Implement mouse highlight for bidi-reordered lines.
[emacs.git] / lisp / emacs-lisp / rx.el
blob522d452c2dc7c05a6699781a6c15a4ba463d534c
1 ;;; rx.el --- sexp notation for regular expressions
3 ;; Copyright (C) 2001, 2002, 2003, 2004, 2005,
4 ;; 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 ;; Author: Gerd Moellmann <gerd@gnu.org>
7 ;; Maintainer: FSF
8 ;; Keywords: strings, regexps, extensions
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software: you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation, either version 3 of the License, or
15 ;; (at your option) any later version.
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25 ;;; Commentary:
27 ;; This is another implementation of sexp-form regular expressions.
28 ;; It was unfortunately written without being aware of the Sregex
29 ;; package coming with Emacs, but as things stand, Rx completely
30 ;; covers all regexp features, which Sregex doesn't, doesn't suffer
31 ;; from the bugs mentioned in the commentary section of Sregex, and
32 ;; uses a nicer syntax (IMHO, of course :-).
34 ;; This significantly extended version of the original, is almost
35 ;; compatible with Sregex. The only incompatibility I (fx) know of is
36 ;; that the `repeat' form can't have multiple regexp args.
38 ;; Now alternative forms are provided for a degree of compatibility
39 ;; with Shivers' attempted definitive SRE notation
40 ;; <URL:http://www.ai.mit.edu/~/shivers/sre.txt>. SRE forms not
41 ;; catered for include: dsm, uncase, w/case, w/nocase, ,@<exp>,
42 ;; ,<exp>, (word ...), word+, posix-string, and character class forms.
43 ;; Some forms are inconsistent with SRE, either for historical reasons
44 ;; or because of the implementation -- simple translation into Emacs
45 ;; regexp strings. These include: any, word. Also, case-sensitivity
46 ;; and greediness are controlled by variables external to the regexp,
47 ;; and you need to feed the forms to the `posix-' functions to get
48 ;; SRE's POSIX semantics. There are probably more difficulties.
50 ;; Rx translates a sexp notation for regular expressions into the
51 ;; usual string notation. The translation can be done at compile-time
52 ;; by using the `rx' macro. It can be done at run-time by calling
53 ;; function `rx-to-string'. See the documentation of `rx' for a
54 ;; complete description of the sexp notation.
56 ;; Some examples of string regexps and their sexp counterparts:
58 ;; "^[a-z]*"
59 ;; (rx (and line-start (0+ (in "a-z"))))
61 ;; "\n[^ \t]"
62 ;; (rx (and "\n" (not blank))), or
63 ;; (rx (and "\n" (not (any " \t"))))
65 ;; "\\*\\*\\* EOOH \\*\\*\\*\n"
66 ;; (rx "*** EOOH ***\n")
68 ;; "\\<\\(catch\\|finally\\)\\>[^_]"
69 ;; (rx (and word-start (submatch (or "catch" "finally")) word-end
70 ;; (not (any ?_))))
72 ;; "[ \t\n]*:\\([^:]+\\|$\\)"
73 ;; (rx (and (zero-or-more (in " \t\n")) ":"
74 ;; (submatch (or line-end (one-or-more (not (any ?:)))))))
76 ;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
77 ;; (rx (and line-start
78 ;; "content-transfer-encoding:"
79 ;; (+ (? ?\n)) blank
80 ;; "quoted-printable"
81 ;; (+ (? ?\n)) blank))
83 ;; (concat "^\\(?:" something-else "\\)")
84 ;; (rx (and line-start (eval something-else))), statically or
85 ;; (rx-to-string '(and line-start ,something-else)), dynamically.
87 ;; (regexp-opt '(STRING1 STRING2 ...))
88 ;; (rx (or STRING1 STRING2 ...)), or in other words, `or' automatically
89 ;; calls `regexp-opt' as needed.
91 ;; "^;;\\s-*\n\\|^\n"
92 ;; (rx (or (and line-start ";;" (0+ space) ?\n)
93 ;; (and line-start ?\n)))
95 ;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
96 ;; (rx (and "$Id: "
97 ;; (1+ (not (in " ")))
98 ;; " "
99 ;; (submatch (1+ (not (in " "))))
100 ;; " "))
102 ;; "\\\\\\\\\\[\\w+"
103 ;; (rx (and ?\\ ?\\ ?\[ (1+ word)))
105 ;; etc.
107 ;;; History:
110 ;;; Code:
112 (defconst rx-constituents
113 '((and . (rx-and 1 nil))
114 (seq . and) ; SRE
115 (: . and) ; SRE
116 (sequence . and) ; sregex
117 (or . (rx-or 1 nil))
118 (| . or) ; SRE
119 (not-newline . ".")
120 (nonl . not-newline) ; SRE
121 (anything . (rx-anything 0 nil))
122 (any . (rx-any 1 nil rx-check-any)) ; inconsistent with SRE
123 (in . any)
124 (char . any) ; sregex
125 (not-char . (rx-not-char 1 nil rx-check-any)) ; sregex
126 (not . (rx-not 1 1 rx-check-not))
127 ;; Partially consistent with sregex, whose `repeat' is like our
128 ;; `**'. (`repeat' with optional max arg and multiple sexp forms
129 ;; is ambiguous.)
130 (repeat . (rx-repeat 2 3))
131 (= . (rx-= 2 nil)) ; SRE
132 (>= . (rx->= 2 nil)) ; SRE
133 (** . (rx-** 2 nil)) ; SRE
134 (submatch . (rx-submatch 1 nil)) ; SRE
135 (group . submatch)
136 (zero-or-more . (rx-kleene 1 nil))
137 (one-or-more . (rx-kleene 1 nil))
138 (zero-or-one . (rx-kleene 1 nil))
139 (\? . zero-or-one) ; SRE
140 (\?? . zero-or-one)
141 (* . zero-or-more) ; SRE
142 (*? . zero-or-more)
143 (0+ . zero-or-more)
144 (+ . one-or-more) ; SRE
145 (+? . one-or-more)
146 (1+ . one-or-more)
147 (optional . zero-or-one)
148 (opt . zero-or-one) ; sregex
149 (minimal-match . (rx-greedy 1 1))
150 (maximal-match . (rx-greedy 1 1))
151 (backref . (rx-backref 1 1 rx-check-backref))
152 (line-start . "^")
153 (bol . line-start) ; SRE
154 (line-end . "$")
155 (eol . line-end) ; SRE
156 (string-start . "\\`")
157 (bos . string-start) ; SRE
158 (bot . string-start) ; sregex
159 (string-end . "\\'")
160 (eos . string-end) ; SRE
161 (eot . string-end) ; sregex
162 (buffer-start . "\\`")
163 (buffer-end . "\\'")
164 (point . "\\=")
165 (word-start . "\\<")
166 (bow . word-start) ; SRE
167 (word-end . "\\>")
168 (eow . word-end) ; SRE
169 (word-boundary . "\\b")
170 (not-word-boundary . "\\B") ; sregex
171 (symbol-start . "\\_<")
172 (symbol-end . "\\_>")
173 (syntax . (rx-syntax 1 1))
174 (not-syntax . (rx-not-syntax 1 1)) ; sregex
175 (category . (rx-category 1 1 rx-check-category))
176 (eval . (rx-eval 1 1))
177 (regexp . (rx-regexp 1 1 stringp))
178 (digit . "[[:digit:]]")
179 (numeric . digit) ; SRE
180 (num . digit) ; SRE
181 (control . "[[:cntrl:]]") ; SRE
182 (cntrl . control) ; SRE
183 (hex-digit . "[[:xdigit:]]") ; SRE
184 (hex . hex-digit) ; SRE
185 (xdigit . hex-digit) ; SRE
186 (blank . "[[:blank:]]") ; SRE
187 (graphic . "[[:graph:]]") ; SRE
188 (graph . graphic) ; SRE
189 (printing . "[[:print:]]") ; SRE
190 (print . printing) ; SRE
191 (alphanumeric . "[[:alnum:]]") ; SRE
192 (alnum . alphanumeric) ; SRE
193 (letter . "[[:alpha:]]")
194 (alphabetic . letter) ; SRE
195 (alpha . letter) ; SRE
196 (ascii . "[[:ascii:]]") ; SRE
197 (nonascii . "[[:nonascii:]]")
198 (lower . "[[:lower:]]") ; SRE
199 (lower-case . lower) ; SRE
200 (punctuation . "[[:punct:]]") ; SRE
201 (punct . punctuation) ; SRE
202 (space . "[[:space:]]") ; SRE
203 (whitespace . space) ; SRE
204 (white . space) ; SRE
205 (upper . "[[:upper:]]") ; SRE
206 (upper-case . upper) ; SRE
207 (word . "[[:word:]]") ; inconsistent with SRE
208 (wordchar . word) ; sregex
209 (not-wordchar . "\\W"))
210 "Alist of sexp form regexp constituents.
211 Each element of the alist has the form (SYMBOL . DEFN).
212 SYMBOL is a valid constituent of sexp regular expressions.
213 If DEFN is a string, SYMBOL is translated into DEFN.
214 If DEFN is a symbol, use the definition of DEFN, recursively.
215 Otherwise, DEFN must be a list (FUNCTION MIN-ARGS MAX-ARGS PREDICATE).
216 FUNCTION is used to produce code for SYMBOL. MIN-ARGS and MAX-ARGS
217 are the minimum and maximum number of arguments the function-form
218 sexp constituent SYMBOL may have in sexp regular expressions.
219 MAX-ARGS nil means no limit. PREDICATE, if specified, means that
220 all arguments must satisfy PREDICATE.")
223 (defconst rx-syntax
224 '((whitespace . ?-)
225 (punctuation . ?.)
226 (word . ?w)
227 (symbol . ?_)
228 (open-parenthesis . ?\()
229 (close-parenthesis . ?\))
230 (expression-prefix . ?\')
231 (string-quote . ?\")
232 (paired-delimiter . ?$)
233 (escape . ?\\)
234 (character-quote . ?/)
235 (comment-start . ?<)
236 (comment-end . ?>)
237 (string-delimiter . ?|)
238 (comment-delimiter . ?!))
239 "Alist mapping Rx syntax symbols to syntax characters.
240 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
241 symbol in `(syntax SYMBOL)', and CHAR is the syntax character
242 corresponding to SYMBOL, as it would be used with \\s or \\S in
243 regular expressions.")
246 (defconst rx-categories
247 '((consonant . ?0)
248 (base-vowel . ?1)
249 (upper-diacritical-mark . ?2)
250 (lower-diacritical-mark . ?3)
251 (tone-mark . ?4)
252 (symbol . ?5)
253 (digit . ?6)
254 (vowel-modifying-diacritical-mark . ?7)
255 (vowel-sign . ?8)
256 (semivowel-lower . ?9)
257 (not-at-end-of-line . ?<)
258 (not-at-beginning-of-line . ?>)
259 (alpha-numeric-two-byte . ?A)
260 (chinse-two-byte . ?C)
261 (greek-two-byte . ?G)
262 (japanese-hiragana-two-byte . ?H)
263 (indian-two-byte . ?I)
264 (japanese-katakana-two-byte . ?K)
265 (korean-hangul-two-byte . ?N)
266 (cyrillic-two-byte . ?Y)
267 (combining-diacritic . ?^)
268 (ascii . ?a)
269 (arabic . ?b)
270 (chinese . ?c)
271 (ethiopic . ?e)
272 (greek . ?g)
273 (korean . ?h)
274 (indian . ?i)
275 (japanese . ?j)
276 (japanese-katakana . ?k)
277 (latin . ?l)
278 (lao . ?o)
279 (tibetan . ?q)
280 (japanese-roman . ?r)
281 (thai . ?t)
282 (vietnamese . ?v)
283 (hebrew . ?w)
284 (cyrillic . ?y)
285 (can-break . ?|))
286 "Alist mapping symbols to category characters.
287 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
288 symbol in `(category SYMBOL)', and CHAR is the category character
289 corresponding to SYMBOL, as it would be used with `\\c' or `\\C' in
290 regular expression strings.")
293 (defvar rx-greedy-flag t
294 "Non-nil means produce greedy regular expressions for `zero-or-one',
295 `zero-or-more', and `one-or-more'. Dynamically bound.")
298 (defun rx-info (op)
299 "Return parsing/code generation info for OP.
300 If OP is the space character ASCII 32, return info for the symbol `?'.
301 If OP is the character `?', return info for the symbol `??'.
302 See also `rx-constituents'."
303 (cond ((eq op ? ) (setq op '\?))
304 ((eq op ??) (setq op '\??)))
305 (while (and (not (null op)) (symbolp op))
306 (setq op (cdr (assq op rx-constituents))))
310 (defun rx-check (form)
311 "Check FORM according to its car's parsing info."
312 (unless (listp form)
313 (error "rx `%s' needs argument(s)" form))
314 (let* ((rx (rx-info (car form)))
315 (nargs (1- (length form)))
316 (min-args (nth 1 rx))
317 (max-args (nth 2 rx))
318 (type-pred (nth 3 rx)))
319 (when (and (not (null min-args))
320 (< nargs min-args))
321 (error "rx form `%s' requires at least %d args"
322 (car form) min-args))
323 (when (and (not (null max-args))
324 (> nargs max-args))
325 (error "rx form `%s' accepts at most %d args"
326 (car form) max-args))
327 (when (not (null type-pred))
328 (dolist (sub-form (cdr form))
329 (unless (funcall type-pred sub-form)
330 (error "rx form `%s' requires args satisfying `%s'"
331 (car form) type-pred))))))
334 (defun rx-group-if (regexp group)
335 "Put shy groups around REGEXP if seemingly necessary when GROUP
336 is non-nil."
337 (cond
338 ;; for some repetition
339 ((eq group '*) (if (rx-atomic-p regexp) (setq group nil)))
340 ;; for concatenation
341 ((eq group ':)
342 (if (rx-atomic-p
343 (if (string-match
344 "\\(?:[?*+]\\??\\|\\\\{[0-9]*,?[0-9]*\\\\}\\)\\'" regexp)
345 (substring regexp 0 (match-beginning 0))
346 regexp))
347 (setq group nil)))
348 ;; for OR
349 ((eq group '|) (setq group nil))
350 ;; do anyway
351 ((eq group t))
352 ((rx-atomic-p regexp t) (setq group nil)))
353 (if group
354 (concat "\\(?:" regexp "\\)")
355 regexp))
358 (defvar rx-parent)
359 ;; dynamically bound in some functions.
362 (defun rx-and (form)
363 "Parse and produce code from FORM.
364 FORM is of the form `(and FORM1 ...)'."
365 (rx-check form)
366 (rx-group-if
367 (mapconcat (lambda (x) (rx-form x ':)) (cdr form) nil)
368 (and (memq rx-parent '(* t)) rx-parent)))
371 (defun rx-or (form)
372 "Parse and produce code from FORM, which is `(or FORM1 ...)'."
373 (rx-check form)
374 (rx-group-if
375 (if (memq nil (mapcar 'stringp (cdr form)))
376 (mapconcat (lambda (x) (rx-form x '|)) (cdr form) "\\|")
377 (regexp-opt (cdr form)))
378 (and (memq rx-parent '(: * t)) rx-parent)))
381 (defun rx-anything (form)
382 "Match any character."
383 (if (consp form)
384 (error "rx `anythng' syntax error: %s" form))
385 (rx-or (list 'or 'not-newline ?\n)))
388 (defun rx-any-delete-from-range (char ranges)
389 "Delete by side effect character CHAR from RANGES.
390 Only both edges of each range is checked."
391 (let (m)
392 (cond
393 ((memq char ranges) (setq ranges (delq char ranges)))
394 ((setq m (assq char ranges))
395 (if (eq (1+ char) (cdr m))
396 (setcar (memq m ranges) (1+ char))
397 (setcar m (1+ char))))
398 ((setq m (rassq char ranges))
399 (if (eq (1- char) (car m))
400 (setcar (memq m ranges) (1- char))
401 (setcdr m (1- char)))))
402 ranges))
405 (defun rx-any-condense-range (args)
406 "Condense by side effect ARGS as range for Rx `any'."
407 (let (str
409 ;; set STR list of all strings
410 ;; set L list of all ranges
411 (mapc (lambda (e) (cond ((stringp e) (push e str))
412 ((numberp e) (push (cons e e) l))
413 (t (push e l))))
414 args)
415 ;; condense overlapped ranges in L
416 (let ((tail (setq l (sort l #'car-less-than-car)))
418 (while (setq d (cdr tail))
419 (if (>= (cdar tail) (1- (caar d)))
420 (progn
421 (setcdr (car tail) (max (cdar tail) (cdar d)))
422 (setcdr tail (cdr d)))
423 (setq tail d))))
424 ;; Separate small ranges to single number, and delete dups.
425 (nconc
426 (apply #'nconc
427 (mapcar (lambda (e)
428 (cond
429 ((= (car e) (cdr e)) (list (car e)))
430 ((= (1+ (car e)) (cdr e)) (list (car e) (cdr e)))
431 ((list e))))
433 (delete-dups str))))
436 (defun rx-check-any-string (str)
437 "Check string argument STR for Rx `any'."
438 (let ((i 0)
439 c1 c2 l)
440 (if (= 0 (length str))
441 (error "String arg for Rx `any' must not be empty"))
442 (while (string-match ".-." str i)
443 ;; string before range: convert it to characters
444 (if (< i (match-beginning 0))
445 (setq l (nconc
447 (append (substring str i (match-beginning 0)) nil))))
448 ;; range
449 (setq i (match-end 0)
450 c1 (aref str (match-beginning 0))
451 c2 (aref str (1- i)))
452 (cond
453 ((< c1 c2) (setq l (nconc l (list (cons c1 c2)))))
454 ((= c1 c2) (setq l (nconc l (list c1))))))
455 ;; rest?
456 (if (< i (length str))
457 (setq l (nconc l (append (substring str i) nil))))
461 (defun rx-check-any (arg)
462 "Check arg ARG for Rx `any'."
463 (cond
464 ((integerp arg) (list arg))
465 ((symbolp arg)
466 (let ((translation (condition-case nil
467 (rx-form arg)
468 (error nil))))
469 (if (or (null translation)
470 (null (string-match "\\`\\[\\[:[-a-z]+:\\]\\]\\'" translation)))
471 (error "Invalid char class `%s' in Rx `any'" arg))
472 (list (substring translation 1 -1)))) ; strip outer brackets
473 ((and (integerp (car-safe arg)) (integerp (cdr-safe arg)))
474 (list arg))
475 ((stringp arg) (rx-check-any-string arg))
476 ((error
477 "rx `any' requires string, character, char pair or char class args"))))
480 (defun rx-any (form)
481 "Parse and produce code from FORM, which is `(any ARG ...)'.
482 ARG is optional."
483 (rx-check form)
484 (let* ((args (rx-any-condense-range
485 (apply
486 #'nconc
487 (mapcar #'rx-check-any (cdr form)))))
490 (cond
491 ;; single close bracket
492 ;; => "[]...-]" or "[]...--.]"
493 ((memq ?\] args)
494 ;; set ] at the beginning
495 (setq args (cons ?\] (delq ?\] args)))
496 ;; set - at the end
497 (if (or (memq ?- args) (assq ?- args))
498 (setq args (nconc (rx-any-delete-from-range ?- args)
499 (list ?-)))))
500 ;; close bracket starts a range
501 ;; => "[]-....-]" or "[]-.--....]"
502 ((setq m (assq ?\] args))
503 ;; bring it to the beginning
504 (setq args (cons m (delq m args)))
505 (cond ((memq ?- args)
506 ;; to the end
507 (setq args (nconc (delq ?- args) (list ?-))))
508 ((setq m (assq ?- args))
509 ;; next to the bracket's range, make the second range
510 (setcdr args (cons m (delq m args))))))
511 ;; bracket in the end range
512 ;; => "[]...-]"
513 ((setq m (rassq ?\] args))
514 ;; set ] at the beginning
515 (setq args (cons ?\] (rx-any-delete-from-range ?\] args)))
516 ;; set - at the end
517 (if (or (memq ?- args) (assq ?- args))
518 (setq args (nconc (rx-any-delete-from-range ?- args)
519 (list ?-)))))
520 ;; {no close bracket appears}
522 ;; bring single bar to the beginning
523 ((memq ?- args)
524 (setq args (cons ?- (delq ?- args))))
525 ;; bar start a range, bring it to the beginning
526 ((setq m (assq ?- args))
527 (setq args (cons m (delq m args))))
529 ;; hat at the beginning?
530 ((or (eq (car args) ?^) (eq (car-safe (car args)) ?^))
531 (setq args (if (cdr args)
532 `(,(cadr args) ,(car args) ,@(cddr args))
533 (nconc (rx-any-delete-from-range ?^ args)
534 (list ?^))))))
535 ;; some 1-char?
536 (if (and (null (cdr args)) (numberp (car args))
537 (or (= 1 (length
538 (setq s (regexp-quote (string (car args))))))
539 (and (equal (car args) ?^) ;; unnecessary predicate?
540 (null (eq rx-parent '!)))))
542 (concat "["
543 (mapconcat
544 (lambda (e) (cond
545 ((numberp e) (string e))
546 ((consp e)
547 (if (and (= (1+ (car e)) (cdr e))
548 ;; rx-any-condense-range should
549 ;; prevent this case from happening.
550 (null (memq (car e) '(?\] ?-)))
551 (null (memq (cdr e) '(?\] ?-))))
552 (string (car e) (cdr e))
553 (string (car e) ?- (cdr e))))
554 (e)))
555 args
556 nil)
557 "]"))))
560 (defun rx-check-not (arg)
561 "Check arg ARG for Rx `not'."
562 (unless (or (and (symbolp arg)
563 (string-match "\\`\\[\\[:[-a-z]+:\\]\\]\\'"
564 (condition-case nil
565 (rx-form arg)
566 (error ""))))
567 (eq arg 'word-boundary)
568 (and (consp arg)
569 (memq (car arg) '(not any in syntax category))))
570 (error "rx `not' syntax error: %s" arg))
574 (defun rx-not (form)
575 "Parse and produce code from FORM. FORM is `(not ...)'."
576 (rx-check form)
577 (let ((result (rx-form (cadr form) '!))
578 case-fold-search)
579 (cond ((string-match "\\`\\[^" result)
580 (cond
581 ((equal result "[^]") "[^^]")
582 ((and (= (length result) 4) (null (eq rx-parent '!)))
583 (regexp-quote (substring result 2 3)))
584 ((concat "[" (substring result 2)))))
585 ((eq ?\[ (aref result 0))
586 (concat "[^" (substring result 1)))
587 ((string-match "\\`\\\\[scbw]" result)
588 (concat (upcase (substring result 0 2))
589 (substring result 2)))
590 ((string-match "\\`\\\\[SCBW]" result)
591 (concat (downcase (substring result 0 2))
592 (substring result 2)))
594 (concat "[^" result "]")))))
597 (defun rx-not-char (form)
598 "Parse and produce code from FORM. FORM is `(not-char ...)'."
599 (rx-check form)
600 (rx-not `(not (in ,@(cdr form)))))
603 (defun rx-not-syntax (form)
604 "Parse and produce code from FORM. FORM is `(not-syntax SYNTAX)'."
605 (rx-check form)
606 (rx-not `(not (syntax ,@(cdr form)))))
609 (defun rx-trans-forms (form &optional skip)
610 "If FORM's length is greater than two, transform it to length two.
611 A form (HEAD REST ...) becomes (HEAD (and REST ...)).
612 If SKIP is non-nil, allow that number of items after the head, i.e.
613 `(= N REST ...)' becomes `(= N (and REST ...))' if SKIP is 1."
614 (unless skip (setq skip 0))
615 (let ((tail (nthcdr (1+ skip) form)))
616 (if (= (length tail) 1)
617 form
618 (let ((form (copy-sequence form)))
619 (setcdr (nthcdr skip form) (list (cons 'and tail)))
620 form))))
623 (defun rx-= (form)
624 "Parse and produce code from FORM `(= N ...)'."
625 (rx-check form)
626 (setq form (rx-trans-forms form 1))
627 (unless (and (integerp (nth 1 form))
628 (> (nth 1 form) 0))
629 (error "rx `=' requires positive integer first arg"))
630 (format "%s\\{%d\\}" (rx-form (nth 2 form) '*) (nth 1 form)))
633 (defun rx->= (form)
634 "Parse and produce code from FORM `(>= N ...)'."
635 (rx-check form)
636 (setq form (rx-trans-forms form 1))
637 (unless (and (integerp (nth 1 form))
638 (> (nth 1 form) 0))
639 (error "rx `>=' requires positive integer first arg"))
640 (format "%s\\{%d,\\}" (rx-form (nth 2 form) '*) (nth 1 form)))
643 (defun rx-** (form)
644 "Parse and produce code from FORM `(** N M ...)'."
645 (rx-check form)
646 (setq form (cons 'repeat (cdr (rx-trans-forms form 2))))
647 (rx-form form '*))
650 (defun rx-repeat (form)
651 "Parse and produce code from FORM.
652 FORM is either `(repeat N FORM1)' or `(repeat N M FORM1)'."
653 (rx-check form)
654 (cond ((= (length form) 3)
655 (unless (and (integerp (nth 1 form))
656 (> (nth 1 form) 0))
657 (error "rx `repeat' requires positive integer first arg"))
658 (format "%s\\{%d\\}" (rx-form (nth 2 form) '*) (nth 1 form)))
659 ((or (not (integerp (nth 2 form)))
660 (< (nth 2 form) 0)
661 (not (integerp (nth 1 form)))
662 (< (nth 1 form) 0)
663 (< (nth 2 form) (nth 1 form)))
664 (error "rx `repeat' range error"))
666 (format "%s\\{%d,%d\\}" (rx-form (nth 3 form) '*)
667 (nth 1 form) (nth 2 form)))))
670 (defun rx-submatch (form)
671 "Parse and produce code from FORM, which is `(submatch ...)'."
672 (concat "\\("
673 (if (= 2 (length form))
674 ;; Only one sub-form.
675 (rx-form (cadr form))
676 ;; Several sub-forms implicitly concatenated.
677 (mapconcat (lambda (re) (rx-form re ':)) (cdr form) nil))
678 "\\)"))
681 (defun rx-backref (form)
682 "Parse and produce code from FORM, which is `(backref N)'."
683 (rx-check form)
684 (format "\\%d" (nth 1 form)))
686 (defun rx-check-backref (arg)
687 "Check arg ARG for Rx `backref'."
688 (or (and (integerp arg) (>= arg 1) (<= arg 9))
689 (error "rx `backref' requires numeric 1<=arg<=9: %s" arg)))
691 (defun rx-kleene (form)
692 "Parse and produce code from FORM.
693 FORM is `(OP FORM1)', where OP is one of the `zero-or-one',
694 `zero-or-more' etc. operators.
695 If OP is one of `*', `+', `?', produce a greedy regexp.
696 If OP is one of `*?', `+?', `??', produce a non-greedy regexp.
697 If OP is anything else, produce a greedy regexp if `rx-greedy-flag'
698 is non-nil."
699 (rx-check form)
700 (setq form (rx-trans-forms form))
701 (let ((suffix (cond ((memq (car form) '(* + ?\s)) "")
702 ((memq (car form) '(*? +? ??)) "?")
703 (rx-greedy-flag "")
704 (t "?")))
705 (op (cond ((memq (car form) '(* *? 0+ zero-or-more)) "*")
706 ((memq (car form) '(+ +? 1+ one-or-more)) "+")
707 (t "?"))))
708 (rx-group-if
709 (concat (rx-form (cadr form) '*) op suffix)
710 (and (memq rx-parent '(t *)) rx-parent))))
713 (defun rx-atomic-p (r &optional lax)
714 "Return non-nil if regexp string R is atomic.
715 An atomic regexp R is one such that a suffix operator
716 appended to R will apply to all of R. For example, \"a\"
717 \"[abc]\" and \"\\(ab\\|ab*c\\)\" are atomic and \"ab\",
718 \"[ab]c\", and \"ab\\|ab*c\" are not atomic.
720 This function may return false negatives, but it will not
721 return false positives. It is nevertheless useful in
722 situations where an efficiency shortcut can be taken only if a
723 regexp is atomic. The function can be improved to detect
724 more cases of atomic regexps. Presently, this function
725 detects the following categories of atomic regexp;
727 a group or shy group: \\(...\\)
728 a character class: [...]
729 a single character: a
731 On the other hand, false negatives will be returned for
732 regexps that are atomic but end in operators, such as
733 \"a+\". I think these are rare. Probably such cases could
734 be detected without much effort. A guarantee of no false
735 negatives would require a theoretic specification of the set
736 of all atomic regexps."
737 (let ((l (length r)))
738 (cond
739 ((<= l 1))
740 ((= l 2) (= (aref r 0) ?\\))
741 ((= l 3) (string-match "\\`\\(?:\\\\[cCsS_]\\|\\[[^^]\\]\\)" r))
742 ((null lax)
743 (cond
744 ((string-match "\\`\\[^?\]?\\(?:\\[:[a-z]+:]\\|[^\]]\\)*\\]\\'" r))
745 ((string-match "\\`\\\\(\\(?:[^\\]\\|\\\\[^\)]\\)*\\\\)\\'" r)))))))
748 (defun rx-syntax (form)
749 "Parse and produce code from FORM, which is `(syntax SYMBOL)'."
750 (rx-check form)
751 (let* ((sym (cadr form))
752 (syntax (assq sym rx-syntax)))
753 (unless syntax
754 ;; Try sregex compatibility.
755 (let ((name (symbol-name sym)))
756 (if (= 1 (length name))
757 (setq syntax (rassq (aref name 0) rx-syntax))))
758 (unless syntax
759 (error "Unknown rx syntax `%s'" (cadr form))))
760 (format "\\s%c" (cdr syntax))))
763 (defun rx-check-category (form)
764 "Check the argument FORM of a `(category FORM)'."
765 (unless (or (integerp form)
766 (cdr (assq form rx-categories)))
767 (error "Unknown category `%s'" form))
771 (defun rx-category (form)
772 "Parse and produce code from FORM, which is `(category SYMBOL)'."
773 (rx-check form)
774 (let ((char (if (integerp (cadr form))
775 (cadr form)
776 (cdr (assq (cadr form) rx-categories)))))
777 (format "\\c%c" char)))
780 (defun rx-eval (form)
781 "Parse and produce code from FORM, which is `(eval FORM)'."
782 (rx-check form)
783 (rx-form (eval (cadr form)) rx-parent))
786 (defun rx-greedy (form)
787 "Parse and produce code from FORM.
788 If FORM is '(minimal-match FORM1)', non-greedy versions of `*',
789 `+', and `?' operators will be used in FORM1. If FORM is
790 '(maximal-match FORM1)', greedy operators will be used."
791 (rx-check form)
792 (let ((rx-greedy-flag (eq (car form) 'maximal-match)))
793 (rx-form (cadr form) rx-parent)))
796 (defun rx-regexp (form)
797 "Parse and produce code from FORM, which is `(regexp STRING)'."
798 (rx-check form)
799 (rx-group-if (cadr form) rx-parent))
802 (defun rx-form (form &optional rx-parent)
803 "Parse and produce code for regular expression FORM.
804 FORM is a regular expression in sexp form.
805 RX-PARENT shows which type of expression calls and controls putting of
806 shy groups around the result and some more in other functions."
807 (if (stringp form)
808 (rx-group-if (regexp-quote form)
809 (if (and (eq rx-parent '*) (< 1 (length form)))
810 rx-parent))
811 (cond ((integerp form)
812 (regexp-quote (char-to-string form)))
813 ((symbolp form)
814 (let ((info (rx-info form)))
815 (cond ((stringp info)
816 info)
817 ((null info)
818 (error "Unknown rx form `%s'" form))
820 (funcall (nth 0 info) form)))))
821 ((consp form)
822 (let ((info (rx-info (car form))))
823 (unless (consp info)
824 (error "Unknown rx form `%s'" (car form)))
825 (funcall (nth 0 info) form)))
827 (error "rx syntax error at `%s'" form)))))
830 ;;;###autoload
831 (defun rx-to-string (form &optional no-group)
832 "Parse and produce code for regular expression FORM.
833 FORM is a regular expression in sexp form.
834 NO-GROUP non-nil means don't put shy groups around the result."
835 (rx-group-if (rx-form form) (null no-group)))
838 ;;;###autoload
839 (defmacro rx (&rest regexps)
840 "Translate regular expressions REGEXPS in sexp form to a regexp string.
841 REGEXPS is a non-empty sequence of forms of the sort listed below.
843 Note that `rx' is a Lisp macro; when used in a Lisp program being
844 compiled, the translation is performed by the compiler.
845 See `rx-to-string' for how to do such a translation at run-time.
847 The following are valid subforms of regular expressions in sexp
848 notation.
850 STRING
851 matches string STRING literally.
853 CHAR
854 matches character CHAR literally.
856 `not-newline', `nonl'
857 matches any character except a newline.
859 `anything'
860 matches any character
862 `(any SET ...)'
863 `(in SET ...)'
864 `(char SET ...)'
865 matches any character in SET .... SET may be a character or string.
866 Ranges of characters can be specified as `A-Z' in strings.
867 Ranges may also be specified as conses like `(?A . ?Z)'.
869 SET may also be the name of a character class: `digit',
870 `control', `hex-digit', `blank', `graph', `print', `alnum',
871 `alpha', `ascii', `nonascii', `lower', `punct', `space', `upper',
872 `word', or one of their synonyms.
874 `(not (any SET ...))'
875 matches any character not in SET ...
877 `line-start', `bol'
878 matches the empty string, but only at the beginning of a line
879 in the text being matched
881 `line-end', `eol'
882 is similar to `line-start' but matches only at the end of a line
884 `string-start', `bos', `bot'
885 matches the empty string, but only at the beginning of the
886 string being matched against.
888 `string-end', `eos', `eot'
889 matches the empty string, but only at the end of the
890 string being matched against.
892 `buffer-start'
893 matches the empty string, but only at the beginning of the
894 buffer being matched against. Actually equivalent to `string-start'.
896 `buffer-end'
897 matches the empty string, but only at the end of the
898 buffer being matched against. Actually equivalent to `string-end'.
900 `point'
901 matches the empty string, but only at point.
903 `word-start', `bow'
904 matches the empty string, but only at the beginning of a word.
906 `word-end', `eow'
907 matches the empty string, but only at the end of a word.
909 `word-boundary'
910 matches the empty string, but only at the beginning or end of a
911 word.
913 `(not word-boundary)'
914 `not-word-boundary'
915 matches the empty string, but not at the beginning or end of a
916 word.
918 `symbol-start'
919 matches the empty string, but only at the beginning of a symbol.
921 `symbol-end'
922 matches the empty string, but only at the end of a symbol.
924 `digit', `numeric', `num'
925 matches 0 through 9.
927 `control', `cntrl'
928 matches ASCII control characters.
930 `hex-digit', `hex', `xdigit'
931 matches 0 through 9, a through f and A through F.
933 `blank'
934 matches space and tab only.
936 `graphic', `graph'
937 matches graphic characters--everything except ASCII control chars,
938 space, and DEL.
940 `printing', `print'
941 matches printing characters--everything except ASCII control chars
942 and DEL.
944 `alphanumeric', `alnum'
945 matches letters and digits. (But at present, for multibyte characters,
946 it matches anything that has word syntax.)
948 `letter', `alphabetic', `alpha'
949 matches letters. (But at present, for multibyte characters,
950 it matches anything that has word syntax.)
952 `ascii'
953 matches ASCII (unibyte) characters.
955 `nonascii'
956 matches non-ASCII (multibyte) characters.
958 `lower', `lower-case'
959 matches anything lower-case.
961 `upper', `upper-case'
962 matches anything upper-case.
964 `punctuation', `punct'
965 matches punctuation. (But at present, for multibyte characters,
966 it matches anything that has non-word syntax.)
968 `space', `whitespace', `white'
969 matches anything that has whitespace syntax.
971 `word', `wordchar'
972 matches anything that has word syntax.
974 `not-wordchar'
975 matches anything that has non-word syntax.
977 `(syntax SYNTAX)'
978 matches a character with syntax SYNTAX. SYNTAX must be one
979 of the following symbols, or a symbol corresponding to the syntax
980 character, e.g. `\\.' for `\\s.'.
982 `whitespace' (\\s- in string notation)
983 `punctuation' (\\s.)
984 `word' (\\sw)
985 `symbol' (\\s_)
986 `open-parenthesis' (\\s()
987 `close-parenthesis' (\\s))
988 `expression-prefix' (\\s')
989 `string-quote' (\\s\")
990 `paired-delimiter' (\\s$)
991 `escape' (\\s\\)
992 `character-quote' (\\s/)
993 `comment-start' (\\s<)
994 `comment-end' (\\s>)
995 `string-delimiter' (\\s|)
996 `comment-delimiter' (\\s!)
998 `(not (syntax SYNTAX))'
999 matches a character that doesn't have syntax SYNTAX.
1001 `(category CATEGORY)'
1002 matches a character with category CATEGORY. CATEGORY must be
1003 either a character to use for C, or one of the following symbols.
1005 `consonant' (\\c0 in string notation)
1006 `base-vowel' (\\c1)
1007 `upper-diacritical-mark' (\\c2)
1008 `lower-diacritical-mark' (\\c3)
1009 `tone-mark' (\\c4)
1010 `symbol' (\\c5)
1011 `digit' (\\c6)
1012 `vowel-modifying-diacritical-mark' (\\c7)
1013 `vowel-sign' (\\c8)
1014 `semivowel-lower' (\\c9)
1015 `not-at-end-of-line' (\\c<)
1016 `not-at-beginning-of-line' (\\c>)
1017 `alpha-numeric-two-byte' (\\cA)
1018 `chinse-two-byte' (\\cC)
1019 `greek-two-byte' (\\cG)
1020 `japanese-hiragana-two-byte' (\\cH)
1021 `indian-tow-byte' (\\cI)
1022 `japanese-katakana-two-byte' (\\cK)
1023 `korean-hangul-two-byte' (\\cN)
1024 `cyrillic-two-byte' (\\cY)
1025 `combining-diacritic' (\\c^)
1026 `ascii' (\\ca)
1027 `arabic' (\\cb)
1028 `chinese' (\\cc)
1029 `ethiopic' (\\ce)
1030 `greek' (\\cg)
1031 `korean' (\\ch)
1032 `indian' (\\ci)
1033 `japanese' (\\cj)
1034 `japanese-katakana' (\\ck)
1035 `latin' (\\cl)
1036 `lao' (\\co)
1037 `tibetan' (\\cq)
1038 `japanese-roman' (\\cr)
1039 `thai' (\\ct)
1040 `vietnamese' (\\cv)
1041 `hebrew' (\\cw)
1042 `cyrillic' (\\cy)
1043 `can-break' (\\c|)
1045 `(not (category CATEGORY))'
1046 matches a character that doesn't have category CATEGORY.
1048 `(and SEXP1 SEXP2 ...)'
1049 `(: SEXP1 SEXP2 ...)'
1050 `(seq SEXP1 SEXP2 ...)'
1051 `(sequence SEXP1 SEXP2 ...)'
1052 matches what SEXP1 matches, followed by what SEXP2 matches, etc.
1054 `(submatch SEXP1 SEXP2 ...)'
1055 `(group SEXP1 SEXP2 ...)'
1056 like `and', but makes the match accessible with `match-end',
1057 `match-beginning', and `match-string'.
1059 `(or SEXP1 SEXP2 ...)'
1060 `(| SEXP1 SEXP2 ...)'
1061 matches anything that matches SEXP1 or SEXP2, etc. If all
1062 args are strings, use `regexp-opt' to optimize the resulting
1063 regular expression.
1065 `(minimal-match SEXP)'
1066 produce a non-greedy regexp for SEXP. Normally, regexps matching
1067 zero or more occurrences of something are \"greedy\" in that they
1068 match as much as they can, as long as the overall regexp can
1069 still match. A non-greedy regexp matches as little as possible.
1071 `(maximal-match SEXP)'
1072 produce a greedy regexp for SEXP. This is the default.
1074 Below, `SEXP ...' represents a sequence of regexp forms, treated as if
1075 enclosed in `(and ...)'.
1077 `(zero-or-more SEXP ...)'
1078 `(0+ SEXP ...)'
1079 matches zero or more occurrences of what SEXP ... matches.
1081 `(* SEXP ...)'
1082 like `zero-or-more', but always produces a greedy regexp, independent
1083 of `rx-greedy-flag'.
1085 `(*? SEXP ...)'
1086 like `zero-or-more', but always produces a non-greedy regexp,
1087 independent of `rx-greedy-flag'.
1089 `(one-or-more SEXP ...)'
1090 `(1+ SEXP ...)'
1091 matches one or more occurrences of SEXP ...
1093 `(+ SEXP ...)'
1094 like `one-or-more', but always produces a greedy regexp.
1096 `(+? SEXP ...)'
1097 like `one-or-more', but always produces a non-greedy regexp.
1099 `(zero-or-one SEXP ...)'
1100 `(optional SEXP ...)'
1101 `(opt SEXP ...)'
1102 matches zero or one occurrences of A.
1104 `(? SEXP ...)'
1105 like `zero-or-one', but always produces a greedy regexp.
1107 `(?? SEXP ...)'
1108 like `zero-or-one', but always produces a non-greedy regexp.
1110 `(repeat N SEXP)'
1111 `(= N SEXP ...)'
1112 matches N occurrences.
1114 `(>= N SEXP ...)'
1115 matches N or more occurrences.
1117 `(repeat N M SEXP)'
1118 `(** N M SEXP ...)'
1119 matches N to M occurrences.
1121 `(backref N)'
1122 matches what was matched previously by submatch N.
1124 `(eval FORM)'
1125 evaluate FORM and insert result. If result is a string,
1126 `regexp-quote' it.
1128 `(regexp REGEXP)'
1129 include REGEXP in string notation in the result."
1130 (cond ((null regexps)
1131 (error "No regexp"))
1132 ((cdr regexps)
1133 (rx-to-string `(and ,@regexps) t))
1135 (rx-to-string (car regexps) t))))
1137 ;; ;; sregex.el replacement
1139 ;; ;;;###autoload (provide 'sregex)
1140 ;; ;;;###autoload (autoload 'sregex "rx")
1141 ;; (defalias 'sregex 'rx-to-string)
1142 ;; ;;;###autoload (autoload 'sregexq "rx" nil nil 'macro)
1143 ;; (defalias 'sregexq 'rx)
1145 (provide 'rx)
1147 ;; arch-tag: 12d01a63-0008-42bb-ab8c-1c7d63be370b
1148 ;;; rx.el ends here