Remove support in configure for unsupported architectures
[glibc.git] / sysdeps / ia64 / fpu / e_powf.S
blob1406a94b655ae998d5fff85d68924bf0d38b1498
1 .file "powf.s"
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // History
41 //==============================================================
42 // 02/02/00 Initial version
43 // 02/03/00 Added p12 to definite over/under path. With odd power we did not
44 //          maintain the sign of x in this path.
45 // 04/04/00 Unwind support added
46 // 04/19/00 pow(+-1,inf) now returns NaN
47 //          pow(+-val, +-inf) returns 0 or inf, but now does not call error
48 //          support
49 //          Added s1 to fcvt.fx because invalid flag was incorrectly set.
50 // 08/15/00 Bundle added after call to __libm_error_support to properly
51 //          set [the previously overwritten] GR_Parameter_RESULT.
52 // 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
53 //          and tweaking the critical path
54 // 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
55 // 09/28/00 Updated NaN**0 path
56 // 01/20/01 Fixed denormal flag settings.
57 // 02/13/01 Improved speed.
58 // 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
59 //          problem in round up, down, and to zero modes.  Also corrected
60 //          overflow result when x negative, y odd in round up, down, zero.
61 // 06/14/01 Added brace missing from bundle
62 // 12/10/01 Corrected case where x negative, 2^23 <= |y| < 2^24, y odd integer.
63 // 02/08/02 Fixed overflow/underflow cases that were not calling error support.
64 // 05/20/02 Cleaned up namespace and sf0 syntax
65 // 08/29/02 Improved Itanium 2 performance
66 // 02/10/03 Reordered header: .section, .global, .proc, .align
67 // 10/09/03 Modified algorithm to improve performance, reduce table size, and
68 //          fix boundary case powf(2.0,-150.0)
69 // 03/31/05 Reformatted delimiters between data tables
71 // API
72 //==============================================================
73 // float powf(float x, float y)
75 // Overview of operation
76 //==============================================================
78 // Three steps...
79 // 1. Log(x)
80 // 2. y Log(x)
81 // 3. exp(y log(x))
83 // This means we work with the absolute value of x and merge in the sign later.
84 //      Log(x) = G + delta + r -rsq/2 + p
85 // G,delta depend on the exponent of x and table entries. The table entries are
86 // indexed by the exponent of x, called K.
88 // The G and delta come out of the reduction; r is the reduced x.
90 // B = frcpa(x)
91 // xB-1 is small means that B is the approximate inverse of x.
93 //      Log(x) = Log( (1/B)(Bx) )
94 //             = Log(1/B) + Log(Bx)
95 //             = Log(1/B) + Log( 1 + (Bx-1))
97 //      x  = 2^K 1.x_1x_2.....x_52
98 //      B= frcpa(x) = 2^-k Cm
99 //      Log(1/B) = Log(1/(2^-K Cm))
100 //      Log(1/B) = Log((2^K/ Cm))
101 //      Log(1/B) = K Log(2) + Log(1/Cm)
103 //      Log(x)   = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
105 // If you take the significand of x, set the exponent to true 0, then Cm is
106 // the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
107 // The frcpa table is indexed by 8 bits, the x_1 thru x_8.
108 // m = x_1x_2...x_8 is an 8-bit index.
110 //      Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
112 // We tabluate as one double, T for single precision power
114 //      Log(x)   = (K Log(2)_hi + T) + (K Log(2)_lo) + Log( 1 + (Bx-1))
115 //      Log(x)   =  G                +     delta     + Log( 1 + (Bx-1))
117 // The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
119 //      Log( 1 + (Bx-1)) = r - rsq/2 + p
120 //        where p = r^3(P0 + P1*r + P2*r^2)
122 // Then,
124 //      yLog(x) = yG + y delta + y(r-rsq/2) + yp
125 //      yLog(x) = Z1 + e3      + Z2         + Z3
128 //     exp(yLog(x)) = exp(Z1 + Z2) exp(Z3) exp(e3)
131 //       exp(Z3) is another series.
132 //       exp(e3) is approximated as f3 = 1 +  e3
134 //       exp(Z1 + Z2) = exp(Z)
135 //       Z (128/log2) = number of log2/128 in Z is N
137 //       s = Z - N log2/128
139 //       exp(Z)       = exp(s) exp(N log2/128)
141 //       exp(r)       = exp(Z - N log2/128)
143 //      r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
144 //                =  Z - N (log2/128)
146 //      Z         = s+d +N (log2/128)
148 //      exp(Z)    = exp(s) (1+d) exp(N log2/128)
150 //      N = M 128 + n
152 //      N log2/128 = M log2 + n log2/128
154 //      n is 8 binary digits = n_7n_6...n_1
156 //      n log2/128 = n_7n_6n_5 16 log2/128 + n_4n_3n_2n_1 log2/128
157 //      n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
158 //      n log2/128 = I2 log2/8 + I1 log2/128
160 //      N log2/128 = M log2 + I2 log2/8 + I1 log2/128
162 //      exp(Z)    = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
163 //      exp(Z)    = exp(s) f12 (2^M) 2^I2/8 2^I1/128
165 // I1, I2 are table indices. Use a series for exp(s).
166 // Then get exp(Z)
168 //     exp(yLog(x)) = exp(Z) exp(Z3) f3
169 //     exp(yLog(x)) = exp(Z)f3 exp(Z3)
170 //     exp(yLog(x)) = A exp(Z3)
172 // We actually calculate exp(Z3) -1.
173 // Then,
174 //     exp(yLog(x)) = A + A( exp(Z3)   -1)
177 // Table Generation
178 //==============================================================
180 // The log values
181 // ==============
182 // The operation (K*log2_hi) must be exact. K is the true exponent of x.
183 // If we allow gradual underflow (denormals), K can be represented in 12 bits
184 // (as a two's complement number). We assume 13 bits as an engineering
185 // precaution.
187 //           +------------+----------------+-+
188 //           |  13 bits   | 50 bits        | |
189 //           +------------+----------------+-+
190 //           0            1                66
191 //                        2                34
193 // So we want the lsb(log2_hi) to be 2^-50
194 // We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
196 //      0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
198 // Consider numbering the bits left to right, starting at 0 thru 127.
199 // Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
201 //  ...79ab
202 //     0111 1001 1010 1011
203 //     44
204 //     89
206 // So if we shift off the rightmost 14 bits, then (shift back only
207 // the top half) we get
209 //      0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
211 // Put the right 64-bit signficand in an FR register, convert to double;
212 // it is exact. Put the next 128 bits into a quad register and round to double.
213 // The true exponent of the low part is -51.
215 // hi is 0 fffe b17217f7d1cf4000
216 // lo is 0 ffcc e6af278ece601000
218 // Convert to double memory format and get
220 // hi is 0x3fe62e42fefa39e8
221 // lo is 0x3cccd5e4f1d9cc02
223 // log2_hi + log2_lo is an accurate value for log2.
226 // The T and t values
227 // ==================
228 // A similar method is used to generate the T and t values.
230 // K * log2_hi + T  must be exact.
232 // Smallest T,t
233 // ----------
234 // The smallest T,t is
235 //       T                   t
236 // 0x3f60040155d58800, 0x3c93bce0ce3ddd81  log(1/frcpa(1+0/256))=  +1.95503e-003
238 // The exponent is 0x3f6 (biased)  or -9 (true).
239 // For the smallest T value, what we want is to clip the significand such that
240 // when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
241 // specific for the first entry. In general, it is 0xffff - (biased 15-bit
242 // exponent).
244 // Independently, what we have calculated is the table value as a quad
245 // precision number.
246 // Table entry 1 is
247 // 0 fff6 80200aaeac44ef38 338f77605fdf8000
249 // We store this quad precision number in a data structure that is
250 //    sign:           1
251 //    exponent:      15
252 //    signficand_hi: 64 (includes explicit bit)
253 //    signficand_lo: 49
254 // Because the explicit bit is included, the significand is 113 bits.
256 // Consider significand_hi for table entry 1.
259 // +-+--- ... -------+--------------------+
260 // | |
261 // +-+--- ... -------+--------------------+
262 // 0 1               4444444455555555556666
263 //                   2345678901234567890123
265 // Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
266 // Bit 42 is 2^-42. If we shift to the right by 9, the bit in
267 // bit 42 goes in 51.
269 // So what we want to do is shift bits 43 thru 63 into significand_lo.
270 // This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
271 // Then shifting (just with signficaand_hi) back into bit 42.
273 // The shift_value is 63-42 = 21. In general, this is
274 //      63 - (51 -(0xffff - 0xfff6))
275 // For this example, it is
276 //      63 - (51 - 9) = 63 - 42  = 21
278 // This means we are shifting 21 bits into significand_lo. We must maintain more
279 // that a 128-bit signficand not to lose bits. So before the shift we put the
280 // 128-bit significand into a 256-bit signficand and then shift.
281 // The 256-bit significand has four parts: hh, hl, lh, and ll.
283 // Start off with
284 //      hh         hl         lh         ll
285 //      <64>       <49><15_0> <64_0>     <64_0>
287 // After shift by 21 (then return for significand_hi),
288 //      <43><21_0> <21><43>   <6><58_0>  <64_0>
290 // Take the hh part and convert to a double. There is no rounding here.
291 // The conversion is exact. The true exponent of the high part is the same as
292 // the true exponent of the input quad.
294 // We have some 64 plus significand bits for the low part. In this example, we
295 // have 70 bits. We want to round this to a double. Put them in a quad and then
296 // do a quad fnorm.
297 // For this example the true exponent of the low part is
298 //      true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
299 // In general, this is
300 //      true_exponent_of_high - (64 - shift_value)
303 // Largest T,t
304 // ----------
305 // The largest T,t is
306 // 0x3fe62643fecf9742, 0x3c9e3147684bd37d  log(1/frcpa(1+255/256))=+6.92171e-001
308 // Table entry 256 is
309 // 0 fffe b1321ff67cba178c 51da12f4df5a0000
311 // The shift value is
312 //      63 - (51 -(0xffff - 0xfffe)) = 13
314 // The true exponent of the low part is
315 //      true_exponent_of_high - (64 - shift_value)
316 //      -1 - (64-13) = -52
317 // Biased as a double, this is 0x3cb
321 // So then lsb(T) must be >= 2^-51
322 // msb(Klog2_hi) <= 2^12
324 //              +--------+---------+
325 //              |       51 bits    | <== largest T
326 //              +--------+---------+
327 //              | 9 bits | 42 bits | <== smallest T
328 // +------------+----------------+-+
329 // |  13 bits   | 50 bits        | |
330 // +------------+----------------+-+
332 // Note: For powf only the table of T is needed
335 // Special Cases
336 //==============================================================
338 //                                   double     float
339 // overflow                          error 24   30
341 // underflow                         error 25   31
343 // X zero  Y zero
344 //  +0     +0                 +1     error 26   32
345 //  -0     +0                 +1     error 26   32
346 //  +0     -0                 +1     error 26   32
347 //  -0     -0                 +1     error 26   32
349 // X zero  Y negative
350 //  +0     -odd integer       +inf   error 27   33  divide-by-zero
351 //  -0     -odd integer       -inf   error 27   33  divide-by-zero
352 //  +0     !-odd integer      +inf   error 27   33  divide-by-zero
353 //  -0     !-odd integer      +inf   error 27   33  divide-by-zero
354 //  +0     -inf               +inf   error 27   33  divide-by-zero
355 //  -0     -inf               +inf   error 27   33  divide-by-zero
357 // X zero  Y positve
358 //  +0     +odd integer       +0
359 //  -0     +odd integer       -0
360 //  +0     !+odd integer      +0
361 //  -0     !+odd integer      +0
362 //  +0     +inf               +0
363 //  -0     +inf               +0
364 //  +0     Y NaN              quiet Y               invalid if Y SNaN
365 //  -0     Y NaN              quiet Y               invalid if Y SNaN
367 // X one
368 //  -1     Y inf              +1
369 //  -1     Y NaN              quiet Y               invalid if Y SNaN
370 //  +1     Y NaN              +1                    invalid if Y SNaN
371 //  +1     Y any else         +1
373 // X -     Y not integer      QNAN   error 28   34  invalid
375 // X NaN   Y 0                +1     error 29   35
376 // X NaN   Y NaN              quiet X               invalid if X or Y SNaN
377 // X NaN   Y any else         quiet X               invalid if X SNaN
378 // X !+1   Y NaN              quiet Y               invalid if Y SNaN
381 // X +inf  Y >0               +inf
382 // X -inf  Y >0, !odd integer +inf
383 // X -inf  Y >0, odd integer  -inf
385 // X +inf  Y <0               +0
386 // X -inf  Y <0, !odd integer +0
387 // X -inf  Y <0, odd integer  -0
389 // X +inf  Y =0               +1
390 // X -inf  Y =0               +1
392 // |X|<1   Y +inf             +0
393 // |X|<1   Y -inf             +inf
394 // |X|>1   Y +inf             +inf
395 // |X|>1   Y -inf             +0
397 // X any   Y =0               +1
399 // Assembly macros
400 //==============================================================
402 // integer registers used
404 pow_GR_exp_half           = r10
405 pow_GR_signexp_Xm1        = r11
406 pow_GR_tmp                = r11
408 pow_GR_signexp_X          = r14
409 pow_GR_17ones             = r15
410 pow_GR_Fpsr               = r15
411 pow_AD_P                  = r16
412 pow_GR_rcs0_mask          = r16
413 pow_GR_exp_2tom8          = r17
414 pow_GR_rcs0               = r17
415 pow_GR_sig_X              = r18
416 pow_GR_10033              = r19
417 pow_GR_16ones             = r20
419 pow_AD_Tt                 = r21
420 pow_GR_exp_X              = r22
421 pow_AD_Q                  = r23
422 pow_GR_true_exp_X         = r24
423 pow_GR_y_zero             = r25
425 pow_GR_exp_Y              = r26
426 pow_AD_tbl1               = r27
427 pow_AD_tbl2               = r28
428 pow_GR_offset             = r29
429 pow_GR_exp_Xm1            = r30
430 pow_GR_xneg_yodd          = r31
432 pow_GR_int_N              = r38
433 pow_GR_index1             = r39
434 pow_GR_index2             = r40
436 pow_AD_T1                 = r41
437 pow_AD_T2                 = r42
438 pow_int_GR_M              = r43
439 pow_GR_sig_int_Y          = r44
440 pow_GR_sign_Y_Gpr         = r45
442 pow_GR_17ones_m1          = r46
443 pow_GR_one                = r47
444 pow_GR_sign_Y             = r48
445 pow_GR_signexp_Y_Gpr      = r49
446 pow_GR_exp_Y_Gpr          = r50
448 pow_GR_true_exp_Y_Gpr     = r51
449 pow_GR_signexp_Y          = r52
450 pow_GR_x_one              = r53
451 pow_GR_big_pos            = r55
453 pow_GR_big_neg            = r56
455 GR_SAVE_B0                = r50
456 GR_SAVE_GP                = r51
457 GR_SAVE_PFS               = r52
459 GR_Parameter_X            = r53
460 GR_Parameter_Y            = r54
461 GR_Parameter_RESULT       = r55
462 pow_GR_tag                = r56
465 // floating point registers used
467 POW_B                     = f32
468 POW_NORM_X                = f33
469 POW_Xm1                   = f34
470 POW_r1                    = f34
472 POW_NORM_Y                = f37
473 POW_Q2                    = f38
474 POW_eps                   = f39
475 POW_P2                    = f40
477 POW_P0                    = f42
478 POW_log2_lo               = f43
479 POW_r                     = f44
480 POW_Q0_half               = f45
482 POW_tmp                   = f47
483 POW_log2_hi               = f48
484 POW_Q1                    = f49
485 POW_P1                    = f50
487 POW_log2_by_128_hi        = f51
488 POW_inv_log2_by_128       = f52
489 POW_rsq                   = f53
490 POW_Yrcub                 = f54
491 POW_log2_by_128_lo        = f55
493 POW_xsq                   = f57
494 POW_v2                    = f59
495 POW_T                     = f60
497 POW_RSHF                  = f62
498 POW_v210                  = f63
499 POW_twoV                  = f65
501 POW_U                     = f66
502 POW_G                     = f67
503 POW_delta                 = f68
504 POW_V                     = f70
506 POW_p                     = f71
507 POW_Z                     = f72
508 POW_e3                    = f73
509 POW_Z2                    = f75
511 POW_W1                    = f77
512 POW_Z3                    = f80
514 POW_Z3sq                  = f85
516 POW_Nfloat                = f87
517 POW_f3                    = f89
518 POW_q                     = f90
520 POW_T1                    = f96
521 POW_T2                    = f97
522 POW_2M                    = f98
523 POW_s                     = f99
524 POW_f12                   = f100
526 POW_ssq                   = f101
527 POW_T1T2                  = f102
528 POW_1ps                   = f103
529 POW_A                     = f104
530 POW_es                    = f105
532 POW_Xp1                   = f106
533 POW_int_K                 = f107
534 POW_K                     = f108
535 POW_f123                  = f109
536 POW_Gpr                   = f110
538 POW_Y_Gpr                 = f111
539 POW_int_Y                 = f112
540 POW_2Mqp1                 = f113
542 POW_float_int_Y           = f116
543 POW_ftz_urm_f8            = f117
544 POW_wre_urm_f8            = f118
545 POW_big_neg               = f119
546 POW_big_pos               = f120
548 // Data tables
549 //==============================================================
551 RODATA
553 .align 16
555 LOCAL_OBJECT_START(pow_table_P)
556 data8 0x80000000000018E5, 0x0000BFFD  // P_1
557 data8 0xb8aa3b295c17f0bc, 0x00004006  // inv_ln2_by_128
560 data8 0x3FA5555555554A9E // Q_2
561 data8 0x0000000000000000 // Pad
562 data8 0x3FC5555555554733 // Q_1
563 data8 0x43e8000000000000 // Right shift constant for exp
564 data8 0xc9e3b39803f2f6af, 0x00003fb7  // ln2_by_128_lo
565 LOCAL_OBJECT_END(pow_table_P)
567 LOCAL_OBJECT_START(pow_table_Q)
568 data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC  // P_2
569 data8 0xAAAAAAAAAAAAB505, 0x00003FFD  // P_0
570 data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo =  +6.93147e-001
571 data8 0xb17217f7d1cf79ab, 0x00003ff7  // ln2_by_128_hi
572 LOCAL_OBJECT_END(pow_table_Q)
575 LOCAL_OBJECT_START(pow_Tt)
576 data8 0x3f60040155d58800 // log(1/frcpa(1+0/256))=  +1.95503e-003
577 data8 0x3f78121214586a00 // log(1/frcpa(1+1/256))=  +5.87661e-003
578 data8 0x3f841929f9683200 // log(1/frcpa(1+2/256))=  +9.81362e-003
579 data8 0x3f8c317384c75f00 // log(1/frcpa(1+3/256))=  +1.37662e-002
580 data8 0x3f91a6b91ac73380 // log(1/frcpa(1+4/256))=  +1.72376e-002
581 data8 0x3f95ba9a5d9ac000 // log(1/frcpa(1+5/256))=  +2.12196e-002
582 data8 0x3f99d2a807432580 // log(1/frcpa(1+6/256))=  +2.52177e-002
583 data8 0x3f9d6b2725979800 // log(1/frcpa(1+7/256))=  +2.87291e-002
584 data8 0x3fa0c58fa19dfa80 // log(1/frcpa(1+8/256))=  +3.27573e-002
585 data8 0x3fa2954c78cbce00 // log(1/frcpa(1+9/256))=  +3.62953e-002
586 data8 0x3fa4a94d2da96c40 // log(1/frcpa(1+10/256))=  +4.03542e-002
587 data8 0x3fa67c94f2d4bb40 // log(1/frcpa(1+11/256))=  +4.39192e-002
588 data8 0x3fa85188b630f040 // log(1/frcpa(1+12/256))=  +4.74971e-002
589 data8 0x3faa6b8abe73af40 // log(1/frcpa(1+13/256))=  +5.16017e-002
590 data8 0x3fac441e06f72a80 // log(1/frcpa(1+14/256))=  +5.52072e-002
591 data8 0x3fae1e6713606d00 // log(1/frcpa(1+15/256))=  +5.88257e-002
592 data8 0x3faffa6911ab9300 // log(1/frcpa(1+16/256))=  +6.24574e-002
593 data8 0x3fb0ec139c5da600 // log(1/frcpa(1+17/256))=  +6.61022e-002
594 data8 0x3fb1dbd2643d1900 // log(1/frcpa(1+18/256))=  +6.97605e-002
595 data8 0x3fb2cc7284fe5f00 // log(1/frcpa(1+19/256))=  +7.34321e-002
596 data8 0x3fb3bdf5a7d1ee60 // log(1/frcpa(1+20/256))=  +7.71173e-002
597 data8 0x3fb4b05d7aa012e0 // log(1/frcpa(1+21/256))=  +8.08161e-002
598 data8 0x3fb580db7ceb5700 // log(1/frcpa(1+22/256))=  +8.39975e-002
599 data8 0x3fb674f089365a60 // log(1/frcpa(1+23/256))=  +8.77219e-002
600 data8 0x3fb769ef2c6b5680 // log(1/frcpa(1+24/256))=  +9.14602e-002
601 data8 0x3fb85fd927506a40 // log(1/frcpa(1+25/256))=  +9.52125e-002
602 data8 0x3fb9335e5d594980 // log(1/frcpa(1+26/256))=  +9.84401e-002
603 data8 0x3fba2b0220c8e5e0 // log(1/frcpa(1+27/256))=  +1.02219e-001
604 data8 0x3fbb0004ac1a86a0 // log(1/frcpa(1+28/256))=  +1.05469e-001
605 data8 0x3fbbf968769fca00 // log(1/frcpa(1+29/256))=  +1.09274e-001
606 data8 0x3fbccfedbfee13a0 // log(1/frcpa(1+30/256))=  +1.12548e-001
607 data8 0x3fbda727638446a0 // log(1/frcpa(1+31/256))=  +1.15832e-001
608 data8 0x3fbea3257fe10f60 // log(1/frcpa(1+32/256))=  +1.19677e-001
609 data8 0x3fbf7be9fedbfde0 // log(1/frcpa(1+33/256))=  +1.22985e-001
610 data8 0x3fc02ab352ff25f0 // log(1/frcpa(1+34/256))=  +1.26303e-001
611 data8 0x3fc097ce579d2040 // log(1/frcpa(1+35/256))=  +1.29633e-001
612 data8 0x3fc1178e8227e470 // log(1/frcpa(1+36/256))=  +1.33531e-001
613 data8 0x3fc185747dbecf30 // log(1/frcpa(1+37/256))=  +1.36885e-001
614 data8 0x3fc1f3b925f25d40 // log(1/frcpa(1+38/256))=  +1.40250e-001
615 data8 0x3fc2625d1e6ddf50 // log(1/frcpa(1+39/256))=  +1.43627e-001
616 data8 0x3fc2d1610c868130 // log(1/frcpa(1+40/256))=  +1.47015e-001
617 data8 0x3fc340c597411420 // log(1/frcpa(1+41/256))=  +1.50414e-001
618 data8 0x3fc3b08b6757f2a0 // log(1/frcpa(1+42/256))=  +1.53825e-001
619 data8 0x3fc40dfb08378000 // log(1/frcpa(1+43/256))=  +1.56677e-001
620 data8 0x3fc47e74e8ca5f70 // log(1/frcpa(1+44/256))=  +1.60109e-001
621 data8 0x3fc4ef51f6466de0 // log(1/frcpa(1+45/256))=  +1.63553e-001
622 data8 0x3fc56092e02ba510 // log(1/frcpa(1+46/256))=  +1.67010e-001
623 data8 0x3fc5d23857cd74d0 // log(1/frcpa(1+47/256))=  +1.70478e-001
624 data8 0x3fc6313a37335d70 // log(1/frcpa(1+48/256))=  +1.73377e-001
625 data8 0x3fc6a399dabbd380 // log(1/frcpa(1+49/256))=  +1.76868e-001
626 data8 0x3fc70337dd3ce410 // log(1/frcpa(1+50/256))=  +1.79786e-001
627 data8 0x3fc77654128f6120 // log(1/frcpa(1+51/256))=  +1.83299e-001
628 data8 0x3fc7e9d82a0b0220 // log(1/frcpa(1+52/256))=  +1.86824e-001
629 data8 0x3fc84a6b759f5120 // log(1/frcpa(1+53/256))=  +1.89771e-001
630 data8 0x3fc8ab47d5f5a300 // log(1/frcpa(1+54/256))=  +1.92727e-001
631 data8 0x3fc91fe490965810 // log(1/frcpa(1+55/256))=  +1.96286e-001
632 data8 0x3fc981634011aa70 // log(1/frcpa(1+56/256))=  +1.99261e-001
633 data8 0x3fc9f6c407089660 // log(1/frcpa(1+57/256))=  +2.02843e-001
634 data8 0x3fca58e729348f40 // log(1/frcpa(1+58/256))=  +2.05838e-001
635 data8 0x3fcabb55c31693a0 // log(1/frcpa(1+59/256))=  +2.08842e-001
636 data8 0x3fcb1e104919efd0 // log(1/frcpa(1+60/256))=  +2.11855e-001
637 data8 0x3fcb94ee93e367c0 // log(1/frcpa(1+61/256))=  +2.15483e-001
638 data8 0x3fcbf851c0675550 // log(1/frcpa(1+62/256))=  +2.18516e-001
639 data8 0x3fcc5c0254bf23a0 // log(1/frcpa(1+63/256))=  +2.21558e-001
640 data8 0x3fccc000c9db3c50 // log(1/frcpa(1+64/256))=  +2.24609e-001
641 data8 0x3fcd244d99c85670 // log(1/frcpa(1+65/256))=  +2.27670e-001
642 data8 0x3fcd88e93fb2f450 // log(1/frcpa(1+66/256))=  +2.30741e-001
643 data8 0x3fcdedd437eaef00 // log(1/frcpa(1+67/256))=  +2.33820e-001
644 data8 0x3fce530effe71010 // log(1/frcpa(1+68/256))=  +2.36910e-001
645 data8 0x3fceb89a1648b970 // log(1/frcpa(1+69/256))=  +2.40009e-001
646 data8 0x3fcf1e75fadf9bd0 // log(1/frcpa(1+70/256))=  +2.43117e-001
647 data8 0x3fcf84a32ead7c30 // log(1/frcpa(1+71/256))=  +2.46235e-001
648 data8 0x3fcfeb2233ea07c0 // log(1/frcpa(1+72/256))=  +2.49363e-001
649 data8 0x3fd028f9c7035c18 // log(1/frcpa(1+73/256))=  +2.52501e-001
650 data8 0x3fd05c8be0d96358 // log(1/frcpa(1+74/256))=  +2.55649e-001
651 data8 0x3fd085eb8f8ae790 // log(1/frcpa(1+75/256))=  +2.58174e-001
652 data8 0x3fd0b9c8e32d1910 // log(1/frcpa(1+76/256))=  +2.61339e-001
653 data8 0x3fd0edd060b78080 // log(1/frcpa(1+77/256))=  +2.64515e-001
654 data8 0x3fd122024cf00638 // log(1/frcpa(1+78/256))=  +2.67701e-001
655 data8 0x3fd14be2927aecd0 // log(1/frcpa(1+79/256))=  +2.70257e-001
656 data8 0x3fd180618ef18ad8 // log(1/frcpa(1+80/256))=  +2.73461e-001
657 data8 0x3fd1b50bbe2fc638 // log(1/frcpa(1+81/256))=  +2.76675e-001
658 data8 0x3fd1df4cc7cf2428 // log(1/frcpa(1+82/256))=  +2.79254e-001
659 data8 0x3fd214456d0eb8d0 // log(1/frcpa(1+83/256))=  +2.82487e-001
660 data8 0x3fd23ec5991eba48 // log(1/frcpa(1+84/256))=  +2.85081e-001
661 data8 0x3fd2740d9f870af8 // log(1/frcpa(1+85/256))=  +2.88333e-001
662 data8 0x3fd29ecdabcdfa00 // log(1/frcpa(1+86/256))=  +2.90943e-001
663 data8 0x3fd2d46602adcce8 // log(1/frcpa(1+87/256))=  +2.94214e-001
664 data8 0x3fd2ff66b04ea9d0 // log(1/frcpa(1+88/256))=  +2.96838e-001
665 data8 0x3fd335504b355a30 // log(1/frcpa(1+89/256))=  +3.00129e-001
666 data8 0x3fd360925ec44f58 // log(1/frcpa(1+90/256))=  +3.02769e-001
667 data8 0x3fd38bf1c3337e70 // log(1/frcpa(1+91/256))=  +3.05417e-001
668 data8 0x3fd3c25277333180 // log(1/frcpa(1+92/256))=  +3.08735e-001
669 data8 0x3fd3edf463c16838 // log(1/frcpa(1+93/256))=  +3.11399e-001
670 data8 0x3fd419b423d5e8c0 // log(1/frcpa(1+94/256))=  +3.14069e-001
671 data8 0x3fd44591e0539f48 // log(1/frcpa(1+95/256))=  +3.16746e-001
672 data8 0x3fd47c9175b6f0a8 // log(1/frcpa(1+96/256))=  +3.20103e-001
673 data8 0x3fd4a8b341552b08 // log(1/frcpa(1+97/256))=  +3.22797e-001
674 data8 0x3fd4d4f390890198 // log(1/frcpa(1+98/256))=  +3.25498e-001
675 data8 0x3fd501528da1f960 // log(1/frcpa(1+99/256))=  +3.28206e-001
676 data8 0x3fd52dd06347d4f0 // log(1/frcpa(1+100/256))=  +3.30921e-001
677 data8 0x3fd55a6d3c7b8a88 // log(1/frcpa(1+101/256))=  +3.33644e-001
678 data8 0x3fd5925d2b112a58 // log(1/frcpa(1+102/256))=  +3.37058e-001
679 data8 0x3fd5bf406b543db0 // log(1/frcpa(1+103/256))=  +3.39798e-001
680 data8 0x3fd5ec433d5c35a8 // log(1/frcpa(1+104/256))=  +3.42545e-001
681 data8 0x3fd61965cdb02c18 // log(1/frcpa(1+105/256))=  +3.45300e-001
682 data8 0x3fd646a84935b2a0 // log(1/frcpa(1+106/256))=  +3.48063e-001
683 data8 0x3fd6740add31de90 // log(1/frcpa(1+107/256))=  +3.50833e-001
684 data8 0x3fd6a18db74a58c0 // log(1/frcpa(1+108/256))=  +3.53610e-001
685 data8 0x3fd6cf31058670e8 // log(1/frcpa(1+109/256))=  +3.56396e-001
686 data8 0x3fd6f180e852f0b8 // log(1/frcpa(1+110/256))=  +3.58490e-001
687 data8 0x3fd71f5d71b894e8 // log(1/frcpa(1+111/256))=  +3.61289e-001
688 data8 0x3fd74d5aefd66d58 // log(1/frcpa(1+112/256))=  +3.64096e-001
689 data8 0x3fd77b79922bd378 // log(1/frcpa(1+113/256))=  +3.66911e-001
690 data8 0x3fd7a9b9889f19e0 // log(1/frcpa(1+114/256))=  +3.69734e-001
691 data8 0x3fd7d81b037eb6a0 // log(1/frcpa(1+115/256))=  +3.72565e-001
692 data8 0x3fd8069e33827230 // log(1/frcpa(1+116/256))=  +3.75404e-001
693 data8 0x3fd82996d3ef8bc8 // log(1/frcpa(1+117/256))=  +3.77538e-001
694 data8 0x3fd85855776dcbf8 // log(1/frcpa(1+118/256))=  +3.80391e-001
695 data8 0x3fd8873658327cc8 // log(1/frcpa(1+119/256))=  +3.83253e-001
696 data8 0x3fd8aa75973ab8c8 // log(1/frcpa(1+120/256))=  +3.85404e-001
697 data8 0x3fd8d992dc8824e0 // log(1/frcpa(1+121/256))=  +3.88280e-001
698 data8 0x3fd908d2ea7d9510 // log(1/frcpa(1+122/256))=  +3.91164e-001
699 data8 0x3fd92c59e79c0e50 // log(1/frcpa(1+123/256))=  +3.93332e-001
700 data8 0x3fd95bd750ee3ed0 // log(1/frcpa(1+124/256))=  +3.96231e-001
701 data8 0x3fd98b7811a3ee58 // log(1/frcpa(1+125/256))=  +3.99138e-001
702 data8 0x3fd9af47f33d4068 // log(1/frcpa(1+126/256))=  +4.01323e-001
703 data8 0x3fd9df270c1914a0 // log(1/frcpa(1+127/256))=  +4.04245e-001
704 data8 0x3fda0325ed14fda0 // log(1/frcpa(1+128/256))=  +4.06442e-001
705 data8 0x3fda33440224fa78 // log(1/frcpa(1+129/256))=  +4.09379e-001
706 data8 0x3fda57725e80c380 // log(1/frcpa(1+130/256))=  +4.11587e-001
707 data8 0x3fda87d0165dd198 // log(1/frcpa(1+131/256))=  +4.14539e-001
708 data8 0x3fdaac2e6c03f890 // log(1/frcpa(1+132/256))=  +4.16759e-001
709 data8 0x3fdadccc6fdf6a80 // log(1/frcpa(1+133/256))=  +4.19726e-001
710 data8 0x3fdb015b3eb1e790 // log(1/frcpa(1+134/256))=  +4.21958e-001
711 data8 0x3fdb323a3a635948 // log(1/frcpa(1+135/256))=  +4.24941e-001
712 data8 0x3fdb56fa04462908 // log(1/frcpa(1+136/256))=  +4.27184e-001
713 data8 0x3fdb881aa659bc90 // log(1/frcpa(1+137/256))=  +4.30182e-001
714 data8 0x3fdbad0bef3db160 // log(1/frcpa(1+138/256))=  +4.32437e-001
715 data8 0x3fdbd21297781c28 // log(1/frcpa(1+139/256))=  +4.34697e-001
716 data8 0x3fdc039236f08818 // log(1/frcpa(1+140/256))=  +4.37718e-001
717 data8 0x3fdc28cb1e4d32f8 // log(1/frcpa(1+141/256))=  +4.39990e-001
718 data8 0x3fdc4e19b84723c0 // log(1/frcpa(1+142/256))=  +4.42267e-001
719 data8 0x3fdc7ff9c74554c8 // log(1/frcpa(1+143/256))=  +4.45311e-001
720 data8 0x3fdca57b64e9db00 // log(1/frcpa(1+144/256))=  +4.47600e-001
721 data8 0x3fdccb130a5ceba8 // log(1/frcpa(1+145/256))=  +4.49895e-001
722 data8 0x3fdcf0c0d18f3268 // log(1/frcpa(1+146/256))=  +4.52194e-001
723 data8 0x3fdd232075b5a200 // log(1/frcpa(1+147/256))=  +4.55269e-001
724 data8 0x3fdd490246defa68 // log(1/frcpa(1+148/256))=  +4.57581e-001
725 data8 0x3fdd6efa918d25c8 // log(1/frcpa(1+149/256))=  +4.59899e-001
726 data8 0x3fdd9509707ae528 // log(1/frcpa(1+150/256))=  +4.62221e-001
727 data8 0x3fddbb2efe92c550 // log(1/frcpa(1+151/256))=  +4.64550e-001
728 data8 0x3fddee2f3445e4a8 // log(1/frcpa(1+152/256))=  +4.67663e-001
729 data8 0x3fde148a1a2726c8 // log(1/frcpa(1+153/256))=  +4.70004e-001
730 data8 0x3fde3afc0a49ff38 // log(1/frcpa(1+154/256))=  +4.72350e-001
731 data8 0x3fde6185206d5168 // log(1/frcpa(1+155/256))=  +4.74702e-001
732 data8 0x3fde882578823d50 // log(1/frcpa(1+156/256))=  +4.77060e-001
733 data8 0x3fdeaedd2eac9908 // log(1/frcpa(1+157/256))=  +4.79423e-001
734 data8 0x3fded5ac5f436be0 // log(1/frcpa(1+158/256))=  +4.81792e-001
735 data8 0x3fdefc9326d16ab8 // log(1/frcpa(1+159/256))=  +4.84166e-001
736 data8 0x3fdf2391a21575f8 // log(1/frcpa(1+160/256))=  +4.86546e-001
737 data8 0x3fdf4aa7ee031928 // log(1/frcpa(1+161/256))=  +4.88932e-001
738 data8 0x3fdf71d627c30bb0 // log(1/frcpa(1+162/256))=  +4.91323e-001
739 data8 0x3fdf991c6cb3b378 // log(1/frcpa(1+163/256))=  +4.93720e-001
740 data8 0x3fdfc07ada69a908 // log(1/frcpa(1+164/256))=  +4.96123e-001
741 data8 0x3fdfe7f18eb03d38 // log(1/frcpa(1+165/256))=  +4.98532e-001
742 data8 0x3fe007c053c5002c // log(1/frcpa(1+166/256))=  +5.00946e-001
743 data8 0x3fe01b942198a5a0 // log(1/frcpa(1+167/256))=  +5.03367e-001
744 data8 0x3fe02f74400c64e8 // log(1/frcpa(1+168/256))=  +5.05793e-001
745 data8 0x3fe04360be7603ac // log(1/frcpa(1+169/256))=  +5.08225e-001
746 data8 0x3fe05759ac47fe30 // log(1/frcpa(1+170/256))=  +5.10663e-001
747 data8 0x3fe06b5f1911cf50 // log(1/frcpa(1+171/256))=  +5.13107e-001
748 data8 0x3fe078bf0533c568 // log(1/frcpa(1+172/256))=  +5.14740e-001
749 data8 0x3fe08cd9687e7b0c // log(1/frcpa(1+173/256))=  +5.17194e-001
750 data8 0x3fe0a10074cf9018 // log(1/frcpa(1+174/256))=  +5.19654e-001
751 data8 0x3fe0b5343a234474 // log(1/frcpa(1+175/256))=  +5.22120e-001
752 data8 0x3fe0c974c89431cc // log(1/frcpa(1+176/256))=  +5.24592e-001
753 data8 0x3fe0ddc2305b9884 // log(1/frcpa(1+177/256))=  +5.27070e-001
754 data8 0x3fe0eb524bafc918 // log(1/frcpa(1+178/256))=  +5.28726e-001
755 data8 0x3fe0ffb54213a474 // log(1/frcpa(1+179/256))=  +5.31214e-001
756 data8 0x3fe114253da97d9c // log(1/frcpa(1+180/256))=  +5.33709e-001
757 data8 0x3fe128a24f1d9afc // log(1/frcpa(1+181/256))=  +5.36210e-001
758 data8 0x3fe1365252bf0864 // log(1/frcpa(1+182/256))=  +5.37881e-001
759 data8 0x3fe14ae558b4a92c // log(1/frcpa(1+183/256))=  +5.40393e-001
760 data8 0x3fe15f85a19c7658 // log(1/frcpa(1+184/256))=  +5.42910e-001
761 data8 0x3fe16d4d38c119f8 // log(1/frcpa(1+185/256))=  +5.44592e-001
762 data8 0x3fe18203c20dd130 // log(1/frcpa(1+186/256))=  +5.47121e-001
763 data8 0x3fe196c7bc4b1f38 // log(1/frcpa(1+187/256))=  +5.49656e-001
764 data8 0x3fe1a4a738b7a33c // log(1/frcpa(1+188/256))=  +5.51349e-001
765 data8 0x3fe1b981c0c9653c // log(1/frcpa(1+189/256))=  +5.53895e-001
766 data8 0x3fe1ce69e8bb1068 // log(1/frcpa(1+190/256))=  +5.56447e-001
767 data8 0x3fe1dc619de06944 // log(1/frcpa(1+191/256))=  +5.58152e-001
768 data8 0x3fe1f160a2ad0da0 // log(1/frcpa(1+192/256))=  +5.60715e-001
769 data8 0x3fe2066d7740737c // log(1/frcpa(1+193/256))=  +5.63285e-001
770 data8 0x3fe2147dba47a390 // log(1/frcpa(1+194/256))=  +5.65001e-001
771 data8 0x3fe229a1bc5ebac0 // log(1/frcpa(1+195/256))=  +5.67582e-001
772 data8 0x3fe237c1841a502c // log(1/frcpa(1+196/256))=  +5.69306e-001
773 data8 0x3fe24cfce6f80d98 // log(1/frcpa(1+197/256))=  +5.71898e-001
774 data8 0x3fe25b2c55cd5760 // log(1/frcpa(1+198/256))=  +5.73630e-001
775 data8 0x3fe2707f4d5f7c40 // log(1/frcpa(1+199/256))=  +5.76233e-001
776 data8 0x3fe285e0842ca380 // log(1/frcpa(1+200/256))=  +5.78842e-001
777 data8 0x3fe294294708b770 // log(1/frcpa(1+201/256))=  +5.80586e-001
778 data8 0x3fe2a9a2670aff0c // log(1/frcpa(1+202/256))=  +5.83207e-001
779 data8 0x3fe2b7fb2c8d1cc0 // log(1/frcpa(1+203/256))=  +5.84959e-001
780 data8 0x3fe2c65a6395f5f4 // log(1/frcpa(1+204/256))=  +5.86713e-001
781 data8 0x3fe2dbf557b0df40 // log(1/frcpa(1+205/256))=  +5.89350e-001
782 data8 0x3fe2ea64c3f97654 // log(1/frcpa(1+206/256))=  +5.91113e-001
783 data8 0x3fe3001823684d70 // log(1/frcpa(1+207/256))=  +5.93762e-001
784 data8 0x3fe30e97e9a8b5cc // log(1/frcpa(1+208/256))=  +5.95531e-001
785 data8 0x3fe32463ebdd34e8 // log(1/frcpa(1+209/256))=  +5.98192e-001
786 data8 0x3fe332f4314ad794 // log(1/frcpa(1+210/256))=  +5.99970e-001
787 data8 0x3fe348d90e7464cc // log(1/frcpa(1+211/256))=  +6.02643e-001
788 data8 0x3fe35779f8c43d6c // log(1/frcpa(1+212/256))=  +6.04428e-001
789 data8 0x3fe36621961a6a98 // log(1/frcpa(1+213/256))=  +6.06217e-001
790 data8 0x3fe37c299f3c3668 // log(1/frcpa(1+214/256))=  +6.08907e-001
791 data8 0x3fe38ae2171976e4 // log(1/frcpa(1+215/256))=  +6.10704e-001
792 data8 0x3fe399a157a603e4 // log(1/frcpa(1+216/256))=  +6.12504e-001
793 data8 0x3fe3afccfe77b9d0 // log(1/frcpa(1+217/256))=  +6.15210e-001
794 data8 0x3fe3be9d503533b4 // log(1/frcpa(1+218/256))=  +6.17018e-001
795 data8 0x3fe3cd7480b4a8a0 // log(1/frcpa(1+219/256))=  +6.18830e-001
796 data8 0x3fe3e3c43918f76c // log(1/frcpa(1+220/256))=  +6.21554e-001
797 data8 0x3fe3f2acb27ed6c4 // log(1/frcpa(1+221/256))=  +6.23373e-001
798 data8 0x3fe4019c2125ca90 // log(1/frcpa(1+222/256))=  +6.25197e-001
799 data8 0x3fe4181061389720 // log(1/frcpa(1+223/256))=  +6.27937e-001
800 data8 0x3fe42711518df544 // log(1/frcpa(1+224/256))=  +6.29769e-001
801 data8 0x3fe436194e12b6bc // log(1/frcpa(1+225/256))=  +6.31604e-001
802 data8 0x3fe445285d68ea68 // log(1/frcpa(1+226/256))=  +6.33442e-001
803 data8 0x3fe45bcc464c8938 // log(1/frcpa(1+227/256))=  +6.36206e-001
804 data8 0x3fe46aed21f117fc // log(1/frcpa(1+228/256))=  +6.38053e-001
805 data8 0x3fe47a1527e8a2d0 // log(1/frcpa(1+229/256))=  +6.39903e-001
806 data8 0x3fe489445efffcc8 // log(1/frcpa(1+230/256))=  +6.41756e-001
807 data8 0x3fe4a018bcb69834 // log(1/frcpa(1+231/256))=  +6.44543e-001
808 data8 0x3fe4af5a0c9d65d4 // log(1/frcpa(1+232/256))=  +6.46405e-001
809 data8 0x3fe4bea2a5bdbe84 // log(1/frcpa(1+233/256))=  +6.48271e-001
810 data8 0x3fe4cdf28f10ac44 // log(1/frcpa(1+234/256))=  +6.50140e-001
811 data8 0x3fe4dd49cf994058 // log(1/frcpa(1+235/256))=  +6.52013e-001
812 data8 0x3fe4eca86e64a680 // log(1/frcpa(1+236/256))=  +6.53889e-001
813 data8 0x3fe503c43cd8eb68 // log(1/frcpa(1+237/256))=  +6.56710e-001
814 data8 0x3fe513356667fc54 // log(1/frcpa(1+238/256))=  +6.58595e-001
815 data8 0x3fe522ae0738a3d4 // log(1/frcpa(1+239/256))=  +6.60483e-001
816 data8 0x3fe5322e26867854 // log(1/frcpa(1+240/256))=  +6.62376e-001
817 data8 0x3fe541b5cb979808 // log(1/frcpa(1+241/256))=  +6.64271e-001
818 data8 0x3fe55144fdbcbd60 // log(1/frcpa(1+242/256))=  +6.66171e-001
819 data8 0x3fe560dbc45153c4 // log(1/frcpa(1+243/256))=  +6.68074e-001
820 data8 0x3fe5707a26bb8c64 // log(1/frcpa(1+244/256))=  +6.69980e-001
821 data8 0x3fe587f60ed5b8fc // log(1/frcpa(1+245/256))=  +6.72847e-001
822 data8 0x3fe597a7977c8f30 // log(1/frcpa(1+246/256))=  +6.74763e-001
823 data8 0x3fe5a760d634bb88 // log(1/frcpa(1+247/256))=  +6.76682e-001
824 data8 0x3fe5b721d295f10c // log(1/frcpa(1+248/256))=  +6.78605e-001
825 data8 0x3fe5c6ea94431ef8 // log(1/frcpa(1+249/256))=  +6.80532e-001
826 data8 0x3fe5d6bb22ea86f4 // log(1/frcpa(1+250/256))=  +6.82462e-001
827 data8 0x3fe5e6938645d38c // log(1/frcpa(1+251/256))=  +6.84397e-001
828 data8 0x3fe5f673c61a2ed0 // log(1/frcpa(1+252/256))=  +6.86335e-001
829 data8 0x3fe6065bea385924 // log(1/frcpa(1+253/256))=  +6.88276e-001
830 data8 0x3fe6164bfa7cc068 // log(1/frcpa(1+254/256))=  +6.90222e-001
831 data8 0x3fe62643fecf9740 // log(1/frcpa(1+255/256))=  +6.92171e-001
832 LOCAL_OBJECT_END(pow_Tt)
835 // Table 1 is 2^(index_1/128) where
836 // index_1 goes from 0 to 15
837 LOCAL_OBJECT_START(pow_tbl1)
838 data8 0x8000000000000000 , 0x00003FFF
839 data8 0x80B1ED4FD999AB6C , 0x00003FFF
840 data8 0x8164D1F3BC030773 , 0x00003FFF
841 data8 0x8218AF4373FC25EC , 0x00003FFF
842 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
843 data8 0x8383594EEFB6EE37 , 0x00003FFF
844 data8 0x843A28C3ACDE4046 , 0x00003FFF
845 data8 0x84F1F656379C1A29 , 0x00003FFF
846 data8 0x85AAC367CC487B15 , 0x00003FFF
847 data8 0x8664915B923FBA04 , 0x00003FFF
848 data8 0x871F61969E8D1010 , 0x00003FFF
849 data8 0x87DB357FF698D792 , 0x00003FFF
850 data8 0x88980E8092DA8527 , 0x00003FFF
851 data8 0x8955EE03618E5FDD , 0x00003FFF
852 data8 0x8A14D575496EFD9A , 0x00003FFF
853 data8 0x8AD4C6452C728924 , 0x00003FFF
854 LOCAL_OBJECT_END(pow_tbl1)
857 // Table 2 is 2^(index_1/8) where
858 // index_2 goes from 0 to 7
859 LOCAL_OBJECT_START(pow_tbl2)
860 data8 0x8000000000000000 , 0x00003FFF
861 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
862 data8 0x9837F0518DB8A96F , 0x00003FFF
863 data8 0xA5FED6A9B15138EA , 0x00003FFF
864 data8 0xB504F333F9DE6484 , 0x00003FFF
865 data8 0xC5672A115506DADD , 0x00003FFF
866 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
867 data8 0xEAC0C6E7DD24392F , 0x00003FFF
868 LOCAL_OBJECT_END(pow_tbl2)
870 .section .text
871 GLOBAL_LIBM_ENTRY(powf)
873 // Get exponent of x.  Will be used to calculate K.
874 { .mfi
875           getf.exp     pow_GR_signexp_X = f8
876           fms.s1 POW_Xm1 = f8,f1,f1     // Will be used for r1 if x>0
877           mov           pow_GR_17ones   = 0x1FFFF
879 { .mfi
880           addl          pow_AD_P        = @ltoff(pow_table_P), gp
881           fma.s1 POW_Xp1 = f8,f1,f1     // Will be used for r1 if x<0
882           nop.i 999
886 // Get significand of x.  Will be used to get index to fetch T, Tt.
887 { .mfi
888           getf.sig      pow_GR_sig_X    = f8
889           frcpa.s1      POW_B, p6       = f1,f8
890           mov           pow_GR_exp_half = 0xFFFE   // Exponent for 0.5
892 { .mfi
893           ld8 pow_AD_P = [pow_AD_P]
894           fma.s1        POW_NORM_X      = f8,f1,f0
895           mov          pow_GR_exp_2tom8 = 0xFFF7
899 // DOUBLE 0x10033  exponent limit at which y is an integer
900 { .mfi
901           nop.m 999
902           fcmp.lt.s1 p8,p9 = f8, f0     // Test for x<0
903           addl pow_GR_10033             = 0x10033, r0
905 { .mfi
906           mov           pow_GR_16ones   = 0xFFFF
907           fma.s1        POW_NORM_Y      = f9,f1,f0
908           nop.i 999
912 // p13 = TRUE ==> X is unorm
913 { .mfi
914           setf.exp      POW_Q0_half     = pow_GR_exp_half  // Form 0.5
915           fclass.m  p13,p0              = f8, 0x0b  // Test for x unorm
916           adds          pow_AD_Tt       = pow_Tt - pow_table_P,  pow_AD_P
918 { .mfi
919           adds          pow_AD_Q        = pow_table_Q - pow_table_P,  pow_AD_P
920           nop.f 999
921           nop.i 999
925 // p14 = TRUE ==> X is ZERO
926 { .mfi
927           ldfe          POW_P2          = [pow_AD_Q], 16
928           fclass.m  p14,p0              = f8, 0x07
929           nop.i 999
931 // Note POW_Xm1 and POW_r1 are used interchangably
932 { .mfb
933           nop.m 999
934 (p8)      fnma.s1        POW_Xm1        = POW_Xp1,f1,f0
935 (p13)     br.cond.spnt POW_X_DENORM
939 // Continue normal and denormal paths here
940 POW_COMMON:
941 // p11 = TRUE ==> Y is a NAN
942 { .mfi
943           and           pow_GR_exp_X    = pow_GR_signexp_X, pow_GR_17ones
944           fclass.m  p11,p0              = f9, 0xc3
945           nop.i 999
947 { .mfi
948           nop.m 999
949           fms.s1        POW_r           = POW_B, POW_NORM_X,f1
950           mov pow_GR_y_zero = 0
954 // Get exponent of |x|-1 to use in comparison to 2^-8
955 { .mmi
956           getf.exp  pow_GR_signexp_Xm1  = POW_Xm1
957           sub       pow_GR_true_exp_X   = pow_GR_exp_X, pow_GR_16ones
958           extr.u        pow_GR_offset   = pow_GR_sig_X, 55, 8
962 { .mfi
963           alloc         r32=ar.pfs,2,19,4,0
964           fcvt.fx.s1   POW_int_Y        = POW_NORM_Y
965           shladd pow_AD_Tt = pow_GR_offset, 3, pow_AD_Tt
967 { .mfi
968           setf.sig POW_int_K            = pow_GR_true_exp_X
969           nop.f 999
970           nop.i 999
974 // p12 = TRUE if Y is ZERO
975 // Compute xsq to decide later if |x|=1
976 { .mfi
977           ldfe          POW_P1          = [pow_AD_P], 16
978           fclass.m      p12,p0          = f9, 0x07
979           nop.i 999
981 { .mfb
982           ldfe          POW_P0          = [pow_AD_Q], 16
983           fma.s1        POW_xsq = POW_NORM_X, POW_NORM_X, f0
984 (p11)     br.cond.spnt  POW_Y_NAN       // Branch if y=nan
988 { .mmf
989           getf.exp  pow_GR_signexp_Y    = POW_NORM_Y
990           ldfd  POW_T                   = [pow_AD_Tt]
991           fma.s1        POW_rsq         = POW_r, POW_r,f0
995 // p11 = TRUE ==> X is a NAN
996 { .mfi
997           ldfpd         POW_log2_hi, POW_log2_lo  = [pow_AD_Q], 16
998           fclass.m      p11,p0          = POW_NORM_X, 0xc3
999           nop.i 999
1001 { .mfi
1002           ldfe          POW_inv_log2_by_128 = [pow_AD_P], 16
1003           fma.s1 POW_delta              = f0,f0,f0 // delta=0 in case |x| near 1
1004 (p12)     mov pow_GR_y_zero = 1
1008 { .mfi
1009           ldfd   POW_Q2                 = [pow_AD_P], 16
1010           fnma.s1 POW_twoV              = POW_r, POW_Q0_half,f1
1011           and       pow_GR_exp_Xm1      = pow_GR_signexp_Xm1, pow_GR_17ones
1013 { .mfi
1014           nop.m 999
1015           fma.s1 POW_U                  = POW_NORM_Y,POW_r,f0
1016           nop.i 999
1020 // Determine if we will use the |x| near 1 path (p6) or normal path (p7)
1021 { .mfi
1022           nop.m 999
1023           fcvt.xf POW_K                 = POW_int_K
1024           cmp.lt p6,p7                  = pow_GR_exp_Xm1, pow_GR_exp_2tom8
1026 { .mfb
1027           nop.m 999
1028           fma.s1 POW_G                  = f0,f0,f0  // G=0 in case |x| near 1
1029 (p11)     br.cond.spnt  POW_X_NAN       // Branch if x=nan and y not nan
1033 // If on the x near 1 path, assign r1 to r
1034 { .mfi
1035           ldfpd  POW_Q1, POW_RSHF       = [pow_AD_P], 16
1036 (p6)      fma.s1    POW_r               = POW_r1, f1, f0
1037           nop.i 999
1039 { .mfb
1040           nop.m 999
1041 (p6)      fma.s1    POW_rsq             = POW_r1, POW_r1, f0
1042 (p14)     br.cond.spnt POW_X_0          // Branch if x zero and y not nan
1046 { .mfi
1047           getf.sig pow_GR_sig_int_Y     = POW_int_Y
1048 (p6)      fnma.s1 POW_twoV              = POW_r1, POW_Q0_half,f1
1049           and pow_GR_exp_Y              = pow_GR_signexp_Y, pow_GR_17ones
1051 { .mfb
1052           andcm pow_GR_sign_Y           = pow_GR_signexp_Y, pow_GR_17ones
1053 (p6)      fma.s1 POW_U                  = POW_NORM_Y,POW_r1,f0
1054 (p12)     br.cond.spnt POW_Y_0   // Branch if y=zero, x not zero or nan
1058 { .mfi
1059           ldfe      POW_log2_by_128_lo  = [pow_AD_P], 16
1060 (p7)      fma.s1 POW_Z2                 = POW_twoV, POW_U, f0
1061           nop.i 999
1063 { .mfi
1064           ldfe      POW_log2_by_128_hi  = [pow_AD_Q], 16
1065           nop.f 999
1066           nop.i 999
1070 { .mfi
1071           nop.m 999
1072           fcvt.xf   POW_float_int_Y     = POW_int_Y
1073           nop.i 999
1075 { .mfi
1076           nop.m 999
1077 (p7)      fma.s1 POW_G                  = POW_K, POW_log2_hi, POW_T
1078           adds          pow_AD_tbl1     = pow_tbl1 - pow_Tt,  pow_AD_Q
1082 // p11 = TRUE ==> X is NEGATIVE but not inf
1083 { .mfi
1084           nop.m 999
1085           fclass.m  p11,p0              = POW_NORM_X, 0x1a
1086           nop.i 999
1088 { .mfi
1089           nop.m 999
1090 (p7)      fma.s1 POW_delta              = POW_K, POW_log2_lo, f0
1091           adds pow_AD_tbl2              = pow_tbl2 - pow_tbl1,  pow_AD_tbl1
1095 { .mfi
1096           nop.m 999
1097 (p6)      fma.s1 POW_Z                  = POW_twoV, POW_U, f0
1098           nop.i 999
1100 { .mfi
1101           nop.m 999
1102           fma.s1 POW_v2                 = POW_P1, POW_r,  POW_P0
1103           nop.i 999
1107 // p11 = TRUE ==> X is NEGATIVE but not inf
1108 //    p12 = TRUE ==> X is NEGATIVE  AND  Y  already even int
1109 //    p13 = TRUE ==> X is NEGATIVE  AND  Y possible int
1110 { .mfi
1111           nop.m 999
1112 (p7)      fma.s1 POW_Z                  = POW_NORM_Y, POW_G, POW_Z2
1113 (p11)     cmp.gt.unc  p12,p13           = pow_GR_exp_Y, pow_GR_10033
1115 { .mfi
1116           nop.m 999
1117           fma.s1 POW_Gpr                = POW_G, f1, POW_r
1118           nop.i 999
1122 { .mfi
1123           nop.m 999
1124           fma.s1 POW_Yrcub              = POW_rsq, POW_U, f0
1125           nop.i 999
1127 { .mfi
1128           nop.m 999
1129           fma.s1 POW_p                  = POW_rsq, POW_P2, POW_v2
1130           nop.i 999
1134 // Test if x inf
1135 { .mfi
1136           nop.m 999
1137           fclass.m p15,p0 = POW_NORM_X,  0x23
1138           nop.i 999
1140 // By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
1141 { .mfi
1142           nop.m 999
1143           fma.s1 POW_W1  = POW_Z, POW_inv_log2_by_128, POW_RSHF
1144           nop.i 999
1148 // p13 = TRUE ==> X is NEGATIVE  AND  Y possible int
1149 //     p10 = TRUE ==> X is NEG and Y is an int
1150 //     p12 = TRUE ==> X is NEG and Y is not an int
1151 { .mfi
1152           nop.m 999
1153 (p13)     fcmp.eq.unc.s1 p10,p12        = POW_float_int_Y,  POW_NORM_Y
1154           mov pow_GR_xneg_yodd = 0
1156 { .mfi
1157           nop.m 999
1158           fma.s1 POW_Y_Gpr              = POW_NORM_Y, POW_Gpr, f0
1159           nop.i 999
1163 // p11 = TRUE ==> X is +1.0
1164 { .mfi
1165           nop.m 999
1166           fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
1167           nop.i 999
1171 // Extract rounded integer from rightmost significand of POW_W1
1172 // By subtracting RSHF we get rounded integer POW_Nfloat
1173 { .mfi
1174           getf.sig pow_GR_int_N        = POW_W1
1175           fms.s1 POW_Nfloat  = POW_W1, f1, POW_RSHF
1176           nop.i 999
1178 { .mfb
1179           nop.m 999
1180           fma.s1 POW_Z3                 = POW_p, POW_Yrcub, f0
1181 (p12)     br.cond.spnt POW_X_NEG_Y_NONINT  // Branch if x neg, y not integer
1185 // p7  = TRUE ==> Y is +1.0
1186 // p12 = TRUE ==> X is NEGATIVE  AND Y is an odd integer
1187 { .mfi
1188           getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
1189           fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1  // Test for y=1.0
1190 (p10)     tbit.nz.unc  p12,p0           = pow_GR_sig_int_Y,0
1192 { .mfb
1193           nop.m 999
1194 (p11)     fma.s.s0 f8 = f1,f1,f0    // If x=1, result is +1
1195 (p15)     br.cond.spnt POW_X_INF
1199 // Test x and y and flag denormal
1200 { .mfi
1201           nop.m 999
1202           fcmp.eq.s0 p15,p0 = f8,f9
1203           nop.i 999
1205 { .mfb
1206           nop.m 999
1207           fma.s1 POW_e3                 = POW_NORM_Y, POW_delta, f0
1208 (p11)     br.ret.spnt b0            // Early exit if x=1.0, result is +1
1212 { .mfi
1213 (p12)     mov pow_GR_xneg_yodd = 1
1214           fnma.s1 POW_f12  = POW_Nfloat, POW_log2_by_128_lo, f1
1215           nop.i 999
1217 { .mfb
1218           nop.m 999
1219           fnma.s1 POW_s  = POW_Nfloat, POW_log2_by_128_hi, POW_Z
1220 (p7)      br.ret.spnt b0        // Early exit if y=1.0, result is x
1224 { .mmi
1225           and pow_GR_index1             = 0x0f, pow_GR_int_N
1226           and pow_GR_index2             = 0x70, pow_GR_int_N
1227           shr pow_int_GR_M              = pow_GR_int_N, 7    // M = N/128
1231 { .mfi
1232           shladd pow_AD_T1              = pow_GR_index1, 4, pow_AD_tbl1
1233           fma.s1 POW_q                  = POW_Z3, POW_Q1, POW_Q0_half
1234           add pow_int_GR_M              = pow_GR_16ones, pow_int_GR_M
1236 { .mfi
1237           add pow_AD_T2                 = pow_AD_tbl2, pow_GR_index2
1238           fma.s1 POW_Z3sq               = POW_Z3, POW_Z3, f0
1239           nop.i 999
1243 { .mmi
1244           ldfe POW_T1                   = [pow_AD_T1]
1245           ldfe POW_T2                   = [pow_AD_T2]
1246           nop.i 999
1250 // f123 = f12*(e3+1) = f12*e3+f12
1251 { .mfi
1252           setf.exp POW_2M               = pow_int_GR_M
1253           fma.s1 POW_f123               = POW_e3,POW_f12,POW_f12
1254           nop.i 999
1256 { .mfi
1257           nop.m 999
1258           fma.s1 POW_ssq                = POW_s, POW_s, f0
1259           nop.i 999
1263 { .mfi
1264           nop.m 999
1265           fma.s1 POW_v2                 = POW_s, POW_Q2, POW_Q1
1266           and pow_GR_exp_Y_Gpr          = pow_GR_signexp_Y_Gpr, pow_GR_17ones
1270 { .mfi
1271           cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
1272           fma.s1 POW_q                  = POW_Z3sq, POW_q, POW_Z3
1273           sub pow_GR_true_exp_Y_Gpr     = pow_GR_exp_Y_Gpr, pow_GR_16ones
1277 // p8 TRUE ==> |Y(G + r)| >= 7
1279 // single
1280 //     -2^7   -2^6             2^6   2^7
1281 // -----+-----+----+ ... +-----+-----+-----
1282 //  p8  |             p9             |  p8
1283 //      |     |       p10      |     |
1285 // Form signexp of constants to indicate overflow
1286 { .mfi
1287           mov         pow_GR_big_pos    = 0x1007f
1288           nop.f 999
1289           cmp.le p8,p9                  = 7, pow_GR_true_exp_Y_Gpr
1291 { .mfi
1292           mov         pow_GR_big_neg    = 0x3007f
1293           nop.f 999
1294           andcm pow_GR_sign_Y_Gpr       = pow_GR_signexp_Y_Gpr, pow_GR_17ones
1298 // Form big positive and negative constants to test for possible overflow
1299 // Scale both terms of the polynomial by POW_f123
1300 { .mfi
1301           setf.exp POW_big_pos          = pow_GR_big_pos
1302           fma.s1 POW_ssq                = POW_ssq, POW_f123, f0
1303 (p9)      cmp.le.unc p0,p10             = 6, pow_GR_true_exp_Y_Gpr
1305 { .mfb
1306           setf.exp POW_big_neg          = pow_GR_big_neg
1307           fma.s1 POW_1ps                = POW_s, POW_f123, POW_f123
1308 (p8)      br.cond.spnt POW_OVER_UNDER_X_NOT_INF
1312 { .mfi
1313           nop.m 999
1314 (p12)     fnma.s1 POW_T1T2              = POW_T1, POW_T2, f0
1315           nop.i 999
1317 { .mfi
1318           nop.m 999
1319 (p13)     fma.s1 POW_T1T2               = POW_T1, POW_T2, f0
1320           nop.i 999
1324 { .mfi
1325           nop.m 999
1326           fma.s1 POW_v210               = POW_s, POW_v2, POW_Q0_half
1327           nop.i 999
1329 { .mfi
1330           nop.m 999
1331           fma.s1 POW_2Mqp1              = POW_2M, POW_q, POW_2M
1332           nop.i 999
1336 { .mfi
1337           nop.m 999
1338           fma.s1 POW_es                 = POW_ssq, POW_v210, POW_1ps
1339           nop.i 999
1341 { .mfi
1342           nop.m 999
1343           fma.s1 POW_A                  = POW_T1T2, POW_2Mqp1, f0
1344           nop.i 999
1348 // Dummy op to set inexact
1349 { .mfi
1350           nop.m 999
1351           fma.s0 POW_tmp                = POW_2M, POW_q, POW_2M
1352           nop.i 999
1356 { .mfb
1357           nop.m 999
1358           fma.s.s0 f8                   = POW_A, POW_es, f0
1359 (p10)     br.ret.sptk     b0            // Exit main branch if no over/underflow
1363 // POSSIBLE_OVER_UNDER
1364 // p6 = TRUE ==> Y_Gpr negative
1365 // Result is already computed.  We just need to know if over/underflow occurred.
1367 { .mfb
1368         cmp.eq p0,p6                    = pow_GR_sign_Y_Gpr, r0
1369         nop.f 999
1370 (p6)    br.cond.spnt POW_POSSIBLE_UNDER
1374 // POSSIBLE_OVER
1375 // We got an answer.
1376 // overflow is a possibility, not a certainty
1379 // We define an overflow when the answer with
1380 //    WRE set
1381 //    user-defined rounding mode
1383 // double
1384 // Largest double is 7FE (biased double)
1385 //                   7FE - 3FF + FFFF = 103FE
1386 // Create + largest_double_plus_ulp
1387 // Create - largest_double_plus_ulp
1388 // Calculate answer with WRE set.
1390 // single
1391 // Largest single is FE (biased double)
1392 //                   FE - 7F + FFFF = 1007E
1393 // Create + largest_single_plus_ulp
1394 // Create - largest_single_plus_ulp
1395 // Calculate answer with WRE set.
1397 // Cases when answer is ldn+1  are as follows:
1398 //  ldn                   ldn+1
1399 // --+----------|----------+------------
1400 //              |
1401 //    +inf          +inf      -inf
1402 //                  RN         RN
1403 //                             RZ
1405 // Put in s2 (td set, wre set)
1406 { .mfi
1407         nop.m 999
1408         fsetc.s2 0x7F,0x42
1409         nop.i 999
1413 { .mfi
1414         nop.m 999
1415         fma.s.s2 POW_wre_urm_f8         = POW_A, POW_es, f0
1416         nop.i 999
1420 // Return s2 to default
1421 { .mfi
1422         nop.m 999
1423         fsetc.s2 0x7F,0x40
1424         nop.i 999
1428 // p7 = TRUE ==> yes, we have an overflow
1429 { .mfi
1430         nop.m 999
1431         fcmp.ge.s1 p7, p8               =  POW_wre_urm_f8, POW_big_pos
1432         nop.i 999
1436 { .mfi
1437         nop.m 999
1438 (p8)    fcmp.le.s1 p7, p0               =  POW_wre_urm_f8, POW_big_neg
1439         nop.i 999
1443 { .mbb
1444 (p7)   mov pow_GR_tag                   = 30
1445 (p7)   br.cond.spnt __libm_error_region // Branch if overflow
1446        br.ret.sptk     b0               // Exit if did not overflow
1451 POW_POSSIBLE_UNDER:
1452 // We got an answer. input was < -2^9 but > -2^10 (double)
1453 // We got an answer. input was < -2^6 but > -2^7  (float)
1454 // underflow is a possibility, not a certainty
1456 // We define an underflow when the answer with
1457 //    ftz set
1458 // is zero (tiny numbers become zero)
1459 // Notice (from below) that if we have an unlimited exponent range,
1460 // then there is an extra machine number E between the largest denormal and
1461 // the smallest normal.
1462 // So if with unbounded exponent we round to E or below, then we are
1463 // tiny and underflow has occurred.
1464 // But notice that you can be in a situation where we are tiny, namely
1465 // rounded to E, but when the exponent is bounded we round to smallest
1466 // normal. So the answer can be the smallest normal with underflow.
1467 //                           E
1468 // -----+--------------------+--------------------+-----
1469 //      |                    |                    |
1470 //   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
1471 //   0.1...11 2^-3ffe                                   (biased, 1)
1472 //    largest dn                               smallest normal
1474 // Form small constant (2^-170) to correct underflow result near region of 
1475 // smallest denormal in round-nearest.
1477 // Put in s2 (td set, ftz set)
1478 .pred.rel "mutex",p12,p13
1479 { .mfi
1480         mov pow_GR_Fpsr = ar40          // Read the fpsr--need to check rc.s0
1481         fsetc.s2 0x7F,0x41
1482         mov pow_GR_rcs0_mask            = 0x0c00 // Set mask for rc.s0
1484 { .mfi
1485 (p12)   mov pow_GR_tmp                  = 0x2ffff - 170 
1486         nop.f 999
1487 (p13)   mov pow_GR_tmp                  = 0x0ffff - 170 
1491 { .mfi
1492         setf.exp POW_eps                = pow_GR_tmp        // Form 2^-170
1493         fma.s.s2 POW_ftz_urm_f8         = POW_A, POW_es, f0
1494         nop.i 999
1498 // Return s2 to default
1499 { .mfi
1500         nop.m 999
1501         fsetc.s2 0x7F,0x40
1502         nop.i 999
1506 // p7 = TRUE ==> yes, we have an underflow
1507 { .mfi
1508         nop.m 999
1509         fcmp.eq.s1 p7, p0               =  POW_ftz_urm_f8, f0
1510         nop.i 999
1514 { .mmi
1515 (p7)    and pow_GR_rcs0  = pow_GR_rcs0_mask, pow_GR_Fpsr  // Isolate rc.s0
1517 (p7)    cmp.eq.unc p6,p0 = pow_GR_rcs0, r0    // Test for round to nearest
1518         nop.i 999
1522 // Tweak result slightly if underflow to get correct rounding near smallest
1523 // denormal if round-nearest
1524 { .mfi
1525         nop.m 999
1526 (p6)    fms.s.s0 f8                     = POW_A, POW_es, POW_eps
1527         nop.i 999
1529 { .mbb
1530 (p7)    mov pow_GR_tag                  = 31
1531 (p7)    br.cond.spnt __libm_error_region // Branch if underflow
1532         br.ret.sptk     b0               // Exit if did not underflow
1536 POW_X_DENORM:
1537 // Here if x unorm. Use the NORM_X for getf instructions, and then back
1538 // to normal path
1539 { .mfi
1540         getf.exp      pow_GR_signexp_X  = POW_NORM_X
1541         nop.f 999
1542         nop.i 999
1546 { .mib
1547         getf.sig      pow_GR_sig_X      = POW_NORM_X
1548         nop.i 999
1549         br.cond.sptk    POW_COMMON
1553 POW_X_0:
1554 // Here if x=0 and y not nan
1556 // We have the following cases:
1557 //  p6  x=0  and  y>0 and is an integer (may be even or odd)
1558 //  p7  x=0  and  y>0 and is NOT an integer, return +0
1559 //  p8  x=0  and  y>0 and so big as to always be an even integer, return +0
1560 //  p9  x=0  and  y>0 and may not be integer
1561 //  p10 x=0  and  y>0 and is an odd  integer, return x
1562 //  p11 x=0  and  y>0 and is an even integer, return +0
1563 //  p12 used in dummy fcmp to set denormal flag if y=unorm
1564 //  p13 x=0  and  y>0
1565 //  p14 x=0  and  y=0, branch to code for calling error handling
1566 //  p15 x=0  and  y<0, branch to code for calling error handling
1568 { .mfi
1569         getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
1570         fcmp.lt.s1 p15,p13 = f9, f0           // Test for y<0
1571         and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
1573 { .mfb
1574         cmp.ne p14,p0 = pow_GR_y_zero,r0      // Test for y=0
1575         fcvt.xf   POW_float_int_Y = POW_int_Y
1576 (p14)   br.cond.spnt POW_X_0_Y_0              // Branch if x=0 and y=0
1580 // If x=0 and y>0, test y and flag denormal
1581 { .mfb
1582 (p13)   cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
1583 (p13)   fcmp.eq.s0 p12,p0 = f9,f0    // If x=0, y>0 dummy op to flag denormal
1584 (p15)   br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
1588 // Here if x=0 and y>0
1589 { .mfi
1590         nop.m 999
1591 (p9)    fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y,  POW_NORM_Y // Test y=int
1592         nop.i 999
1594 { .mfi
1595         nop.m 999
1596 (p8)    fma.s.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
1597         nop.i 999
1601 { .mfi
1602         nop.m 999
1603 (p7)    fma.s.s0 f8  = f0,f0,f0   // Result +0 if x=0 and y>0 and not integer
1604 (p6)    tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
1608 // Note if x=0, y>0 and odd integer, just return x
1609 { .mfb
1610         nop.m 999
1611 (p11)   fma.s.s0 f8  = f0,f0,f0   // Result +0 if x=0 and y even integer
1612         br.ret.sptk b0            // Exit if x=0 and y>0
1616 POW_X_0_Y_0:
1617 // When X is +-0 and Y is +-0, IEEE returns 1.0
1618 // We call error support with this value
1620 { .mfb
1621         mov pow_GR_tag                  = 32
1622         fma.s.s0 f8                     = f1,f1,f0
1623         br.cond.sptk __libm_error_region
1627 POW_X_0_Y_NEG:
1628 // When X is +-0 and Y is negative, IEEE returns
1629 // X     Y           answer
1630 // +0    -odd int    +inf
1631 // -0    -odd int    -inf
1633 // +0    !-odd int   +inf
1634 // -0    !-odd int   +inf
1636 // p6 == Y is a floating point number outside the integer.
1637 //       Hence it is an integer and is even.
1638 //       return +inf
1640 // p7 == Y is a floating point number within the integer range.
1641 //      p9  == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
1642 //           p11 odd
1643 //              return (sign_of_x)inf
1644 //           p12 even
1645 //              return +inf
1646 //      p10 == Y is not an integer
1647 //         return +inf
1650 { .mfi
1651           nop.m 999
1652           nop.f 999
1653           cmp.gt  p6,p7                 = pow_GR_exp_Y, pow_GR_10033
1657 { .mfi
1658           mov pow_GR_tag                = 33
1659 (p7)      fcmp.eq.unc.s1 p9,p10         = POW_float_int_Y,  POW_NORM_Y
1660           nop.i 999
1664 { .mfb
1665           nop.m 999
1666 (p6)      frcpa.s0 f8,p13               = f1, f0
1667 (p6)      br.cond.sptk __libm_error_region   // x=0, y<0, y large neg int
1671 { .mfb
1672           nop.m 999
1673 (p10)     frcpa.s0 f8,p13               = f1, f0
1674 (p10)     br.cond.sptk __libm_error_region   // x=0, y<0, y not int
1678 // x=0, y<0, y an int
1679 { .mib
1680           nop.m 999
1681 (p9)      tbit.nz.unc p11,p12           = pow_GR_sig_int_Y,0
1682           nop.b 999
1686 { .mfi
1687           nop.m 999
1688 (p12)     frcpa.s0 f8,p13               = f1,f0
1689           nop.i 999
1693 { .mfb
1694           nop.m 999
1695 (p11)     frcpa.s0 f8,p13               = f1,f8
1696           br.cond.sptk __libm_error_region
1701 POW_Y_0:
1702 // Here for y zero, x anything but zero and nan
1703 // Set flag if x denormal
1704 // Result is +1.0
1705 { .mfi
1706         nop.m 999
1707         fcmp.eq.s0 p6,p0 = f8,f0    // Sets flag if x denormal
1708         nop.i 999
1710 { .mfb
1711         nop.m 999
1712         fma.s.s0 f8 = f1,f1,f0
1713         br.ret.sptk b0
1718 POW_X_INF:
1719 // Here when X is +-inf
1721 // X +inf  Y +inf             +inf
1722 // X -inf  Y +inf             +inf
1724 // X +inf  Y >0               +inf
1725 // X -inf  Y >0, !odd integer +inf     <== (-inf)^0.5 = +inf !!
1726 // X -inf  Y >0,  odd integer -inf
1728 // X +inf  Y -inf             +0
1729 // X -inf  Y -inf             +0
1731 // X +inf  Y <0               +0
1732 // X -inf  Y <0, !odd integer +0
1733 // X -inf  Y <0, odd integer  -0
1735 // X + inf Y=+0                +1
1736 // X + inf Y=-0                +1
1737 // X - inf Y=+0                +1
1738 // X - inf Y=-0                +1
1740 // p13 == Y negative
1741 // p14 == Y positive
1743 // p6 == Y is a floating point number outside the integer.
1744 //       Hence it is an integer and is even.
1745 //       p13 == (Y negative)
1746 //          return +inf
1747 //       p14 == (Y positive)
1748 //          return +0
1750 // p7 == Y is a floating point number within the integer range.
1751 //      p9  == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
1752 //           p11 odd
1753 //              p13 == (Y negative)
1754 //                 return (sign_of_x)inf
1755 //              p14 == (Y positive)
1756 //                 return (sign_of_x)0
1757 //           pxx even
1758 //              p13 == (Y negative)
1759 //                 return +inf
1760 //              p14 == (Y positive)
1761 //                 return +0
1763 //      pxx == Y is not an integer
1764 //           p13 == (Y negative)
1765 //                 return +inf
1766 //           p14 == (Y positive)
1767 //                 return +0
1770 // If x=inf, test y and flag denormal
1771 { .mfi
1772           nop.m 999
1773           fcmp.eq.s0 p10,p11 = f9,f0
1774           nop.i 999
1778 { .mfi
1779           nop.m 999
1780           fcmp.lt.s0 p13,p14            = POW_NORM_Y,f0
1781           cmp.gt  p6,p7                 = pow_GR_exp_Y, pow_GR_10033
1783 { .mfi
1784           nop.m 999
1785           fclass.m p12,p0               = f9, 0x23 //@inf
1786           nop.i 999
1790 { .mfi
1791           nop.m 999
1792           fclass.m p15,p0               = f9, 0x07 //@zero
1793           nop.i 999
1797 { .mfb
1798           nop.m 999
1799 (p15)     fmerge.s f8 = f1,f1      // Return +1.0 if x=inf, y=0
1800 (p15)     br.ret.spnt b0           // Exit if x=inf, y=0
1804 { .mfi
1805           nop.m 999
1806 (p14)     frcpa.s1 f8,p10 = f1,f0  // If x=inf, y>0, assume result +inf
1807           nop.i 999
1809 { .mfb
1810           nop.m 999
1811 (p13)     fma.s.s0 f8 = f0,f0,f0   // If x=inf, y<0, assume result +0.0
1812 (p12)     br.ret.spnt b0           // Exit if x=inf, y=inf
1816 // Here if x=inf, and 0 < |y| < inf.  Need to correct results if y odd integer.
1817 { .mfi
1818           nop.m 999
1819 (p7)      fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y,  POW_NORM_Y // Is y integer?
1820           nop.i 999
1824 { .mfi
1825           nop.m 999
1826           nop.f 999
1827 (p9)      tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0  // Test for y odd integer
1831 { .mfb
1832           nop.m 999
1833 (p11)     fmerge.s f8 = POW_NORM_X,f8    // If y odd integer use sign of x
1834           br.ret.sptk b0                 // Exit for x=inf, 0 < |y| < inf
1839 POW_X_NEG_Y_NONINT:
1840 // When X is negative and Y is a non-integer, IEEE
1841 // returns a qnan indefinite.
1842 // We call error support with this value
1844 { .mfb
1845          mov pow_GR_tag                 = 34
1846          frcpa.s0 f8,p6                 = f0,f0
1847          br.cond.sptk __libm_error_region
1851 POW_X_NAN:
1852 // Here if x=nan, y not nan
1853 { .mfi
1854          nop.m 999
1855          fclass.m  p9,p13 = f9, 0x07 // Test y=zero
1856          nop.i 999
1860 { .mfb
1861          nop.m 999
1862 (p13)    fma.s.s0 f8 = f8,f1,f0
1863 (p13)    br.ret.sptk  b0            // Exit if x nan, y anything but zero or nan
1867 POW_X_NAN_Y_0:
1868 // When X is a NAN and Y is zero, IEEE returns 1.
1869 // We call error support with this value.
1870 { .mfi
1871          nop.m 999
1872          fcmp.eq.s0 p6,p0 = f8,f0       // Dummy op to set invalid on snan
1873          nop.i 999
1875 { .mfb
1876          mov pow_GR_tag                 = 35
1877          fma.s.s0 f8 = f0,f0,f1
1878          br.cond.sptk __libm_error_region
1883 POW_OVER_UNDER_X_NOT_INF:
1885 // p8 is TRUE for overflow
1886 // p9 is TRUE for underflow
1888 // if y is infinity, we should not over/underflow
1890 { .mfi
1891           nop.m 999
1892           fcmp.eq.s1     p14, p13       = POW_xsq,f1  // Test |x|=1
1893           cmp.eq p8,p9                  = pow_GR_sign_Y_Gpr, r0
1897 { .mfi
1898           nop.m 999
1899 (p14)     fclass.m.unc       p15, p0    = f9, 0x23 // If |x|=1, test y=inf
1900           nop.i 999
1902 { .mfi
1903           nop.m 999
1904 (p13)     fclass.m.unc       p11,p0     = f9, 0x23 // If |x| not 1, test y=inf
1905           nop.i 999
1909 // p15 = TRUE if |x|=1, y=inf, return +1
1910 { .mfb
1911           nop.m 999
1912 (p15)     fma.s.s0          f8          = f1,f1,f0 // If |x|=1, y=inf, result +1
1913 (p15)     br.ret.spnt b0                // Exit if |x|=1, y=inf
1917 .pred.rel "mutex",p8,p9
1918 {  .mfb
1919 (p8)      setf.exp           f8 = pow_GR_17ones // If exp(+big), result inf
1920 (p9)      fmerge.s           f8 = f0,f0         // If exp(-big), result 0
1921 (p11)     br.ret.sptk b0                // Exit if |x| not 1, y=inf
1925 { .mfb
1926           nop.m 999
1927           nop.f 999
1928           br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
1933 POW_Y_NAN:
1934 // Here if y=nan, x anything
1935 // If x = +1 then result is +1, else result is quiet Y
1936 { .mfi
1937        nop.m 999
1938        fcmp.eq.s1         p10,p9        = POW_NORM_X, f1
1939        nop.i 999
1943 { .mfi
1944        nop.m 999
1945 (p10)  fcmp.eq.s0 p6,p0 = f9,f1   // Set invalid, even if x=+1
1946        nop.i 999
1950 { .mfi
1951        nop.m 999
1952 (p10)  fma.s.s0 f8 = f1,f1,f0
1953        nop.i 999
1955 { .mfb
1956        nop.m 999
1957 (p9)   fma.s.s0 f8 = f9,f8,f0
1958        br.ret.sptk b0             // Exit y=nan
1963 POW_OVER_UNDER_ERROR:
1964 // Here if we have overflow or underflow.
1965 // Enter with p12 true if x negative and y odd int to force -0 or -inf
1967 { .mfi
1968          sub   pow_GR_17ones_m1         = pow_GR_17ones, r0, 1
1969          nop.f 999
1970          mov pow_GR_one                 = 0x1
1974 // overflow, force inf with O flag
1975 { .mmb
1976 (p8)     mov pow_GR_tag                 = 30
1977 (p8)     setf.exp POW_tmp               = pow_GR_17ones_m1
1978          nop.b 999
1982 // underflow, force zero with I, U flags
1983 { .mmi
1984 (p9)    mov pow_GR_tag                  = 31
1985 (p9)    setf.exp POW_tmp                = pow_GR_one
1986         nop.i 999
1990 { .mfi
1991         nop.m 999
1992         fma.s.s0 f8                     = POW_tmp, POW_tmp, f0
1993         nop.i 999
1997 // p12 x is negative and y is an odd integer, change sign of result
1998 { .mfi
1999         nop.m 999
2000 (p12)   fnma.s.s0 f8                    = POW_tmp, POW_tmp, f0
2001         nop.i 999
2005 GLOBAL_LIBM_END(powf)
2008 LOCAL_LIBM_ENTRY(__libm_error_region)
2010 .prologue
2011 { .mfi
2012         add   GR_Parameter_Y=-32,sp     // Parameter 2 value
2013         nop.f 0
2014 .save   ar.pfs,GR_SAVE_PFS
2015         mov  GR_SAVE_PFS=ar.pfs         // Save ar.pfs
2017 { .mfi
2018 .fframe 64
2019         add sp=-64,sp                   // Create new stack
2020         nop.f 0
2021         mov GR_SAVE_GP=gp               // Save gp
2024 { .mmi
2025         stfs [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
2026         add GR_Parameter_X = 16,sp      // Parameter 1 address
2027 .save   b0, GR_SAVE_B0
2028         mov GR_SAVE_B0=b0               // Save b0
2031 .body
2032 { .mib
2033         stfs [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
2034         add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
2035         nop.b 0
2037 { .mib
2038         stfs [GR_Parameter_Y] = f8      // STORE Parameter 3 on stack
2039         add   GR_Parameter_Y = -16,GR_Parameter_Y
2040         br.call.sptk b0=__libm_error_support# // Call error handling function
2043 { .mmi
2044         add   GR_Parameter_RESULT = 48,sp
2045         nop.m 0
2046         nop.i 0
2049 { .mmi
2050         ldfs  f8 = [GR_Parameter_RESULT] // Get return result off stack
2051 .restore sp
2052         add   sp = 64,sp                 // Restore stack pointer
2053         mov   b0 = GR_SAVE_B0            // Restore return address
2056 { .mib
2057         mov   gp = GR_SAVE_GP            // Restore gp
2058         mov   ar.pfs = GR_SAVE_PFS       // Restore ar.pfs
2059         br.ret.sptk     b0               // Return
2062 LOCAL_LIBM_END(__libm_error_region)
2064 .type   __libm_error_support#,@function
2065 .global __libm_error_support#