295 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2296 __isl_take isl_map *context)
2298 return isl_map_align_params_map_map_and(map, context, &map_gist);
2301 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2302 struct isl_basic_set *context)
2304 return (struct isl_basic_set *)isl_basic_map_gist(
2305 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2308 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2309 __isl_take isl_basic_set *context)
2311 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2312 (struct isl_basic_map *)context);
2315 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2316 __isl_take isl_basic_set *context)
2318 isl_space *space = isl_set_get_space(set);
2319 isl_basic_set *dom_context = isl_basic_set_universe(space);
2320 dom_context = isl_basic_set_intersect_params(dom_context, context);
2321 return isl_set_gist_basic_set(set, dom_context);
2324 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2325 __isl_take isl_set *context)
2327 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2328 (struct isl_map *)context);
2331 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2332 __isl_take isl_set *context)
2334 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2335 map_context = isl_map_intersect_domain(map_context, context);
2336 return isl_map_gist(map, map_context);
2339 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2340 __isl_take isl_set *context)
2342 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2343 map_context = isl_map_intersect_range(map_context, context);
2344 return isl_map_gist(map, map_context);
2347 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2348 __isl_take isl_set *context)
2350 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2351 map_context = isl_map_intersect_params(map_context, context);
2352 return isl_map_gist(map, map_context);
2355 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2356 __isl_take isl_set *context)
2358 return isl_map_gist_params(set, context);
2361 /* Quick check to see if two basic maps are disjoint.
2362 * In particular, we reduce the equalities and inequalities of
2363 * one basic map in the context of the equalities of the other
2364 * basic map and check if we get a contradiction.
2366 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2367 __isl_keep isl_basic_map *bmap2)
2369 struct isl_vec *v = NULL;
2370 int *elim = NULL;
2371 unsigned total;
2372 int i;
2374 if (!bmap1 || !bmap2)
2375 return -1;
2376 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2377 return -1);
2378 if (bmap1->n_div || bmap2->n_div)
2379 return 0;
2380 if (!bmap1->n_eq && !bmap2->n_eq)
2381 return 0;
2383 total = isl_space_dim(bmap1->dim, isl_dim_all);
2384 if (total == 0)
2385 return 0;
2386 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2387 if (!v)
2388 goto error;
2389 elim = isl_alloc_array(bmap1->ctx, int, total);
2390 if (!elim)
2391 goto error;
2392 compute_elimination_index(bmap1, elim);
2393 for (i = 0; i < bmap2->n_eq; ++i) {
2394 int reduced;
2395 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2396 bmap1, elim);
2397 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2398 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2399 goto disjoint;
2401 for (i = 0; i < bmap2->n_ineq; ++i) {
2402 int reduced;
2403 reduced = reduced_using_equalities(v->block.data,
2404 bmap2->ineq[i], bmap1, elim);
2405 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2406 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2407 goto disjoint;
2409 compute_elimination_index(bmap2, elim);
2410 for (i = 0; i < bmap1->n_ineq; ++i) {
2411 int reduced;
2412 reduced = reduced_using_equalities(v->block.data,
2413 bmap1->ineq[i], bmap2, elim);
2414 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2415 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2416 goto disjoint;
2418 isl_vec_free(v);
2419 free(elim);
2420 return 0;
2421 disjoint:
2422 isl_vec_free(v);
2423 free(elim);
2424 return 1;
2425 error:
2426 isl_vec_free(v);
2427 free(elim);
2428 return -1;
2431 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2432 __isl_keep isl_basic_set *bset2)
2434 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2435 (struct isl_basic_map *)bset2);
2438 /* Are "map1" and "map2" obviously disjoint?
2440 * If they have different parameters, then we skip any further tests.
2441 * In particular, the outcome of the subsequent calls to
2442 * isl_space_tuple_match may be affected by the different parameters
2443 * in nested spaces.
2445 * If one of them is empty or if they live in different spaces (assuming
2446 * they have the same parameters), then they are clearly disjoint.
2448 * If they are obviously equal, but not obviously empty, then we will
2449 * not be able to detect if they are disjoint.
2451 * Otherwise we check if each basic map in "map1" is obviously disjoint
2452 * from each basic map in "map2".
2454 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2455 __isl_keep isl_map *map2)
2457 int i, j;
2458 int disjoint;
2459 int intersect;
2460 int match;
2462 if (!map1 || !map2)
2463 return -1;
2465 disjoint = isl_map_plain_is_empty(map1);
2466 if (disjoint < 0 || disjoint)
2467 return disjoint;
2469 disjoint = isl_map_plain_is_empty(map2);
2470 if (disjoint < 0 || disjoint)
2471 return disjoint;
2473 match = isl_space_match(map1->dim, isl_dim_param,
2474 map2->dim, isl_dim_param);
2475 if (match < 0 || !match)
2476 return match < 0 ? -1 : 0;
2478 match = isl_space_tuple_match(map1->dim, isl_dim_in,
2479 map2->dim, isl_dim_in);
2480 if (match < 0 || !match)
2481 return match < 0 ? -1 : 1;
2483 match = isl_space_tuple_match(map1->dim, isl_dim_out,
2484 map2->dim, isl_dim_out);
2485 if (match < 0 || !match)
2486 return match < 0 ? -1 : 1;
2488 intersect = isl_map_plain_is_equal(map1, map2);
2489 if (intersect < 0 || intersect)
2490 return intersect < 0 ? -1 : 0;
2492 for (i = 0; i < map1->n; ++i) {
2493 for (j = 0; j < map2->n; ++j) {
2494 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2495 map2->p[j]);
2496 if (d != 1)
2497 return d;
2500 return 1;
2503 /* Are "map1" and "map2" disjoint?
2505 * They are disjoint if they are "obviously disjoint" or if one of them
2506 * is empty. Otherwise, they are not disjoint if one of them is universal.
2507 * If none of these cases apply, we compute the intersection and see if
2508 * the result is empty.
2510 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2512 int disjoint;
2513 int intersect;
2514 isl_map *test;
2516 disjoint = isl_map_plain_is_disjoint(map1, map2);
2517 if (disjoint < 0 || disjoint)
2518 return disjoint;
2520 disjoint = isl_map_is_empty(map1);
2521 if (disjoint < 0 || disjoint)
2522 return disjoint;
2524 disjoint = isl_map_is_empty(map2);
2525 if (disjoint < 0 || disjoint)
2526 return disjoint;
2528 intersect = isl_map_plain_is_universe(map1);
2529 if (intersect < 0 || intersect)
2530 return intersect < 0 ? -1 : 0;
2532 intersect = isl_map_plain_is_universe(map2);
2533 if (intersect < 0 || intersect)
2534 return intersect < 0 ? -1 : 0;
2536 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2537 disjoint = isl_map_is_empty(test);
2538 isl_map_free(test);
2540 return disjoint;
2543 /* Are "bmap1" and "bmap2" disjoint?
2545 * They are disjoint if they are "obviously disjoint" or if one of them
2546 * is empty. Otherwise, they are not disjoint if one of them is universal.
2547 * If none of these cases apply, we compute the intersection and see if
2548 * the result is empty.
2550 int isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2551 __isl_keep isl_basic_map *bmap2)
2553 int disjoint;
2554 int intersect;
2555 isl_basic_map *test;
2557 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2558 if (disjoint < 0 || disjoint)
2559 return disjoint;
2561 disjoint = isl_basic_map_is_empty(bmap1);
2562 if (disjoint < 0 || disjoint)
2563 return disjoint;
2565 disjoint = isl_basic_map_is_empty(bmap2);
2566 if (disjoint < 0 || disjoint)
2567 return disjoint;
2569 intersect = isl_basic_map_is_universe(bmap1);
2570 if (intersect < 0 || intersect)
2571 return intersect < 0 ? -1 : 0;
2573 intersect = isl_basic_map_is_universe(bmap2);
2574 if (intersect < 0 || intersect)
2575 return intersect < 0 ? -1 : 0;
2577 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2578 isl_basic_map_copy(bmap2));
2579 disjoint = isl_basic_map_is_empty(test);
2580 isl_basic_map_free(test);
2582 return disjoint;
2585 /* Are "bset1" and "bset2" disjoint?
2587 int isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2588 __isl_keep isl_basic_set *bset2)
2590 return isl_basic_map_is_disjoint(bset1, bset2);
2593 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2594 __isl_keep isl_set *set2)
2596 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2597 (struct isl_map *)set2);
2600 /* Are "set1" and "set2" disjoint?
2602 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2604 return isl_map_is_disjoint(set1, set2);
2607 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2609 return isl_set_plain_is_disjoint(set1, set2);
2612 /* Check if we can combine a given div with lower bound l and upper
2613 * bound u with some other div and if so return that other div.
2614 * Otherwise return -1.
2616 * We first check that
2617 * - the bounds are opposites of each other (except for the constant
2618 * term)
2619 * - the bounds do not reference any other div
2620 * - no div is defined in terms of this div
2622 * Let m be the size of the range allowed on the div by the bounds.
2623 * That is, the bounds are of the form
2625 * e <= a <= e + m - 1
2627 * with e some expression in the other variables.
2628 * We look for another div b such that no third div is defined in terms
2629 * of this second div b and such that in any constraint that contains
2630 * a (except for the given lower and upper bound), also contains b
2631 * with a coefficient that is m times that of b.
2632 * That is, all constraints (execpt for the lower and upper bound)
2633 * are of the form
2635 * e + f (a + m b) >= 0
2637 * If so, we return b so that "a + m b" can be replaced by
2638 * a single div "c = a + m b".
2640 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2641 unsigned div, unsigned l, unsigned u)
2643 int i, j;
2644 unsigned dim;
2645 int coalesce = -1;
2647 if (bmap->n_div <= 1)
2648 return -1;
2649 dim = isl_space_dim(bmap->dim, isl_dim_all);
2650 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2651 return -1;
2652 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2653 bmap->n_div - div - 1) != -1)
2654 return -1;
2655 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2656 dim + bmap->n_div))
2657 return -1;
2659 for (i = 0; i < bmap->n_div; ++i) {
2660 if (isl_int_is_zero(bmap->div[i][0]))
2661 continue;
2662 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2663 return -1;
2666 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2667 if (isl_int_is_neg(bmap->ineq[l][0])) {
2668 isl_int_sub(bmap->ineq[l][0],
2669 bmap->ineq[l][0], bmap->ineq[u][0]);
2670 bmap = isl_basic_map_copy(bmap);
2671 bmap = isl_basic_map_set_to_empty(bmap);
2672 isl_basic_map_free(bmap);
2673 return -1;
2675 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2676 for (i = 0; i < bmap->n_div; ++i) {
2677 if (i == div)
2678 continue;
2679 if (!pairs[i])
2680 continue;
2681 for (j = 0; j < bmap->n_div; ++j) {
2682 if (isl_int_is_zero(bmap->div[j][0]))
2683 continue;
2684 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2685 break;
2687 if (j < bmap->n_div)
2688 continue;
2689 for (j = 0; j < bmap->n_ineq; ++j) {
2690 int valid;
2691 if (j == l || j == u)
2692 continue;
2693 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2694 continue;
2695 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2696 break;
2697 isl_int_mul(bmap->ineq[j][1 + dim + div],
2698 bmap->ineq[j][1 + dim + div],
2699 bmap->ineq[l][0]);
2700 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2701 bmap->ineq[j][1 + dim + i]);
2702 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2703 bmap->ineq[j][1 + dim + div],
2704 bmap->ineq[l][0]);
2705 if (!valid)
2706 break;
2708 if (j < bmap->n_ineq)
2709 continue;
2710 coalesce = i;
2711 break;
2713 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2714 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2715 return coalesce;
2718 /* Given a lower and an upper bound on div i, construct an inequality
2719 * that when nonnegative ensures that this pair of bounds always allows
2720 * for an integer value of the given div.
2721 * The lower bound is inequality l, while the upper bound is inequality u.
2722 * The constructed inequality is stored in ineq.
2723 * g, fl, fu are temporary scalars.
2725 * Let the upper bound be
2727 * -n_u a + e_u >= 0
2729 * and the lower bound
2731 * n_l a + e_l >= 0
2733 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2734 * We have
2736 * - f_u e_l <= f_u f_l g a <= f_l e_u
2738 * Since all variables are integer valued, this is equivalent to
2740 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2742 * If this interval is at least f_u f_l g, then it contains at least
2743 * one integer value for a.
2744 * That is, the test constraint is
2746 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2748 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2749 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2751 unsigned dim;
2752 dim = isl_space_dim(bmap->dim, isl_dim_all);
2754 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2755 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2756 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2757 isl_int_neg(fu, fu);
2758 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2759 1 + dim + bmap->n_div);
2760 isl_int_add(ineq[0], ineq[0], fl);
2761 isl_int_add(ineq[0], ineq[0], fu);
2762 isl_int_sub_ui(ineq[0], ineq[0], 1);
2763 isl_int_mul(g, g, fl);
2764 isl_int_mul(g, g, fu);
2765 isl_int_sub(ineq[0], ineq[0], g);
2768 /* Remove more kinds of divs that are not strictly needed.
2769 * In particular, if all pairs of lower and upper bounds on a div
2770 * are such that they allow at least one integer value of the div,
2771 * the we can eliminate the div using Fourier-Motzkin without
2772 * introducing any spurious solutions.
2774 static struct isl_basic_map *drop_more_redundant_divs(
2775 struct isl_basic_map *bmap, int *pairs, int n)
2777 struct isl_tab *tab = NULL;
2778 struct isl_vec *vec = NULL;
2779 unsigned dim;
2780 int remove = -1;
2781 isl_int g, fl, fu;
2783 isl_int_init(g);
2784 isl_int_init(fl);
2785 isl_int_init(fu);
2787 if (!bmap)
2788 goto error;
2790 dim = isl_space_dim(bmap->dim, isl_dim_all);
2791 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2792 if (!vec)
2793 goto error;
2795 tab = isl_tab_from_basic_map(bmap, 0);
2797 while (n > 0) {
2798 int i, l, u;
2799 int best = -1;
2800 enum isl_lp_result res;
2802 for (i = 0; i < bmap->n_div; ++i) {
2803 if (!pairs[i])
2804 continue;
2805 if (best >= 0 && pairs[best] <= pairs[i])
2806 continue;
2807 best = i;
2810 i = best;
2811 for (l = 0; l < bmap->n_ineq; ++l) {
2812 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2813 continue;
2814 for (u = 0; u < bmap->n_ineq; ++u) {
2815 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2816 continue;
2817 construct_test_ineq(bmap, i, l, u,
2818 vec->el, g, fl, fu);
2819 res = isl_tab_min(tab, vec->el,
2820 bmap->ctx->one, &g, NULL, 0);
2821 if (res == isl_lp_error)
2822 goto error;
2823 if (res == isl_lp_empty) {
2824 bmap = isl_basic_map_set_to_empty(bmap);
2825 break;
2827 if (res != isl_lp_ok || isl_int_is_neg(g))
2828 break;
2830 if (u < bmap->n_ineq)
2831 break;
2833 if (l == bmap->n_ineq) {
2834 remove = i;
2835 break;
2837 pairs[i] = 0;
2838 --n;
2841 isl_tab_free(tab);
2842 isl_vec_free(vec);
2844 isl_int_clear(g);
2845 isl_int_clear(fl);
2846 isl_int_clear(fu);
2848 free(pairs);
2850 if (remove < 0)
2851 return bmap;
2853 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2854 return isl_basic_map_drop_redundant_divs(bmap);
2855 error:
2856 free(pairs);
2857 isl_basic_map_free(bmap);
2858 isl_tab_free(tab);
2859 isl_vec_free(vec);
2860 isl_int_clear(g);
2861 isl_int_clear(fl);
2862 isl_int_clear(fu);
2863 return NULL;
2866 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2867 * and the upper bound u, div1 always occurs together with div2 in the form
2868 * (div1 + m div2), where m is the constant range on the variable div1
2869 * allowed by l and u, replace the pair div1 and div2 by a single
2870 * div that is equal to div1 + m div2.
2872 * The new div will appear in the location that contains div2.
2873 * We need to modify all constraints that contain
2874 * div2 = (div - div1) / m
2875 * (If a constraint does not contain div2, it will also not contain div1.)
2876 * If the constraint also contains div1, then we know they appear
2877 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2878 * i.e., the coefficient of div is f.
2880 * Otherwise, we first need to introduce div1 into the constraint.
2881 * Let the l be
2883 * div1 + f >=0
2885 * and u
2887 * -div1 + f' >= 0
2889 * A lower bound on div2
2891 * n div2 + t >= 0
2893 * can be replaced by
2895 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2897 * with g = gcd(m,n).
2898 * An upper bound
2900 * -n div2 + t >= 0
2902 * can be replaced by
2904 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2906 * These constraint are those that we would obtain from eliminating
2907 * div1 using Fourier-Motzkin.
2909 * After all constraints have been modified, we drop the lower and upper
2910 * bound and then drop div1.
2912 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2913 unsigned div1, unsigned div2, unsigned l, unsigned u)
2915 isl_int a;
2916 isl_int b;
2917 isl_int m;
2918 unsigned dim, total;
2919 int i;
2921 dim = isl_space_dim(bmap->dim, isl_dim_all);
2922 total = 1 + dim + bmap->n_div;
2924 isl_int_init(a);
2925 isl_int_init(b);
2926 isl_int_init(m);
2927 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2928 isl_int_add_ui(m, m, 1);
2930 for (i = 0; i < bmap->n_ineq; ++i) {
2931 if (i == l || i == u)
2932 continue;
2933 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2934 continue;
2935 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2936 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2937 isl_int_divexact(a, m, b);
2938 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2939 if (isl_int_is_pos(b)) {
2940 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2941 b, bmap->ineq[l], total);
2942 } else {
2943 isl_int_neg(b, b);
2944 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2945 b, bmap->ineq[u], total);
2948 isl_int_set(bmap->ineq[i][1 + dim + div2],
2949 bmap->ineq[i][1 + dim + div1]);
2950 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2953 isl_int_clear(a);
2954 isl_int_clear(b);
2955 isl_int_clear(m);
2956 if (l > u) {
2957 isl_basic_map_drop_inequality(bmap, l);
2958 isl_basic_map_drop_inequality(bmap, u);
2959 } else {
2960 isl_basic_map_drop_inequality(bmap, u);
2961 isl_basic_map_drop_inequality(bmap, l);
2963 bmap = isl_basic_map_drop_div(bmap, div1);
2964 return bmap;
2967 /* First check if we can coalesce any pair of divs and
2968 * then continue with dropping more redundant divs.
2970 * We loop over all pairs of lower and upper bounds on a div
2971 * with coefficient 1 and -1, respectively, check if there
2972 * is any other div "c" with which we can coalesce the div
2973 * and if so, perform the coalescing.
2975 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2976 struct isl_basic_map *bmap, int *pairs, int n)
2978 int i, l, u;
2979 unsigned dim;
2981 dim = isl_space_dim(bmap->dim, isl_dim_all);
2983 for (i = 0; i < bmap->n_div; ++i) {
2984 if (!pairs[i])
2985 continue;
2986 for (l = 0; l < bmap->n_ineq; ++l) {
2987 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2988 continue;
2989 for (u = 0; u < bmap->n_ineq; ++u) {
2990 int c;
2992 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2993 continue;
2994 c = div_find_coalesce(bmap, pairs, i, l, u);
2995 if (c < 0)
2996 continue;
2997 free(pairs);
2998 bmap = coalesce_divs(bmap, i, c, l, u);
2999 return isl_basic_map_drop_redundant_divs(bmap);
3004 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3005 return bmap;
3007 return drop_more_redundant_divs(bmap, pairs, n);
3010 /* Remove divs that are not strictly needed.
3011 * In particular, if a div only occurs positively (or negatively)
3012 * in constraints, then it can simply be dropped.
3013 * Also, if a div occurs in only two constraints and if moreover
3014 * those two constraints are opposite to each other, except for the constant
3015 * term and if the sum of the constant terms is such that for any value
3016 * of the other values, there is always at least one integer value of the
3017 * div, i.e., if one plus this sum is greater than or equal to
3018 * the (absolute value) of the coefficent of the div in the constraints,
3019 * then we can also simply drop the div.
3021 * We skip divs that appear in equalities or in the definition of other divs.
3022 * Divs that appear in the definition of other divs usually occur in at least
3023 * 4 constraints, but the constraints may have been simplified.
3025 * If any divs are left after these simple checks then we move on
3026 * to more complicated cases in drop_more_redundant_divs.
3028 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3029 struct isl_basic_map *bmap)
3031 int i, j;
3032 unsigned off;
3033 int *pairs = NULL;
3034 int n = 0;
3036 if (!bmap)
3037 goto error;
3038 if (bmap->n_div == 0)
3039 return bmap;
3041 off = isl_space_dim(bmap->dim, isl_dim_all);
3042 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3043 if (!pairs)
3044 goto error;
3046 for (i = 0; i < bmap->n_div; ++i) {
3047 int pos, neg;
3048 int last_pos, last_neg;
3049 int redundant;
3050 int defined;
3052 defined = !isl_int_is_zero(bmap->div[i][0]);
3053 for (j = i; j < bmap->n_div; ++j)
3054 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3055 break;
3056 if (j < bmap->n_div)
3057 continue;
3058 for (j = 0; j < bmap->n_eq; ++j)
3059 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3060 break;
3061 if (j < bmap->n_eq)
3062 continue;
3063 ++n;
3064 pos = neg = 0;
3065 for (j = 0; j < bmap->n_ineq; ++j) {
3066 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3067 last_pos = j;
3068 ++pos;
3070 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3071 last_neg = j;
3072 ++neg;
3075 pairs[i] = pos * neg;
3076 if (pairs[i] == 0) {
3077 for (j = bmap->n_ineq - 1; j >= 0; --j)
3078 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3079 isl_basic_map_drop_inequality(bmap, j);
3080 bmap = isl_basic_map_drop_div(bmap, i);
3081 free(pairs);
3082 return isl_basic_map_drop_redundant_divs(bmap);
3084 if (pairs[i] != 1)
3085 continue;
3086 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3087 bmap->ineq[last_neg] + 1,
3088 off + bmap->n_div))
3089 continue;
3091 isl_int_add(bmap->ineq[last_pos][0],
3092 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3093 isl_int_add_ui(bmap->ineq[last_pos][0],
3094 bmap->ineq[last_pos][0], 1);
3095 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3096 bmap->ineq[last_pos][1+off+i]);
3097 isl_int_sub_ui(bmap->ineq[last_pos][0],
3098 bmap->ineq[last_pos][0], 1);
3099 isl_int_sub(bmap->ineq[last_pos][0],
3100 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3101 if (!redundant) {
3102 if (defined ||
3103 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3104 pairs[i] = 0;
3105 --n;
3106 continue;
3108 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3109 bmap = isl_basic_map_simplify(bmap);
3110 free(pairs);
3111 return isl_basic_map_drop_redundant_divs(bmap);
3113 if (last_pos > last_neg) {
3114 isl_basic_map_drop_inequality(bmap, last_pos);
3115 isl_basic_map_drop_inequality(bmap, last_neg);
3116 } else {
3117 isl_basic_map_drop_inequality(bmap, last_neg);
3118 isl_basic_map_drop_inequality(bmap, last_pos);
3120 bmap = isl_basic_map_drop_div(bmap, i);
3121 free(pairs);
3122 return isl_basic_map_drop_redundant_divs(bmap);
3125 if (n > 0)
3126 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3128 free(pairs);
3129 return bmap;
3130 error:
3131 free(pairs);
3132 isl_basic_map_free(bmap);
3133 return NULL;
3136 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3137 struct isl_basic_set *bset)
3139 return (struct isl_basic_set *)
3140 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3143 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3145 int i;
3147 if (!map)
3148 return NULL;
3149 for (i = 0; i < map->n; ++i) {
3150 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3151 if (!map->p[i])
3152 goto error;
3154 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3155 return map;
3156 error:
3157 isl_map_free(map);
3158 return NULL;
3161 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3163 return (struct isl_set *)
3164 isl_map_drop_redundant_divs((struct isl_map *)set);