c319414a41e6418d14ebb4bcce39647b1ebcd800
[frac.git] / cf.h
blobc319414a41e6418d14ebb4bcce39647b1ebcd800
1 // Requires gmp.h
2 //
3 // Opaque interface to continued fractions object.
5 #ifndef __CF_H__
6 #define __CF_H__
8 struct cf_s;
9 typedef struct cf_s *cf_t;
11 cf_t cf_new(void *(*func)(cf_t), void *data);
12 static inline cf_t cf_new_const(void *(*func)(cf_t)) {
13 return cf_new(func, NULL);
15 void cf_free(cf_t cf);
17 void cf_set_sign(cf_t cf, int sign);
18 int cf_sign(cf_t cf);
19 int cf_flip_sign(cf_t cf);
20 void cf_get(mpz_t z, cf_t cf);
21 void cf_put(cf_t cf, mpz_t z);
22 void cf_put_int(cf_t cf, int n);
24 int cf_wait(cf_t cf);
26 void *cf_data(cf_t cf);
28 // cf_mobius.c:
29 // Compute convergents of a simple continued fraction x.
30 // Outputs p then q on channel, where p/q is the last convergent computed.
31 cf_t cf_new_convergent(cf_t x);
33 // Compute convergents of (a x + b)/(c x + d)
34 // where x is a regular continued fraction.
35 cf_t cf_new_mobius_convergent(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
37 // Compute convergents of (a x + b)/(c x + d)
38 // where x is a nonregular continued fraction.
39 cf_t cf_new_nonregular_mobius_convergent(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
41 cf_t cf_new_nonregular_to_cf(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
43 cf_t cf_new_mobius_to_decimal(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
44 cf_t cf_new_cf_to_decimal(cf_t x);
45 cf_t cf_new_nonregular_mobius_to_decimal(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
47 // Well-known continued fraction expansions.
48 // cf_famous.c:
49 // e:
50 cf_t cf_new_e();
51 cf_t cf_new_pi();
52 cf_t cf_new_tan1();
53 cf_t cf_new_epow(mpz_t pow);
54 cf_t cf_new_tanh(mpz_t z);
56 // This won't work because my code cannot handle negative denominators,
57 // and also assumes the sequence of convergents alternatively overshoot
58 // and undershoots the target. The tan expansion leads to a sequence of
59 // strictly increasing convergents (for positive input).
60 cf_t cf_new_tan(mpz_t z);
62 // Gosper's method for computing bihomographic functions of continued fractions.
63 cf_t cf_new_bihom(cf_t x, cf_t y, mpz_t a[8]);
65 // From taylor.c:
66 cf_t cf_new_sin1();
67 cf_t cf_new_cos1();
69 #endif // __CF_H__