HAMMER: MFC all changes through 20080924
[dragonfly.git] / sys / vfs / hammer / hammer_io.c
blobc49809b4c80fb1bd7b08e2d5ab183fe26b923b94
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.49.2.6 2008/09/25 01:42:52 dillon Exp $
37 * IO Primitives and buffer cache management
39 * All major data-tracking structures in HAMMER contain a struct hammer_io
40 * which is used to manage their backing store. We use filesystem buffers
41 * for backing store and we leave them passively associated with their
42 * HAMMER structures.
44 * If the kernel tries to destroy a passively associated buf which we cannot
45 * yet let go we set B_LOCKED in the buffer and then actively released it
46 * later when we can.
49 #include "hammer.h"
50 #include <sys/fcntl.h>
51 #include <sys/nlookup.h>
52 #include <sys/buf.h>
53 #include <sys/buf2.h>
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 #if 0
58 static void hammer_io_direct_read_complete(struct bio *nbio);
59 #endif
60 static void hammer_io_direct_write_complete(struct bio *nbio);
61 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
62 static void hammer_io_set_modlist(struct hammer_io *io);
63 static void hammer_io_flush_mark(hammer_volume_t volume);
64 static void hammer_io_flush_sync_done(struct bio *bio);
68 * Initialize a new, already-zero'd hammer_io structure, or reinitialize
69 * an existing hammer_io structure which may have switched to another type.
71 void
72 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
74 io->volume = volume;
75 io->hmp = volume->io.hmp;
76 io->type = type;
80 * Helper routine to disassociate a buffer cache buffer from an I/O
81 * structure. The buffer is unlocked and marked appropriate for reclamation.
83 * The io may have 0 or 1 references depending on who called us. The
84 * caller is responsible for dealing with the refs.
86 * This call can only be made when no action is required on the buffer.
88 * The caller must own the buffer and the IO must indicate that the
89 * structure no longer owns it (io.released != 0).
91 static void
92 hammer_io_disassociate(hammer_io_structure_t iou)
94 struct buf *bp = iou->io.bp;
96 KKASSERT(iou->io.released);
97 KKASSERT(iou->io.modified == 0);
98 KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
99 buf_dep_init(bp);
100 iou->io.bp = NULL;
103 * If the buffer was locked someone wanted to get rid of it.
105 if (bp->b_flags & B_LOCKED) {
106 --hammer_count_io_locked;
107 bp->b_flags &= ~B_LOCKED;
109 if (iou->io.reclaim) {
110 bp->b_flags |= B_NOCACHE|B_RELBUF;
111 iou->io.reclaim = 0;
114 switch(iou->io.type) {
115 case HAMMER_STRUCTURE_VOLUME:
116 iou->volume.ondisk = NULL;
117 break;
118 case HAMMER_STRUCTURE_DATA_BUFFER:
119 case HAMMER_STRUCTURE_META_BUFFER:
120 case HAMMER_STRUCTURE_UNDO_BUFFER:
121 iou->buffer.ondisk = NULL;
122 break;
127 * Wait for any physical IO to complete
129 void
130 hammer_io_wait(hammer_io_t io)
132 if (io->running) {
133 crit_enter();
134 tsleep_interlock(io);
135 io->waiting = 1;
136 for (;;) {
137 tsleep(io, 0, "hmrflw", 0);
138 if (io->running == 0)
139 break;
140 tsleep_interlock(io);
141 io->waiting = 1;
142 if (io->running == 0)
143 break;
145 crit_exit();
150 * Wait for all hammer_io-initated write I/O's to complete. This is not
151 * supposed to count direct I/O's but some can leak through (for
152 * non-full-sized direct I/Os).
154 void
155 hammer_io_wait_all(hammer_mount_t hmp, const char *ident)
157 hammer_io_flush_sync(hmp);
158 crit_enter();
159 while (hmp->io_running_space)
160 tsleep(&hmp->io_running_space, 0, ident, 0);
161 crit_exit();
164 #define HAMMER_MAXRA 4
167 * Load bp for a HAMMER structure. The io must be exclusively locked by
168 * the caller.
170 * This routine is mostly used on meta-data and small-data blocks. Generally
171 * speaking HAMMER assumes some locality of reference and will cluster
172 * a 64K read.
174 * Note that clustering occurs at the device layer, not the logical layer.
175 * If the buffers do not apply to the current operation they may apply to
176 * some other.
179 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit)
181 struct buf *bp;
182 int error;
184 if ((bp = io->bp) == NULL) {
185 hammer_count_io_running_read += io->bytes;
186 if (hammer_cluster_enable) {
187 error = cluster_read(devvp, limit,
188 io->offset, io->bytes,
189 HAMMER_CLUSTER_SIZE,
190 HAMMER_CLUSTER_BUFS, &io->bp);
191 } else {
192 error = bread(devvp, io->offset, io->bytes, &io->bp);
194 hammer_stats_disk_read += io->bytes;
195 hammer_count_io_running_read -= io->bytes;
198 * The code generally assumes b_ops/b_dep has been set-up,
199 * even if we error out here.
201 bp = io->bp;
202 bp->b_ops = &hammer_bioops;
203 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
204 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
205 BUF_KERNPROC(bp);
206 KKASSERT(io->modified == 0);
207 KKASSERT(io->running == 0);
208 KKASSERT(io->waiting == 0);
209 io->released = 0; /* we hold an active lock on bp */
210 } else {
211 error = 0;
213 return(error);
217 * Similar to hammer_io_read() but returns a zero'd out buffer instead.
218 * Must be called with the IO exclusively locked.
220 * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
221 * I/O by forcing the buffer to not be in a released state before calling
222 * it.
224 * This function will also mark the IO as modified but it will not
225 * increment the modify_refs count.
228 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
230 struct buf *bp;
232 if ((bp = io->bp) == NULL) {
233 io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
234 bp = io->bp;
235 bp->b_ops = &hammer_bioops;
236 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
237 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
238 io->released = 0;
239 KKASSERT(io->running == 0);
240 io->waiting = 0;
241 BUF_KERNPROC(bp);
242 } else {
243 if (io->released) {
244 regetblk(bp);
245 BUF_KERNPROC(bp);
246 io->released = 0;
249 hammer_io_modify(io, 0);
250 vfs_bio_clrbuf(bp);
251 return(0);
255 * Remove potential device level aliases against buffers managed by high level
256 * vnodes. Aliases can also be created due to mixed buffer sizes.
258 * This is nasty because the buffers are also VMIO-backed. Even if a buffer
259 * does not exist its backing VM pages might, and we have to invalidate
260 * those as well or a getblk() will reinstate them.
262 void
263 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
265 hammer_io_structure_t iou;
266 hammer_off_t phys_offset;
267 struct buf *bp;
269 phys_offset = volume->ondisk->vol_buf_beg +
270 (zone2_offset & HAMMER_OFF_SHORT_MASK);
271 crit_enter();
272 if ((bp = findblk(volume->devvp, phys_offset)) != NULL)
273 bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0);
274 else
275 bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
276 if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
277 hammer_ref(&iou->io.lock);
278 hammer_io_clear_modify(&iou->io, 1);
279 bundirty(bp);
280 iou->io.released = 0;
281 BUF_KERNPROC(bp);
282 iou->io.reclaim = 1;
283 iou->io.waitdep = 1;
284 KKASSERT(iou->io.lock.refs == 1);
285 hammer_rel_buffer(&iou->buffer, 0);
286 /*hammer_io_deallocate(bp);*/
287 } else {
288 KKASSERT((bp->b_flags & B_LOCKED) == 0);
289 bundirty(bp);
290 bp->b_flags |= B_NOCACHE|B_RELBUF;
291 brelse(bp);
293 crit_exit();
297 * This routine is called on the last reference to a hammer structure.
298 * The io is usually interlocked with io.loading and io.refs must be 1.
300 * This routine may return a non-NULL bp to the caller for dispoal. Disposal
301 * simply means the caller finishes decrementing the ref-count on the
302 * IO structure then brelse()'s the bp. The bp may or may not still be
303 * passively associated with the IO.
305 * The only requirement here is that modified meta-data and volume-header
306 * buffer may NOT be disassociated from the IO structure, and consequently
307 * we also leave such buffers actively associated with the IO if they already
308 * are (since the kernel can't do anything with them anyway). Only the
309 * flusher is allowed to write such buffers out. Modified pure-data and
310 * undo buffers are returned to the kernel but left passively associated
311 * so we can track when the kernel writes the bp out.
313 struct buf *
314 hammer_io_release(struct hammer_io *io, int flush)
316 union hammer_io_structure *iou = (void *)io;
317 struct buf *bp;
319 if ((bp = io->bp) == NULL)
320 return(NULL);
323 * Try to flush a dirty IO to disk if asked to by the
324 * caller or if the kernel tried to flush the buffer in the past.
326 * Kernel-initiated flushes are only allowed for pure-data buffers.
327 * meta-data and volume buffers can only be flushed explicitly
328 * by HAMMER.
330 if (io->modified) {
331 if (flush) {
332 hammer_io_flush(io);
333 } else if (bp->b_flags & B_LOCKED) {
334 switch(io->type) {
335 case HAMMER_STRUCTURE_DATA_BUFFER:
336 case HAMMER_STRUCTURE_UNDO_BUFFER:
337 hammer_io_flush(io);
338 break;
339 default:
340 break;
342 } /* else no explicit request to flush the buffer */
346 * Wait for the IO to complete if asked to. This occurs when
347 * the buffer must be disposed of definitively during an umount
348 * or buffer invalidation.
350 if (io->waitdep && io->running) {
351 hammer_io_wait(io);
355 * Return control of the buffer to the kernel (with the provisio
356 * that our bioops can override kernel decisions with regards to
357 * the buffer).
359 if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
361 * Always disassociate the bp if an explicit flush
362 * was requested and the IO completed with no error
363 * (so unmount can really clean up the structure).
365 if (io->released) {
366 regetblk(bp);
367 BUF_KERNPROC(bp);
368 } else {
369 io->released = 1;
371 hammer_io_disassociate((hammer_io_structure_t)io);
372 /* return the bp */
373 } else if (io->modified) {
375 * Only certain IO types can be released to the kernel if
376 * the buffer has been modified.
378 * volume and meta-data IO types may only be explicitly
379 * flushed by HAMMER.
381 switch(io->type) {
382 case HAMMER_STRUCTURE_DATA_BUFFER:
383 case HAMMER_STRUCTURE_UNDO_BUFFER:
384 if (io->released == 0) {
385 io->released = 1;
386 bdwrite(bp);
388 break;
389 default:
390 break;
392 bp = NULL; /* bp left associated */
393 } else if (io->released == 0) {
395 * Clean buffers can be generally released to the kernel.
396 * We leave the bp passively associated with the HAMMER
397 * structure and use bioops to disconnect it later on
398 * if the kernel wants to discard the buffer.
400 * We can steal the structure's ownership of the bp.
402 io->released = 1;
403 if (bp->b_flags & B_LOCKED) {
404 hammer_io_disassociate(iou);
405 /* return the bp */
406 } else {
407 if (io->reclaim) {
408 hammer_io_disassociate(iou);
409 /* return the bp */
410 } else {
411 /* return the bp (bp passively associated) */
414 } else {
416 * A released buffer is passively associate with our
417 * hammer_io structure. The kernel cannot destroy it
418 * without making a bioops call. If the kernel (B_LOCKED)
419 * or we (reclaim) requested that the buffer be destroyed
420 * we destroy it, otherwise we do a quick get/release to
421 * reset its position in the kernel's LRU list.
423 * Leaving the buffer passively associated allows us to
424 * use the kernel's LRU buffer flushing mechanisms rather
425 * then rolling our own.
427 * XXX there are two ways of doing this. We can re-acquire
428 * and passively release to reset the LRU, or not.
430 if (io->running == 0) {
431 regetblk(bp);
432 if ((bp->b_flags & B_LOCKED) || io->reclaim) {
433 hammer_io_disassociate(iou);
434 /* return the bp */
435 } else {
436 /* return the bp (bp passively associated) */
438 } else {
440 * bp is left passively associated but we do not
441 * try to reacquire it. Interactions with the io
442 * structure will occur on completion of the bp's
443 * I/O.
445 bp = NULL;
448 return(bp);
452 * This routine is called with a locked IO when a flush is desired and
453 * no other references to the structure exists other then ours. This
454 * routine is ONLY called when HAMMER believes it is safe to flush a
455 * potentially modified buffer out.
457 void
458 hammer_io_flush(struct hammer_io *io)
460 struct buf *bp;
463 * Degenerate case - nothing to flush if nothing is dirty.
465 if (io->modified == 0) {
466 return;
469 KKASSERT(io->bp);
470 KKASSERT(io->modify_refs <= 0);
473 * Acquire ownership of the bp, particularly before we clear our
474 * modified flag.
476 * We are going to bawrite() this bp. Don't leave a window where
477 * io->released is set, we actually own the bp rather then our
478 * buffer.
480 bp = io->bp;
481 if (io->released) {
482 regetblk(bp);
483 /* BUF_KERNPROC(io->bp); */
484 /* io->released = 0; */
485 KKASSERT(io->released);
486 KKASSERT(io->bp == bp);
488 io->released = 1;
491 * Acquire exclusive access to the bp and then clear the modified
492 * state of the buffer prior to issuing I/O to interlock any
493 * modifications made while the I/O is in progress. This shouldn't
494 * happen anyway but losing data would be worse. The modified bit
495 * will be rechecked after the IO completes.
497 * NOTE: This call also finalizes the buffer's content (inval == 0).
499 * This is only legal when lock.refs == 1 (otherwise we might clear
500 * the modified bit while there are still users of the cluster
501 * modifying the data).
503 * Do this before potentially blocking so any attempt to modify the
504 * ondisk while we are blocked blocks waiting for us.
506 hammer_ref(&io->lock);
507 hammer_io_clear_modify(io, 0);
508 hammer_unref(&io->lock);
511 * Transfer ownership to the kernel and initiate I/O.
513 io->running = 1;
514 io->hmp->io_running_space += io->bytes;
515 hammer_count_io_running_write += io->bytes;
516 bawrite(bp);
517 hammer_io_flush_mark(io->volume);
520 /************************************************************************
521 * BUFFER DIRTYING *
522 ************************************************************************
524 * These routines deal with dependancies created when IO buffers get
525 * modified. The caller must call hammer_modify_*() on a referenced
526 * HAMMER structure prior to modifying its on-disk data.
528 * Any intent to modify an IO buffer acquires the related bp and imposes
529 * various write ordering dependancies.
533 * Mark a HAMMER structure as undergoing modification. Meta-data buffers
534 * are locked until the flusher can deal with them, pure data buffers
535 * can be written out.
537 static
538 void
539 hammer_io_modify(hammer_io_t io, int count)
542 * io->modify_refs must be >= 0
544 while (io->modify_refs < 0) {
545 io->waitmod = 1;
546 tsleep(io, 0, "hmrmod", 0);
550 * Shortcut if nothing to do.
552 KKASSERT(io->lock.refs != 0 && io->bp != NULL);
553 io->modify_refs += count;
554 if (io->modified && io->released == 0)
555 return;
557 hammer_lock_ex(&io->lock);
558 if (io->modified == 0) {
559 hammer_io_set_modlist(io);
560 io->modified = 1;
562 if (io->released) {
563 regetblk(io->bp);
564 BUF_KERNPROC(io->bp);
565 io->released = 0;
566 KKASSERT(io->modified != 0);
568 hammer_unlock(&io->lock);
571 static __inline
572 void
573 hammer_io_modify_done(hammer_io_t io)
575 KKASSERT(io->modify_refs > 0);
576 --io->modify_refs;
577 if (io->modify_refs == 0 && io->waitmod) {
578 io->waitmod = 0;
579 wakeup(io);
583 void
584 hammer_io_write_interlock(hammer_io_t io)
586 while (io->modify_refs != 0) {
587 io->waitmod = 1;
588 tsleep(io, 0, "hmrmod", 0);
590 io->modify_refs = -1;
593 void
594 hammer_io_done_interlock(hammer_io_t io)
596 KKASSERT(io->modify_refs == -1);
597 io->modify_refs = 0;
598 if (io->waitmod) {
599 io->waitmod = 0;
600 wakeup(io);
605 * Caller intends to modify a volume's ondisk structure.
607 * This is only allowed if we are the flusher or we have a ref on the
608 * sync_lock.
610 void
611 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
612 void *base, int len)
614 KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
616 hammer_io_modify(&volume->io, 1);
617 if (len) {
618 intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
619 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
620 hammer_generate_undo(trans, &volume->io,
621 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
622 base, len);
627 * Caller intends to modify a buffer's ondisk structure.
629 * This is only allowed if we are the flusher or we have a ref on the
630 * sync_lock.
632 void
633 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
634 void *base, int len)
636 KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
638 hammer_io_modify(&buffer->io, 1);
639 if (len) {
640 intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
641 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
642 hammer_generate_undo(trans, &buffer->io,
643 buffer->zone2_offset + rel_offset,
644 base, len);
648 void
649 hammer_modify_volume_done(hammer_volume_t volume)
651 hammer_io_modify_done(&volume->io);
654 void
655 hammer_modify_buffer_done(hammer_buffer_t buffer)
657 hammer_io_modify_done(&buffer->io);
661 * Mark an entity as not being dirty any more and finalize any
662 * delayed adjustments to the buffer.
664 * Delayed adjustments are an important performance enhancement, allowing
665 * us to avoid recalculating B-Tree node CRCs over and over again when
666 * making bulk-modifications to the B-Tree.
668 * If inval is non-zero delayed adjustments are ignored.
670 * This routine may dereference related btree nodes and cause the
671 * buffer to be dereferenced. The caller must own a reference on io.
673 void
674 hammer_io_clear_modify(struct hammer_io *io, int inval)
676 if (io->modified == 0)
677 return;
680 * Take us off the mod-list and clear the modified bit.
682 KKASSERT(io->mod_list != NULL);
683 if (io->mod_list == &io->hmp->volu_list ||
684 io->mod_list == &io->hmp->meta_list) {
685 io->hmp->locked_dirty_space -= io->bytes;
686 hammer_count_dirtybufspace -= io->bytes;
688 TAILQ_REMOVE(io->mod_list, io, mod_entry);
689 io->mod_list = NULL;
690 io->modified = 0;
693 * If this bit is not set there are no delayed adjustments.
695 if (io->gencrc == 0)
696 return;
697 io->gencrc = 0;
700 * Finalize requested CRCs. The NEEDSCRC flag also holds a reference
701 * on the node (& underlying buffer). Release the node after clearing
702 * the flag.
704 if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
705 hammer_buffer_t buffer = (void *)io;
706 hammer_node_t node;
708 restart:
709 TAILQ_FOREACH(node, &buffer->clist, entry) {
710 if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
711 continue;
712 node->flags &= ~HAMMER_NODE_NEEDSCRC;
713 KKASSERT(node->ondisk);
714 if (inval == 0)
715 node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
716 hammer_rel_node(node);
717 goto restart;
720 /* caller must still have ref on io */
721 KKASSERT(io->lock.refs > 0);
725 * Clear the IO's modify list. Even though the IO is no longer modified
726 * it may still be on the lose_list. This routine is called just before
727 * the governing hammer_buffer is destroyed.
729 void
730 hammer_io_clear_modlist(struct hammer_io *io)
732 KKASSERT(io->modified == 0);
733 if (io->mod_list) {
734 crit_enter(); /* biodone race against list */
735 KKASSERT(io->mod_list == &io->hmp->lose_list);
736 TAILQ_REMOVE(io->mod_list, io, mod_entry);
737 io->mod_list = NULL;
738 crit_exit();
742 static void
743 hammer_io_set_modlist(struct hammer_io *io)
745 struct hammer_mount *hmp = io->hmp;
747 KKASSERT(io->mod_list == NULL);
749 switch(io->type) {
750 case HAMMER_STRUCTURE_VOLUME:
751 io->mod_list = &hmp->volu_list;
752 hmp->locked_dirty_space += io->bytes;
753 hammer_count_dirtybufspace += io->bytes;
754 break;
755 case HAMMER_STRUCTURE_META_BUFFER:
756 io->mod_list = &hmp->meta_list;
757 hmp->locked_dirty_space += io->bytes;
758 hammer_count_dirtybufspace += io->bytes;
759 break;
760 case HAMMER_STRUCTURE_UNDO_BUFFER:
761 io->mod_list = &hmp->undo_list;
762 break;
763 case HAMMER_STRUCTURE_DATA_BUFFER:
764 io->mod_list = &hmp->data_list;
765 break;
767 TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry);
770 /************************************************************************
771 * HAMMER_BIOOPS *
772 ************************************************************************
777 * Pre-IO initiation kernel callback - cluster build only
779 static void
780 hammer_io_start(struct buf *bp)
785 * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
787 * NOTE: HAMMER may modify a buffer after initiating I/O. The modified bit
788 * may also be set if we were marking a cluster header open. Only remove
789 * our dependancy if the modified bit is clear.
791 static void
792 hammer_io_complete(struct buf *bp)
794 union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
796 KKASSERT(iou->io.released == 1);
799 * Deal with people waiting for I/O to drain
801 if (iou->io.running) {
803 * Deal with critical write errors. Once a critical error
804 * has been flagged in hmp the UNDO FIFO will not be updated.
805 * That way crash recover will give us a consistent
806 * filesystem.
808 * Because of this we can throw away failed UNDO buffers. If
809 * we throw away META or DATA buffers we risk corrupting
810 * the now read-only version of the filesystem visible to
811 * the user. Clear B_ERROR so the buffer is not re-dirtied
812 * by the kernel and ref the io so it doesn't get thrown
813 * away.
815 if (bp->b_flags & B_ERROR) {
816 hammer_critical_error(iou->io.hmp, NULL, bp->b_error,
817 "while flushing meta-data");
818 switch(iou->io.type) {
819 case HAMMER_STRUCTURE_UNDO_BUFFER:
820 break;
821 default:
822 if (iou->io.ioerror == 0) {
823 iou->io.ioerror = 1;
824 if (iou->io.lock.refs == 0)
825 ++hammer_count_refedbufs;
826 hammer_ref(&iou->io.lock);
828 break;
830 bp->b_flags &= ~B_ERROR;
831 bundirty(bp);
832 #if 0
833 hammer_io_set_modlist(&iou->io);
834 iou->io.modified = 1;
835 #endif
837 hammer_stats_disk_write += iou->io.bytes;
838 hammer_count_io_running_write -= iou->io.bytes;
839 iou->io.hmp->io_running_space -= iou->io.bytes;
840 if (iou->io.hmp->io_running_space == 0)
841 wakeup(&iou->io.hmp->io_running_space);
842 KKASSERT(iou->io.hmp->io_running_space >= 0);
843 iou->io.running = 0;
844 } else {
845 hammer_stats_disk_read += iou->io.bytes;
848 if (iou->io.waiting) {
849 iou->io.waiting = 0;
850 wakeup(iou);
854 * If B_LOCKED is set someone wanted to deallocate the bp at some
855 * point, do it now if refs has become zero.
857 if ((bp->b_flags & B_LOCKED) && iou->io.lock.refs == 0) {
858 KKASSERT(iou->io.modified == 0);
859 --hammer_count_io_locked;
860 bp->b_flags &= ~B_LOCKED;
861 hammer_io_deallocate(bp);
862 /* structure may be dead now */
867 * Callback from kernel when it wishes to deallocate a passively
868 * associated structure. This mostly occurs with clean buffers
869 * but it may be possible for a holding structure to be marked dirty
870 * while its buffer is passively associated. The caller owns the bp.
872 * If we cannot disassociate we set B_LOCKED to prevent the buffer
873 * from getting reused.
875 * WARNING: Because this can be called directly by getnewbuf we cannot
876 * recurse into the tree. If a bp cannot be immediately disassociated
877 * our only recourse is to set B_LOCKED.
879 * WARNING: This may be called from an interrupt via hammer_io_complete()
881 static void
882 hammer_io_deallocate(struct buf *bp)
884 hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
886 KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
887 if (iou->io.lock.refs > 0 || iou->io.modified) {
889 * It is not legal to disassociate a modified buffer. This
890 * case really shouldn't ever occur.
892 bp->b_flags |= B_LOCKED;
893 ++hammer_count_io_locked;
894 } else {
896 * Disassociate the BP. If the io has no refs left we
897 * have to add it to the loose list.
899 hammer_io_disassociate(iou);
900 if (iou->io.type != HAMMER_STRUCTURE_VOLUME) {
901 KKASSERT(iou->io.bp == NULL);
902 KKASSERT(iou->io.mod_list == NULL);
903 crit_enter(); /* biodone race against list */
904 iou->io.mod_list = &iou->io.hmp->lose_list;
905 TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry);
906 crit_exit();
911 static int
912 hammer_io_fsync(struct vnode *vp)
914 return(0);
918 * NOTE: will not be called unless we tell the kernel about the
919 * bioops. Unused... we use the mount's VFS_SYNC instead.
921 static int
922 hammer_io_sync(struct mount *mp)
924 return(0);
927 static void
928 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
933 * I/O pre-check for reading and writing. HAMMER only uses this for
934 * B_CACHE buffers so checkread just shouldn't happen, but if it does
935 * allow it.
937 * Writing is a different case. We don't want the kernel to try to write
938 * out a buffer that HAMMER may be modifying passively or which has a
939 * dependancy. In addition, kernel-demanded writes can only proceed for
940 * certain types of buffers (i.e. UNDO and DATA types). Other dirty
941 * buffer types can only be explicitly written by the flusher.
943 * checkwrite will only be called for bdwrite()n buffers. If we return
944 * success the kernel is guaranteed to initiate the buffer write.
946 static int
947 hammer_io_checkread(struct buf *bp)
949 return(0);
952 static int
953 hammer_io_checkwrite(struct buf *bp)
955 hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
958 * This shouldn't happen under normal operation.
960 if (io->type == HAMMER_STRUCTURE_VOLUME ||
961 io->type == HAMMER_STRUCTURE_META_BUFFER) {
962 if (!panicstr)
963 panic("hammer_io_checkwrite: illegal buffer");
964 if ((bp->b_flags & B_LOCKED) == 0) {
965 bp->b_flags |= B_LOCKED;
966 ++hammer_count_io_locked;
968 return(1);
972 * We can only clear the modified bit if the IO is not currently
973 * undergoing modification. Otherwise we may miss changes.
975 * Only data and undo buffers can reach here. These buffers do
976 * not have terminal crc functions but we temporarily reference
977 * the IO anyway, just in case.
979 if (io->modify_refs == 0 && io->modified) {
980 hammer_ref(&io->lock);
981 hammer_io_clear_modify(io, 0);
982 hammer_unref(&io->lock);
983 } else if (io->modified) {
984 KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
988 * The kernel is going to start the IO, set io->running.
990 KKASSERT(io->running == 0);
991 io->running = 1;
992 io->hmp->io_running_space += io->bytes;
993 hammer_count_io_running_write += io->bytes;
994 return(0);
998 * Return non-zero if we wish to delay the kernel's attempt to flush
999 * this buffer to disk.
1001 static int
1002 hammer_io_countdeps(struct buf *bp, int n)
1004 return(0);
1007 struct bio_ops hammer_bioops = {
1008 .io_start = hammer_io_start,
1009 .io_complete = hammer_io_complete,
1010 .io_deallocate = hammer_io_deallocate,
1011 .io_fsync = hammer_io_fsync,
1012 .io_sync = hammer_io_sync,
1013 .io_movedeps = hammer_io_movedeps,
1014 .io_countdeps = hammer_io_countdeps,
1015 .io_checkread = hammer_io_checkread,
1016 .io_checkwrite = hammer_io_checkwrite,
1019 /************************************************************************
1020 * DIRECT IO OPS *
1021 ************************************************************************
1023 * These functions operate directly on the buffer cache buffer associated
1024 * with a front-end vnode rather then a back-end device vnode.
1028 * Read a buffer associated with a front-end vnode directly from the
1029 * disk media. The bio may be issued asynchronously. If leaf is non-NULL
1030 * we validate the CRC.
1032 * We must check for the presence of a HAMMER buffer to handle the case
1033 * where the reblocker has rewritten the data (which it does via the HAMMER
1034 * buffer system, not via the high-level vnode buffer cache), but not yet
1035 * committed the buffer to the media.
1038 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1039 hammer_btree_leaf_elm_t leaf)
1041 hammer_off_t buf_offset;
1042 hammer_off_t zone2_offset;
1043 hammer_volume_t volume;
1044 struct buf *bp;
1045 struct bio *nbio;
1046 int vol_no;
1047 int error;
1049 buf_offset = bio->bio_offset;
1050 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1051 HAMMER_ZONE_LARGE_DATA);
1054 * The buffer cache may have an aliased buffer (the reblocker can
1055 * write them). If it does we have to sync any dirty data before
1056 * we can build our direct-read. This is a non-critical code path.
1058 bp = bio->bio_buf;
1059 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1062 * Resolve to a zone-2 offset. The conversion just requires
1063 * munging the top 4 bits but we want to abstract it anyway
1064 * so the blockmap code can verify the zone assignment.
1066 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1067 if (error)
1068 goto done;
1069 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1070 HAMMER_ZONE_RAW_BUFFER);
1073 * Resolve volume and raw-offset for 3rd level bio. The
1074 * offset will be specific to the volume.
1076 vol_no = HAMMER_VOL_DECODE(zone2_offset);
1077 volume = hammer_get_volume(hmp, vol_no, &error);
1078 if (error == 0 && zone2_offset >= volume->maxbuf_off)
1079 error = EIO;
1081 if (error == 0) {
1083 * 3rd level bio
1085 nbio = push_bio(bio);
1086 nbio->bio_offset = volume->ondisk->vol_buf_beg +
1087 (zone2_offset & HAMMER_OFF_SHORT_MASK);
1088 #if 0
1090 * XXX disabled - our CRC check doesn't work if the OS
1091 * does bogus_page replacement on the direct-read.
1093 if (leaf && hammer_verify_data) {
1094 nbio->bio_done = hammer_io_direct_read_complete;
1095 nbio->bio_caller_info1.uvalue32 = leaf->data_crc;
1097 #endif
1098 hammer_stats_disk_read += bp->b_bufsize;
1099 vn_strategy(volume->devvp, nbio);
1101 hammer_rel_volume(volume, 0);
1102 done:
1103 if (error) {
1104 kprintf("hammer_direct_read: failed @ %016llx\n",
1105 zone2_offset);
1106 bp->b_error = error;
1107 bp->b_flags |= B_ERROR;
1108 biodone(bio);
1110 return(error);
1113 #if 0
1115 * On completion of the BIO this callback must check the data CRC
1116 * and chain to the previous bio.
1118 static
1119 void
1120 hammer_io_direct_read_complete(struct bio *nbio)
1122 struct bio *obio;
1123 struct buf *bp;
1124 u_int32_t rec_crc = nbio->bio_caller_info1.uvalue32;
1126 bp = nbio->bio_buf;
1127 if (crc32(bp->b_data, bp->b_bufsize) != rec_crc) {
1128 kprintf("HAMMER: data_crc error @%016llx/%d\n",
1129 nbio->bio_offset, bp->b_bufsize);
1130 if (hammer_debug_debug)
1131 Debugger("");
1132 bp->b_flags |= B_ERROR;
1133 bp->b_error = EIO;
1135 obio = pop_bio(nbio);
1136 biodone(obio);
1138 #endif
1141 * Write a buffer associated with a front-end vnode directly to the
1142 * disk media. The bio may be issued asynchronously.
1144 * The BIO is associated with the specified record and RECF_DIRECT_IO
1145 * is set. The recorded is added to its object.
1148 hammer_io_direct_write(hammer_mount_t hmp, hammer_record_t record,
1149 struct bio *bio)
1151 hammer_btree_leaf_elm_t leaf = &record->leaf;
1152 hammer_off_t buf_offset;
1153 hammer_off_t zone2_offset;
1154 hammer_volume_t volume;
1155 hammer_buffer_t buffer;
1156 struct buf *bp;
1157 struct bio *nbio;
1158 char *ptr;
1159 int vol_no;
1160 int error;
1162 buf_offset = leaf->data_offset;
1164 KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
1165 KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1167 if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1168 leaf->data_len >= HAMMER_BUFSIZE) {
1170 * We are using the vnode's bio to write directly to the
1171 * media, any hammer_buffer at the same zone-X offset will
1172 * now have stale data.
1174 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1175 vol_no = HAMMER_VOL_DECODE(zone2_offset);
1176 volume = hammer_get_volume(hmp, vol_no, &error);
1178 if (error == 0 && zone2_offset >= volume->maxbuf_off)
1179 error = EIO;
1180 if (error == 0) {
1181 bp = bio->bio_buf;
1182 KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1184 hammer_del_buffers(hmp, buf_offset,
1185 zone2_offset, bp->b_bufsize);
1189 * Second level bio - cached zone2 offset.
1191 * (We can put our bio_done function in either the
1192 * 2nd or 3rd level).
1194 nbio = push_bio(bio);
1195 nbio->bio_offset = zone2_offset;
1196 nbio->bio_done = hammer_io_direct_write_complete;
1197 nbio->bio_caller_info1.ptr = record;
1198 record->zone2_offset = zone2_offset;
1199 record->flags |= HAMMER_RECF_DIRECT_IO |
1200 HAMMER_RECF_DIRECT_INVAL;
1203 * Third level bio - raw offset specific to the
1204 * correct volume.
1206 zone2_offset &= HAMMER_OFF_SHORT_MASK;
1207 nbio = push_bio(nbio);
1208 nbio->bio_offset = volume->ondisk->vol_buf_beg +
1209 zone2_offset;
1210 hammer_stats_disk_write += bp->b_bufsize;
1211 vn_strategy(volume->devvp, nbio);
1212 hammer_io_flush_mark(volume);
1214 hammer_rel_volume(volume, 0);
1215 } else {
1217 * Must fit in a standard HAMMER buffer. In this case all
1218 * consumers use the HAMMER buffer system and RECF_DIRECT_IO
1219 * does not need to be set-up.
1221 KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1222 buffer = NULL;
1223 ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1224 if (error == 0) {
1225 bp = bio->bio_buf;
1226 bp->b_flags |= B_AGE;
1227 hammer_io_modify(&buffer->io, 1);
1228 bcopy(bp->b_data, ptr, leaf->data_len);
1229 hammer_io_modify_done(&buffer->io);
1230 hammer_rel_buffer(buffer, 0);
1231 bp->b_resid = 0;
1232 biodone(bio);
1235 if (error == 0) {
1237 * The record is all setup now, add it. Potential conflics
1238 * have already been dealt with.
1240 error = hammer_mem_add(record);
1241 KKASSERT(error == 0);
1242 } else {
1244 * Major suckage occured.
1246 kprintf("hammer_direct_write: failed @ %016llx\n",
1247 leaf->data_offset);
1248 bp = bio->bio_buf;
1249 bp->b_resid = 0;
1250 bp->b_error = EIO;
1251 bp->b_flags |= B_ERROR;
1252 biodone(bio);
1253 record->flags |= HAMMER_RECF_DELETED_FE;
1254 hammer_rel_mem_record(record);
1256 return(error);
1260 * On completion of the BIO this callback must disconnect
1261 * it from the hammer_record and chain to the previous bio.
1263 * An I/O error forces the mount to read-only. Data buffers
1264 * are not B_LOCKED like meta-data buffers are, so we have to
1265 * throw the buffer away to prevent the kernel from retrying.
1267 static
1268 void
1269 hammer_io_direct_write_complete(struct bio *nbio)
1271 struct bio *obio;
1272 struct buf *bp;
1273 hammer_record_t record = nbio->bio_caller_info1.ptr;
1275 bp = nbio->bio_buf;
1276 obio = pop_bio(nbio);
1277 if (bp->b_flags & B_ERROR) {
1278 hammer_critical_error(record->ip->hmp, record->ip,
1279 bp->b_error,
1280 "while writing bulk data");
1281 bp->b_flags |= B_INVAL;
1283 biodone(obio);
1285 KKASSERT(record != NULL);
1286 KKASSERT(record->flags & HAMMER_RECF_DIRECT_IO);
1287 record->flags &= ~HAMMER_RECF_DIRECT_IO;
1288 if (record->flags & HAMMER_RECF_DIRECT_WAIT) {
1289 record->flags &= ~HAMMER_RECF_DIRECT_WAIT;
1290 wakeup(&record->flags);
1296 * This is called before a record is either committed to the B-Tree
1297 * or destroyed, to resolve any associated direct-IO.
1299 * (1) We must wait for any direct-IO related to the record to complete.
1301 * (2) We must remove any buffer cache aliases for data accessed via
1302 * leaf->data_offset or zone2_offset so non-direct-IO consumers
1303 * (the mirroring and reblocking code) do not see stale data.
1305 void
1306 hammer_io_direct_wait(hammer_record_t record)
1309 * Wait for I/O to complete
1311 if (record->flags & HAMMER_RECF_DIRECT_IO) {
1312 crit_enter();
1313 while (record->flags & HAMMER_RECF_DIRECT_IO) {
1314 record->flags |= HAMMER_RECF_DIRECT_WAIT;
1315 tsleep(&record->flags, 0, "hmdiow", 0);
1317 crit_exit();
1321 * Invalidate any related buffer cache aliases.
1323 if (record->flags & HAMMER_RECF_DIRECT_INVAL) {
1324 KKASSERT(record->leaf.data_offset);
1325 hammer_del_buffers(record->ip->hmp,
1326 record->leaf.data_offset,
1327 record->zone2_offset,
1328 record->leaf.data_len);
1329 record->flags &= ~HAMMER_RECF_DIRECT_INVAL;
1334 * This is called to remove the second-level cached zone-2 offset from
1335 * frontend buffer cache buffers, now stale due to a data relocation.
1336 * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1337 * by hammer_vop_strategy_read().
1339 * This is rather nasty because here we have something like the reblocker
1340 * scanning the raw B-Tree with no held references on anything, really,
1341 * other then a shared lock on the B-Tree node, and we have to access the
1342 * frontend's buffer cache to check for and clean out the association.
1343 * Specifically, if the reblocker is moving data on the disk, these cached
1344 * offsets will become invalid.
1346 * Only data record types associated with the large-data zone are subject
1347 * to direct-io and need to be checked.
1350 void
1351 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1353 struct hammer_inode_info iinfo;
1354 int zone;
1356 if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1357 return;
1358 zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1359 if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1360 return;
1361 iinfo.obj_id = leaf->base.obj_id;
1362 iinfo.obj_asof = 0; /* unused */
1363 iinfo.obj_localization = leaf->base.localization &
1364 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1365 iinfo.u.leaf = leaf;
1366 hammer_scan_inode_snapshots(hmp, &iinfo,
1367 hammer_io_direct_uncache_callback,
1368 leaf);
1371 static int
1372 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1374 hammer_inode_info_t iinfo = data;
1375 hammer_off_t data_offset;
1376 hammer_off_t file_offset;
1377 struct vnode *vp;
1378 struct buf *bp;
1379 int blksize;
1381 if (ip->vp == NULL)
1382 return(0);
1383 data_offset = iinfo->u.leaf->data_offset;
1384 file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1385 blksize = iinfo->u.leaf->data_len;
1386 KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1388 hammer_ref(&ip->lock);
1389 if (hammer_get_vnode(ip, &vp) == 0) {
1390 if ((bp = findblk(ip->vp, file_offset)) != NULL &&
1391 bp->b_bio2.bio_offset != NOOFFSET) {
1392 bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1393 bp->b_bio2.bio_offset = NOOFFSET;
1394 brelse(bp);
1396 vput(vp);
1398 hammer_rel_inode(ip, 0);
1399 return(0);
1404 * This function is called when writes may have occured on the volume,
1405 * indicating that the device may be holding cached writes.
1407 static void
1408 hammer_io_flush_mark(hammer_volume_t volume)
1410 volume->vol_flags |= HAMMER_VOLF_NEEDFLUSH;
1414 * This function ensures that the device has flushed any cached writes out.
1416 void
1417 hammer_io_flush_sync(hammer_mount_t hmp)
1419 hammer_volume_t volume;
1420 struct buf *bp_base = NULL;
1421 struct buf *bp;
1423 RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1424 if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1425 volume->vol_flags &= ~HAMMER_VOLF_NEEDFLUSH;
1426 bp = getpbuf(NULL);
1427 bp->b_bio1.bio_offset = 0;
1428 bp->b_bufsize = 0;
1429 bp->b_bcount = 0;
1430 bp->b_cmd = BUF_CMD_FLUSH;
1431 bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1432 bp->b_bio1.bio_done = hammer_io_flush_sync_done;
1433 bp->b_flags |= B_ASYNC;
1434 bp_base = bp;
1435 vn_strategy(volume->devvp, &bp->b_bio1);
1438 while ((bp = bp_base) != NULL) {
1439 bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1440 while (bp->b_cmd != BUF_CMD_DONE) {
1441 crit_enter();
1442 tsleep_interlock(&bp->b_cmd);
1443 if (bp->b_cmd != BUF_CMD_DONE)
1444 tsleep(&bp->b_cmd, 0, "hmrFLS", 0);
1445 crit_exit();
1447 bp->b_flags &= ~B_ASYNC;
1448 relpbuf(bp, NULL);
1453 * Callback to deal with completed flush commands to the device.
1455 static void
1456 hammer_io_flush_sync_done(struct bio *bio)
1458 struct buf *bp;
1460 bp = bio->bio_buf;
1461 bp->b_cmd = BUF_CMD_DONE;
1462 wakeup(&bp->b_cmd);