930daad4b54dc0999013f9b0756963ea1d37292f
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
blob930daad4b54dc0999013f9b0756963ea1d37292f
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.69.2.1 2008/07/16 18:39:31 dillon Exp $
37 * Manage HAMMER's on-disk structures. These routines are primarily
38 * responsible for interfacing with the kernel's I/O subsystem and for
39 * managing in-memory structures.
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node, int isnew);
53 static int
54 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 if (vol1->vol_no < vol2->vol_no)
57 return(-1);
58 if (vol1->vol_no > vol2->vol_no)
59 return(1);
60 return(0);
63 static int
64 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
66 if (buf1->zoneX_offset < buf2->zoneX_offset)
67 return(-1);
68 if (buf1->zoneX_offset > buf2->zoneX_offset)
69 return(1);
70 return(0);
73 static int
74 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
76 if (node1->node_offset < node2->node_offset)
77 return(-1);
78 if (node1->node_offset > node2->node_offset)
79 return(1);
80 return(0);
83 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
84 hammer_vol_rb_compare, int32_t, vol_no);
85 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
86 hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
87 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
88 hammer_nod_rb_compare, hammer_off_t, node_offset);
90 /************************************************************************
91 * VOLUMES *
92 ************************************************************************
94 * Load a HAMMER volume by name. Returns 0 on success or a positive error
95 * code on failure. Volumes must be loaded at mount time, get_volume() will
96 * not load a new volume.
98 * Calls made to hammer_load_volume() or single-threaded
101 hammer_install_volume(struct hammer_mount *hmp, const char *volname)
103 struct mount *mp;
104 hammer_volume_t volume;
105 struct hammer_volume_ondisk *ondisk;
106 struct nlookupdata nd;
107 struct buf *bp = NULL;
108 int error;
109 int ronly;
110 int setmp = 0;
112 mp = hmp->mp;
113 ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
116 * Allocate a volume structure
118 ++hammer_count_volumes;
119 volume = kmalloc(sizeof(*volume), M_HAMMER, M_WAITOK|M_ZERO);
120 volume->vol_name = kstrdup(volname, M_HAMMER);
121 hammer_io_init(&volume->io, hmp, HAMMER_STRUCTURE_VOLUME);
122 volume->io.offset = 0LL;
123 volume->io.bytes = HAMMER_BUFSIZE;
126 * Get the device vnode
128 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
129 if (error == 0)
130 error = nlookup(&nd);
131 if (error == 0)
132 error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
133 nlookup_done(&nd);
134 if (error == 0) {
135 if (vn_isdisk(volume->devvp, &error)) {
136 error = vfs_mountedon(volume->devvp);
139 if (error == 0 &&
140 count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
141 error = EBUSY;
143 if (error == 0) {
144 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
145 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
146 if (error == 0) {
147 error = VOP_OPEN(volume->devvp,
148 (ronly ? FREAD : FREAD|FWRITE),
149 FSCRED, NULL);
151 vn_unlock(volume->devvp);
153 if (error) {
154 hammer_free_volume(volume);
155 return(error);
157 volume->devvp->v_rdev->si_mountpoint = mp;
158 setmp = 1;
161 * Extract the volume number from the volume header and do various
162 * sanity checks.
164 error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
165 if (error)
166 goto late_failure;
167 ondisk = (void *)bp->b_data;
168 if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
169 kprintf("hammer_mount: volume %s has an invalid header\n",
170 volume->vol_name);
171 error = EFTYPE;
172 goto late_failure;
174 volume->vol_no = ondisk->vol_no;
175 volume->buffer_base = ondisk->vol_buf_beg;
176 volume->vol_flags = ondisk->vol_flags;
177 volume->nblocks = ondisk->vol_nblocks;
178 volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
179 ondisk->vol_buf_end - ondisk->vol_buf_beg);
180 volume->maxraw_off = ondisk->vol_buf_end;
182 if (RB_EMPTY(&hmp->rb_vols_root)) {
183 hmp->fsid = ondisk->vol_fsid;
184 } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
185 kprintf("hammer_mount: volume %s's fsid does not match "
186 "other volumes\n", volume->vol_name);
187 error = EFTYPE;
188 goto late_failure;
192 * Insert the volume structure into the red-black tree.
194 if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
195 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
196 volume->vol_name, volume->vol_no);
197 error = EEXIST;
201 * Set the root volume . HAMMER special cases rootvol the structure.
202 * We do not hold a ref because this would prevent related I/O
203 * from being flushed.
205 if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
206 hmp->rootvol = volume;
207 hmp->nvolumes = ondisk->vol_count;
208 if (bp) {
209 brelse(bp);
210 bp = NULL;
212 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
213 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
214 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
215 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
217 late_failure:
218 if (bp)
219 brelse(bp);
220 if (error) {
221 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
222 if (setmp)
223 volume->devvp->v_rdev->si_mountpoint = NULL;
224 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
225 hammer_free_volume(volume);
227 return (error);
231 * This is called for each volume when updating the mount point from
232 * read-write to read-only or vise-versa.
235 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
237 if (volume->devvp) {
238 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
239 if (volume->io.hmp->ronly) {
240 /* do not call vinvalbuf */
241 VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
242 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
243 } else {
244 /* do not call vinvalbuf */
245 VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
246 VOP_CLOSE(volume->devvp, FREAD);
248 vn_unlock(volume->devvp);
250 return(0);
254 * Unload and free a HAMMER volume. Must return >= 0 to continue scan
255 * so returns -1 on failure.
258 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
260 struct hammer_mount *hmp = volume->io.hmp;
261 int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
262 struct buf *bp;
265 * Clean up the root volume pointer, which is held unlocked in hmp.
267 if (hmp->rootvol == volume)
268 hmp->rootvol = NULL;
271 * Release our buffer and flush anything left in the buffer cache.
273 volume->io.waitdep = 1;
274 bp = hammer_io_release(&volume->io, 1);
275 hammer_io_clear_modlist(&volume->io);
278 * There should be no references on the volume, no clusters, and
279 * no super-clusters.
281 KKASSERT(volume->io.lock.refs == 0);
282 if (bp)
283 brelse(bp);
285 volume->ondisk = NULL;
286 if (volume->devvp) {
287 if (volume->devvp->v_rdev &&
288 volume->devvp->v_rdev->si_mountpoint == hmp->mp
290 volume->devvp->v_rdev->si_mountpoint = NULL;
292 if (ronly) {
293 vinvalbuf(volume->devvp, 0, 0, 0);
294 VOP_CLOSE(volume->devvp, FREAD);
295 } else {
296 vinvalbuf(volume->devvp, V_SAVE, 0, 0);
297 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
302 * Destroy the structure
304 RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
305 hammer_free_volume(volume);
306 return(0);
309 static
310 void
311 hammer_free_volume(hammer_volume_t volume)
313 if (volume->vol_name) {
314 kfree(volume->vol_name, M_HAMMER);
315 volume->vol_name = NULL;
317 if (volume->devvp) {
318 vrele(volume->devvp);
319 volume->devvp = NULL;
321 --hammer_count_volumes;
322 kfree(volume, M_HAMMER);
326 * Get a HAMMER volume. The volume must already exist.
328 hammer_volume_t
329 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
331 struct hammer_volume *volume;
334 * Locate the volume structure
336 volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
337 if (volume == NULL) {
338 *errorp = ENOENT;
339 return(NULL);
341 hammer_ref(&volume->io.lock);
344 * Deal with on-disk info
346 if (volume->ondisk == NULL || volume->io.loading) {
347 *errorp = hammer_load_volume(volume);
348 if (*errorp) {
349 hammer_rel_volume(volume, 1);
350 volume = NULL;
352 } else {
353 *errorp = 0;
355 return(volume);
359 hammer_ref_volume(hammer_volume_t volume)
361 int error;
363 hammer_ref(&volume->io.lock);
366 * Deal with on-disk info
368 if (volume->ondisk == NULL || volume->io.loading) {
369 error = hammer_load_volume(volume);
370 if (error)
371 hammer_rel_volume(volume, 1);
372 } else {
373 error = 0;
375 return (error);
378 hammer_volume_t
379 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
381 hammer_volume_t volume;
383 volume = hmp->rootvol;
384 KKASSERT(volume != NULL);
385 hammer_ref(&volume->io.lock);
388 * Deal with on-disk info
390 if (volume->ondisk == NULL || volume->io.loading) {
391 *errorp = hammer_load_volume(volume);
392 if (*errorp) {
393 hammer_rel_volume(volume, 1);
394 volume = NULL;
396 } else {
397 *errorp = 0;
399 return (volume);
403 * Load a volume's on-disk information. The volume must be referenced and
404 * not locked. We temporarily acquire an exclusive lock to interlock
405 * against releases or multiple get's.
407 static int
408 hammer_load_volume(hammer_volume_t volume)
410 int error;
412 ++volume->io.loading;
413 hammer_lock_ex(&volume->io.lock);
415 if (volume->ondisk == NULL) {
416 error = hammer_io_read(volume->devvp, &volume->io,
417 volume->maxraw_off);
418 if (error == 0)
419 volume->ondisk = (void *)volume->io.bp->b_data;
420 } else {
421 error = 0;
423 --volume->io.loading;
424 hammer_unlock(&volume->io.lock);
425 return(error);
429 * Release a volume. Call hammer_io_release on the last reference. We have
430 * to acquire an exclusive lock to interlock against volume->ondisk tests
431 * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
432 * lock to be held.
434 * Volumes are not unloaded from memory during normal operation.
436 void
437 hammer_rel_volume(hammer_volume_t volume, int flush)
439 struct buf *bp = NULL;
441 crit_enter();
442 if (volume->io.lock.refs == 1) {
443 ++volume->io.loading;
444 hammer_lock_ex(&volume->io.lock);
445 if (volume->io.lock.refs == 1) {
446 volume->ondisk = NULL;
447 bp = hammer_io_release(&volume->io, flush);
449 --volume->io.loading;
450 hammer_unlock(&volume->io.lock);
452 hammer_unref(&volume->io.lock);
453 if (bp)
454 brelse(bp);
455 crit_exit();
459 hammer_mountcheck_volumes(struct hammer_mount *hmp)
461 hammer_volume_t vol;
462 int i;
464 for (i = 0; i < hmp->nvolumes; ++i) {
465 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
466 if (vol == NULL)
467 return(EINVAL);
469 return(0);
472 /************************************************************************
473 * BUFFERS *
474 ************************************************************************
476 * Manage buffers. Currently all blockmap-backed zones are translated
477 * to zone-2 buffer offsets.
479 hammer_buffer_t
480 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
481 int bytes, int isnew, int *errorp)
483 hammer_buffer_t buffer;
484 hammer_volume_t volume;
485 hammer_off_t zone2_offset;
486 hammer_io_type_t iotype;
487 int vol_no;
488 int zone;
490 buf_offset &= ~HAMMER_BUFMASK64;
491 again:
493 * Shortcut if the buffer is already cached
495 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
496 if (buffer) {
497 if (buffer->io.lock.refs == 0)
498 ++hammer_count_refedbufs;
499 hammer_ref(&buffer->io.lock);
502 * Onced refed the ondisk field will not be cleared by
503 * any other action.
505 if (buffer->ondisk && buffer->io.loading == 0) {
506 *errorp = 0;
507 return(buffer);
511 * The buffer is no longer loose if it has a ref, and
512 * cannot become loose once it gains a ref. Loose
513 * buffers will never be in a modified state. This should
514 * only occur on the 0->1 transition of refs.
516 * lose_list can be modified via a biodone() interrupt.
518 if (buffer->io.mod_list == &hmp->lose_list) {
519 crit_enter(); /* biodone race against list */
520 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
521 mod_entry);
522 crit_exit();
523 buffer->io.mod_list = NULL;
524 KKASSERT(buffer->io.modified == 0);
526 goto found;
530 * What is the buffer class?
532 zone = HAMMER_ZONE_DECODE(buf_offset);
534 switch(zone) {
535 case HAMMER_ZONE_LARGE_DATA_INDEX:
536 case HAMMER_ZONE_SMALL_DATA_INDEX:
537 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
538 break;
539 case HAMMER_ZONE_UNDO_INDEX:
540 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
541 break;
542 case HAMMER_ZONE_META_INDEX:
543 default:
545 * NOTE: inode data and directory entries are placed in this
546 * zone. inode atime/mtime is updated in-place and thus
547 * buffers containing inodes must be synchronized as
548 * meta-buffers, same as buffers containing B-Tree info.
550 iotype = HAMMER_STRUCTURE_META_BUFFER;
551 break;
555 * Handle blockmap offset translations
557 if (zone >= HAMMER_ZONE_BTREE_INDEX) {
558 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
559 } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
560 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
561 } else {
562 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
563 zone2_offset = buf_offset;
564 *errorp = 0;
566 if (*errorp)
567 return(NULL);
570 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
571 * specifications.
573 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
574 HAMMER_ZONE_RAW_BUFFER);
575 vol_no = HAMMER_VOL_DECODE(zone2_offset);
576 volume = hammer_get_volume(hmp, vol_no, errorp);
577 if (volume == NULL)
578 return(NULL);
580 KKASSERT(zone2_offset < volume->maxbuf_off);
583 * Allocate a new buffer structure. We will check for races later.
585 ++hammer_count_buffers;
586 buffer = kmalloc(sizeof(*buffer), M_HAMMER,
587 M_WAITOK|M_ZERO|M_USE_RESERVE);
588 buffer->zone2_offset = zone2_offset;
589 buffer->zoneX_offset = buf_offset;
590 buffer->volume = volume;
592 hammer_io_init(&buffer->io, hmp, iotype);
593 buffer->io.offset = volume->ondisk->vol_buf_beg +
594 (zone2_offset & HAMMER_OFF_SHORT_MASK);
595 buffer->io.bytes = bytes;
596 TAILQ_INIT(&buffer->clist);
597 hammer_ref(&buffer->io.lock);
600 * Insert the buffer into the RB tree and handle late collisions.
602 if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
603 hammer_unref(&buffer->io.lock);
604 --hammer_count_buffers;
605 kfree(buffer, M_HAMMER);
606 goto again;
608 ++hammer_count_refedbufs;
609 found:
612 * Deal with on-disk info and loading races.
614 if (buffer->ondisk == NULL || buffer->io.loading) {
615 *errorp = hammer_load_buffer(buffer, isnew);
616 if (*errorp) {
617 hammer_rel_buffer(buffer, 1);
618 buffer = NULL;
620 } else {
621 *errorp = 0;
623 return(buffer);
627 * This is used by the direct-read code to deal with large-data buffers
628 * created by the reblocker and mirror-write code. The direct-read code
629 * bypasses the HAMMER buffer subsystem and so any aliased dirty hammer
630 * buffers must be fully synced to disk before we can issue the direct-read.
632 * This code path is not considered critical as only the rebocker and
633 * mirror-write code will create large-data buffers via the HAMMER buffer
634 * subsystem. They do that because they operate at the B-Tree level and
635 * do not access the vnode/inode structures.
637 void
638 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
640 hammer_buffer_t buffer;
641 int error;
643 KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
644 HAMMER_ZONE_LARGE_DATA);
646 while (bytes > 0) {
647 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
648 base_offset);
649 if (buffer && buffer->io.modified) {
650 error = hammer_ref_buffer(buffer);
651 if (error == 0 && buffer->io.modified) {
652 hammer_io_write_interlock(&buffer->io);
653 hammer_io_flush(&buffer->io);
654 hammer_io_done_interlock(&buffer->io);
655 hammer_io_wait(&buffer->io);
656 hammer_rel_buffer(buffer, 0);
659 base_offset += HAMMER_BUFSIZE;
660 bytes -= HAMMER_BUFSIZE;
665 * Destroy all buffers covering the specified zoneX offset range. This
666 * is called when the related blockmap layer2 entry is freed or when
667 * a direct write bypasses our buffer/buffer-cache subsystem.
669 * The buffers may be referenced by the caller itself. Setting reclaim
670 * will cause the buffer to be destroyed when it's ref count reaches zero.
672 void
673 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
674 hammer_off_t zone2_offset, int bytes)
676 hammer_buffer_t buffer;
677 hammer_volume_t volume;
678 int vol_no;
679 int error;
681 vol_no = HAMMER_VOL_DECODE(zone2_offset);
682 volume = hammer_get_volume(hmp, vol_no, &error);
683 KKASSERT(error == 0);
685 while (bytes > 0) {
686 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
687 base_offset);
688 if (buffer) {
689 error = hammer_ref_buffer(buffer);
690 if (error == 0) {
691 KKASSERT(buffer->zone2_offset == zone2_offset);
692 hammer_io_clear_modify(&buffer->io, 1);
693 buffer->io.reclaim = 1;
694 KKASSERT(buffer->volume == volume);
695 hammer_rel_buffer(buffer, 0);
697 } else {
698 hammer_io_inval(volume, zone2_offset);
700 base_offset += HAMMER_BUFSIZE;
701 zone2_offset += HAMMER_BUFSIZE;
702 bytes -= HAMMER_BUFSIZE;
704 hammer_rel_volume(volume, 0);
707 static int
708 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
710 hammer_volume_t volume;
711 int error;
714 * Load the buffer's on-disk info
716 volume = buffer->volume;
717 ++buffer->io.loading;
718 hammer_lock_ex(&buffer->io.lock);
720 if (hammer_debug_io & 0x0001) {
721 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
722 buffer->zoneX_offset, buffer->zone2_offset, isnew,
723 buffer->ondisk);
726 if (buffer->ondisk == NULL) {
727 if (isnew) {
728 error = hammer_io_new(volume->devvp, &buffer->io);
729 } else {
730 error = hammer_io_read(volume->devvp, &buffer->io,
731 volume->maxraw_off);
733 if (error == 0)
734 buffer->ondisk = (void *)buffer->io.bp->b_data;
735 } else if (isnew) {
736 error = hammer_io_new(volume->devvp, &buffer->io);
737 } else {
738 error = 0;
740 --buffer->io.loading;
741 hammer_unlock(&buffer->io.lock);
742 return (error);
746 * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
749 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
751 ++hammer_count_refedbufs;
752 hammer_ref(&buffer->io.lock);
753 hammer_flush_buffer_nodes(buffer);
754 KKASSERT(buffer->io.lock.refs == 1);
755 hammer_rel_buffer(buffer, 2);
756 return(0);
760 * Reference a buffer that is either already referenced or via a specially
761 * handled pointer (aka cursor->buffer).
764 hammer_ref_buffer(hammer_buffer_t buffer)
766 int error;
768 if (buffer->io.lock.refs == 0)
769 ++hammer_count_refedbufs;
770 hammer_ref(&buffer->io.lock);
773 * At this point a biodone() will not touch the buffer other then
774 * incidental bits. However, lose_list can be modified via
775 * a biodone() interrupt.
777 * No longer loose
779 if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
780 crit_enter();
781 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
782 buffer->io.mod_list = NULL;
783 crit_exit();
786 if (buffer->ondisk == NULL || buffer->io.loading) {
787 error = hammer_load_buffer(buffer, 0);
788 if (error) {
789 hammer_rel_buffer(buffer, 1);
791 * NOTE: buffer pointer can become stale after
792 * the above release.
795 } else {
796 error = 0;
798 return(error);
802 * Release a buffer. We have to deal with several places where
803 * another thread can ref the buffer.
805 * Only destroy the structure itself if the related buffer cache buffer
806 * was disassociated from it. This ties the management of the structure
807 * to the buffer cache subsystem. buffer->ondisk determines whether the
808 * embedded io is referenced or not.
810 void
811 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
813 hammer_volume_t volume;
814 struct buf *bp = NULL;
815 int freeme = 0;
817 crit_enter();
818 if (buffer->io.lock.refs == 1) {
819 ++buffer->io.loading; /* force interlock check */
820 hammer_lock_ex(&buffer->io.lock);
821 if (buffer->io.lock.refs == 1) {
822 bp = hammer_io_release(&buffer->io, flush);
824 if (buffer->io.lock.refs == 1)
825 --hammer_count_refedbufs;
827 if (buffer->io.bp == NULL &&
828 buffer->io.lock.refs == 1) {
830 * Final cleanup
832 * NOTE: It is impossible for any associated
833 * B-Tree nodes to have refs if the buffer
834 * has no additional refs.
836 RB_REMOVE(hammer_buf_rb_tree,
837 &buffer->io.hmp->rb_bufs_root,
838 buffer);
839 volume = buffer->volume;
840 buffer->volume = NULL; /* sanity */
841 hammer_rel_volume(volume, 0);
842 hammer_io_clear_modlist(&buffer->io);
843 hammer_flush_buffer_nodes(buffer);
844 KKASSERT(TAILQ_EMPTY(&buffer->clist));
845 freeme = 1;
848 --buffer->io.loading;
849 hammer_unlock(&buffer->io.lock);
851 hammer_unref(&buffer->io.lock);
852 crit_exit();
853 if (bp)
854 brelse(bp);
855 if (freeme) {
856 --hammer_count_buffers;
857 kfree(buffer, M_HAMMER);
862 * Access the filesystem buffer containing the specified hammer offset.
863 * buf_offset is a conglomeration of the volume number and vol_buf_beg
864 * relative buffer offset. It must also have bit 55 set to be valid.
865 * (see hammer_off_t in hammer_disk.h).
867 * Any prior buffer in *bufferp will be released and replaced by the
868 * requested buffer.
870 static __inline
871 void *
872 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
873 int *errorp, struct hammer_buffer **bufferp)
875 hammer_buffer_t buffer;
876 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
878 buf_offset &= ~HAMMER_BUFMASK64;
879 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
881 buffer = *bufferp;
882 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
883 buffer->zoneX_offset != buf_offset)) {
884 if (buffer)
885 hammer_rel_buffer(buffer, 0);
886 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
887 *bufferp = buffer;
888 } else {
889 *errorp = 0;
893 * Return a pointer to the buffer data.
895 if (buffer == NULL)
896 return(NULL);
897 else
898 return((char *)buffer->ondisk + xoff);
901 void *
902 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
903 int *errorp, struct hammer_buffer **bufferp)
905 return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
908 void *
909 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
910 int *errorp, struct hammer_buffer **bufferp)
912 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
913 return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
917 * Access the filesystem buffer containing the specified hammer offset.
918 * No disk read operation occurs. The result buffer may contain garbage.
920 * Any prior buffer in *bufferp will be released and replaced by the
921 * requested buffer.
923 * This function marks the buffer dirty but does not increment its
924 * modify_refs count.
926 static __inline
927 void *
928 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
929 int *errorp, struct hammer_buffer **bufferp)
931 hammer_buffer_t buffer;
932 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
934 buf_offset &= ~HAMMER_BUFMASK64;
936 buffer = *bufferp;
937 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
938 buffer->zoneX_offset != buf_offset)) {
939 if (buffer)
940 hammer_rel_buffer(buffer, 0);
941 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
942 *bufferp = buffer;
943 } else {
944 *errorp = 0;
948 * Return a pointer to the buffer data.
950 if (buffer == NULL)
951 return(NULL);
952 else
953 return((char *)buffer->ondisk + xoff);
956 void *
957 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
958 int *errorp, struct hammer_buffer **bufferp)
960 return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
963 void *
964 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
965 int *errorp, struct hammer_buffer **bufferp)
967 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
968 return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
971 /************************************************************************
972 * NODES *
973 ************************************************************************
975 * Manage B-Tree nodes. B-Tree nodes represent the primary indexing
976 * method used by the HAMMER filesystem.
978 * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
979 * associated with its buffer, and will only referenced the buffer while
980 * the node itself is referenced.
982 * A hammer_node can also be passively associated with other HAMMER
983 * structures, such as inodes, while retaining 0 references. These
984 * associations can be cleared backwards using a pointer-to-pointer in
985 * the hammer_node.
987 * This allows the HAMMER implementation to cache hammer_nodes long-term
988 * and short-cut a great deal of the infrastructure's complexity. In
989 * most cases a cached node can be reacquired without having to dip into
990 * either the buffer or cluster management code.
992 * The caller must pass a referenced cluster on call and will retain
993 * ownership of the reference on return. The node will acquire its own
994 * additional references, if necessary.
996 hammer_node_t
997 hammer_get_node(hammer_mount_t hmp, hammer_off_t node_offset,
998 int isnew, int *errorp)
1000 hammer_node_t node;
1002 KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1005 * Locate the structure, allocating one if necessary.
1007 again:
1008 node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1009 if (node == NULL) {
1010 ++hammer_count_nodes;
1011 node = kmalloc(sizeof(*node), M_HAMMER, M_WAITOK|M_ZERO|M_USE_RESERVE);
1012 node->node_offset = node_offset;
1013 node->hmp = hmp;
1014 TAILQ_INIT(&node->cursor_list);
1015 TAILQ_INIT(&node->cache_list);
1016 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1017 --hammer_count_nodes;
1018 kfree(node, M_HAMMER);
1019 goto again;
1022 hammer_ref(&node->lock);
1023 if (node->ondisk)
1024 *errorp = 0;
1025 else
1026 *errorp = hammer_load_node(node, isnew);
1027 if (*errorp) {
1028 hammer_rel_node(node);
1029 node = NULL;
1031 return(node);
1035 * Reference an already-referenced node.
1037 void
1038 hammer_ref_node(hammer_node_t node)
1040 KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
1041 hammer_ref(&node->lock);
1045 * Load a node's on-disk data reference.
1047 static int
1048 hammer_load_node(hammer_node_t node, int isnew)
1050 hammer_buffer_t buffer;
1051 hammer_off_t buf_offset;
1052 int error;
1054 error = 0;
1055 ++node->loading;
1056 hammer_lock_ex(&node->lock);
1057 if (node->ondisk == NULL) {
1059 * This is a little confusing but the jist is that
1060 * node->buffer determines whether the node is on
1061 * the buffer's clist and node->ondisk determines
1062 * whether the buffer is referenced.
1064 * We could be racing a buffer release, in which case
1065 * node->buffer may become NULL while we are blocked
1066 * referencing the buffer.
1068 if ((buffer = node->buffer) != NULL) {
1069 error = hammer_ref_buffer(buffer);
1070 if (error == 0 && node->buffer == NULL) {
1071 TAILQ_INSERT_TAIL(&buffer->clist,
1072 node, entry);
1073 node->buffer = buffer;
1075 } else {
1076 buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1077 buffer = hammer_get_buffer(node->hmp, buf_offset,
1078 HAMMER_BUFSIZE, 0, &error);
1079 if (buffer) {
1080 KKASSERT(error == 0);
1081 TAILQ_INSERT_TAIL(&buffer->clist,
1082 node, entry);
1083 node->buffer = buffer;
1086 if (error)
1087 goto failed;
1088 node->ondisk = (void *)((char *)buffer->ondisk +
1089 (node->node_offset & HAMMER_BUFMASK));
1090 if (isnew == 0 &&
1091 (node->flags & HAMMER_NODE_CRCGOOD) == 0) {
1092 if (hammer_crc_test_btree(node->ondisk) == 0)
1093 Debugger("CRC FAILED: B-TREE NODE");
1094 node->flags |= HAMMER_NODE_CRCGOOD;
1097 failed:
1098 --node->loading;
1099 hammer_unlock(&node->lock);
1100 return (error);
1104 * Safely reference a node, interlock against flushes via the IO subsystem.
1106 hammer_node_t
1107 hammer_ref_node_safe(struct hammer_mount *hmp, hammer_node_cache_t cache,
1108 int *errorp)
1110 hammer_node_t node;
1112 node = cache->node;
1113 if (node != NULL) {
1114 hammer_ref(&node->lock);
1115 if (node->ondisk)
1116 *errorp = 0;
1117 else
1118 *errorp = hammer_load_node(node, 0);
1119 if (*errorp) {
1120 hammer_rel_node(node);
1121 node = NULL;
1123 } else {
1124 *errorp = ENOENT;
1126 return(node);
1130 * Release a hammer_node. On the last release the node dereferences
1131 * its underlying buffer and may or may not be destroyed.
1133 void
1134 hammer_rel_node(hammer_node_t node)
1136 hammer_buffer_t buffer;
1139 * If this isn't the last ref just decrement the ref count and
1140 * return.
1142 if (node->lock.refs > 1) {
1143 hammer_unref(&node->lock);
1144 return;
1148 * If there is no ondisk info or no buffer the node failed to load,
1149 * remove the last reference and destroy the node.
1151 if (node->ondisk == NULL) {
1152 hammer_unref(&node->lock);
1153 hammer_flush_node(node);
1154 /* node is stale now */
1155 return;
1159 * Do not disassociate the node from the buffer if it represents
1160 * a modified B-Tree node that still needs its crc to be generated.
1162 if (node->flags & HAMMER_NODE_NEEDSCRC)
1163 return;
1166 * Do final cleanups and then either destroy the node and leave it
1167 * passively cached. The buffer reference is removed regardless.
1169 buffer = node->buffer;
1170 node->ondisk = NULL;
1172 if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1173 hammer_unref(&node->lock);
1174 hammer_rel_buffer(buffer, 0);
1175 return;
1179 * Destroy the node.
1181 hammer_unref(&node->lock);
1182 hammer_flush_node(node);
1183 /* node is stale */
1184 hammer_rel_buffer(buffer, 0);
1188 * Free space on-media associated with a B-Tree node.
1190 void
1191 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1193 KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1194 node->flags |= HAMMER_NODE_DELETED;
1195 hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1199 * Passively cache a referenced hammer_node. The caller may release
1200 * the node on return.
1202 void
1203 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1206 * If the node is being deleted, don't cache it!
1208 if (node->flags & HAMMER_NODE_DELETED)
1209 return;
1210 if (cache->node == node)
1211 return;
1212 while (cache->node)
1213 hammer_uncache_node(cache);
1214 if (node->flags & HAMMER_NODE_DELETED)
1215 return;
1216 cache->node = node;
1217 TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1220 void
1221 hammer_uncache_node(hammer_node_cache_t cache)
1223 hammer_node_t node;
1225 if ((node = cache->node) != NULL) {
1226 TAILQ_REMOVE(&node->cache_list, cache, entry);
1227 cache->node = NULL;
1228 if (TAILQ_EMPTY(&node->cache_list))
1229 hammer_flush_node(node);
1234 * Remove a node's cache references and destroy the node if it has no
1235 * other references or backing store.
1237 void
1238 hammer_flush_node(hammer_node_t node)
1240 hammer_node_cache_t cache;
1241 hammer_buffer_t buffer;
1243 while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1244 TAILQ_REMOVE(&node->cache_list, cache, entry);
1245 cache->node = NULL;
1247 if (node->lock.refs == 0 && node->ondisk == NULL) {
1248 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1249 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1250 if ((buffer = node->buffer) != NULL) {
1251 node->buffer = NULL;
1252 TAILQ_REMOVE(&buffer->clist, node, entry);
1253 /* buffer is unreferenced because ondisk is NULL */
1255 --hammer_count_nodes;
1256 kfree(node, M_HAMMER);
1261 * Flush passively cached B-Tree nodes associated with this buffer.
1262 * This is only called when the buffer is about to be destroyed, so
1263 * none of the nodes should have any references. The buffer is locked.
1265 * We may be interlocked with the buffer.
1267 void
1268 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1270 hammer_node_t node;
1272 while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1273 KKASSERT(node->ondisk == NULL);
1274 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1276 if (node->lock.refs == 0) {
1277 hammer_ref(&node->lock);
1278 node->flags |= HAMMER_NODE_FLUSH;
1279 hammer_rel_node(node);
1280 } else {
1281 KKASSERT(node->loading != 0);
1282 KKASSERT(node->buffer != NULL);
1283 buffer = node->buffer;
1284 node->buffer = NULL;
1285 TAILQ_REMOVE(&buffer->clist, node, entry);
1286 /* buffer is unreferenced because ondisk is NULL */
1292 /************************************************************************
1293 * ALLOCATORS *
1294 ************************************************************************/
1297 * Allocate a B-Tree node.
1299 hammer_node_t
1300 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1302 hammer_buffer_t buffer = NULL;
1303 hammer_node_t node = NULL;
1304 hammer_off_t node_offset;
1306 node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1307 sizeof(struct hammer_node_ondisk),
1308 errorp);
1309 if (*errorp == 0) {
1310 node = hammer_get_node(trans->hmp, node_offset, 1, errorp);
1311 hammer_modify_node_noundo(trans, node);
1312 bzero(node->ondisk, sizeof(*node->ondisk));
1313 hammer_modify_node_done(node);
1315 if (buffer)
1316 hammer_rel_buffer(buffer, 0);
1317 return(node);
1321 * Allocate data. If the address of a data buffer is supplied then
1322 * any prior non-NULL *data_bufferp will be released and *data_bufferp
1323 * will be set to the related buffer. The caller must release it when
1324 * finally done. The initial *data_bufferp should be set to NULL by
1325 * the caller.
1327 * The caller is responsible for making hammer_modify*() calls on the
1328 * *data_bufferp.
1330 void *
1331 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1332 u_int16_t rec_type, hammer_off_t *data_offsetp,
1333 struct hammer_buffer **data_bufferp, int *errorp)
1335 void *data;
1336 int zone;
1339 * Allocate data
1341 if (data_len) {
1342 switch(rec_type) {
1343 case HAMMER_RECTYPE_INODE:
1344 case HAMMER_RECTYPE_DIRENTRY:
1345 case HAMMER_RECTYPE_EXT:
1346 case HAMMER_RECTYPE_FIX:
1347 case HAMMER_RECTYPE_PFS:
1348 zone = HAMMER_ZONE_META_INDEX;
1349 break;
1350 case HAMMER_RECTYPE_DATA:
1351 case HAMMER_RECTYPE_DB:
1352 if (data_len <= HAMMER_BUFSIZE / 2) {
1353 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1354 } else {
1355 data_len = (data_len + HAMMER_BUFMASK) &
1356 ~HAMMER_BUFMASK;
1357 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1359 break;
1360 default:
1361 panic("hammer_alloc_data: rec_type %04x unknown",
1362 rec_type);
1363 zone = 0; /* NOT REACHED */
1364 break;
1366 *data_offsetp = hammer_blockmap_alloc(trans, zone,
1367 data_len, errorp);
1368 } else {
1369 *data_offsetp = 0;
1371 if (*errorp == 0 && data_bufferp) {
1372 if (data_len) {
1373 data = hammer_bread_ext(trans->hmp, *data_offsetp,
1374 data_len, errorp, data_bufferp);
1375 KKASSERT(*errorp == 0);
1376 } else {
1377 data = NULL;
1379 } else {
1380 data = NULL;
1382 KKASSERT(*errorp == 0);
1383 return(data);
1387 * Sync dirty buffers to the media and clean-up any loose ends.
1389 * These functions do not start the flusher going, they simply
1390 * queue everything up to the flusher.
1392 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1393 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1396 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1398 struct hammer_sync_info info;
1400 info.error = 0;
1401 info.waitfor = waitfor;
1402 if (waitfor == MNT_WAIT) {
1403 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1404 hammer_sync_scan1, hammer_sync_scan2, &info);
1405 } else {
1406 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1407 hammer_sync_scan1, hammer_sync_scan2, &info);
1409 return(info.error);
1413 * Filesystem sync. If doing a synchronous sync make a second pass on
1414 * the vnodes in case any were already flushing during the first pass,
1415 * and activate the flusher twice (the second time brings the UNDO FIFO's
1416 * start position up to the end position after the first call).
1419 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1421 struct hammer_sync_info info;
1423 info.error = 0;
1424 info.waitfor = MNT_NOWAIT;
1425 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1426 hammer_sync_scan1, hammer_sync_scan2, &info);
1427 if (info.error == 0 && waitfor == MNT_WAIT) {
1428 info.waitfor = waitfor;
1429 vmntvnodescan(hmp->mp, VMSC_GETVP,
1430 hammer_sync_scan1, hammer_sync_scan2, &info);
1432 if (waitfor == MNT_WAIT) {
1433 hammer_flusher_sync(hmp);
1434 hammer_flusher_sync(hmp);
1435 } else {
1436 hammer_flusher_async(hmp, NULL);
1438 return(info.error);
1441 static int
1442 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1444 struct hammer_inode *ip;
1446 ip = VTOI(vp);
1447 if (vp->v_type == VNON || ip == NULL ||
1448 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1449 RB_EMPTY(&vp->v_rbdirty_tree))) {
1450 return(-1);
1452 return(0);
1455 static int
1456 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1458 struct hammer_sync_info *info = data;
1459 struct hammer_inode *ip;
1460 int error;
1462 ip = VTOI(vp);
1463 if (vp->v_type == VNON || vp->v_type == VBAD ||
1464 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1465 RB_EMPTY(&vp->v_rbdirty_tree))) {
1466 return(0);
1468 error = VOP_FSYNC(vp, MNT_NOWAIT);
1469 if (error)
1470 info->error = error;
1471 return(0);