c54a4061d49c707e8898f33a181c58e2da5da0d1
[dragonfly.git] / sys / kern / uipc_syscalls.c
blobc54a4061d49c707e8898f33a181c58e2da5da0d1
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * sendfile(2) and related extensions:
6 * Copyright (c) 1998, David Greenman. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94
37 * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38 * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.88 2008/07/10 00:19:27 aggelos Exp $
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 #include <sys/socketvar2.h>
82 #include <net/netmsg2.h>
84 #ifdef SCTP
85 #include <netinet/sctp_peeloff.h>
86 #endif /* SCTP */
88 struct sfbuf_mref {
89 struct sf_buf *sf;
90 int mref_count;
91 struct lwkt_serialize serializer;
94 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
97 * System call interface to the socket abstraction.
100 extern struct fileops socketops;
103 * socket_args(int domain, int type, int protocol)
106 kern_socket(int domain, int type, int protocol, int *res)
108 struct thread *td = curthread;
109 struct proc *p = td->td_proc;
110 struct socket *so;
111 struct file *fp;
112 int fd, error;
114 KKASSERT(p);
116 error = falloc(p, &fp, &fd);
117 if (error)
118 return (error);
119 error = socreate(domain, &so, type, protocol, td);
120 if (error) {
121 fsetfd(p, NULL, fd);
122 } else {
123 fp->f_type = DTYPE_SOCKET;
124 fp->f_flag = FREAD | FWRITE;
125 fp->f_ops = &socketops;
126 fp->f_data = so;
127 *res = fd;
128 fsetfd(p, fp, fd);
130 fdrop(fp);
131 return (error);
135 sys_socket(struct socket_args *uap)
137 int error;
139 error = kern_socket(uap->domain, uap->type, uap->protocol,
140 &uap->sysmsg_result);
142 return (error);
146 kern_bind(int s, struct sockaddr *sa)
148 struct thread *td = curthread;
149 struct proc *p = td->td_proc;
150 struct file *fp;
151 int error;
153 KKASSERT(p);
154 error = holdsock(p->p_fd, s, &fp);
155 if (error)
156 return (error);
157 error = sobind((struct socket *)fp->f_data, sa, td);
158 fdrop(fp);
159 return (error);
163 * bind_args(int s, caddr_t name, int namelen)
166 sys_bind(struct bind_args *uap)
168 struct sockaddr *sa;
169 int error;
171 error = getsockaddr(&sa, uap->name, uap->namelen);
172 if (error)
173 return (error);
174 error = kern_bind(uap->s, sa);
175 FREE(sa, M_SONAME);
177 return (error);
181 kern_listen(int s, int backlog)
183 struct thread *td = curthread;
184 struct proc *p = td->td_proc;
185 struct file *fp;
186 int error;
188 KKASSERT(p);
189 error = holdsock(p->p_fd, s, &fp);
190 if (error)
191 return (error);
192 error = solisten((struct socket *)fp->f_data, backlog, td);
193 fdrop(fp);
194 return(error);
198 * listen_args(int s, int backlog)
201 sys_listen(struct listen_args *uap)
203 int error;
205 error = kern_listen(uap->s, uap->backlog);
206 return (error);
210 * Returns the accepted socket as well.
212 static boolean_t
213 soaccept_predicate(struct netmsg *msg0)
215 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
216 struct socket *head = msg->nm_so;
218 if (head->so_error != 0) {
219 msg->nm_netmsg.nm_lmsg.ms_error = head->so_error;
220 return (TRUE);
222 if (!TAILQ_EMPTY(&head->so_comp)) {
223 /* Abuse nm_so field as copy in/copy out parameter. XXX JH */
224 msg->nm_so = TAILQ_FIRST(&head->so_comp);
225 TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
226 head->so_qlen--;
228 msg->nm_netmsg.nm_lmsg.ms_error = 0;
229 return (TRUE);
231 if (head->so_state & SS_CANTRCVMORE) {
232 msg->nm_netmsg.nm_lmsg.ms_error = ECONNABORTED;
233 return (TRUE);
235 if (msg->nm_fflags & FNONBLOCK) {
236 msg->nm_netmsg.nm_lmsg.ms_error = EWOULDBLOCK;
237 return (TRUE);
240 return (FALSE);
244 * The second argument to kern_accept() is a handle to a struct sockaddr.
245 * This allows kern_accept() to return a pointer to an allocated struct
246 * sockaddr which must be freed later with FREE(). The caller must
247 * initialize *name to NULL.
250 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
252 struct thread *td = curthread;
253 struct proc *p = td->td_proc;
254 struct file *lfp = NULL;
255 struct file *nfp = NULL;
256 struct sockaddr *sa;
257 struct socket *head, *so;
258 struct netmsg_so_notify msg;
259 lwkt_port_t port;
260 int fd;
261 u_int fflag; /* type must match fp->f_flag */
262 int error, tmp;
264 *res = -1;
265 if (name && namelen && *namelen < 0)
266 return (EINVAL);
268 error = holdsock(p->p_fd, s, &lfp);
269 if (error)
270 return (error);
272 error = falloc(p, &nfp, &fd);
273 if (error) { /* Probably ran out of file descriptors. */
274 fdrop(lfp);
275 return (error);
277 head = (struct socket *)lfp->f_data;
278 if ((head->so_options & SO_ACCEPTCONN) == 0) {
279 error = EINVAL;
280 goto done;
283 if (fflags & O_FBLOCKING)
284 fflags |= lfp->f_flag & ~FNONBLOCK;
285 else if (fflags & O_FNONBLOCKING)
286 fflags |= lfp->f_flag | FNONBLOCK;
287 else
288 fflags = lfp->f_flag;
290 /* optimize for uniprocessor case later XXX JH */
291 port = head->so_proto->pr_mport(head, NULL, NULL, PRU_PRED);
292 netmsg_init_abortable(&msg.nm_netmsg, &curthread->td_msgport,
294 netmsg_so_notify,
295 netmsg_so_notify_doabort);
296 msg.nm_predicate = soaccept_predicate;
297 msg.nm_fflags = fflags;
298 msg.nm_so = head;
299 msg.nm_etype = NM_REVENT;
300 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH);
301 if (error)
302 goto done;
305 * At this point we have the connection that's ready to be accepted.
307 so = msg.nm_so;
309 fflag = lfp->f_flag;
311 /* connection has been removed from the listen queue */
312 KNOTE(&head->so_rcv.ssb_sel.si_note, 0);
314 so->so_state &= ~SS_COMP;
315 so->so_head = NULL;
316 if (head->so_sigio != NULL)
317 fsetown(fgetown(head->so_sigio), &so->so_sigio);
319 nfp->f_type = DTYPE_SOCKET;
320 nfp->f_flag = fflag;
321 nfp->f_ops = &socketops;
322 nfp->f_data = so;
323 /* Sync socket nonblocking/async state with file flags */
324 tmp = fflag & FNONBLOCK;
325 (void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred);
326 tmp = fflag & FASYNC;
327 (void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred);
329 sa = NULL;
330 error = soaccept(so, &sa);
333 * Set the returned name and namelen as applicable. Set the returned
334 * namelen to 0 for older code which might ignore the return value
335 * from accept.
337 if (error == 0) {
338 if (sa && name && namelen) {
339 if (*namelen > sa->sa_len)
340 *namelen = sa->sa_len;
341 *name = sa;
342 } else {
343 if (sa)
344 FREE(sa, M_SONAME);
348 done:
350 * If an error occured clear the reserved descriptor, else associate
351 * nfp with it.
353 * Note that *res is normally ignored if an error is returned but
354 * a syscall message will still have access to the result code.
356 if (error) {
357 fsetfd(p, NULL, fd);
358 } else {
359 *res = fd;
360 fsetfd(p, nfp, fd);
362 fdrop(nfp);
363 fdrop(lfp);
364 return (error);
368 * accept(int s, caddr_t name, int *anamelen)
371 sys_accept(struct accept_args *uap)
373 struct sockaddr *sa = NULL;
374 int sa_len;
375 int error;
377 if (uap->name) {
378 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
379 if (error)
380 return (error);
382 error = kern_accept(uap->s, 0, &sa, &sa_len, &uap->sysmsg_result);
384 if (error == 0)
385 error = copyout(sa, uap->name, sa_len);
386 if (error == 0) {
387 error = copyout(&sa_len, uap->anamelen,
388 sizeof(*uap->anamelen));
390 if (sa)
391 FREE(sa, M_SONAME);
392 } else {
393 error = kern_accept(uap->s, 0, NULL, 0, &uap->sysmsg_result);
395 return (error);
399 * extaccept(int s, int fflags, caddr_t name, int *anamelen)
402 sys_extaccept(struct extaccept_args *uap)
404 struct sockaddr *sa = NULL;
405 int sa_len;
406 int error;
407 int fflags = uap->flags & O_FMASK;
409 if (uap->name) {
410 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
411 if (error)
412 return (error);
414 error = kern_accept(uap->s, fflags, &sa, &sa_len, &uap->sysmsg_result);
416 if (error == 0)
417 error = copyout(sa, uap->name, sa_len);
418 if (error == 0) {
419 error = copyout(&sa_len, uap->anamelen,
420 sizeof(*uap->anamelen));
422 if (sa)
423 FREE(sa, M_SONAME);
424 } else {
425 error = kern_accept(uap->s, fflags, NULL, 0, &uap->sysmsg_result);
427 return (error);
432 * Returns TRUE if predicate satisfied.
434 static boolean_t
435 soconnected_predicate(struct netmsg *msg0)
437 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
438 struct socket *so = msg->nm_so;
440 /* check predicate */
441 if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
442 msg->nm_netmsg.nm_lmsg.ms_error = so->so_error;
443 return (TRUE);
446 return (FALSE);
450 kern_connect(int s, int fflags, struct sockaddr *sa)
452 struct thread *td = curthread;
453 struct proc *p = td->td_proc;
454 struct file *fp;
455 struct socket *so;
456 int error;
458 error = holdsock(p->p_fd, s, &fp);
459 if (error)
460 return (error);
461 so = (struct socket *)fp->f_data;
463 if (fflags & O_FBLOCKING)
464 /* fflags &= ~FNONBLOCK; */;
465 else if (fflags & O_FNONBLOCKING)
466 fflags |= FNONBLOCK;
467 else
468 fflags = fp->f_flag;
470 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
471 error = EALREADY;
472 goto done;
474 error = soconnect(so, sa, td);
475 if (error)
476 goto bad;
477 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
478 error = EINPROGRESS;
479 goto done;
481 if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
482 struct netmsg_so_notify msg;
483 lwkt_port_t port;
485 port = so->so_proto->pr_mport(so, sa, NULL, PRU_PRED);
486 netmsg_init_abortable(&msg.nm_netmsg,
487 &curthread->td_msgport,
489 netmsg_so_notify,
490 netmsg_so_notify_doabort);
491 msg.nm_predicate = soconnected_predicate;
492 msg.nm_so = so;
493 msg.nm_etype = NM_REVENT;
494 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH);
496 if (error == 0) {
497 error = so->so_error;
498 so->so_error = 0;
500 bad:
501 so->so_state &= ~SS_ISCONNECTING;
502 if (error == ERESTART)
503 error = EINTR;
504 done:
505 fdrop(fp);
506 return (error);
510 * connect_args(int s, caddr_t name, int namelen)
513 sys_connect(struct connect_args *uap)
515 struct sockaddr *sa;
516 int error;
518 error = getsockaddr(&sa, uap->name, uap->namelen);
519 if (error)
520 return (error);
521 error = kern_connect(uap->s, 0, sa);
522 FREE(sa, M_SONAME);
524 return (error);
528 * connect_args(int s, int fflags, caddr_t name, int namelen)
531 sys_extconnect(struct extconnect_args *uap)
533 struct sockaddr *sa;
534 int error;
535 int fflags = uap->flags & O_FMASK;
537 error = getsockaddr(&sa, uap->name, uap->namelen);
538 if (error)
539 return (error);
540 error = kern_connect(uap->s, fflags, sa);
541 FREE(sa, M_SONAME);
543 return (error);
547 kern_socketpair(int domain, int type, int protocol, int *sv)
549 struct thread *td = curthread;
550 struct proc *p = td->td_proc;
551 struct file *fp1, *fp2;
552 struct socket *so1, *so2;
553 int fd1, fd2, error;
555 KKASSERT(p);
556 error = socreate(domain, &so1, type, protocol, td);
557 if (error)
558 return (error);
559 error = socreate(domain, &so2, type, protocol, td);
560 if (error)
561 goto free1;
562 error = falloc(p, &fp1, &fd1);
563 if (error)
564 goto free2;
565 sv[0] = fd1;
566 fp1->f_data = so1;
567 error = falloc(p, &fp2, &fd2);
568 if (error)
569 goto free3;
570 fp2->f_data = so2;
571 sv[1] = fd2;
572 error = soconnect2(so1, so2);
573 if (error)
574 goto free4;
575 if (type == SOCK_DGRAM) {
577 * Datagram socket connection is asymmetric.
579 error = soconnect2(so2, so1);
580 if (error)
581 goto free4;
583 fp1->f_type = fp2->f_type = DTYPE_SOCKET;
584 fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
585 fp1->f_ops = fp2->f_ops = &socketops;
586 fsetfd(p, fp1, fd1);
587 fsetfd(p, fp2, fd2);
588 fdrop(fp1);
589 fdrop(fp2);
590 return (error);
591 free4:
592 fsetfd(p, NULL, fd2);
593 fdrop(fp2);
594 free3:
595 fsetfd(p, NULL, fd1);
596 fdrop(fp1);
597 free2:
598 (void)soclose(so2, 0);
599 free1:
600 (void)soclose(so1, 0);
601 return (error);
605 * socketpair(int domain, int type, int protocol, int *rsv)
608 sys_socketpair(struct socketpair_args *uap)
610 int error, sockv[2];
612 error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
614 if (error == 0)
615 error = copyout(sockv, uap->rsv, sizeof(sockv));
616 return (error);
620 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
621 struct mbuf *control, int flags, int *res)
623 struct thread *td = curthread;
624 struct lwp *lp = td->td_lwp;
625 struct proc *p = td->td_proc;
626 struct file *fp;
627 int len, error;
628 struct socket *so;
629 #ifdef KTRACE
630 struct iovec *ktriov = NULL;
631 struct uio ktruio;
632 #endif
634 error = holdsock(p->p_fd, s, &fp);
635 if (error)
636 return (error);
637 if (auio->uio_resid < 0) {
638 error = EINVAL;
639 goto done;
641 #ifdef KTRACE
642 if (KTRPOINT(td, KTR_GENIO)) {
643 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
645 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
646 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
647 ktruio = *auio;
649 #endif
650 len = auio->uio_resid;
651 so = (struct socket *)fp->f_data;
652 if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
653 if (fp->f_flag & FNONBLOCK)
654 flags |= MSG_FNONBLOCKING;
656 error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
657 if (error) {
658 if (auio->uio_resid != len && (error == ERESTART ||
659 error == EINTR || error == EWOULDBLOCK))
660 error = 0;
661 if (error == EPIPE)
662 lwpsignal(p, lp, SIGPIPE);
664 #ifdef KTRACE
665 if (ktriov != NULL) {
666 if (error == 0) {
667 ktruio.uio_iov = ktriov;
668 ktruio.uio_resid = len - auio->uio_resid;
669 ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
671 FREE(ktriov, M_TEMP);
673 #endif
674 if (error == 0)
675 *res = len - auio->uio_resid;
676 done:
677 fdrop(fp);
678 return (error);
682 * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
685 sys_sendto(struct sendto_args *uap)
687 struct thread *td = curthread;
688 struct uio auio;
689 struct iovec aiov;
690 struct sockaddr *sa = NULL;
691 int error;
693 if (uap->to) {
694 error = getsockaddr(&sa, uap->to, uap->tolen);
695 if (error)
696 return (error);
698 aiov.iov_base = uap->buf;
699 aiov.iov_len = uap->len;
700 auio.uio_iov = &aiov;
701 auio.uio_iovcnt = 1;
702 auio.uio_offset = 0;
703 auio.uio_resid = uap->len;
704 auio.uio_segflg = UIO_USERSPACE;
705 auio.uio_rw = UIO_WRITE;
706 auio.uio_td = td;
708 error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
709 &uap->sysmsg_result);
711 if (sa)
712 FREE(sa, M_SONAME);
713 return (error);
717 * sendmsg_args(int s, caddr_t msg, int flags)
720 sys_sendmsg(struct sendmsg_args *uap)
722 struct thread *td = curthread;
723 struct msghdr msg;
724 struct uio auio;
725 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
726 struct sockaddr *sa = NULL;
727 struct mbuf *control = NULL;
728 int error;
730 error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
731 if (error)
732 return (error);
735 * Conditionally copyin msg.msg_name.
737 if (msg.msg_name) {
738 error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
739 if (error)
740 return (error);
744 * Populate auio.
746 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
747 &auio.uio_resid);
748 if (error)
749 goto cleanup2;
750 auio.uio_iov = iov;
751 auio.uio_iovcnt = msg.msg_iovlen;
752 auio.uio_offset = 0;
753 auio.uio_segflg = UIO_USERSPACE;
754 auio.uio_rw = UIO_WRITE;
755 auio.uio_td = td;
758 * Conditionally copyin msg.msg_control.
760 if (msg.msg_control) {
761 if (msg.msg_controllen < sizeof(struct cmsghdr) ||
762 msg.msg_controllen > MLEN) {
763 error = EINVAL;
764 goto cleanup;
766 control = m_get(MB_WAIT, MT_CONTROL);
767 if (control == NULL) {
768 error = ENOBUFS;
769 goto cleanup;
771 control->m_len = msg.msg_controllen;
772 error = copyin(msg.msg_control, mtod(control, caddr_t),
773 msg.msg_controllen);
774 if (error) {
775 m_free(control);
776 goto cleanup;
780 error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
781 &uap->sysmsg_result);
783 cleanup:
784 iovec_free(&iov, aiov);
785 cleanup2:
786 if (sa)
787 FREE(sa, M_SONAME);
788 return (error);
792 * kern_recvmsg() takes a handle to sa and control. If the handle is non-
793 * null, it returns a dynamically allocated struct sockaddr and an mbuf.
794 * Don't forget to FREE() and m_free() these if they are returned.
797 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
798 struct mbuf **control, int *flags, int *res)
800 struct thread *td = curthread;
801 struct proc *p = td->td_proc;
802 struct file *fp;
803 int len, error;
804 int lflags;
805 struct socket *so;
806 #ifdef KTRACE
807 struct iovec *ktriov = NULL;
808 struct uio ktruio;
809 #endif
811 error = holdsock(p->p_fd, s, &fp);
812 if (error)
813 return (error);
814 if (auio->uio_resid < 0) {
815 error = EINVAL;
816 goto done;
818 #ifdef KTRACE
819 if (KTRPOINT(td, KTR_GENIO)) {
820 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
822 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
823 bcopy(auio->uio_iov, ktriov, iovlen);
824 ktruio = *auio;
826 #endif
827 len = auio->uio_resid;
828 so = (struct socket *)fp->f_data;
830 if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
831 if (fp->f_flag & FNONBLOCK) {
832 if (flags) {
833 *flags |= MSG_FNONBLOCKING;
834 } else {
835 lflags = MSG_FNONBLOCKING;
836 flags = &lflags;
841 error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
842 if (error) {
843 if (auio->uio_resid != len && (error == ERESTART ||
844 error == EINTR || error == EWOULDBLOCK))
845 error = 0;
847 #ifdef KTRACE
848 if (ktriov != NULL) {
849 if (error == 0) {
850 ktruio.uio_iov = ktriov;
851 ktruio.uio_resid = len - auio->uio_resid;
852 ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
854 FREE(ktriov, M_TEMP);
856 #endif
857 if (error == 0)
858 *res = len - auio->uio_resid;
859 done:
860 fdrop(fp);
861 return (error);
865 * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
866 * caddr_t from, int *fromlenaddr)
869 sys_recvfrom(struct recvfrom_args *uap)
871 struct thread *td = curthread;
872 struct uio auio;
873 struct iovec aiov;
874 struct sockaddr *sa = NULL;
875 int error, fromlen;
877 if (uap->from && uap->fromlenaddr) {
878 error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
879 if (error)
880 return (error);
881 if (fromlen < 0)
882 return (EINVAL);
883 } else {
884 fromlen = 0;
886 aiov.iov_base = uap->buf;
887 aiov.iov_len = uap->len;
888 auio.uio_iov = &aiov;
889 auio.uio_iovcnt = 1;
890 auio.uio_offset = 0;
891 auio.uio_resid = uap->len;
892 auio.uio_segflg = UIO_USERSPACE;
893 auio.uio_rw = UIO_READ;
894 auio.uio_td = td;
896 error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
897 &uap->flags, &uap->sysmsg_result);
899 if (error == 0 && uap->from) {
900 /* note: sa may still be NULL */
901 if (sa) {
902 fromlen = MIN(fromlen, sa->sa_len);
903 error = copyout(sa, uap->from, fromlen);
904 } else {
905 fromlen = 0;
907 if (error == 0) {
908 error = copyout(&fromlen, uap->fromlenaddr,
909 sizeof(fromlen));
912 if (sa)
913 FREE(sa, M_SONAME);
915 return (error);
919 * recvmsg_args(int s, struct msghdr *msg, int flags)
922 sys_recvmsg(struct recvmsg_args *uap)
924 struct thread *td = curthread;
925 struct msghdr msg;
926 struct uio auio;
927 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
928 struct mbuf *m, *control = NULL;
929 struct sockaddr *sa = NULL;
930 caddr_t ctlbuf;
931 socklen_t *ufromlenp, *ucontrollenp;
932 int error, fromlen, controllen, len, flags, *uflagsp;
935 * This copyin handles everything except the iovec.
937 error = copyin(uap->msg, &msg, sizeof(msg));
938 if (error)
939 return (error);
941 if (msg.msg_name && msg.msg_namelen < 0)
942 return (EINVAL);
943 if (msg.msg_control && msg.msg_controllen < 0)
944 return (EINVAL);
946 ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
947 msg_namelen));
948 ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
949 msg_controllen));
950 uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
951 msg_flags));
954 * Populate auio.
956 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
957 &auio.uio_resid);
958 if (error)
959 return (error);
960 auio.uio_iov = iov;
961 auio.uio_iovcnt = msg.msg_iovlen;
962 auio.uio_offset = 0;
963 auio.uio_segflg = UIO_USERSPACE;
964 auio.uio_rw = UIO_READ;
965 auio.uio_td = td;
967 flags = uap->flags;
969 error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
970 msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
973 * Conditionally copyout the name and populate the namelen field.
975 if (error == 0 && msg.msg_name) {
976 /* note: sa may still be NULL */
977 if (sa != NULL) {
978 fromlen = MIN(msg.msg_namelen, sa->sa_len);
979 error = copyout(sa, msg.msg_name, fromlen);
980 } else
981 fromlen = 0;
982 if (error == 0)
983 error = copyout(&fromlen, ufromlenp,
984 sizeof(*ufromlenp));
988 * Copyout msg.msg_control and msg.msg_controllen.
990 if (error == 0 && msg.msg_control) {
991 len = msg.msg_controllen;
992 m = control;
993 ctlbuf = (caddr_t)msg.msg_control;
995 while(m && len > 0) {
996 unsigned int tocopy;
998 if (len >= m->m_len) {
999 tocopy = m->m_len;
1000 } else {
1001 msg.msg_flags |= MSG_CTRUNC;
1002 tocopy = len;
1005 error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1006 if (error)
1007 goto cleanup;
1009 ctlbuf += tocopy;
1010 len -= tocopy;
1011 m = m->m_next;
1013 controllen = ctlbuf - (caddr_t)msg.msg_control;
1014 error = copyout(&controllen, ucontrollenp,
1015 sizeof(*ucontrollenp));
1018 if (error == 0)
1019 error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1021 cleanup:
1022 if (sa)
1023 FREE(sa, M_SONAME);
1024 iovec_free(&iov, aiov);
1025 if (control)
1026 m_freem(control);
1027 return (error);
1031 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1032 * in kernel pointer instead of a userland pointer. This allows us
1033 * to manipulate socket options in the emulation code.
1036 kern_setsockopt(int s, struct sockopt *sopt)
1038 struct thread *td = curthread;
1039 struct proc *p = td->td_proc;
1040 struct file *fp;
1041 int error;
1043 if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1044 return (EFAULT);
1045 if (sopt->sopt_valsize < 0)
1046 return (EINVAL);
1048 error = holdsock(p->p_fd, s, &fp);
1049 if (error)
1050 return (error);
1052 error = sosetopt((struct socket *)fp->f_data, sopt);
1053 fdrop(fp);
1054 return (error);
1058 * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1061 sys_setsockopt(struct setsockopt_args *uap)
1063 struct thread *td = curthread;
1064 struct sockopt sopt;
1065 int error;
1067 sopt.sopt_level = uap->level;
1068 sopt.sopt_name = uap->name;
1069 sopt.sopt_valsize = uap->valsize;
1070 sopt.sopt_td = td;
1072 if (uap->val) {
1073 sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1074 error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1075 if (error)
1076 goto out;
1077 } else {
1078 sopt.sopt_val = NULL;
1080 error = kern_setsockopt(uap->s, &sopt);
1081 if (error)
1082 goto out;
1083 if (uap->val)
1084 error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1085 out:
1086 if (uap->val)
1087 kfree(sopt.sopt_val, M_TEMP);
1088 return(error);
1092 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1093 * in kernel pointer instead of a userland pointer. This allows us
1094 * to manipulate socket options in the emulation code.
1097 kern_getsockopt(int s, struct sockopt *sopt)
1099 struct thread *td = curthread;
1100 struct proc *p = td->td_proc;
1101 struct file *fp;
1102 int error;
1104 if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1105 return (EFAULT);
1106 if (sopt->sopt_valsize < 0)
1107 return (EINVAL);
1109 error = holdsock(p->p_fd, s, &fp);
1110 if (error)
1111 return (error);
1113 error = sogetopt((struct socket *)fp->f_data, sopt);
1114 fdrop(fp);
1115 return (error);
1119 * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1122 sys_getsockopt(struct getsockopt_args *uap)
1124 struct thread *td = curthread;
1125 struct sockopt sopt;
1126 int error, valsize;
1128 if (uap->val) {
1129 error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1130 if (error)
1131 return (error);
1132 if (valsize < 0)
1133 return (EINVAL);
1134 } else {
1135 valsize = 0;
1138 sopt.sopt_level = uap->level;
1139 sopt.sopt_name = uap->name;
1140 sopt.sopt_valsize = valsize;
1141 sopt.sopt_td = td;
1143 if (uap->val) {
1144 sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1145 error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1146 if (error)
1147 goto out;
1148 } else {
1149 sopt.sopt_val = NULL;
1151 error = kern_getsockopt(uap->s, &sopt);
1152 if (error)
1153 goto out;
1154 valsize = sopt.sopt_valsize;
1155 error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1156 if (error)
1157 goto out;
1158 if (uap->val)
1159 error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1160 out:
1161 if (uap->val)
1162 kfree(sopt.sopt_val, M_TEMP);
1163 return (error);
1167 * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1168 * This allows kern_getsockname() to return a pointer to an allocated struct
1169 * sockaddr which must be freed later with FREE(). The caller must
1170 * initialize *name to NULL.
1173 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1175 struct thread *td = curthread;
1176 struct proc *p = td->td_proc;
1177 struct file *fp;
1178 struct socket *so;
1179 struct sockaddr *sa = NULL;
1180 int error;
1182 error = holdsock(p->p_fd, s, &fp);
1183 if (error)
1184 return (error);
1185 if (*namelen < 0) {
1186 fdrop(fp);
1187 return (EINVAL);
1189 so = (struct socket *)fp->f_data;
1190 error = so_pru_sockaddr(so, &sa);
1191 if (error == 0) {
1192 if (sa == 0) {
1193 *namelen = 0;
1194 } else {
1195 *namelen = MIN(*namelen, sa->sa_len);
1196 *name = sa;
1200 fdrop(fp);
1201 return (error);
1205 * getsockname_args(int fdes, caddr_t asa, int *alen)
1207 * Get socket name.
1210 sys_getsockname(struct getsockname_args *uap)
1212 struct sockaddr *sa = NULL;
1213 int error, sa_len;
1215 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1216 if (error)
1217 return (error);
1219 error = kern_getsockname(uap->fdes, &sa, &sa_len);
1221 if (error == 0)
1222 error = copyout(sa, uap->asa, sa_len);
1223 if (error == 0)
1224 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1225 if (sa)
1226 FREE(sa, M_SONAME);
1227 return (error);
1231 * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1232 * This allows kern_getpeername() to return a pointer to an allocated struct
1233 * sockaddr which must be freed later with FREE(). The caller must
1234 * initialize *name to NULL.
1237 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1239 struct thread *td = curthread;
1240 struct proc *p = td->td_proc;
1241 struct file *fp;
1242 struct socket *so;
1243 struct sockaddr *sa = NULL;
1244 int error;
1246 error = holdsock(p->p_fd, s, &fp);
1247 if (error)
1248 return (error);
1249 if (*namelen < 0) {
1250 fdrop(fp);
1251 return (EINVAL);
1253 so = (struct socket *)fp->f_data;
1254 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1255 fdrop(fp);
1256 return (ENOTCONN);
1258 error = so_pru_peeraddr(so, &sa);
1259 if (error == 0) {
1260 if (sa == 0) {
1261 *namelen = 0;
1262 } else {
1263 *namelen = MIN(*namelen, sa->sa_len);
1264 *name = sa;
1268 fdrop(fp);
1269 return (error);
1273 * getpeername_args(int fdes, caddr_t asa, int *alen)
1275 * Get name of peer for connected socket.
1278 sys_getpeername(struct getpeername_args *uap)
1280 struct sockaddr *sa = NULL;
1281 int error, sa_len;
1283 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1284 if (error)
1285 return (error);
1287 error = kern_getpeername(uap->fdes, &sa, &sa_len);
1289 if (error == 0)
1290 error = copyout(sa, uap->asa, sa_len);
1291 if (error == 0)
1292 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1293 if (sa)
1294 FREE(sa, M_SONAME);
1295 return (error);
1299 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1301 struct sockaddr *sa;
1302 int error;
1304 *namp = NULL;
1305 if (len > SOCK_MAXADDRLEN)
1306 return ENAMETOOLONG;
1307 if (len < offsetof(struct sockaddr, sa_data[0]))
1308 return EDOM;
1309 MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1310 error = copyin(uaddr, sa, len);
1311 if (error) {
1312 FREE(sa, M_SONAME);
1313 } else {
1314 #if BYTE_ORDER != BIG_ENDIAN
1316 * The bind(), connect(), and sendto() syscalls were not
1317 * versioned for COMPAT_43. Thus, this check must stay.
1319 if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1320 sa->sa_family = sa->sa_len;
1321 #endif
1322 sa->sa_len = len;
1323 *namp = sa;
1325 return error;
1329 * Detach a mapped page and release resources back to the system.
1330 * We must release our wiring and if the object is ripped out
1331 * from under the vm_page we become responsible for freeing the
1332 * page. These routines must be MPSAFE.
1334 * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1336 * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1338 static void
1339 sf_buf_mref(void *arg)
1341 struct sfbuf_mref *sfm = arg;
1344 * We must already hold a ref so there is no race to 0, just
1345 * atomically increment the count.
1347 atomic_add_int(&sfm->mref_count, 1);
1350 static void
1351 sf_buf_mfree(void *arg)
1353 struct sfbuf_mref *sfm = arg;
1354 vm_page_t m;
1356 KKASSERT(sfm->mref_count > 0);
1357 if (sfm->mref_count == 1) {
1359 * We are the only holder so no further locking is required,
1360 * the sfbuf can simply be freed.
1362 sfm->mref_count = 0;
1363 goto freeit;
1364 } else {
1366 * There may be other holders, we must obtain the serializer
1367 * to protect against a sf_buf_mfree() race to 0. An atomic
1368 * operation is still required for races against
1369 * sf_buf_mref().
1371 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1373 lwkt_serialize_enter(&sfm->serializer);
1374 atomic_subtract_int(&sfm->mref_count, 1);
1375 if (sfm->mref_count == 0) {
1376 lwkt_serialize_exit(&sfm->serializer);
1377 freeit:
1378 get_mplock();
1379 crit_enter();
1380 m = sf_buf_page(sfm->sf);
1381 sf_buf_free(sfm->sf);
1382 vm_page_unwire(m, 0);
1383 if (m->wire_count == 0 && m->object == NULL)
1384 vm_page_try_to_free(m);
1385 crit_exit();
1386 rel_mplock();
1387 kfree(sfm, M_SENDFILE);
1388 } else {
1389 lwkt_serialize_exit(&sfm->serializer);
1395 * sendfile(2).
1396 * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1397 * struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1399 * Send a file specified by 'fd' and starting at 'offset' to a socket
1400 * specified by 's'. Send only 'nbytes' of the file or until EOF if
1401 * nbytes == 0. Optionally add a header and/or trailer to the socket
1402 * output. If specified, write the total number of bytes sent into *sbytes.
1404 * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1405 * the headers to count against the remaining bytes to be sent from
1406 * the file descriptor. We may wish to implement a compatibility syscall
1407 * in the future.
1410 sys_sendfile(struct sendfile_args *uap)
1412 struct thread *td = curthread;
1413 struct proc *p = td->td_proc;
1414 struct file *fp;
1415 struct vnode *vp = NULL;
1416 struct sf_hdtr hdtr;
1417 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1418 struct uio auio;
1419 struct mbuf *mheader = NULL;
1420 off_t hdtr_size = 0, sbytes;
1421 int error, hbytes = 0, tbytes;
1423 KKASSERT(p);
1426 * Do argument checking. Must be a regular file in, stream
1427 * type and connected socket out, positive offset.
1429 fp = holdfp(p->p_fd, uap->fd, FREAD);
1430 if (fp == NULL) {
1431 return (EBADF);
1433 if (fp->f_type != DTYPE_VNODE) {
1434 fdrop(fp);
1435 return (EINVAL);
1437 vp = (struct vnode *)fp->f_data;
1438 vref(vp);
1439 fdrop(fp);
1442 * If specified, get the pointer to the sf_hdtr struct for
1443 * any headers/trailers.
1445 if (uap->hdtr) {
1446 error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1447 if (error)
1448 goto done;
1450 * Send any headers.
1452 if (hdtr.headers) {
1453 error = iovec_copyin(hdtr.headers, &iov, aiov,
1454 hdtr.hdr_cnt, &hbytes);
1455 if (error)
1456 goto done;
1457 auio.uio_iov = iov;
1458 auio.uio_iovcnt = hdtr.hdr_cnt;
1459 auio.uio_offset = 0;
1460 auio.uio_segflg = UIO_USERSPACE;
1461 auio.uio_rw = UIO_WRITE;
1462 auio.uio_td = td;
1463 auio.uio_resid = hbytes;
1465 mheader = m_uiomove(&auio);
1467 iovec_free(&iov, aiov);
1468 if (mheader == NULL)
1469 goto done;
1473 error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1474 &sbytes, uap->flags);
1475 if (error)
1476 goto done;
1479 * Send trailers. Wimp out and use writev(2).
1481 if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1482 error = iovec_copyin(hdtr.trailers, &iov, aiov,
1483 hdtr.trl_cnt, &auio.uio_resid);
1484 if (error)
1485 goto done;
1486 auio.uio_iov = iov;
1487 auio.uio_iovcnt = hdtr.trl_cnt;
1488 auio.uio_offset = 0;
1489 auio.uio_segflg = UIO_USERSPACE;
1490 auio.uio_rw = UIO_WRITE;
1491 auio.uio_td = td;
1493 error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1495 iovec_free(&iov, aiov);
1496 if (error)
1497 goto done;
1498 hdtr_size += tbytes; /* trailer bytes successfully sent */
1501 done:
1502 if (uap->sbytes != NULL) {
1503 sbytes += hdtr_size;
1504 copyout(&sbytes, uap->sbytes, sizeof(off_t));
1506 if (vp)
1507 vrele(vp);
1508 return (error);
1512 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1513 struct mbuf *mheader, off_t *sbytes, int flags)
1515 struct thread *td = curthread;
1516 struct proc *p = td->td_proc;
1517 struct vm_object *obj;
1518 struct socket *so;
1519 struct file *fp;
1520 struct mbuf *m;
1521 struct sf_buf *sf;
1522 struct sfbuf_mref *sfm;
1523 struct vm_page *pg;
1524 off_t off, xfsize;
1525 off_t hbytes = 0;
1526 int error = 0;
1528 if (vp->v_type != VREG) {
1529 error = EINVAL;
1530 goto done0;
1532 if ((obj = vp->v_object) == NULL) {
1533 error = EINVAL;
1534 goto done0;
1536 error = holdsock(p->p_fd, sfd, &fp);
1537 if (error)
1538 goto done0;
1539 so = (struct socket *)fp->f_data;
1540 if (so->so_type != SOCK_STREAM) {
1541 error = EINVAL;
1542 goto done;
1544 if ((so->so_state & SS_ISCONNECTED) == 0) {
1545 error = ENOTCONN;
1546 goto done;
1548 if (offset < 0) {
1549 error = EINVAL;
1550 goto done;
1553 *sbytes = 0;
1555 * Protect against multiple writers to the socket.
1557 ssb_lock(&so->so_snd, M_WAITOK);
1560 * Loop through the pages in the file, starting with the requested
1561 * offset. Get a file page (do I/O if necessary), map the file page
1562 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1563 * it on the socket.
1565 for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1566 vm_pindex_t pindex;
1567 vm_offset_t pgoff;
1569 pindex = OFF_TO_IDX(off);
1570 retry_lookup:
1572 * Calculate the amount to transfer. Not to exceed a page,
1573 * the EOF, or the passed in nbytes.
1575 xfsize = vp->v_filesize - off;
1576 if (xfsize > PAGE_SIZE)
1577 xfsize = PAGE_SIZE;
1578 pgoff = (vm_offset_t)(off & PAGE_MASK);
1579 if (PAGE_SIZE - pgoff < xfsize)
1580 xfsize = PAGE_SIZE - pgoff;
1581 if (nbytes && xfsize > (nbytes - *sbytes))
1582 xfsize = nbytes - *sbytes;
1583 if (xfsize <= 0)
1584 break;
1586 * Optimize the non-blocking case by looking at the socket space
1587 * before going to the extra work of constituting the sf_buf.
1589 if ((fp->f_flag & FNONBLOCK) && ssb_space(&so->so_snd) <= 0) {
1590 if (so->so_state & SS_CANTSENDMORE)
1591 error = EPIPE;
1592 else
1593 error = EAGAIN;
1594 ssb_unlock(&so->so_snd);
1595 goto done;
1598 * Attempt to look up the page.
1600 * Allocate if not found, wait and loop if busy, then
1601 * wire the page. critical section protection is
1602 * required to maintain the object association (an
1603 * interrupt can free the page) through to the
1604 * vm_page_wire() call.
1606 crit_enter();
1607 pg = vm_page_lookup(obj, pindex);
1608 if (pg == NULL) {
1609 pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1610 if (pg == NULL) {
1611 vm_wait(0);
1612 crit_exit();
1613 goto retry_lookup;
1615 vm_page_wakeup(pg);
1616 } else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1617 crit_exit();
1618 goto retry_lookup;
1620 vm_page_wire(pg);
1621 crit_exit();
1624 * If page is not valid for what we need, initiate I/O
1627 if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1628 struct uio auio;
1629 struct iovec aiov;
1630 int bsize;
1633 * Ensure that our page is still around when the I/O
1634 * completes.
1636 vm_page_io_start(pg);
1639 * Get the page from backing store.
1641 bsize = vp->v_mount->mnt_stat.f_iosize;
1642 auio.uio_iov = &aiov;
1643 auio.uio_iovcnt = 1;
1644 aiov.iov_base = 0;
1645 aiov.iov_len = MAXBSIZE;
1646 auio.uio_resid = MAXBSIZE;
1647 auio.uio_offset = trunc_page(off);
1648 auio.uio_segflg = UIO_NOCOPY;
1649 auio.uio_rw = UIO_READ;
1650 auio.uio_td = td;
1651 vn_lock(vp, LK_SHARED | LK_RETRY);
1652 error = VOP_READ(vp, &auio,
1653 IO_VMIO | ((MAXBSIZE / bsize) << 16),
1654 p->p_ucred);
1655 vn_unlock(vp);
1656 vm_page_flag_clear(pg, PG_ZERO);
1657 vm_page_io_finish(pg);
1658 if (error) {
1659 crit_enter();
1660 vm_page_unwire(pg, 0);
1661 vm_page_try_to_free(pg);
1662 crit_exit();
1663 ssb_unlock(&so->so_snd);
1664 goto done;
1670 * Get a sendfile buf. We usually wait as long as necessary,
1671 * but this wait can be interrupted.
1673 if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1674 crit_enter();
1675 vm_page_unwire(pg, 0);
1676 vm_page_try_to_free(pg);
1677 crit_exit();
1678 ssb_unlock(&so->so_snd);
1679 error = EINTR;
1680 goto done;
1684 * Get an mbuf header and set it up as having external storage.
1686 MGETHDR(m, MB_WAIT, MT_DATA);
1687 if (m == NULL) {
1688 error = ENOBUFS;
1689 sf_buf_free(sf);
1690 ssb_unlock(&so->so_snd);
1691 goto done;
1695 * sfm is a temporary hack, use a per-cpu cache for this.
1697 sfm = kmalloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1698 sfm->sf = sf;
1699 sfm->mref_count = 1;
1700 lwkt_serialize_init(&sfm->serializer);
1702 m->m_ext.ext_free = sf_buf_mfree;
1703 m->m_ext.ext_ref = sf_buf_mref;
1704 m->m_ext.ext_arg = sfm;
1705 m->m_ext.ext_buf = (void *)sf->kva;
1706 m->m_ext.ext_size = PAGE_SIZE;
1707 m->m_data = (char *) sf->kva + pgoff;
1708 m->m_flags |= M_EXT;
1709 m->m_pkthdr.len = m->m_len = xfsize;
1710 KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1712 if (mheader != NULL) {
1713 hbytes = mheader->m_pkthdr.len;
1714 mheader->m_pkthdr.len += m->m_pkthdr.len;
1715 m_cat(mheader, m);
1716 m = mheader;
1717 mheader = NULL;
1718 } else
1719 hbytes = 0;
1722 * Add the buffer to the socket buffer chain.
1724 crit_enter();
1725 retry_space:
1727 * Make sure that the socket is still able to take more data.
1728 * CANTSENDMORE being true usually means that the connection
1729 * was closed. so_error is true when an error was sensed after
1730 * a previous send.
1731 * The state is checked after the page mapping and buffer
1732 * allocation above since those operations may block and make
1733 * any socket checks stale. From this point forward, nothing
1734 * blocks before the pru_send (or more accurately, any blocking
1735 * results in a loop back to here to re-check).
1737 if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1738 if (so->so_state & SS_CANTSENDMORE) {
1739 error = EPIPE;
1740 } else {
1741 error = so->so_error;
1742 so->so_error = 0;
1744 m_freem(m);
1745 ssb_unlock(&so->so_snd);
1746 crit_exit();
1747 goto done;
1750 * Wait for socket space to become available. We do this just
1751 * after checking the connection state above in order to avoid
1752 * a race condition with ssb_wait().
1754 if (ssb_space(&so->so_snd) < so->so_snd.ssb_lowat) {
1755 if (fp->f_flag & FNONBLOCK) {
1756 m_freem(m);
1757 ssb_unlock(&so->so_snd);
1758 crit_exit();
1759 error = EAGAIN;
1760 goto done;
1762 error = ssb_wait(&so->so_snd);
1764 * An error from ssb_wait usually indicates that we've
1765 * been interrupted by a signal. If we've sent anything
1766 * then return bytes sent, otherwise return the error.
1768 if (error) {
1769 m_freem(m);
1770 ssb_unlock(&so->so_snd);
1771 crit_exit();
1772 goto done;
1774 goto retry_space;
1776 error = so_pru_send(so, 0, m, NULL, NULL, td);
1777 crit_exit();
1778 if (error) {
1779 ssb_unlock(&so->so_snd);
1780 goto done;
1783 if (mheader != NULL) {
1784 *sbytes += mheader->m_pkthdr.len;
1785 error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1786 mheader = NULL;
1788 ssb_unlock(&so->so_snd);
1790 done:
1791 fdrop(fp);
1792 done0:
1793 if (mheader != NULL)
1794 m_freem(mheader);
1795 return (error);
1799 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1801 #ifdef SCTP
1802 struct thread *td = curthread;
1803 struct proc *p = td->td_proc;
1804 struct file *lfp = NULL;
1805 struct file *nfp = NULL;
1806 int error;
1807 struct socket *head, *so;
1808 caddr_t assoc_id;
1809 int fd;
1810 short fflag; /* type must match fp->f_flag */
1812 assoc_id = uap->name;
1813 error = holdsock(p->p_fd, uap->sd, &lfp);
1814 if (error) {
1815 return (error);
1817 crit_enter();
1818 head = (struct socket *)lfp->f_data;
1819 error = sctp_can_peel_off(head, assoc_id);
1820 if (error) {
1821 crit_exit();
1822 goto done;
1825 * At this point we know we do have a assoc to pull
1826 * we proceed to get the fd setup. This may block
1827 * but that is ok.
1830 fflag = lfp->f_flag;
1831 error = falloc(p, &nfp, &fd);
1832 if (error) {
1834 * Probably ran out of file descriptors. Put the
1835 * unaccepted connection back onto the queue and
1836 * do another wakeup so some other process might
1837 * have a chance at it.
1839 crit_exit();
1840 goto done;
1842 uap->sysmsg_result = fd;
1844 so = sctp_get_peeloff(head, assoc_id, &error);
1845 if (so == NULL) {
1847 * Either someone else peeled it off OR
1848 * we can't get a socket.
1850 goto noconnection;
1852 so->so_state &= ~SS_COMP;
1853 so->so_state &= ~SS_NOFDREF;
1854 so->so_head = NULL;
1855 if (head->so_sigio != NULL)
1856 fsetown(fgetown(head->so_sigio), &so->so_sigio);
1858 nfp->f_type = DTYPE_SOCKET;
1859 nfp->f_flag = fflag;
1860 nfp->f_ops = &socketops;
1861 nfp->f_data = so;
1863 noconnection:
1865 * Assign the file pointer to the reserved descriptor, or clear
1866 * the reserved descriptor if an error occured.
1868 if (error)
1869 fsetfd(p, NULL, fd);
1870 else
1871 fsetfd(p, nfp, fd);
1872 crit_exit();
1874 * Release explicitly held references before returning.
1876 done:
1877 if (nfp != NULL)
1878 fdrop(nfp);
1879 fdrop(lfp);
1880 return (error);
1881 #else /* SCTP */
1882 return(EOPNOTSUPP);
1883 #endif /* SCTP */