HAMMER 2.0:01 - MFC HAMMER 2.1:01
[dragonfly.git] / sys / vfs / hammer / hammer_io.c
blob20127dbf57edd909e046b473a03712998e5630e6
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.49.2.4 2008/08/06 15:41:56 dillon Exp $
37 * IO Primitives and buffer cache management
39 * All major data-tracking structures in HAMMER contain a struct hammer_io
40 * which is used to manage their backing store. We use filesystem buffers
41 * for backing store and we leave them passively associated with their
42 * HAMMER structures.
44 * If the kernel tries to destroy a passively associated buf which we cannot
45 * yet let go we set B_LOCKED in the buffer and then actively released it
46 * later when we can.
49 #include "hammer.h"
50 #include <sys/fcntl.h>
51 #include <sys/nlookup.h>
52 #include <sys/buf.h>
53 #include <sys/buf2.h>
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 #if 0
58 static void hammer_io_direct_read_complete(struct bio *nbio);
59 #endif
60 static void hammer_io_direct_write_complete(struct bio *nbio);
61 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
62 static void hammer_io_set_modlist(struct hammer_io *io);
65 * Initialize a new, already-zero'd hammer_io structure, or reinitialize
66 * an existing hammer_io structure which may have switched to another type.
68 void
69 hammer_io_init(hammer_io_t io, hammer_mount_t hmp, enum hammer_io_type type)
71 io->hmp = hmp;
72 io->type = type;
76 * Helper routine to disassociate a buffer cache buffer from an I/O
77 * structure. The buffer is unlocked and marked appropriate for reclamation.
79 * The io may have 0 or 1 references depending on who called us. The
80 * caller is responsible for dealing with the refs.
82 * This call can only be made when no action is required on the buffer.
84 * The caller must own the buffer and the IO must indicate that the
85 * structure no longer owns it (io.released != 0).
87 static void
88 hammer_io_disassociate(hammer_io_structure_t iou)
90 struct buf *bp = iou->io.bp;
92 KKASSERT(iou->io.released);
93 KKASSERT(iou->io.modified == 0);
94 KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
95 buf_dep_init(bp);
96 iou->io.bp = NULL;
99 * If the buffer was locked someone wanted to get rid of it.
101 if (bp->b_flags & B_LOCKED) {
102 --hammer_count_io_locked;
103 bp->b_flags &= ~B_LOCKED;
105 if (iou->io.reclaim) {
106 bp->b_flags |= B_NOCACHE|B_RELBUF;
107 iou->io.reclaim = 0;
110 switch(iou->io.type) {
111 case HAMMER_STRUCTURE_VOLUME:
112 iou->volume.ondisk = NULL;
113 break;
114 case HAMMER_STRUCTURE_DATA_BUFFER:
115 case HAMMER_STRUCTURE_META_BUFFER:
116 case HAMMER_STRUCTURE_UNDO_BUFFER:
117 iou->buffer.ondisk = NULL;
118 break;
123 * Wait for any physical IO to complete
125 void
126 hammer_io_wait(hammer_io_t io)
128 if (io->running) {
129 crit_enter();
130 tsleep_interlock(io);
131 io->waiting = 1;
132 for (;;) {
133 tsleep(io, 0, "hmrflw", 0);
134 if (io->running == 0)
135 break;
136 tsleep_interlock(io);
137 io->waiting = 1;
138 if (io->running == 0)
139 break;
141 crit_exit();
146 * Wait for all hammer_io-initated write I/O's to complete. This is not
147 * supposed to count direct I/O's but some can leak through (for
148 * non-full-sized direct I/Os).
150 void
151 hammer_io_wait_all(hammer_mount_t hmp, const char *ident)
153 crit_enter();
154 while (hmp->io_running_space)
155 tsleep(&hmp->io_running_space, 0, ident, 0);
156 crit_exit();
159 #define HAMMER_MAXRA 4
162 * Load bp for a HAMMER structure. The io must be exclusively locked by
163 * the caller.
165 * This routine is mostly used on meta-data and small-data blocks. Generally
166 * speaking HAMMER assumes some locality of reference and will cluster
167 * a 64K read.
169 * Note that clustering occurs at the device layer, not the logical layer.
170 * If the buffers do not apply to the current operation they may apply to
171 * some other.
174 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit)
176 struct buf *bp;
177 int error;
179 if ((bp = io->bp) == NULL) {
180 hammer_count_io_running_read += io->bytes;
181 if (hammer_cluster_enable) {
182 error = cluster_read(devvp, limit,
183 io->offset, io->bytes,
184 HAMMER_CLUSTER_SIZE,
185 HAMMER_CLUSTER_BUFS, &io->bp);
186 } else {
187 error = bread(devvp, io->offset, io->bytes, &io->bp);
189 hammer_stats_disk_read += io->bytes;
190 hammer_count_io_running_read -= io->bytes;
193 * The code generally assumes b_ops/b_dep has been set-up,
194 * even if we error out here.
196 bp = io->bp;
197 bp->b_ops = &hammer_bioops;
198 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
199 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
200 BUF_KERNPROC(bp);
201 KKASSERT(io->modified == 0);
202 KKASSERT(io->running == 0);
203 KKASSERT(io->waiting == 0);
204 io->released = 0; /* we hold an active lock on bp */
205 } else {
206 error = 0;
208 return(error);
212 * Similar to hammer_io_read() but returns a zero'd out buffer instead.
213 * Must be called with the IO exclusively locked.
215 * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
216 * I/O by forcing the buffer to not be in a released state before calling
217 * it.
219 * This function will also mark the IO as modified but it will not
220 * increment the modify_refs count.
223 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
225 struct buf *bp;
227 if ((bp = io->bp) == NULL) {
228 io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
229 bp = io->bp;
230 bp->b_ops = &hammer_bioops;
231 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
232 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
233 io->released = 0;
234 KKASSERT(io->running == 0);
235 io->waiting = 0;
236 BUF_KERNPROC(bp);
237 } else {
238 if (io->released) {
239 regetblk(bp);
240 BUF_KERNPROC(bp);
241 io->released = 0;
244 hammer_io_modify(io, 0);
245 vfs_bio_clrbuf(bp);
246 return(0);
250 * Remove potential device level aliases against buffers managed by high level
251 * vnodes. Aliases can also be created due to mixed buffer sizes.
253 * This is nasty because the buffers are also VMIO-backed. Even if a buffer
254 * does not exist its backing VM pages might, and we have to invalidate
255 * those as well or a getblk() will reinstate them.
257 void
258 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
260 hammer_io_structure_t iou;
261 hammer_off_t phys_offset;
262 struct buf *bp;
264 phys_offset = volume->ondisk->vol_buf_beg +
265 (zone2_offset & HAMMER_OFF_SHORT_MASK);
266 crit_enter();
267 if ((bp = findblk(volume->devvp, phys_offset)) != NULL)
268 bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0);
269 else
270 bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
271 if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
272 hammer_ref(&iou->io.lock);
273 hammer_io_clear_modify(&iou->io, 1);
274 bundirty(bp);
275 iou->io.reclaim = 1;
276 iou->io.waitdep = 1;
277 KKASSERT(iou->io.lock.refs == 0);
278 hammer_rel_buffer(&iou->buffer, 0);
279 /*hammer_io_deallocate(bp);*/
280 } else {
281 KKASSERT((bp->b_flags & B_LOCKED) == 0);
282 bundirty(bp);
283 bp->b_flags |= B_NOCACHE|B_RELBUF;
285 brelse(bp);
286 crit_exit();
290 * This routine is called on the last reference to a hammer structure.
291 * The io is usually interlocked with io.loading and io.refs must be 1.
293 * This routine may return a non-NULL bp to the caller for dispoal. Disposal
294 * simply means the caller finishes decrementing the ref-count on the
295 * IO structure then brelse()'s the bp. The bp may or may not still be
296 * passively associated with the IO.
298 * The only requirement here is that modified meta-data and volume-header
299 * buffer may NOT be disassociated from the IO structure, and consequently
300 * we also leave such buffers actively associated with the IO if they already
301 * are (since the kernel can't do anything with them anyway). Only the
302 * flusher is allowed to write such buffers out. Modified pure-data and
303 * undo buffers are returned to the kernel but left passively associated
304 * so we can track when the kernel writes the bp out.
306 struct buf *
307 hammer_io_release(struct hammer_io *io, int flush)
309 union hammer_io_structure *iou = (void *)io;
310 struct buf *bp;
312 if ((bp = io->bp) == NULL)
313 return(NULL);
316 * Try to flush a dirty IO to disk if asked to by the
317 * caller or if the kernel tried to flush the buffer in the past.
319 * Kernel-initiated flushes are only allowed for pure-data buffers.
320 * meta-data and volume buffers can only be flushed explicitly
321 * by HAMMER.
323 if (io->modified) {
324 if (flush) {
325 hammer_io_flush(io);
326 } else if (bp->b_flags & B_LOCKED) {
327 switch(io->type) {
328 case HAMMER_STRUCTURE_DATA_BUFFER:
329 case HAMMER_STRUCTURE_UNDO_BUFFER:
330 hammer_io_flush(io);
331 break;
332 default:
333 break;
335 } /* else no explicit request to flush the buffer */
339 * Wait for the IO to complete if asked to. This occurs when
340 * the buffer must be disposed of definitively during an umount
341 * or buffer invalidation.
343 if (io->waitdep && io->running) {
344 hammer_io_wait(io);
348 * Return control of the buffer to the kernel (with the provisio
349 * that our bioops can override kernel decisions with regards to
350 * the buffer).
352 if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
354 * Always disassociate the bp if an explicit flush
355 * was requested and the IO completed with no error
356 * (so unmount can really clean up the structure).
358 if (io->released) {
359 regetblk(bp);
360 BUF_KERNPROC(bp);
361 } else {
362 io->released = 1;
364 hammer_io_disassociate((hammer_io_structure_t)io);
365 /* return the bp */
366 } else if (io->modified) {
368 * Only certain IO types can be released to the kernel if
369 * the buffer has been modified.
371 * volume and meta-data IO types may only be explicitly
372 * flushed by HAMMER.
374 switch(io->type) {
375 case HAMMER_STRUCTURE_DATA_BUFFER:
376 case HAMMER_STRUCTURE_UNDO_BUFFER:
377 if (io->released == 0) {
378 io->released = 1;
379 bdwrite(bp);
381 break;
382 default:
383 break;
385 bp = NULL; /* bp left associated */
386 } else if (io->released == 0) {
388 * Clean buffers can be generally released to the kernel.
389 * We leave the bp passively associated with the HAMMER
390 * structure and use bioops to disconnect it later on
391 * if the kernel wants to discard the buffer.
393 * We can steal the structure's ownership of the bp.
395 io->released = 1;
396 if (bp->b_flags & B_LOCKED) {
397 hammer_io_disassociate(iou);
398 /* return the bp */
399 } else {
400 if (io->reclaim) {
401 hammer_io_disassociate(iou);
402 /* return the bp */
403 } else {
404 /* return the bp (bp passively associated) */
407 } else {
409 * A released buffer is passively associate with our
410 * hammer_io structure. The kernel cannot destroy it
411 * without making a bioops call. If the kernel (B_LOCKED)
412 * or we (reclaim) requested that the buffer be destroyed
413 * we destroy it, otherwise we do a quick get/release to
414 * reset its position in the kernel's LRU list.
416 * Leaving the buffer passively associated allows us to
417 * use the kernel's LRU buffer flushing mechanisms rather
418 * then rolling our own.
420 * XXX there are two ways of doing this. We can re-acquire
421 * and passively release to reset the LRU, or not.
423 if (io->running == 0) {
424 regetblk(bp);
425 if ((bp->b_flags & B_LOCKED) || io->reclaim) {
426 hammer_io_disassociate(iou);
427 /* return the bp */
428 } else {
429 /* return the bp (bp passively associated) */
431 } else {
433 * bp is left passively associated but we do not
434 * try to reacquire it. Interactions with the io
435 * structure will occur on completion of the bp's
436 * I/O.
438 bp = NULL;
441 return(bp);
445 * This routine is called with a locked IO when a flush is desired and
446 * no other references to the structure exists other then ours. This
447 * routine is ONLY called when HAMMER believes it is safe to flush a
448 * potentially modified buffer out.
450 void
451 hammer_io_flush(struct hammer_io *io)
453 struct buf *bp;
456 * Degenerate case - nothing to flush if nothing is dirty.
458 if (io->modified == 0) {
459 return;
462 KKASSERT(io->bp);
463 KKASSERT(io->modify_refs <= 0);
466 * Acquire ownership of the bp, particularly before we clear our
467 * modified flag.
469 * We are going to bawrite() this bp. Don't leave a window where
470 * io->released is set, we actually own the bp rather then our
471 * buffer.
473 bp = io->bp;
474 if (io->released) {
475 regetblk(bp);
476 /* BUF_KERNPROC(io->bp); */
477 /* io->released = 0; */
478 KKASSERT(io->released);
479 KKASSERT(io->bp == bp);
481 io->released = 1;
484 * Acquire exclusive access to the bp and then clear the modified
485 * state of the buffer prior to issuing I/O to interlock any
486 * modifications made while the I/O is in progress. This shouldn't
487 * happen anyway but losing data would be worse. The modified bit
488 * will be rechecked after the IO completes.
490 * NOTE: This call also finalizes the buffer's content (inval == 0).
492 * This is only legal when lock.refs == 1 (otherwise we might clear
493 * the modified bit while there are still users of the cluster
494 * modifying the data).
496 * Do this before potentially blocking so any attempt to modify the
497 * ondisk while we are blocked blocks waiting for us.
499 hammer_ref(&io->lock);
500 hammer_io_clear_modify(io, 0);
501 hammer_unref(&io->lock);
504 * Transfer ownership to the kernel and initiate I/O.
506 io->running = 1;
507 io->hmp->io_running_space += io->bytes;
508 hammer_count_io_running_write += io->bytes;
509 bawrite(bp);
512 /************************************************************************
513 * BUFFER DIRTYING *
514 ************************************************************************
516 * These routines deal with dependancies created when IO buffers get
517 * modified. The caller must call hammer_modify_*() on a referenced
518 * HAMMER structure prior to modifying its on-disk data.
520 * Any intent to modify an IO buffer acquires the related bp and imposes
521 * various write ordering dependancies.
525 * Mark a HAMMER structure as undergoing modification. Meta-data buffers
526 * are locked until the flusher can deal with them, pure data buffers
527 * can be written out.
529 static
530 void
531 hammer_io_modify(hammer_io_t io, int count)
534 * io->modify_refs must be >= 0
536 while (io->modify_refs < 0) {
537 io->waitmod = 1;
538 tsleep(io, 0, "hmrmod", 0);
542 * Shortcut if nothing to do.
544 KKASSERT(io->lock.refs != 0 && io->bp != NULL);
545 io->modify_refs += count;
546 if (io->modified && io->released == 0)
547 return;
549 hammer_lock_ex(&io->lock);
550 if (io->modified == 0) {
551 hammer_io_set_modlist(io);
552 io->modified = 1;
554 if (io->released) {
555 regetblk(io->bp);
556 BUF_KERNPROC(io->bp);
557 io->released = 0;
558 KKASSERT(io->modified != 0);
560 hammer_unlock(&io->lock);
563 static __inline
564 void
565 hammer_io_modify_done(hammer_io_t io)
567 KKASSERT(io->modify_refs > 0);
568 --io->modify_refs;
569 if (io->modify_refs == 0 && io->waitmod) {
570 io->waitmod = 0;
571 wakeup(io);
575 void
576 hammer_io_write_interlock(hammer_io_t io)
578 while (io->modify_refs != 0) {
579 io->waitmod = 1;
580 tsleep(io, 0, "hmrmod", 0);
582 io->modify_refs = -1;
585 void
586 hammer_io_done_interlock(hammer_io_t io)
588 KKASSERT(io->modify_refs == -1);
589 io->modify_refs = 0;
590 if (io->waitmod) {
591 io->waitmod = 0;
592 wakeup(io);
597 * Caller intends to modify a volume's ondisk structure.
599 * This is only allowed if we are the flusher or we have a ref on the
600 * sync_lock.
602 void
603 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
604 void *base, int len)
606 KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
608 hammer_io_modify(&volume->io, 1);
609 if (len) {
610 intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
611 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
612 hammer_generate_undo(trans, &volume->io,
613 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
614 base, len);
619 * Caller intends to modify a buffer's ondisk structure.
621 * This is only allowed if we are the flusher or we have a ref on the
622 * sync_lock.
624 void
625 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
626 void *base, int len)
628 KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
630 hammer_io_modify(&buffer->io, 1);
631 if (len) {
632 intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
633 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
634 hammer_generate_undo(trans, &buffer->io,
635 buffer->zone2_offset + rel_offset,
636 base, len);
640 void
641 hammer_modify_volume_done(hammer_volume_t volume)
643 hammer_io_modify_done(&volume->io);
646 void
647 hammer_modify_buffer_done(hammer_buffer_t buffer)
649 hammer_io_modify_done(&buffer->io);
653 * Mark an entity as not being dirty any more and finalize any
654 * delayed adjustments to the buffer.
656 * Delayed adjustments are an important performance enhancement, allowing
657 * us to avoid recalculating B-Tree node CRCs over and over again when
658 * making bulk-modifications to the B-Tree.
660 * If inval is non-zero delayed adjustments are ignored.
662 * This routine may dereference related btree nodes and cause the
663 * buffer to be dereferenced. The caller must own a reference on io.
665 void
666 hammer_io_clear_modify(struct hammer_io *io, int inval)
668 if (io->modified == 0)
669 return;
672 * Take us off the mod-list and clear the modified bit.
674 KKASSERT(io->mod_list != NULL);
675 if (io->mod_list == &io->hmp->volu_list ||
676 io->mod_list == &io->hmp->meta_list) {
677 io->hmp->locked_dirty_space -= io->bytes;
678 hammer_count_dirtybufspace -= io->bytes;
680 TAILQ_REMOVE(io->mod_list, io, mod_entry);
681 io->mod_list = NULL;
682 io->modified = 0;
685 * If this bit is not set there are no delayed adjustments.
687 if (io->gencrc == 0)
688 return;
689 io->gencrc = 0;
692 * Finalize requested CRCs. The NEEDSCRC flag also holds a reference
693 * on the node (& underlying buffer). Release the node after clearing
694 * the flag.
696 if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
697 hammer_buffer_t buffer = (void *)io;
698 hammer_node_t node;
700 restart:
701 TAILQ_FOREACH(node, &buffer->clist, entry) {
702 if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
703 continue;
704 node->flags &= ~HAMMER_NODE_NEEDSCRC;
705 KKASSERT(node->ondisk);
706 if (inval == 0)
707 node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
708 hammer_rel_node(node);
709 goto restart;
712 /* caller must still have ref on io */
713 KKASSERT(io->lock.refs > 0);
717 * Clear the IO's modify list. Even though the IO is no longer modified
718 * it may still be on the lose_list. This routine is called just before
719 * the governing hammer_buffer is destroyed.
721 void
722 hammer_io_clear_modlist(struct hammer_io *io)
724 KKASSERT(io->modified == 0);
725 if (io->mod_list) {
726 crit_enter(); /* biodone race against list */
727 KKASSERT(io->mod_list == &io->hmp->lose_list);
728 TAILQ_REMOVE(io->mod_list, io, mod_entry);
729 io->mod_list = NULL;
730 crit_exit();
734 static void
735 hammer_io_set_modlist(struct hammer_io *io)
737 struct hammer_mount *hmp = io->hmp;
739 KKASSERT(io->mod_list == NULL);
741 switch(io->type) {
742 case HAMMER_STRUCTURE_VOLUME:
743 io->mod_list = &hmp->volu_list;
744 hmp->locked_dirty_space += io->bytes;
745 hammer_count_dirtybufspace += io->bytes;
746 break;
747 case HAMMER_STRUCTURE_META_BUFFER:
748 io->mod_list = &hmp->meta_list;
749 hmp->locked_dirty_space += io->bytes;
750 hammer_count_dirtybufspace += io->bytes;
751 break;
752 case HAMMER_STRUCTURE_UNDO_BUFFER:
753 io->mod_list = &hmp->undo_list;
754 break;
755 case HAMMER_STRUCTURE_DATA_BUFFER:
756 io->mod_list = &hmp->data_list;
757 break;
759 TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry);
762 /************************************************************************
763 * HAMMER_BIOOPS *
764 ************************************************************************
769 * Pre-IO initiation kernel callback - cluster build only
771 static void
772 hammer_io_start(struct buf *bp)
777 * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
779 * NOTE: HAMMER may modify a buffer after initiating I/O. The modified bit
780 * may also be set if we were marking a cluster header open. Only remove
781 * our dependancy if the modified bit is clear.
783 static void
784 hammer_io_complete(struct buf *bp)
786 union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
788 KKASSERT(iou->io.released == 1);
791 * Deal with people waiting for I/O to drain
793 if (iou->io.running) {
795 * Deal with critical write errors. Once a critical error
796 * has been flagged in hmp the UNDO FIFO will not be updated.
797 * That way crash recover will give us a consistent
798 * filesystem.
800 * Because of this we can throw away failed UNDO buffers. If
801 * we throw away META or DATA buffers we risk corrupting
802 * the now read-only version of the filesystem visible to
803 * the user. Clear B_ERROR so the buffer is not re-dirtied
804 * by the kernel and ref the io so it doesn't get thrown
805 * away.
807 if (bp->b_flags & B_ERROR) {
808 hammer_critical_error(iou->io.hmp, NULL, bp->b_error,
809 "while flushing meta-data");
810 switch(iou->io.type) {
811 case HAMMER_STRUCTURE_UNDO_BUFFER:
812 break;
813 default:
814 if (iou->io.ioerror == 0) {
815 iou->io.ioerror = 1;
816 if (iou->io.lock.refs == 0)
817 ++hammer_count_refedbufs;
818 hammer_ref(&iou->io.lock);
820 break;
822 bp->b_flags &= ~B_ERROR;
823 bundirty(bp);
824 #if 0
825 hammer_io_set_modlist(&iou->io);
826 iou->io.modified = 1;
827 #endif
829 hammer_stats_disk_write += iou->io.bytes;
830 hammer_count_io_running_write -= iou->io.bytes;
831 iou->io.hmp->io_running_space -= iou->io.bytes;
832 if (iou->io.hmp->io_running_space == 0)
833 wakeup(&iou->io.hmp->io_running_space);
834 KKASSERT(iou->io.hmp->io_running_space >= 0);
835 iou->io.running = 0;
836 } else {
837 hammer_stats_disk_read += iou->io.bytes;
840 if (iou->io.waiting) {
841 iou->io.waiting = 0;
842 wakeup(iou);
846 * If B_LOCKED is set someone wanted to deallocate the bp at some
847 * point, do it now if refs has become zero.
849 if ((bp->b_flags & B_LOCKED) && iou->io.lock.refs == 0) {
850 KKASSERT(iou->io.modified == 0);
851 --hammer_count_io_locked;
852 bp->b_flags &= ~B_LOCKED;
853 hammer_io_deallocate(bp);
854 /* structure may be dead now */
859 * Callback from kernel when it wishes to deallocate a passively
860 * associated structure. This mostly occurs with clean buffers
861 * but it may be possible for a holding structure to be marked dirty
862 * while its buffer is passively associated. The caller owns the bp.
864 * If we cannot disassociate we set B_LOCKED to prevent the buffer
865 * from getting reused.
867 * WARNING: Because this can be called directly by getnewbuf we cannot
868 * recurse into the tree. If a bp cannot be immediately disassociated
869 * our only recourse is to set B_LOCKED.
871 * WARNING: This may be called from an interrupt via hammer_io_complete()
873 static void
874 hammer_io_deallocate(struct buf *bp)
876 hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
878 KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
879 if (iou->io.lock.refs > 0 || iou->io.modified) {
881 * It is not legal to disassociate a modified buffer. This
882 * case really shouldn't ever occur.
884 bp->b_flags |= B_LOCKED;
885 ++hammer_count_io_locked;
886 } else {
888 * Disassociate the BP. If the io has no refs left we
889 * have to add it to the loose list.
891 hammer_io_disassociate(iou);
892 if (iou->io.type != HAMMER_STRUCTURE_VOLUME) {
893 KKASSERT(iou->io.bp == NULL);
894 KKASSERT(iou->io.mod_list == NULL);
895 crit_enter(); /* biodone race against list */
896 iou->io.mod_list = &iou->io.hmp->lose_list;
897 TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry);
898 crit_exit();
903 static int
904 hammer_io_fsync(struct vnode *vp)
906 return(0);
910 * NOTE: will not be called unless we tell the kernel about the
911 * bioops. Unused... we use the mount's VFS_SYNC instead.
913 static int
914 hammer_io_sync(struct mount *mp)
916 return(0);
919 static void
920 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
925 * I/O pre-check for reading and writing. HAMMER only uses this for
926 * B_CACHE buffers so checkread just shouldn't happen, but if it does
927 * allow it.
929 * Writing is a different case. We don't want the kernel to try to write
930 * out a buffer that HAMMER may be modifying passively or which has a
931 * dependancy. In addition, kernel-demanded writes can only proceed for
932 * certain types of buffers (i.e. UNDO and DATA types). Other dirty
933 * buffer types can only be explicitly written by the flusher.
935 * checkwrite will only be called for bdwrite()n buffers. If we return
936 * success the kernel is guaranteed to initiate the buffer write.
938 static int
939 hammer_io_checkread(struct buf *bp)
941 return(0);
944 static int
945 hammer_io_checkwrite(struct buf *bp)
947 hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
950 * This shouldn't happen under normal operation.
952 if (io->type == HAMMER_STRUCTURE_VOLUME ||
953 io->type == HAMMER_STRUCTURE_META_BUFFER) {
954 if (!panicstr)
955 panic("hammer_io_checkwrite: illegal buffer");
956 if ((bp->b_flags & B_LOCKED) == 0) {
957 bp->b_flags |= B_LOCKED;
958 ++hammer_count_io_locked;
960 return(1);
964 * We can only clear the modified bit if the IO is not currently
965 * undergoing modification. Otherwise we may miss changes.
967 * Only data and undo buffers can reach here. These buffers do
968 * not have terminal crc functions but we temporarily reference
969 * the IO anyway, just in case.
971 if (io->modify_refs == 0 && io->modified) {
972 hammer_ref(&io->lock);
973 hammer_io_clear_modify(io, 0);
974 hammer_unref(&io->lock);
975 } else if (io->modified) {
976 KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
980 * The kernel is going to start the IO, set io->running.
982 KKASSERT(io->running == 0);
983 io->running = 1;
984 io->hmp->io_running_space += io->bytes;
985 hammer_count_io_running_write += io->bytes;
986 return(0);
990 * Return non-zero if we wish to delay the kernel's attempt to flush
991 * this buffer to disk.
993 static int
994 hammer_io_countdeps(struct buf *bp, int n)
996 return(0);
999 struct bio_ops hammer_bioops = {
1000 .io_start = hammer_io_start,
1001 .io_complete = hammer_io_complete,
1002 .io_deallocate = hammer_io_deallocate,
1003 .io_fsync = hammer_io_fsync,
1004 .io_sync = hammer_io_sync,
1005 .io_movedeps = hammer_io_movedeps,
1006 .io_countdeps = hammer_io_countdeps,
1007 .io_checkread = hammer_io_checkread,
1008 .io_checkwrite = hammer_io_checkwrite,
1011 /************************************************************************
1012 * DIRECT IO OPS *
1013 ************************************************************************
1015 * These functions operate directly on the buffer cache buffer associated
1016 * with a front-end vnode rather then a back-end device vnode.
1020 * Read a buffer associated with a front-end vnode directly from the
1021 * disk media. The bio may be issued asynchronously. If leaf is non-NULL
1022 * we validate the CRC.
1024 * We must check for the presence of a HAMMER buffer to handle the case
1025 * where the reblocker has rewritten the data (which it does via the HAMMER
1026 * buffer system, not via the high-level vnode buffer cache), but not yet
1027 * committed the buffer to the media.
1030 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1031 hammer_btree_leaf_elm_t leaf)
1033 hammer_off_t buf_offset;
1034 hammer_off_t zone2_offset;
1035 hammer_volume_t volume;
1036 struct buf *bp;
1037 struct bio *nbio;
1038 int vol_no;
1039 int error;
1041 buf_offset = bio->bio_offset;
1042 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1043 HAMMER_ZONE_LARGE_DATA);
1046 * The buffer cache may have an aliased buffer (the reblocker can
1047 * write them). If it does we have to sync any dirty data before
1048 * we can build our direct-read. This is a non-critical code path.
1050 bp = bio->bio_buf;
1051 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1054 * Resolve to a zone-2 offset. The conversion just requires
1055 * munging the top 4 bits but we want to abstract it anyway
1056 * so the blockmap code can verify the zone assignment.
1058 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1059 if (error)
1060 goto done;
1061 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1062 HAMMER_ZONE_RAW_BUFFER);
1065 * Resolve volume and raw-offset for 3rd level bio. The
1066 * offset will be specific to the volume.
1068 vol_no = HAMMER_VOL_DECODE(zone2_offset);
1069 volume = hammer_get_volume(hmp, vol_no, &error);
1070 if (error == 0 && zone2_offset >= volume->maxbuf_off)
1071 error = EIO;
1073 if (error == 0) {
1075 * 3rd level bio
1077 nbio = push_bio(bio);
1078 nbio->bio_offset = volume->ondisk->vol_buf_beg +
1079 (zone2_offset & HAMMER_OFF_SHORT_MASK);
1080 #if 0
1082 * XXX disabled - our CRC check doesn't work if the OS
1083 * does bogus_page replacement on the direct-read.
1085 if (leaf && hammer_verify_data) {
1086 nbio->bio_done = hammer_io_direct_read_complete;
1087 nbio->bio_caller_info1.uvalue32 = leaf->data_crc;
1089 #endif
1090 hammer_stats_disk_read += bp->b_bufsize;
1091 vn_strategy(volume->devvp, nbio);
1093 hammer_rel_volume(volume, 0);
1094 done:
1095 if (error) {
1096 kprintf("hammer_direct_read: failed @ %016llx\n",
1097 zone2_offset);
1098 bp->b_error = error;
1099 bp->b_flags |= B_ERROR;
1100 biodone(bio);
1102 return(error);
1105 #if 0
1107 * On completion of the BIO this callback must check the data CRC
1108 * and chain to the previous bio.
1110 static
1111 void
1112 hammer_io_direct_read_complete(struct bio *nbio)
1114 struct bio *obio;
1115 struct buf *bp;
1116 u_int32_t rec_crc = nbio->bio_caller_info1.uvalue32;
1118 bp = nbio->bio_buf;
1119 if (crc32(bp->b_data, bp->b_bufsize) != rec_crc) {
1120 kprintf("HAMMER: data_crc error @%016llx/%d\n",
1121 nbio->bio_offset, bp->b_bufsize);
1122 if (hammer_debug_debug)
1123 Debugger("");
1124 bp->b_flags |= B_ERROR;
1125 bp->b_error = EIO;
1127 obio = pop_bio(nbio);
1128 biodone(obio);
1130 #endif
1133 * Write a buffer associated with a front-end vnode directly to the
1134 * disk media. The bio may be issued asynchronously.
1136 * The BIO is associated with the specified record and RECF_DIRECT_IO
1137 * is set. The recorded is added to its object.
1140 hammer_io_direct_write(hammer_mount_t hmp, hammer_record_t record,
1141 struct bio *bio)
1143 hammer_btree_leaf_elm_t leaf = &record->leaf;
1144 hammer_off_t buf_offset;
1145 hammer_off_t zone2_offset;
1146 hammer_volume_t volume;
1147 hammer_buffer_t buffer;
1148 struct buf *bp;
1149 struct bio *nbio;
1150 char *ptr;
1151 int vol_no;
1152 int error;
1154 buf_offset = leaf->data_offset;
1156 KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
1157 KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1159 if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1160 leaf->data_len >= HAMMER_BUFSIZE) {
1162 * We are using the vnode's bio to write directly to the
1163 * media, any hammer_buffer at the same zone-X offset will
1164 * now have stale data.
1166 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1167 vol_no = HAMMER_VOL_DECODE(zone2_offset);
1168 volume = hammer_get_volume(hmp, vol_no, &error);
1170 if (error == 0 && zone2_offset >= volume->maxbuf_off)
1171 error = EIO;
1172 if (error == 0) {
1173 bp = bio->bio_buf;
1174 KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1176 hammer_del_buffers(hmp, buf_offset,
1177 zone2_offset, bp->b_bufsize);
1181 * Second level bio - cached zone2 offset.
1183 * (We can put our bio_done function in either the
1184 * 2nd or 3rd level).
1186 nbio = push_bio(bio);
1187 nbio->bio_offset = zone2_offset;
1188 nbio->bio_done = hammer_io_direct_write_complete;
1189 nbio->bio_caller_info1.ptr = record;
1190 record->zone2_offset = zone2_offset;
1191 record->flags |= HAMMER_RECF_DIRECT_IO |
1192 HAMMER_RECF_DIRECT_INVAL;
1195 * Third level bio - raw offset specific to the
1196 * correct volume.
1198 zone2_offset &= HAMMER_OFF_SHORT_MASK;
1199 nbio = push_bio(nbio);
1200 nbio->bio_offset = volume->ondisk->vol_buf_beg +
1201 zone2_offset;
1202 hammer_stats_disk_write += bp->b_bufsize;
1203 vn_strategy(volume->devvp, nbio);
1205 hammer_rel_volume(volume, 0);
1206 } else {
1208 * Must fit in a standard HAMMER buffer. In this case all
1209 * consumers use the HAMMER buffer system and RECF_DIRECT_IO
1210 * does not need to be set-up.
1212 KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1213 buffer = NULL;
1214 ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1215 if (error == 0) {
1216 bp = bio->bio_buf;
1217 bp->b_flags |= B_AGE;
1218 hammer_io_modify(&buffer->io, 1);
1219 bcopy(bp->b_data, ptr, leaf->data_len);
1220 hammer_io_modify_done(&buffer->io);
1221 hammer_rel_buffer(buffer, 0);
1222 bp->b_resid = 0;
1223 biodone(bio);
1226 if (error == 0) {
1228 * The record is all setup now, add it. Potential conflics
1229 * have already been dealt with.
1231 error = hammer_mem_add(record);
1232 KKASSERT(error == 0);
1233 } else {
1235 * Major suckage occured.
1237 kprintf("hammer_direct_write: failed @ %016llx\n",
1238 leaf->data_offset);
1239 bp = bio->bio_buf;
1240 bp->b_resid = 0;
1241 bp->b_error = EIO;
1242 bp->b_flags |= B_ERROR;
1243 biodone(bio);
1244 record->flags |= HAMMER_RECF_DELETED_FE;
1245 hammer_rel_mem_record(record);
1247 return(error);
1251 * On completion of the BIO this callback must disconnect
1252 * it from the hammer_record and chain to the previous bio.
1254 * An I/O error forces the mount to read-only. Data buffers
1255 * are not B_LOCKED like meta-data buffers are, so we have to
1256 * throw the buffer away to prevent the kernel from retrying.
1258 static
1259 void
1260 hammer_io_direct_write_complete(struct bio *nbio)
1262 struct bio *obio;
1263 struct buf *bp;
1264 hammer_record_t record = nbio->bio_caller_info1.ptr;
1266 bp = nbio->bio_buf;
1267 obio = pop_bio(nbio);
1268 if (bp->b_flags & B_ERROR) {
1269 hammer_critical_error(record->ip->hmp, record->ip,
1270 bp->b_error,
1271 "while writing bulk data");
1272 bp->b_flags |= B_INVAL;
1274 biodone(obio);
1276 KKASSERT(record != NULL);
1277 KKASSERT(record->flags & HAMMER_RECF_DIRECT_IO);
1278 record->flags &= ~HAMMER_RECF_DIRECT_IO;
1279 if (record->flags & HAMMER_RECF_DIRECT_WAIT) {
1280 record->flags &= ~HAMMER_RECF_DIRECT_WAIT;
1281 wakeup(&record->flags);
1287 * This is called before a record is either committed to the B-Tree
1288 * or destroyed, to resolve any associated direct-IO.
1290 * (1) We must wait for any direct-IO related to the record to complete.
1292 * (2) We must remove any buffer cache aliases for data accessed via
1293 * leaf->data_offset or zone2_offset so non-direct-IO consumers
1294 * (the mirroring and reblocking code) do not see stale data.
1296 void
1297 hammer_io_direct_wait(hammer_record_t record)
1300 * Wait for I/O to complete
1302 if (record->flags & HAMMER_RECF_DIRECT_IO) {
1303 crit_enter();
1304 while (record->flags & HAMMER_RECF_DIRECT_IO) {
1305 record->flags |= HAMMER_RECF_DIRECT_WAIT;
1306 tsleep(&record->flags, 0, "hmdiow", 0);
1308 crit_exit();
1312 * Invalidate any related buffer cache aliases.
1314 if (record->flags & HAMMER_RECF_DIRECT_INVAL) {
1315 KKASSERT(record->leaf.data_offset);
1316 hammer_del_buffers(record->ip->hmp,
1317 record->leaf.data_offset,
1318 record->zone2_offset,
1319 record->leaf.data_len);
1320 record->flags &= ~HAMMER_RECF_DIRECT_INVAL;
1325 * This is called to remove the second-level cached zone-2 offset from
1326 * frontend buffer cache buffers, now stale due to a data relocation.
1327 * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1328 * by hammer_vop_strategy_read().
1330 * This is rather nasty because here we have something like the reblocker
1331 * scanning the raw B-Tree with no held references on anything, really,
1332 * other then a shared lock on the B-Tree node, and we have to access the
1333 * frontend's buffer cache to check for and clean out the association.
1334 * Specifically, if the reblocker is moving data on the disk, these cached
1335 * offsets will become invalid.
1337 * Only data record types associated with the large-data zone are subject
1338 * to direct-io and need to be checked.
1341 void
1342 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1344 struct hammer_inode_info iinfo;
1345 int zone;
1347 if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1348 return;
1349 zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1350 if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1351 return;
1352 iinfo.obj_id = leaf->base.obj_id;
1353 iinfo.obj_asof = 0; /* unused */
1354 iinfo.obj_localization = leaf->base.localization &
1355 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1356 iinfo.u.leaf = leaf;
1357 hammer_scan_inode_snapshots(hmp, &iinfo,
1358 hammer_io_direct_uncache_callback,
1359 leaf);
1362 static int
1363 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1365 hammer_inode_info_t iinfo = data;
1366 hammer_off_t data_offset;
1367 hammer_off_t file_offset;
1368 struct vnode *vp;
1369 struct buf *bp;
1370 int blksize;
1372 if (ip->vp == NULL)
1373 return(0);
1374 data_offset = iinfo->u.leaf->data_offset;
1375 file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1376 blksize = iinfo->u.leaf->data_len;
1377 KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1379 hammer_ref(&ip->lock);
1380 if (hammer_get_vnode(ip, &vp) == 0) {
1381 if ((bp = findblk(ip->vp, file_offset)) != NULL &&
1382 bp->b_bio2.bio_offset != NOOFFSET) {
1383 bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1384 bp->b_bio2.bio_offset = NOOFFSET;
1385 brelse(bp);
1387 vput(vp);
1389 hammer_rel_inode(ip, 0);
1390 return(0);