Remove support in configure for unsupported architectures
[glibc.git] / sysdeps / ia64 / fpu / s_expm1f.S
blob8996977ddb429ad099962e263c078e3d726a8faa
1 .file "expf_m1.s"
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // History
41 //*********************************************************************
42 // 02/02/00 Initial Version
43 // 04/04/00 Unwind support added
44 // 08/15/00 Bundle added after call to __libm_error_support to properly
45 //          set [the previously overwritten] GR_Parameter_RESULT.
46 // 07/07/01 Improved speed of all paths
47 // 05/20/02 Cleaned up namespace and sf0 syntax
48 // 11/20/02 Improved speed, algorithm based on expf
49 // 03/31/05 Reformatted delimiters between data tables
52 // API
53 //*********************************************************************
54 // float expm1f(float)
56 // Overview of operation
57 //*********************************************************************
58 // 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
60 // 2. |x| < 2^-40
61 //    Result = x, computed by x + x*x to handle appropriate flags and rounding
63 // 3. 2^-40 <= |x| < 2^-2
64 //    Result determined by 8th order Taylor series polynomial
65 //    expm1f(x) = x + A2*x^2 + ... + A8*x^8
67 // 4. x < -24.0
68 //    Here we know result is essentially -1 + eps, where eps only affects
69 //    rounded result.  Set I.
71 // 5. x >= 88.7228 
72 //    Result overflows.  Set I, O, and call error support
74 // 6. 2^-2 <= x < 88.7228  or  -24.0 <= x < -2^-2  
75 //    This is the main path.  The algorithm is described below:
77 // Take the input x. w is "how many log2/128 in x?"
78 //  w = x * 64/log2
79 //  NJ = int(w)
80 //  x = NJ*log2/64 + R
82 //  NJ = 64*n + j
83 //  x = n*log2 + (log2/64)*j + R
85 //  So, exp(x) = 2^n * 2^(j/64)* exp(R)
87 //  T =  2^n * 2^(j/64)
88 //       Construct 2^n
89 //       Get 2^(j/64) table
90 //           actually all the entries of 2^(j/64) table are stored in DP and
91 //           with exponent bits set to 0 -> multiplication on 2^n can be
92 //           performed by doing logical "or" operation with bits presenting 2^n
94 //  exp(R) = 1 + (exp(R) - 1)
95 //  P = exp(R) - 1 approximated by Taylor series of 3rd degree
96 //      P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
99 //  The final result is reconstructed as follows
100 //  expm1f(x) = T*P + (T - 1.0)
102 // Special values
103 //*********************************************************************
104 // expm1f(+0)    = +0.0
105 // expm1f(-0)    = -0.0
107 // expm1f(+qnan) = +qnan
108 // expm1f(-qnan) = -qnan
109 // expm1f(+snan) = +qnan
110 // expm1f(-snan) = -qnan
112 // expm1f(-inf)  = -1.0
113 // expm1f(+inf)  = +inf
115 // Overflow and Underflow
116 //*********************************************************************
117 // expm1f(x) = largest single normal when
118 //     x = 88.7228 = 0x42b17217
120 // Underflow is handled as described in case 2 above.
123 // Registers used
124 //*********************************************************************
125 // Floating Point registers used:
126 // f8, input
127 // f6,f7, f9 -> f15,  f32 -> f45
129 // General registers used:
130 // r3, r20 -> r38
132 // Predicate registers used:
133 // p9 -> p15
135 // Assembly macros
136 //*********************************************************************
137 // integer registers used
138 // scratch
139 rNJ                   = r3
141 rExp_half             = r20
142 rSignexp_x            = r21
143 rExp_x                = r22
144 rExp_mask             = r23
145 rExp_bias             = r24
146 rTmp                  = r25
147 rM1_lim               = r25
148 rGt_ln                = r25
149 rJ                    = r26
150 rN                    = r27
151 rTblAddr              = r28
152 rLn2Div64             = r29
153 rRightShifter         = r30
154 r64DivLn2             = r31
155 // stacked
156 GR_SAVE_PFS           = r32
157 GR_SAVE_B0            = r33
158 GR_SAVE_GP            = r34
159 GR_Parameter_X        = r35
160 GR_Parameter_Y        = r36
161 GR_Parameter_RESULT   = r37
162 GR_Parameter_TAG      = r38
164 // floating point registers used
165 FR_X                  = f10
166 FR_Y                  = f1
167 FR_RESULT             = f8
168 // scratch
169 fRightShifter         = f6
170 f64DivLn2             = f7
171 fNormX                = f9
172 fNint                 = f10
173 fN                    = f11
174 fR                    = f12
175 fLn2Div64             = f13
176 fA2                   = f14
177 fA3                   = f15
178 // stacked
179 fP                    = f32
180 fX3                   = f33
181 fT                    = f34
182 fMIN_SGL_OFLOW_ARG    = f35
183 fMAX_SGL_NORM_ARG     = f36
184 fMAX_SGL_MINUS_1_ARG  = f37
185 fA4                   = f38
186 fA43                  = f38
187 fA432                 = f38
188 fRSqr                 = f39
189 fA5                   = f40
190 fTmp                  = f41
191 fGt_pln               = f41
192 fXsq                  = f41
193 fA7                   = f42
194 fA6                   = f43
195 fA65                  = f43
196 fTm1                  = f44
197 fA8                   = f45
198 fA87                  = f45
199 fA8765                = f45
200 fA8765432             = f45
201 fWre_urm_f8           = f45
203 RODATA
204 .align 16
205 LOCAL_OBJECT_START(_expf_table)
206 data8 0x3efa01a01a01a01a // A8 = 1/8!
207 data8 0x3f2a01a01a01a01a // A7 = 1/7!
208 data8 0x3f56c16c16c16c17 // A6 = 1/6!
209 data8 0x3f81111111111111 // A5 = 1/5!
210 data8 0x3fa5555555555555 // A4 = 1/4!
211 data8 0x3fc5555555555555 // A3 = 1/3!
213 data4 0x42b17218         // Smallest sgl arg to overflow sgl result
214 data4 0x42b17217         // Largest sgl arg to give sgl result
216 // 2^(j/64) table, j goes from 0 to 63
217 data8 0x0000000000000000 // 2^(0/64)
218 data8 0x00002C9A3E778061 // 2^(1/64)
219 data8 0x000059B0D3158574 // 2^(2/64)
220 data8 0x0000874518759BC8 // 2^(3/64)
221 data8 0x0000B5586CF9890F // 2^(4/64)
222 data8 0x0000E3EC32D3D1A2 // 2^(5/64)
223 data8 0x00011301D0125B51 // 2^(6/64)
224 data8 0x0001429AAEA92DE0 // 2^(7/64)
225 data8 0x000172B83C7D517B // 2^(8/64)
226 data8 0x0001A35BEB6FCB75 // 2^(9/64)
227 data8 0x0001D4873168B9AA // 2^(10/64)
228 data8 0x0002063B88628CD6 // 2^(11/64)
229 data8 0x0002387A6E756238 // 2^(12/64)
230 data8 0x00026B4565E27CDD // 2^(13/64)
231 data8 0x00029E9DF51FDEE1 // 2^(14/64)
232 data8 0x0002D285A6E4030B // 2^(15/64)
233 data8 0x000306FE0A31B715 // 2^(16/64)
234 data8 0x00033C08B26416FF // 2^(17/64)
235 data8 0x000371A7373AA9CB // 2^(18/64)
236 data8 0x0003A7DB34E59FF7 // 2^(19/64)
237 data8 0x0003DEA64C123422 // 2^(20/64)
238 data8 0x0004160A21F72E2A // 2^(21/64)
239 data8 0x00044E086061892D // 2^(22/64)
240 data8 0x000486A2B5C13CD0 // 2^(23/64)
241 data8 0x0004BFDAD5362A27 // 2^(24/64)
242 data8 0x0004F9B2769D2CA7 // 2^(25/64)
243 data8 0x0005342B569D4F82 // 2^(26/64)
244 data8 0x00056F4736B527DA // 2^(27/64)
245 data8 0x0005AB07DD485429 // 2^(28/64)
246 data8 0x0005E76F15AD2148 // 2^(29/64)
247 data8 0x0006247EB03A5585 // 2^(30/64)
248 data8 0x0006623882552225 // 2^(31/64)
249 data8 0x0006A09E667F3BCD // 2^(32/64)
250 data8 0x0006DFB23C651A2F // 2^(33/64)
251 data8 0x00071F75E8EC5F74 // 2^(34/64)
252 data8 0x00075FEB564267C9 // 2^(35/64)
253 data8 0x0007A11473EB0187 // 2^(36/64)
254 data8 0x0007E2F336CF4E62 // 2^(37/64)
255 data8 0x00082589994CCE13 // 2^(38/64)
256 data8 0x000868D99B4492ED // 2^(39/64)
257 data8 0x0008ACE5422AA0DB // 2^(40/64)
258 data8 0x0008F1AE99157736 // 2^(41/64)
259 data8 0x00093737B0CDC5E5 // 2^(42/64)
260 data8 0x00097D829FDE4E50 // 2^(43/64)
261 data8 0x0009C49182A3F090 // 2^(44/64)
262 data8 0x000A0C667B5DE565 // 2^(45/64)
263 data8 0x000A5503B23E255D // 2^(46/64)
264 data8 0x000A9E6B5579FDBF // 2^(47/64)
265 data8 0x000AE89F995AD3AD // 2^(48/64)
266 data8 0x000B33A2B84F15FB // 2^(49/64)
267 data8 0x000B7F76F2FB5E47 // 2^(50/64)
268 data8 0x000BCC1E904BC1D2 // 2^(51/64)
269 data8 0x000C199BDD85529C // 2^(52/64)
270 data8 0x000C67F12E57D14B // 2^(53/64)
271 data8 0x000CB720DCEF9069 // 2^(54/64)
272 data8 0x000D072D4A07897C // 2^(55/64)
273 data8 0x000D5818DCFBA487 // 2^(56/64)
274 data8 0x000DA9E603DB3285 // 2^(57/64)
275 data8 0x000DFC97337B9B5F // 2^(58/64)
276 data8 0x000E502EE78B3FF6 // 2^(59/64)
277 data8 0x000EA4AFA2A490DA // 2^(60/64)
278 data8 0x000EFA1BEE615A27 // 2^(61/64)
279 data8 0x000F50765B6E4540 // 2^(62/64)
280 data8 0x000FA7C1819E90D8 // 2^(63/64)
281 LOCAL_OBJECT_END(_expf_table)
284 .section .text
285 GLOBAL_IEEE754_ENTRY(expm1f)
287 { .mlx
288       getf.exp        rSignexp_x = f8      // Must recompute if x unorm
289       movl            r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
291 { .mlx
292       addl            rTblAddr = @ltoff(_expf_table),gp
293       movl            rRightShifter = 0x43E8000000000000 // DP Right Shifter
297 { .mfi
298       // point to the beginning of the table
299       ld8             rTblAddr = [rTblAddr]
300       fclass.m        p14, p0 = f8 , 0x22  // test for -INF
301       mov             rExp_mask = 0x1ffff   // Exponent mask
303 { .mfi
304       nop.m           0
305       fnorm.s1        fNormX = f8 // normalized x
306       nop.i           0
310 { .mfi
311       setf.d          f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
312       fclass.m        p9, p0 = f8 , 0x0b    // test for x unorm
313       mov             rExp_bias = 0xffff    // Exponent bias
315 { .mlx
316       // load Right Shifter to FP reg
317       setf.d          fRightShifter = rRightShifter
318       movl            rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
322 { .mfi
323       ldfpd           fA8, fA7 = [rTblAddr], 16
324       fcmp.eq.s1      p13, p0 = f0, f8      // test for x = 0.0
325       mov             rExp_half = 0xfffe
327 { .mfb
328       setf.d          fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
329       nop.f           0
330 (p9)  br.cond.spnt    EXPM1_UNORM // Branch if x unorm
334 EXPM1_COMMON:
335 { .mfb
336       ldfpd           fA6, fA5 = [rTblAddr], 16
337 (p14) fms.s.s0        f8 = f0, f0, f1       // result if x = -inf
338 (p14) br.ret.spnt     b0                    // exit here if x = -inf
342 { .mfb
343       ldfpd           fA4, fA3 = [rTblAddr], 16
344       fclass.m        p15, p0 = f8 , 0x1e1  // test for NaT,NaN,+Inf
345 (p13) br.ret.spnt     b0                    // exit here if x =0.0, result is x
349 { .mfi
350       // overflow thresholds
351       ldfps           fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
352       fma.s1          fXsq = fNormX, fNormX, f0      // x^2 for small path
353       and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
355 { .mlx
356       nop.m           0
357       movl            rM1_lim = 0xc1c00000  // Minus -1 limit (-24.0), SP
361 { .mfi
362       setf.exp        fA2 = rExp_half
363       // x*(64/ln(2)) + Right Shifter
364       fma.s1          fNint = fNormX, f64DivLn2, fRightShifter
365       sub             rExp_x = rExp_x, rExp_bias     // True exponent of x
367 { .mfb
368       nop.m           0
369 (p15) fma.s.s0        f8 = f8, f1, f0       // result if x = NaT,NaN,+Inf
370 (p15) br.ret.spnt     b0                    // exit here if x = NaT,NaN,+Inf
374 { .mfi
375       setf.s          fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0
376       nop.f           0
377       cmp.gt          p7, p8 = -2, rExp_x      // Test |x| < 2^(-2)
381 { .mfi
382 (p7)  cmp.gt.unc      p6, p7 = -40, rExp_x     // Test |x| < 2^(-40)
383       fma.s1          fA87 = fA8, fNormX, fA7  // Small path, A8*x+A7
384       nop.i           0
386 { .mfi
387       nop.m           0
388       fma.s1          fA65 = fA6, fNormX, fA5  // Small path, A6*x+A5
389       nop.i           0
393 { .mfb
394       nop.m           0
395 (p6)  fma.s.s0        f8 = f8, f8, f8          // If x < 2^-40, result=x+x*x
396 (p6)  br.ret.spnt     b0                       // Exit if x < 2^-40
400 { .mfi
401       nop.m           0
402       // check for overflow
403       fcmp.gt.s1      p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG
404       nop.i           0
406 { .mfi
407       nop.m           0
408       fms.s1          fN = fNint, f1, fRightShifter // n in FP register
409       nop.i           0
413 { .mfi
414       nop.m           0
415 (p7)  fma.s1          fA43 = fA4, fNormX, fA3   // Small path, A4*x+A3
416       nop.i           0
420 { .mfi
421       getf.sig        rNJ = fNint               // bits of n, j
422 (p7)  fma.s1          fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65
423       nop.i           0
425 { .mfb
426       nop.m           0
427 (p7)  fma.s1          fX3 = fXsq, fNormX, f0    // Small path, x^3
428       // branch out if overflow
429 (p15) br.cond.spnt    EXPM1_CERTAIN_OVERFLOW
433 { .mfi
434       addl            rN = 0xffff-63, rNJ    // biased and shifted n
435       fnma.s1         fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
436       extr.u          rJ = rNJ , 0 , 6       // bits of j
440 { .mfi
441       shladd          rJ = rJ, 3, rTblAddr   // address in the 2^(j/64) table
442       // check for certain -1
443       fcmp.le.s1      p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG
444       shr             rN = rN, 6             // biased n
446 { .mfi
447       nop.m           0
448 (p7)  fma.s1          fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2
449       nop.i           0
453 { .mfi
454       ld8             rJ = [rJ]
455       nop.f           0
456       shl             rN = rN , 52           // 2^n bits in DP format
460 { .mmi
461       or              rN = rN, rJ        // bits of 2^n * 2^(j/64) in DP format
462 (p13) mov             rTmp = 1           // Make small value for -1 path
463       nop.i           0
467 { .mfi
468       setf.d          fT = rN            // 2^n
469       // check for possible overflow (only happens if input higher precision)
470 (p14) fcmp.gt.s1      p14, p0 = fNormX, fMAX_SGL_NORM_ARG
471       nop.i           0
473 { .mfi
474       nop.m           0
475 (p7)  fma.s1          fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432
476       nop.i           0
480 { .mfi
481 (p13) setf.exp        fTmp = rTmp        // Make small value for -1 path
482       fma.s1          fP = fA3, fR, fA2  // A3*R + A2
483       nop.i           0
485 { .mfb
486       nop.m           0
487       fma.s1          fRSqr = fR, fR, f0 // R^2
488 (p13) br.cond.spnt    EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0
492 { .mfb
493       nop.m           0
494 (p7)  fma.s.s0        f8 = fA8765432, fXsq, fNormX // Small path, 
495                                          // result=xsq*A8765432+x
496 (p7)  br.ret.spnt     b0                 // Exit if 2^-40 <= |x| < 2^-2
500 { .mfi
501       nop.m           0
502       fma.s1          fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R
503       nop.i           0
507 { .mfb
508       nop.m           0
509       fms.s1          fTm1 = fT, f1, f1  // T - 1.0
510 (p14) br.cond.spnt    EXPM1_POSSIBLE_OVERFLOW
514 { .mfb
515       nop.m           0
516       fma.s.s0        f8 = fP, fT, fTm1
517       br.ret.sptk     b0                 // Result for main path
518                                          // minus_one_limit < x < -2^-2
519                                          // and +2^-2 <= x < overflow_limit
523 // Here if x unorm
524 EXPM1_UNORM:
525 { .mfb
526       getf.exp        rSignexp_x = fNormX // Must recompute if x unorm
527       fcmp.eq.s0      p6, p0 = f8, f0     // Set D flag
528       br.cond.sptk    EXPM1_COMMON
532 // here if result will be -1 and inexact, x <= -24.0
533 EXPM1_CERTAIN_MINUS_ONE:
534 { .mfb
535       nop.m           0
536       fms.s.s0        f8 = fTmp, fTmp, f1  // Result -1, and Inexact set
537       br.ret.sptk     b0
541 EXPM1_POSSIBLE_OVERFLOW:
543 // Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
544 // This cannot happen if input is a single, only if input higher precision.
545 // Overflow is a possibility, not a certainty.
547 // Recompute result using status field 2 with user's rounding mode,
548 // and wre set.  If result is larger than largest single, then we have
549 // overflow
551 { .mfi
552       mov             rGt_ln  = 0x1007f // Exponent for largest sgl + 1 ulp
553       fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
554       nop.i           0
558 { .mfi
559       setf.exp        fGt_pln = rGt_ln  // Create largest single + 1 ulp
560       fma.s.s2        fWre_urm_f8 = fP, fT, fTm1  // Result with wre set
561       nop.i           0
565 { .mfi
566       nop.m           0
567       fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
568       nop.i           0
572 { .mfi
573       nop.m           0
574       fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
575       nop.i           0
579 { .mfb
580       nop.m           0
581       nop.f           0
582 (p6)  br.cond.spnt    EXPM1_CERTAIN_OVERFLOW // Branch if overflow
586 { .mfb
587       nop.m           0
588       fma.s.s0        f8 = fP, fT, fTm1
589       br.ret.sptk     b0                     // Exit if really no overflow
593 // here if overflow
594 EXPM1_CERTAIN_OVERFLOW:
595 { .mmi
596       addl            rTmp = 0x1FFFE, r0;;
597       setf.exp        fTmp = rTmp
598       nop.i 999
602 { .mfi
603       alloc           r32 = ar.pfs, 0, 3, 4, 0 // get some registers
604       fmerge.s        FR_X = fNormX,fNormX
605       nop.i           0
607 { .mfb
608       mov             GR_Parameter_TAG = 43
609       fma.s.s0        FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
610       br.cond.sptk    __libm_error_region
614 GLOBAL_IEEE754_END(expm1f)
617 LOCAL_LIBM_ENTRY(__libm_error_region)
618 .prologue
619 { .mfi
620       add   GR_Parameter_Y=-32,sp             // Parameter 2 value
621       nop.f 999
622 .save   ar.pfs,GR_SAVE_PFS
623       mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
625 { .mfi
626 .fframe 64
627       add sp=-64,sp                           // Create new stack
628       nop.f 0
629       mov GR_SAVE_GP=gp                       // Save gp
631 { .mmi
632       stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
633       add GR_Parameter_X = 16,sp              // Parameter 1 address
634 .save   b0, GR_SAVE_B0
635       mov GR_SAVE_B0=b0                       // Save b0
637 .body
638 { .mfi
639       stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
640       nop.f 0
641       add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
643 { .mib
644       stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
645       add   GR_Parameter_Y = -16,GR_Parameter_Y
646       br.call.sptk b0=__libm_error_support#   // Call error handling function
649 { .mmi
650       add   GR_Parameter_RESULT = 48,sp
651       nop.m 0
652       nop.i 0
655 { .mmi
656       ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
657 .restore sp
658       add   sp = 64,sp                       // Restore stack pointer
659       mov   b0 = GR_SAVE_B0                  // Restore return address
661 { .mib
662       mov   gp = GR_SAVE_GP                  // Restore gp
663       mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
664       br.ret.sptk     b0                     // Return
667 LOCAL_LIBM_END(__libm_error_region)
670 .type   __libm_error_support#,@function
671 .global __libm_error_support#