lisp/gnus/mm-view.el (mm-display-inline-fontify): Make the working buffer temporarily...
[emacs.git] / lisp / emacs-lisp / rx.el
1 ;;; rx.el --- sexp notation for regular expressions
2
3 ;; Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 ;; Author: Gerd Moellmann <gerd@gnu.org>
6 ;; Maintainer: emacs-devel@gnu.org
7 ;; Keywords: strings, regexps, extensions
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.
23
24 ;;; Commentary:
25
26 ;; This is another implementation of sexp-form regular expressions.
27 ;; It was unfortunately written without being aware of the Sregex
28 ;; package coming with Emacs, but as things stand, Rx completely
29 ;; covers all regexp features, which Sregex doesn't, doesn't suffer
30 ;; from the bugs mentioned in the commentary section of Sregex, and
31 ;; uses a nicer syntax (IMHO, of course :-).
32
33 ;; This significantly extended version of the original, is almost
34 ;; compatible with Sregex.  The only incompatibility I (fx) know of is
35 ;; that the `repeat' form can't have multiple regexp args.
36
37 ;; Now alternative forms are provided for a degree of compatibility
38 ;; with Olin Shivers' attempted definitive SRE notation.  SRE forms
39 ;; not catered for include: dsm, uncase, w/case, w/nocase, ,@<exp>,
40 ;; ,<exp>, (word ...), word+, posix-string, and character class forms.
41 ;; Some forms are inconsistent with SRE, either for historical reasons
42 ;; or because of the implementation -- simple translation into Emacs
43 ;; regexp strings.  These include: any, word.  Also, case-sensitivity
44 ;; and greediness are controlled by variables external to the regexp,
45 ;; and you need to feed the forms to the `posix-' functions to get
46 ;; SRE's POSIX semantics.  There are probably more difficulties.
47
48 ;; Rx translates a sexp notation for regular expressions into the
49 ;; usual string notation.  The translation can be done at compile-time
50 ;; by using the `rx' macro.  It can be done at run-time by calling
51 ;; function `rx-to-string'.  See the documentation of `rx' for a
52 ;; complete description of the sexp notation.
53 ;;
54 ;; Some examples of string regexps and their sexp counterparts:
55 ;;
56 ;; "^[a-z]*"
57 ;; (rx (and line-start (0+ (in "a-z"))))
58 ;;
59 ;; "\n[^ \t]"
60 ;; (rx (and "\n" (not blank))), or
61 ;; (rx (and "\n" (not (any " \t"))))
62 ;;
63 ;; "\\*\\*\\* EOOH \\*\\*\\*\n"
64 ;; (rx "*** EOOH ***\n")
65 ;;
66 ;; "\\<\\(catch\\|finally\\)\\>[^_]"
67 ;; (rx (and word-start (submatch (or "catch" "finally")) word-end
68 ;;          (not (any ?_))))
69 ;;
70 ;; "[ \t\n]*:\\([^:]+\\|$\\)"
71 ;; (rx (and (zero-or-more (in " \t\n")) ":"
72 ;;          (submatch (or line-end (one-or-more (not (any ?:)))))))
73 ;;
74 ;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
75 ;; (rx (and line-start
76 ;;          "content-transfer-encoding:"
77 ;;          (+ (? ?\n)) blank
78 ;;          "quoted-printable"
79 ;;          (+ (? ?\n)) blank))
80 ;;
81 ;; (concat "^\\(?:" something-else "\\)")
82 ;; (rx (and line-start (eval something-else))), statically or
83 ;; (rx-to-string '(and line-start ,something-else)), dynamically.
84 ;;
85 ;; (regexp-opt '(STRING1 STRING2 ...))
86 ;; (rx (or STRING1 STRING2 ...)), or in other words, `or' automatically
87 ;; calls `regexp-opt' as needed.
88 ;;
89 ;; "^;;\\s-*\n\\|^\n"
90 ;; (rx (or (and line-start ";;" (0+ space) ?\n)
91 ;;         (and line-start ?\n)))
92 ;;
93 ;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
94 ;; (rx (and "$Id: "
95 ;;          (1+ (not (in " ")))
96 ;;          " "
97 ;;          (submatch (1+ (not (in " "))))
98 ;;          " "))
99 ;;
100 ;; "\\\\\\\\\\[\\w+"
101 ;; (rx (and ?\\ ?\\ ?\[ (1+ word)))
102 ;;
103 ;; etc.
104
105 ;;; History:
106 ;;
107
108 ;;; Code:
109
110 ;; FIXME: support macros.
111
112 (defvar rx-constituents              ;Not `const' because some modes extend it.
113   '((and                . (rx-and 1 nil))
114     (seq                . and)          ; SRE
115     (:                  . and)          ; SRE
116     (sequence           . and)          ; sregex
117     (or                 . (rx-or 1 nil))
118     (|                  . or)           ; SRE
119     (not-newline        . ".")
120     (nonl               . not-newline)  ; SRE
121     (anything           . (rx-anything 0 nil))
122     (any                . (rx-any 1 nil rx-check-any)) ; inconsistent with SRE
123     (any                . ".")          ; sregex
124     (in                 . any)
125     (char               . any)          ; sregex
126     (not-char           . (rx-not-char 1 nil rx-check-any)) ; sregex
127     (not                . (rx-not 1 1 rx-check-not))
128     (repeat             . (rx-repeat 2 nil))
129     (=                  . (rx-= 2 nil))    ; SRE
130     (>=                 . (rx->= 2 nil))   ; SRE
131     (**                 . (rx-** 2 nil))   ; SRE
132     (submatch           . (rx-submatch 1 nil)) ; SRE
133     (group              . submatch)     ; sregex
134     (submatch-n         . (rx-submatch-n 2 nil))
135     (group-n            . submatch-n)
136     (zero-or-more       . (rx-kleene 1 nil))
137     (one-or-more        . (rx-kleene 1 nil))
138     (zero-or-one        . (rx-kleene 1 nil))
139     (\?                 . zero-or-one)  ; SRE
140     (\??                . zero-or-one)
141     (*                  . zero-or-more) ; SRE
142     (*?                 . zero-or-more)
143     (0+                 . zero-or-more)
144     (+                  . one-or-more)  ; SRE
145     (+?                 . one-or-more)
146     (1+                 . one-or-more)
147     (optional           . zero-or-one)
148     (opt                . zero-or-one)  ; sregex
149     (minimal-match      . (rx-greedy 1 1))
150     (maximal-match      . (rx-greedy 1 1))
151     (backref            . (rx-backref 1 1 rx-check-backref))
152     (line-start         . "^")
153     (bol                . line-start)   ; SRE
154     (line-end           . "$")
155     (eol                . line-end)     ; SRE
156     (string-start       . "\\`")
157     (bos                . string-start) ; SRE
158     (bot                . string-start) ; sregex
159     (string-end         . "\\'")
160     (eos                . string-end)   ; SRE
161     (eot                . string-end)   ; sregex
162     (buffer-start       . "\\`")
163     (buffer-end         . "\\'")
164     (point              . "\\=")
165     (word-start         . "\\<")
166     (bow                . word-start)   ; SRE
167     (word-end           . "\\>")
168     (eow                . word-end)     ; SRE
169     (word-boundary      . "\\b")
170     (not-word-boundary  . "\\B")        ; sregex
171     (symbol-start       . "\\_<")
172     (symbol-end         . "\\_>")
173     (syntax             . (rx-syntax 1 1))
174     (not-syntax         . (rx-not-syntax 1 1)) ; sregex
175     (category           . (rx-category 1 1 rx-check-category))
176     (eval               . (rx-eval 1 1))
177     (regexp             . (rx-regexp 1 1 stringp))
178     (regex              . regexp)       ; sregex
179     (digit              . "[[:digit:]]")
180     (numeric            . digit)        ; SRE
181     (num                . digit)        ; SRE
182     (control            . "[[:cntrl:]]") ; SRE
183     (cntrl              . control)       ; SRE
184     (hex-digit          . "[[:xdigit:]]") ; SRE
185     (hex                . hex-digit)      ; SRE
186     (xdigit             . hex-digit)      ; SRE
187     (blank              . "[[:blank:]]")  ; SRE
188     (graphic            . "[[:graph:]]")  ; SRE
189     (graph              . graphic)        ; SRE
190     (printing           . "[[:print:]]")  ; SRE
191     (print              . printing)       ; SRE
192     (alphanumeric       . "[[:alnum:]]")  ; SRE
193     (alnum              . alphanumeric)   ; SRE
194     (letter             . "[[:alpha:]]")
195     (alphabetic         . letter)       ; SRE
196     (alpha              . letter)       ; SRE
197     (ascii              . "[[:ascii:]]") ; SRE
198     (nonascii           . "[[:nonascii:]]")
199     (lower              . "[[:lower:]]") ; SRE
200     (lower-case         . lower)         ; SRE
201     (punctuation        . "[[:punct:]]") ; SRE
202     (punct              . punctuation)   ; SRE
203     (space              . "[[:space:]]") ; SRE
204     (whitespace         . space)         ; SRE
205     (white              . space)         ; SRE
206     (upper              . "[[:upper:]]") ; SRE
207     (upper-case         . upper)         ; SRE
208     (word               . "[[:word:]]")  ; inconsistent with SRE
209     (wordchar           . word)          ; sregex
210     (not-wordchar       . "\\W"))
211   "Alist of sexp form regexp constituents.
212 Each element of the alist has the form (SYMBOL . DEFN).
213 SYMBOL is a valid constituent of sexp regular expressions.
214 If DEFN is a string, SYMBOL is translated into DEFN.
215 If DEFN is a symbol, use the definition of DEFN, recursively.
216 Otherwise, DEFN must be a list (FUNCTION MIN-ARGS MAX-ARGS PREDICATE).
217 FUNCTION is used to produce code for SYMBOL.  MIN-ARGS and MAX-ARGS
218 are the minimum and maximum number of arguments the function-form
219 sexp constituent SYMBOL may have in sexp regular expressions.
220 MAX-ARGS nil means no limit.  PREDICATE, if specified, means that
221 all arguments must satisfy PREDICATE.")
222
223
224 (defconst rx-syntax
225   '((whitespace         . ?-)
226     (punctuation        . ?.)
227     (word               . ?w)
228     (symbol             . ?_)
229     (open-parenthesis   . ?\()
230     (close-parenthesis  . ?\))
231     (expression-prefix  . ?\')
232     (string-quote       . ?\")
233     (paired-delimiter   . ?$)
234     (escape             . ?\\)
235     (character-quote    . ?/)
236     (comment-start      . ?<)
237     (comment-end        . ?>)
238     (string-delimiter   . ?|)
239     (comment-delimiter  . ?!))
240   "Alist mapping Rx syntax symbols to syntax characters.
241 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
242 symbol in `(syntax SYMBOL)', and CHAR is the syntax character
243 corresponding to SYMBOL, as it would be used with \\s or \\S in
244 regular expressions.")
245
246
247 (defconst rx-categories
248   '((consonant                  . ?0)
249     (base-vowel                 . ?1)
250     (upper-diacritical-mark     . ?2)
251     (lower-diacritical-mark     . ?3)
252     (tone-mark                  . ?4)
253     (symbol                     . ?5)
254     (digit                      . ?6)
255     (vowel-modifying-diacritical-mark . ?7)
256     (vowel-sign                 . ?8)
257     (semivowel-lower            . ?9)
258     (not-at-end-of-line         . ?<)
259     (not-at-beginning-of-line   . ?>)
260     (alpha-numeric-two-byte     . ?A)
261     (chinese-two-byte           . ?C)
262     (chinse-two-byte            . ?C) ;; A typo in Emacs 21.1-24.3.
263     (greek-two-byte             . ?G)
264     (japanese-hiragana-two-byte . ?H)
265     (indian-two-byte            . ?I)
266     (japanese-katakana-two-byte . ?K)
267     (korean-hangul-two-byte     . ?N)
268     (cyrillic-two-byte          . ?Y)
269     (combining-diacritic        . ?^)
270     (ascii                      . ?a)
271     (arabic                     . ?b)
272     (chinese                    . ?c)
273     (ethiopic                   . ?e)
274     (greek                      . ?g)
275     (korean                     . ?h)
276     (indian                     . ?i)
277     (japanese                   . ?j)
278     (japanese-katakana          . ?k)
279     (latin                      . ?l)
280     (lao                        . ?o)
281     (tibetan                    . ?q)
282     (japanese-roman             . ?r)
283     (thai                       . ?t)
284     (vietnamese                 . ?v)
285     (hebrew                     . ?w)
286     (cyrillic                   . ?y)
287     (can-break                  . ?|))
288   "Alist mapping symbols to category characters.
289 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
290 symbol in `(category SYMBOL)', and CHAR is the category character
291 corresponding to SYMBOL, as it would be used with `\\c' or `\\C' in
292 regular expression strings.")
293
294
295 (defvar rx-greedy-flag t
296   "Non-nil means produce greedy regular expressions for `zero-or-one',
297 `zero-or-more', and `one-or-more'.  Dynamically bound.")
298
299
300 (defun rx-info (op head)
301   "Return parsing/code generation info for OP.
302 If OP is the space character ASCII 32, return info for the symbol `?'.
303 If OP is the character `?', return info for the symbol `??'.
304 See also `rx-constituents'.
305 If HEAD is non-nil, then OP is the head of a sexp, otherwise it's
306 a standalone symbol."
307   (cond ((eq op ? ) (setq op '\?))
308         ((eq op ??) (setq op '\??)))
309   (let (old-op)
310     (while (and (not (null op)) (symbolp op))
311       (setq old-op op)
312       (setq op (cdr (assq op rx-constituents)))
313       (when (if head (stringp op) (consp op))
314         ;; We found something but of the wrong kind.  Let's look for an
315         ;; alternate definition for the other case.
316         (let ((new-op
317                (cdr (assq old-op (cdr (memq (assq old-op rx-constituents)
318                                             rx-constituents))))))
319           (if (and new-op (not (if head (stringp new-op) (consp new-op))))
320               (setq op new-op))))))
321   op)
322
323
324 (defun rx-check (form)
325   "Check FORM according to its car's parsing info."
326   (unless (listp form)
327     (error "rx `%s' needs argument(s)" form))
328   (let* ((rx (rx-info (car form) 'head))
329          (nargs (1- (length form)))
330          (min-args (nth 1 rx))
331          (max-args (nth 2 rx))
332          (type-pred (nth 3 rx)))
333     (when (and (not (null min-args))
334                (< nargs min-args))
335       (error "rx form `%s' requires at least %d args"
336              (car form) min-args))
337     (when (and (not (null max-args))
338                (> nargs max-args))
339       (error "rx form `%s' accepts at most %d args"
340              (car form) max-args))
341     (when (not (null type-pred))
342       (dolist (sub-form (cdr form))
343         (unless (funcall type-pred sub-form)
344           (error "rx form `%s' requires args satisfying `%s'"
345                  (car form) type-pred))))))
346
347
348 (defun rx-group-if (regexp group)
349   "Put shy groups around REGEXP if seemingly necessary when GROUP
350 is non-nil."
351   (cond
352    ;; for some repetition
353    ((eq group '*) (if (rx-atomic-p regexp) (setq group nil)))
354    ;; for concatenation
355    ((eq group ':)
356     (if (rx-atomic-p
357          (if (string-match
358               "\\(?:[?*+]\\??\\|\\\\{[0-9]*,?[0-9]*\\\\}\\)\\'" regexp)
359              (substring regexp 0 (match-beginning 0))
360            regexp))
361         (setq group nil)))
362    ;; for OR
363    ((eq group '|) (setq group nil))
364    ;; do anyway
365    ((eq group t))
366    ((rx-atomic-p regexp t) (setq group nil)))
367   (if group
368       (concat "\\(?:" regexp "\\)")
369     regexp))
370
371
372 (defvar rx-parent)
373 ;; dynamically bound in some functions.
374
375
376 (defun rx-and (form)
377   "Parse and produce code from FORM.
378 FORM is of the form `(and FORM1 ...)'."
379   (rx-check form)
380   (rx-group-if
381    (mapconcat (lambda (x) (rx-form x ':)) (cdr form) nil)
382    (and (memq rx-parent '(* t)) rx-parent)))
383
384
385 (defun rx-or (form)
386   "Parse and produce code from FORM, which is `(or FORM1 ...)'."
387   (rx-check form)
388   (rx-group-if
389    (if (memq nil (mapcar 'stringp (cdr form)))
390        (mapconcat (lambda (x) (rx-form x '|)) (cdr form) "\\|")
391      (regexp-opt (cdr form)))
392    (and (memq rx-parent '(: * t)) rx-parent)))
393
394
395 (defun rx-anything (form)
396   "Match any character."
397   (if (consp form)
398       (error "rx `anything' syntax error: %s" form))
399   (rx-or (list 'or 'not-newline ?\n)))
400
401
402 (defun rx-any-delete-from-range (char ranges)
403   "Delete by side effect character CHAR from RANGES.
404 Only both edges of each range is checked."
405   (let (m)
406     (cond
407      ((memq char ranges) (setq ranges (delq char ranges)))
408      ((setq m (assq char ranges))
409       (if (eq (1+ char) (cdr m))
410           (setcar (memq m ranges) (1+ char))
411         (setcar m (1+ char))))
412      ((setq m (rassq char ranges))
413       (if (eq (1- char) (car m))
414           (setcar (memq m ranges) (1- char))
415         (setcdr m (1- char)))))
416     ranges))
417
418
419 (defun rx-any-condense-range (args)
420   "Condense by side effect ARGS as range for Rx `any'."
421   (let (str
422         l)
423     ;; set STR list of all strings
424     ;; set L list of all ranges
425     (mapc (lambda (e) (cond ((stringp e) (push e str))
426                             ((numberp e) (push (cons e e) l))
427                             (t (push e l))))
428           args)
429     ;; condense overlapped ranges in L
430     (let ((tail (setq l (sort l #'car-less-than-car)))
431           d)
432       (while (setq d (cdr tail))
433         (if (>= (cdar tail) (1- (caar d)))
434             (progn
435               (setcdr (car tail) (max (cdar tail) (cdar d)))
436               (setcdr tail (cdr d)))
437           (setq tail d))))
438     ;; Separate small ranges to single number, and delete dups.
439     (nconc
440      (apply #'nconc
441             (mapcar (lambda (e)
442                       (cond
443                        ((= (car e) (cdr e)) (list (car e)))
444                        ((= (1+ (car e)) (cdr e)) (list (car e) (cdr e)))
445                        ((list e))))
446                     l))
447      (delete-dups str))))
448
449
450 (defun rx-check-any-string (str)
451   "Check string argument STR for Rx `any'."
452   (let ((i 0)
453         c1 c2 l)
454     (if (= 0 (length str))
455         (error "String arg for Rx `any' must not be empty"))
456     (while (string-match ".-." str i)
457       ;; string before range: convert it to characters
458       (if (< i (match-beginning 0))
459           (setq l (nconc
460                    l
461                    (append (substring str i (match-beginning 0)) nil))))
462       ;; range
463       (setq i (match-end 0)
464             c1 (aref str (match-beginning 0))
465             c2 (aref str (1- i)))
466       (cond
467        ((< c1 c2) (setq l (nconc l (list (cons c1 c2)))))
468        ((= c1 c2) (setq l (nconc l (list c1))))))
469     ;; rest?
470     (if (< i (length str))
471         (setq l (nconc l (append (substring str i) nil))))
472     l))
473
474
475 (defun rx-check-any (arg)
476    "Check arg ARG for Rx `any'."
477    (cond
478     ((integerp arg) (list arg))
479     ((symbolp arg)
480      (let ((translation (condition-case nil
481                             (rx-form arg)
482                           (error nil))))
483        (if (or (null translation)
484                (null (string-match "\\`\\[\\[:[-a-z]+:\\]\\]\\'" translation)))
485            (error "Invalid char class `%s' in Rx `any'" arg))
486        (list (substring translation 1 -1)))) ; strip outer brackets
487     ((and (integerp (car-safe arg)) (integerp (cdr-safe arg)))
488      (list arg))
489     ((stringp arg) (rx-check-any-string arg))
490     ((error
491       "rx `any' requires string, character, char pair or char class args"))))
492
493
494 (defun rx-any (form)
495   "Parse and produce code from FORM, which is `(any ARG ...)'.
496 ARG is optional."
497   (rx-check form)
498   (let* ((args (rx-any-condense-range
499                 (apply
500                  #'nconc
501                  (mapcar #'rx-check-any (cdr form)))))
502          m
503          s)
504     (cond
505      ;; single close bracket
506      ;;  => "[]...-]" or "[]...--.]"
507      ((memq ?\] args)
508       ;; set ] at the beginning
509       (setq args (cons ?\] (delq ?\] args)))
510       ;; set - at the end
511       (if (or (memq ?- args) (assq ?- args))
512           (setq args (nconc (rx-any-delete-from-range ?- args)
513                             (list ?-)))))
514      ;; close bracket starts a range
515      ;;  => "[]-....-]" or "[]-.--....]"
516      ((setq m (assq ?\] args))
517       ;; bring it to the beginning
518       (setq args (cons m (delq m args)))
519       (cond ((memq ?- args)
520              ;; to the end
521              (setq args (nconc (delq ?- args) (list ?-))))
522             ((setq m (assq ?- args))
523              ;; next to the bracket's range, make the second range
524              (setcdr args (cons m (delq m args))))))
525      ;; bracket in the end range
526      ;;  => "[]...-]"
527      ((setq m (rassq ?\] args))
528       ;; set ] at the beginning
529       (setq args (cons ?\] (rx-any-delete-from-range ?\] args)))
530       ;; set - at the end
531       (if (or (memq ?- args) (assq ?- args))
532           (setq args (nconc (rx-any-delete-from-range ?- args)
533                             (list ?-)))))
534      ;; {no close bracket appears}
535      ;;
536      ;; bring single bar to the beginning
537      ((memq ?- args)
538       (setq args (cons ?- (delq ?- args))))
539      ;; bar start a range, bring it to the beginning
540      ((setq m (assq ?- args))
541       (setq args (cons m (delq m args))))
542      ;;
543      ;; hat at the beginning?
544      ((or (eq (car args) ?^) (eq (car-safe (car args)) ?^))
545       (setq args (if (cdr args)
546                      `(,(cadr args) ,(car args) ,@(cddr args))
547                    (nconc (rx-any-delete-from-range ?^ args)
548                           (list ?^))))))
549     ;; some 1-char?
550     (if (and (null (cdr args)) (numberp (car args))
551              (or (= 1 (length
552                        (setq s (regexp-quote (string (car args))))))
553                  (and (equal (car args) ?^) ;; unnecessary predicate?
554                       (null (eq rx-parent '!)))))
555         s
556       (concat "["
557               (mapconcat
558                (lambda (e) (cond
559                             ((numberp e) (string e))
560                             ((consp e)
561                              (if (and (= (1+ (car e)) (cdr e))
562                                       ;; rx-any-condense-range should
563                                       ;; prevent this case from happening.
564                                       (null (memq (car e) '(?\] ?-)))
565                                       (null (memq (cdr e) '(?\] ?-))))
566                                  (string (car e) (cdr e))
567                                (string (car e) ?- (cdr e))))
568                             (e)))
569                args
570                nil)
571               "]"))))
572
573
574 (defun rx-check-not (arg)
575   "Check arg ARG for Rx `not'."
576   (unless (or (and (symbolp arg)
577                    (string-match "\\`\\[\\[:[-a-z]+:\\]\\]\\'"
578                                  (condition-case nil
579                                      (rx-form arg)
580                                    (error ""))))
581               (eq arg 'word-boundary)
582               (and (consp arg)
583                    (memq (car arg) '(not any in syntax category))))
584     (error "rx `not' syntax error: %s" arg))
585   t)
586
587
588 (defun rx-not (form)
589   "Parse and produce code from FORM.  FORM is `(not ...)'."
590   (rx-check form)
591   (let ((result (rx-form (cadr form) '!))
592         case-fold-search)
593     (cond ((string-match "\\`\\[^" result)
594            (cond
595             ((equal result "[^]") "[^^]")
596             ((and (= (length result) 4) (null (eq rx-parent '!)))
597              (regexp-quote (substring result 2 3)))
598             ((concat "[" (substring result 2)))))
599           ((eq ?\[ (aref result 0))
600            (concat "[^" (substring result 1)))
601           ((string-match "\\`\\\\[scbw]" result)
602            (concat (upcase (substring result 0 2))
603                    (substring result 2)))
604           ((string-match "\\`\\\\[SCBW]" result)
605            (concat (downcase (substring result 0 2))
606                    (substring result 2)))
607           (t
608            (concat "[^" result "]")))))
609
610
611 (defun rx-not-char (form)
612   "Parse and produce code from FORM.  FORM is `(not-char ...)'."
613   (rx-check form)
614   (rx-not `(not (in ,@(cdr form)))))
615
616
617 (defun rx-not-syntax (form)
618   "Parse and produce code from FORM.  FORM is `(not-syntax SYNTAX)'."
619   (rx-check form)
620   (rx-not `(not (syntax ,@(cdr form)))))
621
622
623 (defun rx-trans-forms (form &optional skip)
624   "If FORM's length is greater than two, transform it to length two.
625 A form (HEAD REST ...) becomes (HEAD (and REST ...)).
626 If SKIP is non-nil, allow that number of items after the head, i.e.
627 `(= N REST ...)' becomes `(= N (and REST ...))' if SKIP is 1."
628   (unless skip (setq skip 0))
629   (let ((tail (nthcdr (1+ skip) form)))
630     (if (= (length tail) 1)
631         form
632       (let ((form (copy-sequence form)))
633         (setcdr (nthcdr skip form) (list (cons 'and tail)))
634         form))))
635
636
637 (defun rx-= (form)
638   "Parse and produce code from FORM `(= N ...)'."
639   (rx-check form)
640   (setq form (rx-trans-forms form 1))
641   (unless (and (integerp (nth 1 form))
642                (> (nth 1 form) 0))
643     (error "rx `=' requires positive integer first arg"))
644   (format "%s\\{%d\\}" (rx-form (nth 2 form) '*) (nth 1 form)))
645
646
647 (defun rx->= (form)
648   "Parse and produce code from FORM `(>= N ...)'."
649   (rx-check form)
650   (setq form (rx-trans-forms form 1))
651   (unless (and (integerp (nth 1 form))
652                (> (nth 1 form) 0))
653     (error "rx `>=' requires positive integer first arg"))
654   (format "%s\\{%d,\\}" (rx-form (nth 2 form) '*) (nth 1 form)))
655
656
657 (defun rx-** (form)
658   "Parse and produce code from FORM `(** N M ...)'."
659   (rx-check form)
660   (rx-form (cons 'repeat (cdr (rx-trans-forms form 2))) '*))
661
662
663 (defun rx-repeat (form)
664   "Parse and produce code from FORM.
665 FORM is either `(repeat N FORM1)' or `(repeat N M FORMS...)'."
666   (rx-check form)
667   (if (> (length form) 4)
668       (setq form (rx-trans-forms form 2)))
669   (if (null (nth 2 form))
670       (setq form (cons (nth 0 form) (cons (nth 1 form) (nthcdr 3 form)))))
671   (cond ((= (length form) 3)
672          (unless (and (integerp (nth 1 form))
673                       (> (nth 1 form) 0))
674            (error "rx `repeat' requires positive integer first arg"))
675          (format "%s\\{%d\\}" (rx-form (nth 2 form) '*) (nth 1 form)))
676         ((or (not (integerp (nth 2 form)))
677              (< (nth 2 form) 0)
678              (not (integerp (nth 1 form)))
679              (< (nth 1 form) 0)
680              (< (nth 2 form) (nth 1 form)))
681          (error "rx `repeat' range error"))
682         (t
683          (format "%s\\{%d,%d\\}" (rx-form (nth 3 form) '*)
684                  (nth 1 form) (nth 2 form)))))
685
686
687 (defun rx-submatch (form)
688   "Parse and produce code from FORM, which is `(submatch ...)'."
689   (concat "\\("
690           (if (= 2 (length form))
691               ;; Only one sub-form.
692               (rx-form (cadr form))
693             ;; Several sub-forms implicitly concatenated.
694             (mapconcat (lambda (re) (rx-form re ':)) (cdr form) nil))
695           "\\)"))
696
697 (defun rx-submatch-n (form)
698   "Parse and produce code from FORM, which is `(submatch-n N ...)'."
699   (let ((n (nth 1 form)))
700     (concat "\\(?" (number-to-string n) ":"
701             (if (= 3 (length form))
702                 ;; Only one sub-form.
703                 (rx-form (nth 2 form))
704               ;; Several sub-forms implicitly concatenated.
705               (mapconcat (lambda (re) (rx-form re ':)) (cddr form) nil))
706             "\\)")))
707
708 (defun rx-backref (form)
709   "Parse and produce code from FORM, which is `(backref N)'."
710   (rx-check form)
711   (format "\\%d" (nth 1 form)))
712
713 (defun rx-check-backref (arg)
714   "Check arg ARG for Rx `backref'."
715   (or (and (integerp arg) (>= arg 1) (<= arg 9))
716       (error "rx `backref' requires numeric 1<=arg<=9: %s" arg)))
717
718 (defun rx-kleene (form)
719   "Parse and produce code from FORM.
720 FORM is `(OP FORM1)', where OP is one of the `zero-or-one',
721 `zero-or-more' etc.  operators.
722 If OP is one of `*', `+', `?', produce a greedy regexp.
723 If OP is one of `*?', `+?', `??', produce a non-greedy regexp.
724 If OP is anything else, produce a greedy regexp if `rx-greedy-flag'
725 is non-nil."
726   (rx-check form)
727   (setq form (rx-trans-forms form))
728   (let ((suffix (cond ((memq (car form) '(* + ?\s)) "")
729                       ((memq (car form) '(*? +? ??)) "?")
730                       (rx-greedy-flag "")
731                       (t "?")))
732         (op (cond ((memq (car form) '(* *? 0+ zero-or-more)) "*")
733                   ((memq (car form) '(+ +? 1+ one-or-more))  "+")
734                   (t "?"))))
735     (rx-group-if
736      (concat (rx-form (cadr form) '*) op suffix)
737      (and (memq rx-parent '(t *)) rx-parent))))
738
739
740 (defun rx-atomic-p (r &optional lax)
741   "Return non-nil if regexp string R is atomic.
742 An atomic regexp R is one such that a suffix operator
743 appended to R will apply to all of R.  For example, \"a\"
744 \"[abc]\" and \"\\(ab\\|ab*c\\)\" are atomic and \"ab\",
745 \"[ab]c\", and \"ab\\|ab*c\" are not atomic.
746
747 This function may return false negatives, but it will not
748 return false positives.  It is nevertheless useful in
749 situations where an efficiency shortcut can be taken only if a
750 regexp is atomic.  The function can be improved to detect
751 more cases of atomic regexps.  Presently, this function
752 detects the following categories of atomic regexp;
753
754   a group or shy group:  \\(...\\)
755   a character class:     [...]
756   a single character:    a
757
758 On the other hand, false negatives will be returned for
759 regexps that are atomic but end in operators, such as
760 \"a+\".  I think these are rare.  Probably such cases could
761 be detected without much effort.  A guarantee of no false
762 negatives would require a theoretic specification of the set
763 of all atomic regexps."
764   (let ((l (length r)))
765     (cond
766      ((<= l 1))
767      ((= l 2) (= (aref r 0) ?\\))
768      ((= l 3) (string-match "\\`\\(?:\\\\[cCsS_]\\|\\[[^^]\\]\\)" r))
769      ((null lax)
770       (cond
771        ((string-match "\\`\\[^?\]?\\(?:\\[:[a-z]+:]\\|[^\]]\\)*\\]\\'" r))
772        ((string-match "\\`\\\\(\\(?:[^\\]\\|\\\\[^\)]\\)*\\\\)\\'" r)))))))
773
774
775 (defun rx-syntax (form)
776   "Parse and produce code from FORM, which is `(syntax SYMBOL)'."
777   (rx-check form)
778   (let* ((sym (cadr form))
779          (syntax (cdr (assq sym rx-syntax))))
780     (unless syntax
781       ;; Try sregex compatibility.
782       (cond
783        ((characterp sym) (setq syntax sym))
784        ((symbolp sym)
785         (let ((name (symbol-name sym)))
786           (if (= 1 (length name))
787               (setq syntax (aref name 0))))))
788       (unless syntax
789         (error "Unknown rx syntax `%s'" sym)))
790     (format "\\s%c" syntax)))
791
792
793 (defun rx-check-category (form)
794   "Check the argument FORM of a `(category FORM)'."
795   (unless (or (integerp form)
796               (cdr (assq form rx-categories)))
797     (error "Unknown category `%s'" form))
798   t)
799
800
801 (defun rx-category (form)
802   "Parse and produce code from FORM, which is `(category SYMBOL)'."
803   (rx-check form)
804   (let ((char (if (integerp (cadr form))
805                   (cadr form)
806                 (cdr (assq (cadr form) rx-categories)))))
807     (format "\\c%c" char)))
808
809
810 (defun rx-eval (form)
811   "Parse and produce code from FORM, which is `(eval FORM)'."
812   (rx-check form)
813   (rx-form (eval (cadr form)) rx-parent))
814
815
816 (defun rx-greedy (form)
817   "Parse and produce code from FORM.
818 If FORM is '(minimal-match FORM1)', non-greedy versions of `*',
819 `+', and `?' operators will be used in FORM1.  If FORM is
820 '(maximal-match FORM1)', greedy operators will be used."
821   (rx-check form)
822   (let ((rx-greedy-flag (eq (car form) 'maximal-match)))
823     (rx-form (cadr form) rx-parent)))
824
825
826 (defun rx-regexp (form)
827   "Parse and produce code from FORM, which is `(regexp STRING)'."
828   (rx-check form)
829   (rx-group-if (cadr form) rx-parent))
830
831
832 (defun rx-form (form &optional rx-parent)
833   "Parse and produce code for regular expression FORM.
834 FORM is a regular expression in sexp form.
835 RX-PARENT shows which type of expression calls and controls putting of
836 shy groups around the result and some more in other functions."
837   (cond
838    ((stringp form)
839     (rx-group-if (regexp-quote form)
840                  (if (and (eq rx-parent '*) (< 1 (length form)))
841                      rx-parent)))
842    ((integerp form)
843     (regexp-quote (char-to-string form)))
844    ((symbolp form)
845     (let ((info (rx-info form nil)))
846       (cond ((stringp info)
847              info)
848             ((null info)
849              (error "Unknown rx form `%s'" form))
850             (t
851              (funcall (nth 0 info) form)))))
852    ((consp form)
853     (let ((info (rx-info (car form) 'head)))
854       (unless (consp info)
855         (error "Unknown rx form `%s'" (car form)))
856       (funcall (nth 0 info) form)))
857    (t
858     (error "rx syntax error at `%s'" form))))
859
860
861 ;;;###autoload
862 (defun rx-to-string (form &optional no-group)
863   "Parse and produce code for regular expression FORM.
864 FORM is a regular expression in sexp form.
865 NO-GROUP non-nil means don't put shy groups around the result."
866   (rx-group-if (rx-form form) (null no-group)))
867
868
869 ;;;###autoload
870 (defmacro rx (&rest regexps)
871   "Translate regular expressions REGEXPS in sexp form to a regexp string.
872 REGEXPS is a non-empty sequence of forms of the sort listed below.
873
874 Note that `rx' is a Lisp macro; when used in a Lisp program being
875 compiled, the translation is performed by the compiler.
876 See `rx-to-string' for how to do such a translation at run-time.
877
878 The following are valid subforms of regular expressions in sexp
879 notation.
880
881 STRING
882      matches string STRING literally.
883
884 CHAR
885      matches character CHAR literally.
886
887 `not-newline', `nonl'
888      matches any character except a newline.
889
890 `anything'
891      matches any character
892
893 `(any SET ...)'
894 `(in SET ...)'
895 `(char SET ...)'
896      matches any character in SET ....  SET may be a character or string.
897      Ranges of characters can be specified as `A-Z' in strings.
898      Ranges may also be specified as conses like `(?A . ?Z)'.
899
900      SET may also be the name of a character class: `digit',
901      `control', `hex-digit', `blank', `graph', `print', `alnum',
902      `alpha', `ascii', `nonascii', `lower', `punct', `space', `upper',
903      `word', or one of their synonyms.
904
905 `(not (any SET ...))'
906      matches any character not in SET ...
907
908 `line-start', `bol'
909      matches the empty string, but only at the beginning of a line
910      in the text being matched
911
912 `line-end', `eol'
913      is similar to `line-start' but matches only at the end of a line
914
915 `string-start', `bos', `bot'
916      matches the empty string, but only at the beginning of the
917      string being matched against.
918
919 `string-end', `eos', `eot'
920      matches the empty string, but only at the end of the
921      string being matched against.
922
923 `buffer-start'
924      matches the empty string, but only at the beginning of the
925      buffer being matched against.  Actually equivalent to `string-start'.
926
927 `buffer-end'
928      matches the empty string, but only at the end of the
929      buffer being matched against.  Actually equivalent to `string-end'.
930
931 `point'
932      matches the empty string, but only at point.
933
934 `word-start', `bow'
935      matches the empty string, but only at the beginning of a word.
936
937 `word-end', `eow'
938      matches the empty string, but only at the end of a word.
939
940 `word-boundary'
941      matches the empty string, but only at the beginning or end of a
942      word.
943
944 `(not word-boundary)'
945 `not-word-boundary'
946      matches the empty string, but not at the beginning or end of a
947      word.
948
949 `symbol-start'
950      matches the empty string, but only at the beginning of a symbol.
951
952 `symbol-end'
953      matches the empty string, but only at the end of a symbol.
954
955 `digit', `numeric', `num'
956      matches 0 through 9.
957
958 `control', `cntrl'
959      matches ASCII control characters.
960
961 `hex-digit', `hex', `xdigit'
962      matches 0 through 9, a through f and A through F.
963
964 `blank'
965      matches space and tab only.
966
967 `graphic', `graph'
968      matches graphic characters--everything except ASCII control chars,
969      space, and DEL.
970
971 `printing', `print'
972      matches printing characters--everything except ASCII control chars
973      and DEL.
974
975 `alphanumeric', `alnum'
976      matches letters and digits.  (But at present, for multibyte characters,
977      it matches anything that has word syntax.)
978
979 `letter', `alphabetic', `alpha'
980      matches letters.  (But at present, for multibyte characters,
981      it matches anything that has word syntax.)
982
983 `ascii'
984      matches ASCII (unibyte) characters.
985
986 `nonascii'
987      matches non-ASCII (multibyte) characters.
988
989 `lower', `lower-case'
990      matches anything lower-case.
991
992 `upper', `upper-case'
993      matches anything upper-case.
994
995 `punctuation', `punct'
996      matches punctuation.  (But at present, for multibyte characters,
997      it matches anything that has non-word syntax.)
998
999 `space', `whitespace', `white'
1000      matches anything that has whitespace syntax.
1001
1002 `word', `wordchar'
1003      matches anything that has word syntax.
1004
1005 `not-wordchar'
1006      matches anything that has non-word syntax.
1007
1008 `(syntax SYNTAX)'
1009      matches a character with syntax SYNTAX.  SYNTAX must be one
1010      of the following symbols, or a symbol corresponding to the syntax
1011      character, e.g. `\\.' for `\\s.'.
1012
1013      `whitespace'               (\\s- in string notation)
1014      `punctuation'              (\\s.)
1015      `word'                     (\\sw)
1016      `symbol'                   (\\s_)
1017      `open-parenthesis'         (\\s()
1018      `close-parenthesis'        (\\s))
1019      `expression-prefix'        (\\s')
1020      `string-quote'             (\\s\")
1021      `paired-delimiter'         (\\s$)
1022      `escape'                   (\\s\\)
1023      `character-quote'          (\\s/)
1024      `comment-start'            (\\s<)
1025      `comment-end'              (\\s>)
1026      `string-delimiter'         (\\s|)
1027      `comment-delimiter'        (\\s!)
1028
1029 `(not (syntax SYNTAX))'
1030      matches a character that doesn't have syntax SYNTAX.
1031
1032 `(category CATEGORY)'
1033      matches a character with category CATEGORY.  CATEGORY must be
1034      either a character to use for C, or one of the following symbols.
1035
1036      `consonant'                        (\\c0 in string notation)
1037      `base-vowel'                       (\\c1)
1038      `upper-diacritical-mark'           (\\c2)
1039      `lower-diacritical-mark'           (\\c3)
1040      `tone-mark'                        (\\c4)
1041      `symbol'                           (\\c5)
1042      `digit'                            (\\c6)
1043      `vowel-modifying-diacritical-mark' (\\c7)
1044      `vowel-sign'                       (\\c8)
1045      `semivowel-lower'                  (\\c9)
1046      `not-at-end-of-line'               (\\c<)
1047      `not-at-beginning-of-line'         (\\c>)
1048      `alpha-numeric-two-byte'           (\\cA)
1049      `chinese-two-byte'                 (\\cC)
1050      `greek-two-byte'                   (\\cG)
1051      `japanese-hiragana-two-byte'       (\\cH)
1052      `indian-tow-byte'                  (\\cI)
1053      `japanese-katakana-two-byte'       (\\cK)
1054      `korean-hangul-two-byte'           (\\cN)
1055      `cyrillic-two-byte'                (\\cY)
1056      `combining-diacritic'              (\\c^)
1057      `ascii'                            (\\ca)
1058      `arabic'                           (\\cb)
1059      `chinese'                          (\\cc)
1060      `ethiopic'                         (\\ce)
1061      `greek'                            (\\cg)
1062      `korean'                           (\\ch)
1063      `indian'                           (\\ci)
1064      `japanese'                         (\\cj)
1065      `japanese-katakana'                (\\ck)
1066      `latin'                            (\\cl)
1067      `lao'                              (\\co)
1068      `tibetan'                          (\\cq)
1069      `japanese-roman'                   (\\cr)
1070      `thai'                             (\\ct)
1071      `vietnamese'                       (\\cv)
1072      `hebrew'                           (\\cw)
1073      `cyrillic'                         (\\cy)
1074      `can-break'                        (\\c|)
1075
1076 `(not (category CATEGORY))'
1077      matches a character that doesn't have category CATEGORY.
1078
1079 `(and SEXP1 SEXP2 ...)'
1080 `(: SEXP1 SEXP2 ...)'
1081 `(seq SEXP1 SEXP2 ...)'
1082 `(sequence SEXP1 SEXP2 ...)'
1083      matches what SEXP1 matches, followed by what SEXP2 matches, etc.
1084
1085 `(submatch SEXP1 SEXP2 ...)'
1086 `(group SEXP1 SEXP2 ...)'
1087      like `and', but makes the match accessible with `match-end',
1088      `match-beginning', and `match-string'.
1089
1090 `(submatch-n N SEXP1 SEXP2 ...)'
1091 `(group-n N SEXP1 SEXP2 ...)'
1092      like `group', but make it an explicitly-numbered group with
1093      group number N.
1094
1095 `(or SEXP1 SEXP2 ...)'
1096 `(| SEXP1 SEXP2 ...)'
1097      matches anything that matches SEXP1 or SEXP2, etc.  If all
1098      args are strings, use `regexp-opt' to optimize the resulting
1099      regular expression.
1100
1101 `(minimal-match SEXP)'
1102      produce a non-greedy regexp for SEXP.  Normally, regexps matching
1103      zero or more occurrences of something are \"greedy\" in that they
1104      match as much as they can, as long as the overall regexp can
1105      still match.  A non-greedy regexp matches as little as possible.
1106
1107 `(maximal-match SEXP)'
1108      produce a greedy regexp for SEXP.  This is the default.
1109
1110 Below, `SEXP ...' represents a sequence of regexp forms, treated as if
1111 enclosed in `(and ...)'.
1112
1113 `(zero-or-more SEXP ...)'
1114 `(0+ SEXP ...)'
1115      matches zero or more occurrences of what SEXP ... matches.
1116
1117 `(* SEXP ...)'
1118      like `zero-or-more', but always produces a greedy regexp, independent
1119      of `rx-greedy-flag'.
1120
1121 `(*? SEXP ...)'
1122      like `zero-or-more', but always produces a non-greedy regexp,
1123      independent of `rx-greedy-flag'.
1124
1125 `(one-or-more SEXP ...)'
1126 `(1+ SEXP ...)'
1127      matches one or more occurrences of SEXP ...
1128
1129 `(+ SEXP ...)'
1130      like `one-or-more', but always produces a greedy regexp.
1131
1132 `(+? SEXP ...)'
1133      like `one-or-more', but always produces a non-greedy regexp.
1134
1135 `(zero-or-one SEXP ...)'
1136 `(optional SEXP ...)'
1137 `(opt SEXP ...)'
1138      matches zero or one occurrences of A.
1139
1140 `(? SEXP ...)'
1141      like `zero-or-one', but always produces a greedy regexp.
1142
1143 `(?? SEXP ...)'
1144      like `zero-or-one', but always produces a non-greedy regexp.
1145
1146 `(repeat N SEXP)'
1147 `(= N SEXP ...)'
1148      matches N occurrences.
1149
1150 `(>= N SEXP ...)'
1151      matches N or more occurrences.
1152
1153 `(repeat N M SEXP)'
1154 `(** N M SEXP ...)'
1155      matches N to M occurrences.
1156
1157 `(backref N)'
1158      matches what was matched previously by submatch N.
1159
1160 `(eval FORM)'
1161      evaluate FORM and insert result.  If result is a string,
1162      `regexp-quote' it.
1163
1164 `(regexp REGEXP)'
1165      include REGEXP in string notation in the result."
1166   (cond ((null regexps)
1167          (error "No regexp"))
1168         ((cdr regexps)
1169          (rx-to-string `(and ,@regexps) t))
1170         (t
1171          (rx-to-string (car regexps) t))))
1172 \f
1173 ;; ;; sregex.el replacement
1174
1175 ;; ;;;###autoload (provide 'sregex)
1176 ;; ;;;###autoload (autoload 'sregex "rx")
1177 ;; (defalias 'sregex 'rx-to-string)
1178 ;; ;;;###autoload (autoload 'sregexq "rx" nil nil 'macro)
1179 ;; (defalias 'sregexq 'rx)
1180 \f
1181 (provide 'rx)
1182
1183 ;;; rx.el ends here