Implemented tee.
[frac.git] / cf.h
blob67c7f2784ba6ea29d51e5c14acd50bf7b879f5db
1 // Requires gmp.h
2 //
3 // Opaque interface to continued fractions object.
5 #ifndef __CF_H__
6 #define __CF_H__
8 struct cf_s;
9 typedef struct cf_s *cf_t;
11 cf_t cf_new(void *(*func)(cf_t), void *data);
12 static inline cf_t cf_new_const(void *(*func)(cf_t)) {
13 return cf_new(func, NULL);
15 void cf_free(cf_t cf);
17 void cf_set_sign(cf_t cf, int sign);
18 int cf_sign(cf_t cf);
19 int cf_flip_sign(cf_t cf);
20 void cf_get(mpz_t z, cf_t cf);
21 void cf_put(cf_t cf, mpz_t z);
22 void cf_put_int(cf_t cf, int n);
24 int cf_wait(cf_t cf);
26 void *cf_data(cf_t cf);
28 void cf_signal(cf_t cf); // For tee.
29 void cf_waitspecial(cf_t cf);
31 // From cf_tee.c:
33 void cf_tee(cf_t *out_array, cf_t in);
35 // From cf_mobius.c:
37 // Compute convergents of a simple continued fraction x.
38 // Outputs p then q on channel, where p/q is the last convergent computed.
39 cf_t cf_new_cf_convergent(cf_t x);
40 // Compute decimal representation of a simple continued fraction x.
41 // Outputs integer part first, then digits one at a time.
42 cf_t cf_new_cf_to_decimal(cf_t x);
44 // Compute convergents of (a x + b)/(c x + d)
45 // where x is a regular continued fraction.
46 cf_t cf_new_mobius_convergent(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
47 cf_t cf_new_mobius_to_decimal(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
48 cf_t cf_new_mobius_to_cf(cf_t x, mpz_t z[4]);
50 // Compute convergents of (a x + b)/(c x + d)
51 // where x is a nonregular continued fraction.
52 cf_t cf_new_nonregular_mobius_convergent(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
53 // Input: Mobius transformation and nonregular continued fraction.
54 // Output: Regular continued fraction. Assumes input fraction is well-behaved.
55 cf_t cf_new_nonregular_to_cf(cf_t x, mpz_t a, mpz_t b, mpz_t c, mpz_t d);
56 // Does both of the above at once. Seems slow.
57 cf_t cf_new_nonregular_mobius_to_decimal(cf_t x, mpz_t a[4]);
59 // Well-known continued fraction expansions.
60 // cf_famous.c:
61 // e:
62 cf_t cf_new_sqrt2();
63 cf_t cf_new_e();
64 cf_t cf_new_pi();
65 cf_t cf_new_tan1();
66 cf_t cf_new_epow(mpz_t pow);
67 cf_t cf_new_tanh(mpz_t z);
69 // This won't work because my code cannot handle negative denominators,
70 // and also assumes the sequence of convergents alternatively overshoot
71 // and undershoots the target. The tan expansion leads to a sequence of
72 // strictly increasing convergents (for positive input).
73 cf_t cf_new_tan(mpz_t z);
75 // Gosper's method for computing bihomographic functions of continued fractions.
76 cf_t cf_new_bihom(cf_t x, cf_t y, mpz_t a[8]);
78 // From taylor.c:
79 cf_t cf_new_sin1();
80 cf_t cf_new_cos1();
82 // From newton.c:
83 // Use Newton's method to find solutions of:
85 // a0 xy + a1 x + a2 y + a3
86 // y = ------------------------
87 // a4 xy - a0 x + a5 y - a2
88 cf_t cf_new_newton(cf_t x, mpz_t a[6], mpz_t lower);
89 cf_t cf_new_sqrt(cf_t x);
91 #endif // __CF_H__