HAMMER VFS - Hack cursor iterator when unlocked cursor moved to parent
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
blob3eaa1b34d3100b6068d58eaf4961af1db8d8d6b3
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
38 * HAMMER B-Tree index
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
66 * record appends.
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
73 * B-Tree.
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. If a
77 * deadlock occurs a deletion may not be able to remove an empty leaf.
78 * Deletions never allow internal nodes to become empty (that would blow
79 * up the boundaries).
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
97 * Iterate records after a search. The cursor is iterated forwards past
98 * the current record until a record matching the key-range requirements
99 * is found. ENOENT is returned if the iteration goes past the ending
100 * key.
102 * The iteration is inclusive of key_beg and can be inclusive or exclusive
103 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
105 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106 * may be modified by B-Tree functions.
108 * cursor->key_beg may or may not be modified by this function during
109 * the iteration. XXX future - in case of an inverted lock we may have
110 * to reinitiate the lookup and set key_beg to properly pick up where we
111 * left off.
113 * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
114 * was reverse indexed due to being moved to a parent while unlocked,
115 * and something else might have inserted an element outside the iteration
116 * range. When this case occurs the iterator just keeps iterating until
117 * it gets back into the iteration range (instead of asserting).
119 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
122 hammer_btree_iterate(hammer_cursor_t cursor)
124 hammer_node_ondisk_t node;
125 hammer_btree_elm_t elm;
126 hammer_mount_t hmp;
127 int error = 0;
128 int r;
129 int s;
132 * Skip past the current record
134 hmp = cursor->trans->hmp;
135 node = cursor->node->ondisk;
136 if (node == NULL)
137 return(ENOENT);
138 if (cursor->index < node->count &&
139 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
140 ++cursor->index;
144 * HAMMER can wind up being cpu-bound.
146 if (++hmp->check_yield > hammer_yield_check) {
147 hmp->check_yield = 0;
148 lwkt_user_yield();
153 * Loop until an element is found or we are done.
155 for (;;) {
157 * We iterate up the tree and then index over one element
158 * while we are at the last element in the current node.
160 * If we are at the root of the filesystem, cursor_up
161 * returns ENOENT.
163 * XXX this could be optimized by storing the information in
164 * the parent reference.
166 * XXX we can lose the node lock temporarily, this could mess
167 * up our scan.
169 ++hammer_stats_btree_iterations;
170 hammer_flusher_clean_loose_ios(hmp);
172 if (cursor->index == node->count) {
173 if (hammer_debug_btree) {
174 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
175 (long long)cursor->node->node_offset,
176 cursor->index,
177 (long long)(cursor->parent ? cursor->parent->node_offset : -1),
178 cursor->parent_index,
179 curthread);
181 KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
182 error = hammer_cursor_up(cursor);
183 if (error)
184 break;
185 /* reload stale pointer */
186 node = cursor->node->ondisk;
187 KKASSERT(cursor->index != node->count);
190 * If we are reblocking we want to return internal
191 * nodes. Note that the internal node will be
192 * returned multiple times, on each upward recursion
193 * from its children. The caller selects which
194 * revisit it cares about (usually first or last only).
196 if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
197 cursor->flags |= HAMMER_CURSOR_ATEDISK;
198 return(0);
200 ++cursor->index;
201 continue;
205 * Check internal or leaf element. Determine if the record
206 * at the cursor has gone beyond the end of our range.
208 * We recurse down through internal nodes.
210 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
211 elm = &node->elms[cursor->index];
213 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
214 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
215 if (hammer_debug_btree) {
216 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
217 (long long)cursor->node->node_offset,
218 cursor->index,
219 (long long)elm[0].internal.base.obj_id,
220 elm[0].internal.base.rec_type,
221 (long long)elm[0].internal.base.key,
222 elm[0].internal.base.localization,
224 curthread
226 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
227 (long long)cursor->node->node_offset,
228 cursor->index + 1,
229 (long long)elm[1].internal.base.obj_id,
230 elm[1].internal.base.rec_type,
231 (long long)elm[1].internal.base.key,
232 elm[1].internal.base.localization,
237 if (r < 0) {
238 error = ENOENT;
239 break;
241 if (r == 0 && (cursor->flags &
242 HAMMER_CURSOR_END_INCLUSIVE) == 0) {
243 error = ENOENT;
244 break;
248 * Better not be zero
250 KKASSERT(elm->internal.subtree_offset != 0);
252 if (s <= 0) {
254 * If running the mirror filter see if we
255 * can skip one or more entire sub-trees.
256 * If we can we return the internal node
257 * and the caller processes the skipped
258 * range (see mirror_read).
260 if (cursor->flags &
261 HAMMER_CURSOR_MIRROR_FILTERED) {
262 if (elm->internal.mirror_tid <
263 cursor->cmirror->mirror_tid) {
264 hammer_cursor_mirror_filter(cursor);
265 return(0);
268 } else {
270 * Normally it would be impossible for the
271 * cursor to have gotten back-indexed,
272 * but it can happen if a node is deleted
273 * and the cursor is moved to its parent
274 * internal node. ITERATE_CHECK will be set.
276 KKASSERT(cursor->flags &
277 HAMMER_CURSOR_ITERATE_CHECK);
278 kprintf("hammer_btree_iterate: "
279 "DEBUG: Caught parent seek "
280 "in internal iteration\n");
283 error = hammer_cursor_down(cursor);
284 if (error)
285 break;
286 KKASSERT(cursor->index == 0);
287 /* reload stale pointer */
288 node = cursor->node->ondisk;
289 continue;
290 } else {
291 elm = &node->elms[cursor->index];
292 r = hammer_btree_cmp(&cursor->key_end, &elm->base);
293 if (hammer_debug_btree) {
294 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
295 (long long)cursor->node->node_offset,
296 cursor->index,
297 (elm[0].leaf.base.btype ?
298 elm[0].leaf.base.btype : '?'),
299 (long long)elm[0].leaf.base.obj_id,
300 elm[0].leaf.base.rec_type,
301 (long long)elm[0].leaf.base.key,
302 elm[0].leaf.base.localization,
306 if (r < 0) {
307 error = ENOENT;
308 break;
312 * We support both end-inclusive and
313 * end-exclusive searches.
315 if (r == 0 &&
316 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
317 error = ENOENT;
318 break;
322 * If ITERATE_CHECK is set an unlocked cursor may
323 * have been moved to a parent and the iterate can
324 * happen upon elements that are not in the requested
325 * range.
327 if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
328 s = hammer_btree_cmp(&cursor->key_beg,
329 &elm->base);
330 if (s > 0) {
331 kprintf("hammer_btree_iterate: "
332 "DEBUG: Caught parent seek "
333 "in leaf iteration\n");
334 ++cursor->index;
335 continue;
338 cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
341 * Return the element
343 switch(elm->leaf.base.btype) {
344 case HAMMER_BTREE_TYPE_RECORD:
345 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
346 hammer_btree_chkts(cursor->asof, &elm->base)) {
347 ++cursor->index;
348 continue;
350 error = 0;
351 break;
352 default:
353 error = EINVAL;
354 break;
356 if (error)
357 break;
360 * node pointer invalid after loop
364 * Return entry
366 if (hammer_debug_btree) {
367 int i = cursor->index;
368 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
369 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
370 cursor->node, i,
371 (long long)elm->internal.base.obj_id,
372 elm->internal.base.rec_type,
373 (long long)elm->internal.base.key,
374 elm->internal.base.localization
377 return(0);
379 return(error);
383 * We hit an internal element that we could skip as part of a mirroring
384 * scan. Calculate the entire range being skipped.
386 * It is important to include any gaps between the parent's left_bound
387 * and the node's left_bound, and same goes for the right side.
389 static void
390 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
392 struct hammer_cmirror *cmirror;
393 hammer_node_ondisk_t ondisk;
394 hammer_btree_elm_t elm;
396 ondisk = cursor->node->ondisk;
397 cmirror = cursor->cmirror;
400 * Calculate the skipped range
402 elm = &ondisk->elms[cursor->index];
403 if (cursor->index == 0)
404 cmirror->skip_beg = *cursor->left_bound;
405 else
406 cmirror->skip_beg = elm->internal.base;
407 while (cursor->index < ondisk->count) {
408 if (elm->internal.mirror_tid >= cmirror->mirror_tid)
409 break;
410 ++cursor->index;
411 ++elm;
413 if (cursor->index == ondisk->count)
414 cmirror->skip_end = *cursor->right_bound;
415 else
416 cmirror->skip_end = elm->internal.base;
419 * clip the returned result.
421 if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
422 cmirror->skip_beg = cursor->key_beg;
423 if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
424 cmirror->skip_end = cursor->key_end;
428 * Iterate in the reverse direction. This is used by the pruning code to
429 * avoid overlapping records.
432 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
434 hammer_node_ondisk_t node;
435 hammer_btree_elm_t elm;
436 int error = 0;
437 int r;
438 int s;
440 /* mirror filtering not supported for reverse iteration */
441 KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
444 * Skip past the current record. For various reasons the cursor
445 * may end up set to -1 or set to point at the end of the current
446 * node. These cases must be addressed.
448 node = cursor->node->ondisk;
449 if (node == NULL)
450 return(ENOENT);
451 if (cursor->index != -1 &&
452 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
453 --cursor->index;
455 if (cursor->index == cursor->node->ondisk->count)
456 --cursor->index;
459 * Loop until an element is found or we are done.
461 for (;;) {
462 ++hammer_stats_btree_iterations;
463 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
466 * We iterate up the tree and then index over one element
467 * while we are at the last element in the current node.
469 if (cursor->index == -1) {
470 error = hammer_cursor_up(cursor);
471 if (error) {
472 cursor->index = 0; /* sanity */
473 break;
475 /* reload stale pointer */
476 node = cursor->node->ondisk;
477 KKASSERT(cursor->index != node->count);
478 --cursor->index;
479 continue;
483 * Check internal or leaf element. Determine if the record
484 * at the cursor has gone beyond the end of our range.
486 * We recurse down through internal nodes.
488 KKASSERT(cursor->index != node->count);
489 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
490 elm = &node->elms[cursor->index];
491 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
492 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
493 if (hammer_debug_btree) {
494 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
495 (long long)cursor->node->node_offset,
496 cursor->index,
497 (long long)elm[0].internal.base.obj_id,
498 elm[0].internal.base.rec_type,
499 (long long)elm[0].internal.base.key,
500 elm[0].internal.base.localization,
503 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
504 (long long)cursor->node->node_offset,
505 cursor->index + 1,
506 (long long)elm[1].internal.base.obj_id,
507 elm[1].internal.base.rec_type,
508 (long long)elm[1].internal.base.key,
509 elm[1].internal.base.localization,
514 if (s >= 0) {
515 error = ENOENT;
516 break;
520 * It shouldn't be possible to be seeked past key_end,
521 * even if the cursor got moved to a parent.
523 KKASSERT(r >= 0);
526 * Better not be zero
528 KKASSERT(elm->internal.subtree_offset != 0);
530 error = hammer_cursor_down(cursor);
531 if (error)
532 break;
533 KKASSERT(cursor->index == 0);
534 /* reload stale pointer */
535 node = cursor->node->ondisk;
537 /* this can assign -1 if the leaf was empty */
538 cursor->index = node->count - 1;
539 continue;
540 } else {
541 elm = &node->elms[cursor->index];
542 s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
543 if (hammer_debug_btree) {
544 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
545 (long long)cursor->node->node_offset,
546 cursor->index,
547 (elm[0].leaf.base.btype ?
548 elm[0].leaf.base.btype : '?'),
549 (long long)elm[0].leaf.base.obj_id,
550 elm[0].leaf.base.rec_type,
551 (long long)elm[0].leaf.base.key,
552 elm[0].leaf.base.localization,
556 if (s > 0) {
557 error = ENOENT;
558 break;
562 * It shouldn't be possible to be seeked past key_end,
563 * even if the cursor got moved to a parent.
565 cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
568 * Return the element
570 switch(elm->leaf.base.btype) {
571 case HAMMER_BTREE_TYPE_RECORD:
572 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
573 hammer_btree_chkts(cursor->asof, &elm->base)) {
574 --cursor->index;
575 continue;
577 error = 0;
578 break;
579 default:
580 error = EINVAL;
581 break;
583 if (error)
584 break;
587 * node pointer invalid after loop
591 * Return entry
593 if (hammer_debug_btree) {
594 int i = cursor->index;
595 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
596 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
597 cursor->node, i,
598 (long long)elm->internal.base.obj_id,
599 elm->internal.base.rec_type,
600 (long long)elm->internal.base.key,
601 elm->internal.base.localization
604 return(0);
606 return(error);
610 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
611 * could not be found, EDEADLK if inserting and a retry is needed, and a
612 * fatal error otherwise. When retrying, the caller must terminate the
613 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
615 * The cursor is suitably positioned for a deletion on success, and suitably
616 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
617 * specified.
619 * The cursor may begin anywhere, the search will traverse the tree in
620 * either direction to locate the requested element.
622 * Most of the logic implementing historical searches is handled here. We
623 * do an initial lookup with create_tid set to the asof TID. Due to the
624 * way records are laid out, a backwards iteration may be required if
625 * ENOENT is returned to locate the historical record. Here's the
626 * problem:
628 * create_tid: 10 15 20
629 * LEAF1 LEAF2
630 * records: (11) (18)
632 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
633 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
634 * not visible and thus causes ENOENT to be returned. We really need
635 * to check record 11 in LEAF1. If it also fails then the search fails
636 * (e.g. it might represent the range 11-16 and thus still not match our
637 * AS-OF timestamp of 17). Note that LEAF1 could be empty, requiring
638 * further iterations.
640 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
641 * and the cursor->create_check TID if an iteration might be needed.
642 * In the above example create_check would be set to 14.
645 hammer_btree_lookup(hammer_cursor_t cursor)
647 int error;
649 cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
650 KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
651 cursor->trans->sync_lock_refs > 0);
652 ++hammer_stats_btree_lookups;
653 if (cursor->flags & HAMMER_CURSOR_ASOF) {
654 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
655 cursor->key_beg.create_tid = cursor->asof;
656 for (;;) {
657 cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
658 error = btree_search(cursor, 0);
659 if (error != ENOENT ||
660 (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
662 * Stop if no error.
663 * Stop if error other then ENOENT.
664 * Stop if ENOENT and not special case.
666 break;
668 if (hammer_debug_btree) {
669 kprintf("CREATE_CHECK %016llx\n",
670 (long long)cursor->create_check);
672 cursor->key_beg.create_tid = cursor->create_check;
673 /* loop */
675 } else {
676 error = btree_search(cursor, 0);
678 if (error == 0)
679 error = hammer_btree_extract(cursor, cursor->flags);
680 return(error);
684 * Execute the logic required to start an iteration. The first record
685 * located within the specified range is returned and iteration control
686 * flags are adjusted for successive hammer_btree_iterate() calls.
688 * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
689 * in a loop without worrying about it. Higher-level merged searches will
690 * adjust the flag appropriately.
693 hammer_btree_first(hammer_cursor_t cursor)
695 int error;
697 error = hammer_btree_lookup(cursor);
698 if (error == ENOENT) {
699 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
700 error = hammer_btree_iterate(cursor);
702 cursor->flags |= HAMMER_CURSOR_ATEDISK;
703 return(error);
707 * Similarly but for an iteration in the reverse direction.
709 * Set ATEDISK when iterating backwards to skip the current entry,
710 * which after an ENOENT lookup will be pointing beyond our end point.
712 * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
713 * in a loop without worrying about it. Higher-level merged searches will
714 * adjust the flag appropriately.
717 hammer_btree_last(hammer_cursor_t cursor)
719 struct hammer_base_elm save;
720 int error;
722 save = cursor->key_beg;
723 cursor->key_beg = cursor->key_end;
724 error = hammer_btree_lookup(cursor);
725 cursor->key_beg = save;
726 if (error == ENOENT ||
727 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
728 cursor->flags |= HAMMER_CURSOR_ATEDISK;
729 error = hammer_btree_iterate_reverse(cursor);
731 cursor->flags |= HAMMER_CURSOR_ATEDISK;
732 return(error);
736 * Extract the record and/or data associated with the cursor's current
737 * position. Any prior record or data stored in the cursor is replaced.
738 * The cursor must be positioned at a leaf node.
740 * NOTE: All extractions occur at the leaf of the B-Tree.
743 hammer_btree_extract(hammer_cursor_t cursor, int flags)
745 hammer_node_ondisk_t node;
746 hammer_btree_elm_t elm;
747 hammer_off_t data_off;
748 hammer_mount_t hmp;
749 int32_t data_len;
750 int error;
753 * The case where the data reference resolves to the same buffer
754 * as the record reference must be handled.
756 node = cursor->node->ondisk;
757 elm = &node->elms[cursor->index];
758 cursor->data = NULL;
759 hmp = cursor->node->hmp;
762 * There is nothing to extract for an internal element.
764 if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
765 return(EINVAL);
768 * Only record types have data.
770 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
771 cursor->leaf = &elm->leaf;
773 if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
774 return(0);
775 if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
776 return(0);
777 data_off = elm->leaf.data_offset;
778 data_len = elm->leaf.data_len;
779 if (data_off == 0)
780 return(0);
783 * Load the data
785 KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
786 cursor->data = hammer_bread_ext(hmp, data_off, data_len,
787 &error, &cursor->data_buffer);
790 * Mark the data buffer as not being meta-data if it isn't
791 * meta-data (sometimes bulk data is accessed via a volume
792 * block device).
794 if (error == 0) {
795 switch(elm->leaf.base.rec_type) {
796 case HAMMER_RECTYPE_DATA:
797 case HAMMER_RECTYPE_DB:
798 hammer_io_notmeta(cursor->data_buffer);
799 break;
800 default:
801 break;
806 * Deal with CRC errors on the extracted data.
808 if (error == 0 &&
809 hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
810 kprintf("CRC DATA @ %016llx/%d FAILED\n",
811 (long long)elm->leaf.data_offset, elm->leaf.data_len);
812 if (hammer_debug_critical)
813 Debugger("CRC FAILED: DATA");
814 if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
815 error = EDOM; /* less critical (mirroring) */
816 else
817 error = EIO; /* critical */
819 return(error);
824 * Insert a leaf element into the B-Tree at the current cursor position.
825 * The cursor is positioned such that the element at and beyond the cursor
826 * are shifted to make room for the new record.
828 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
829 * flag set and that call must return ENOENT before this function can be
830 * called.
832 * The caller may depend on the cursor's exclusive lock after return to
833 * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
835 * ENOSPC is returned if there is no room to insert a new record.
838 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
839 int *doprop)
841 hammer_node_ondisk_t node;
842 int i;
843 int error;
845 *doprop = 0;
846 if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
847 return(error);
848 ++hammer_stats_btree_inserts;
851 * Insert the element at the leaf node and update the count in the
852 * parent. It is possible for parent to be NULL, indicating that
853 * the filesystem's ROOT B-Tree node is a leaf itself, which is
854 * possible. The root inode can never be deleted so the leaf should
855 * never be empty.
857 * Remember that the right-hand boundary is not included in the
858 * count.
860 hammer_modify_node_all(cursor->trans, cursor->node);
861 node = cursor->node->ondisk;
862 i = cursor->index;
863 KKASSERT(elm->base.btype != 0);
864 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
865 KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
866 if (i != node->count) {
867 bcopy(&node->elms[i], &node->elms[i+1],
868 (node->count - i) * sizeof(*elm));
870 node->elms[i].leaf = *elm;
871 ++node->count;
872 hammer_cursor_inserted_element(cursor->node, i);
875 * Update the leaf node's aggregate mirror_tid for mirroring
876 * support.
878 if (node->mirror_tid < elm->base.delete_tid) {
879 node->mirror_tid = elm->base.delete_tid;
880 *doprop = 1;
882 if (node->mirror_tid < elm->base.create_tid) {
883 node->mirror_tid = elm->base.create_tid;
884 *doprop = 1;
886 hammer_modify_node_done(cursor->node);
889 * Debugging sanity checks.
891 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
892 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
893 if (i) {
894 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
896 if (i != node->count - 1)
897 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
899 return(0);
903 * Delete a record from the B-Tree at the current cursor position.
904 * The cursor is positioned such that the current element is the one
905 * to be deleted.
907 * On return the cursor will be positioned after the deleted element and
908 * MAY point to an internal node. It will be suitable for the continuation
909 * of an iteration but not for an insertion or deletion.
911 * Deletions will attempt to partially rebalance the B-Tree in an upward
912 * direction, but will terminate rather then deadlock. Empty internal nodes
913 * are never allowed by a deletion which deadlocks may end up giving us an
914 * empty leaf. The pruner will clean up and rebalance the tree.
916 * This function can return EDEADLK, requiring the caller to retry the
917 * operation after clearing the deadlock.
920 hammer_btree_delete(hammer_cursor_t cursor)
922 hammer_node_ondisk_t ondisk;
923 hammer_node_t node;
924 hammer_node_t parent;
925 int error;
926 int i;
928 KKASSERT (cursor->trans->sync_lock_refs > 0);
929 if ((error = hammer_cursor_upgrade(cursor)) != 0)
930 return(error);
931 ++hammer_stats_btree_deletes;
934 * Delete the element from the leaf node.
936 * Remember that leaf nodes do not have boundaries.
938 node = cursor->node;
939 ondisk = node->ondisk;
940 i = cursor->index;
942 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
943 KKASSERT(i >= 0 && i < ondisk->count);
944 hammer_modify_node_all(cursor->trans, node);
945 if (i + 1 != ondisk->count) {
946 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
947 (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
949 --ondisk->count;
950 hammer_modify_node_done(node);
951 hammer_cursor_deleted_element(node, i);
954 * Validate local parent
956 if (ondisk->parent) {
957 parent = cursor->parent;
959 KKASSERT(parent != NULL);
960 KKASSERT(parent->node_offset == ondisk->parent);
964 * If the leaf becomes empty it must be detached from the parent,
965 * potentially recursing through to the filesystem root.
967 * This may reposition the cursor at one of the parent's of the
968 * current node.
970 * Ignore deadlock errors, that simply means that btree_remove
971 * was unable to recurse and had to leave us with an empty leaf.
973 KKASSERT(cursor->index <= ondisk->count);
974 if (ondisk->count == 0) {
975 error = btree_remove(cursor);
976 if (error == EDEADLK)
977 error = 0;
978 } else {
979 error = 0;
981 KKASSERT(cursor->parent == NULL ||
982 cursor->parent_index < cursor->parent->ondisk->count);
983 return(error);
987 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
989 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
991 * The search can begin ANYWHERE in the B-Tree. As a first step the search
992 * iterates up the tree as necessary to properly position itself prior to
993 * actually doing the sarch.
995 * INSERTIONS: The search will split full nodes and leaves on its way down
996 * and guarentee that the leaf it ends up on is not full. If we run out
997 * of space the search continues to the leaf (to position the cursor for
998 * the spike), but ENOSPC is returned.
1000 * The search is only guarenteed to end up on a leaf if an error code of 0
1001 * is returned, or if inserting and an error code of ENOENT is returned.
1002 * Otherwise it can stop at an internal node. On success a search returns
1003 * a leaf node.
1005 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
1006 * filesystem, and it is not simple code. Please note the following facts:
1008 * - Internal node recursions have a boundary on the left AND right. The
1009 * right boundary is non-inclusive. The create_tid is a generic part
1010 * of the key for internal nodes.
1012 * - Leaf nodes contain terminal elements only now.
1014 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1015 * historical search. ASOF and INSERT are mutually exclusive. When
1016 * doing an as-of lookup btree_search() checks for a right-edge boundary
1017 * case. If while recursing down the left-edge differs from the key
1018 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1019 * with cursor->create_check. This is used by btree_lookup() to iterate.
1020 * The iteration backwards because as-of searches can wind up going
1021 * down the wrong branch of the B-Tree.
1023 static
1025 btree_search(hammer_cursor_t cursor, int flags)
1027 hammer_node_ondisk_t node;
1028 hammer_btree_elm_t elm;
1029 int error;
1030 int enospc = 0;
1031 int i;
1032 int r;
1033 int s;
1035 flags |= cursor->flags;
1036 ++hammer_stats_btree_searches;
1038 if (hammer_debug_btree) {
1039 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
1040 (long long)cursor->node->node_offset,
1041 cursor->index,
1042 (long long)cursor->key_beg.obj_id,
1043 cursor->key_beg.rec_type,
1044 (long long)cursor->key_beg.key,
1045 (long long)cursor->key_beg.create_tid,
1046 cursor->key_beg.localization,
1047 curthread
1049 if (cursor->parent)
1050 kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1051 (long long)cursor->parent->node_offset,
1052 cursor->parent_index,
1053 (long long)cursor->left_bound->obj_id,
1054 (long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1055 (long long)cursor->right_bound->obj_id,
1056 (long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1057 cursor->left_bound,
1058 &cursor->parent->ondisk->elms[cursor->parent_index],
1059 cursor->right_bound,
1060 &cursor->parent->ondisk->elms[cursor->parent_index+1]
1065 * Move our cursor up the tree until we find a node whos range covers
1066 * the key we are trying to locate.
1068 * The left bound is inclusive, the right bound is non-inclusive.
1069 * It is ok to cursor up too far.
1071 for (;;) {
1072 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1073 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1074 if (r >= 0 && s < 0)
1075 break;
1076 KKASSERT(cursor->parent);
1077 ++hammer_stats_btree_iterations;
1078 error = hammer_cursor_up(cursor);
1079 if (error)
1080 goto done;
1084 * The delete-checks below are based on node, not parent. Set the
1085 * initial delete-check based on the parent.
1087 if (r == 1) {
1088 KKASSERT(cursor->left_bound->create_tid != 1);
1089 cursor->create_check = cursor->left_bound->create_tid - 1;
1090 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1094 * We better have ended up with a node somewhere.
1096 KKASSERT(cursor->node != NULL);
1099 * If we are inserting we can't start at a full node if the parent
1100 * is also full (because there is no way to split the node),
1101 * continue running up the tree until the requirement is satisfied
1102 * or we hit the root of the filesystem.
1104 * (If inserting we aren't doing an as-of search so we don't have
1105 * to worry about create_check).
1107 while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1108 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1109 if (btree_node_is_full(cursor->node->ondisk) == 0)
1110 break;
1111 } else {
1112 if (btree_node_is_full(cursor->node->ondisk) ==0)
1113 break;
1115 if (cursor->node->ondisk->parent == 0 ||
1116 cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1117 break;
1119 ++hammer_stats_btree_iterations;
1120 error = hammer_cursor_up(cursor);
1121 /* node may have become stale */
1122 if (error)
1123 goto done;
1127 * Push down through internal nodes to locate the requested key.
1129 node = cursor->node->ondisk;
1130 while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1132 * Scan the node to find the subtree index to push down into.
1133 * We go one-past, then back-up.
1135 * We must proactively remove deleted elements which may
1136 * have been left over from a deadlocked btree_remove().
1138 * The left and right boundaries are included in the loop
1139 * in order to detect edge cases.
1141 * If the separator only differs by create_tid (r == 1)
1142 * and we are doing an as-of search, we may end up going
1143 * down a branch to the left of the one containing the
1144 * desired key. This requires numerous special cases.
1146 ++hammer_stats_btree_iterations;
1147 if (hammer_debug_btree) {
1148 kprintf("SEARCH-I %016llx count=%d\n",
1149 (long long)cursor->node->node_offset,
1150 node->count);
1154 * Try to shortcut the search before dropping into the
1155 * linear loop. Locate the first node where r <= 1.
1157 i = hammer_btree_search_node(&cursor->key_beg, node);
1158 while (i <= node->count) {
1159 ++hammer_stats_btree_elements;
1160 elm = &node->elms[i];
1161 r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1162 if (hammer_debug_btree > 2) {
1163 kprintf(" IELM %p %d r=%d\n",
1164 &node->elms[i], i, r);
1166 if (r < 0)
1167 break;
1168 if (r == 1) {
1169 KKASSERT(elm->base.create_tid != 1);
1170 cursor->create_check = elm->base.create_tid - 1;
1171 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1173 ++i;
1175 if (hammer_debug_btree) {
1176 kprintf("SEARCH-I preI=%d/%d r=%d\n",
1177 i, node->count, r);
1181 * These cases occur when the parent's idea of the boundary
1182 * is wider then the child's idea of the boundary, and
1183 * require special handling. If not inserting we can
1184 * terminate the search early for these cases but the
1185 * child's boundaries cannot be unconditionally modified.
1187 if (i == 0) {
1189 * If i == 0 the search terminated to the LEFT of the
1190 * left_boundary but to the RIGHT of the parent's left
1191 * boundary.
1193 u_int8_t save;
1195 elm = &node->elms[0];
1198 * If we aren't inserting we can stop here.
1200 if ((flags & (HAMMER_CURSOR_INSERT |
1201 HAMMER_CURSOR_PRUNING)) == 0) {
1202 cursor->index = 0;
1203 return(ENOENT);
1207 * Correct a left-hand boundary mismatch.
1209 * We can only do this if we can upgrade the lock,
1210 * and synchronized as a background cursor (i.e.
1211 * inserting or pruning).
1213 * WARNING: We can only do this if inserting, i.e.
1214 * we are running on the backend.
1216 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1217 return(error);
1218 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1219 hammer_modify_node_field(cursor->trans, cursor->node,
1220 elms[0]);
1221 save = node->elms[0].base.btype;
1222 node->elms[0].base = *cursor->left_bound;
1223 node->elms[0].base.btype = save;
1224 hammer_modify_node_done(cursor->node);
1225 } else if (i == node->count + 1) {
1227 * If i == node->count + 1 the search terminated to
1228 * the RIGHT of the right boundary but to the LEFT
1229 * of the parent's right boundary. If we aren't
1230 * inserting we can stop here.
1232 * Note that the last element in this case is
1233 * elms[i-2] prior to adjustments to 'i'.
1235 --i;
1236 if ((flags & (HAMMER_CURSOR_INSERT |
1237 HAMMER_CURSOR_PRUNING)) == 0) {
1238 cursor->index = i;
1239 return (ENOENT);
1243 * Correct a right-hand boundary mismatch.
1244 * (actual push-down record is i-2 prior to
1245 * adjustments to i).
1247 * We can only do this if we can upgrade the lock,
1248 * and synchronized as a background cursor (i.e.
1249 * inserting or pruning).
1251 * WARNING: We can only do this if inserting, i.e.
1252 * we are running on the backend.
1254 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1255 return(error);
1256 elm = &node->elms[i];
1257 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1258 hammer_modify_node(cursor->trans, cursor->node,
1259 &elm->base, sizeof(elm->base));
1260 elm->base = *cursor->right_bound;
1261 hammer_modify_node_done(cursor->node);
1262 --i;
1263 } else {
1265 * The push-down index is now i - 1. If we had
1266 * terminated on the right boundary this will point
1267 * us at the last element.
1269 --i;
1271 cursor->index = i;
1272 elm = &node->elms[i];
1274 if (hammer_debug_btree) {
1275 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1276 "key=%016llx cre=%016llx lo=%02x\n",
1277 (long long)cursor->node->node_offset,
1279 (long long)elm->internal.base.obj_id,
1280 elm->internal.base.rec_type,
1281 (long long)elm->internal.base.key,
1282 (long long)elm->internal.base.create_tid,
1283 elm->internal.base.localization
1288 * We better have a valid subtree offset.
1290 KKASSERT(elm->internal.subtree_offset != 0);
1293 * Handle insertion and deletion requirements.
1295 * If inserting split full nodes. The split code will
1296 * adjust cursor->node and cursor->index if the current
1297 * index winds up in the new node.
1299 * If inserting and a left or right edge case was detected,
1300 * we cannot correct the left or right boundary and must
1301 * prepend and append an empty leaf node in order to make
1302 * the boundary correction.
1304 * If we run out of space we set enospc and continue on
1305 * to a leaf to provide the spike code with a good point
1306 * of entry.
1308 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1309 if (btree_node_is_full(node)) {
1310 error = btree_split_internal(cursor);
1311 if (error) {
1312 if (error != ENOSPC)
1313 goto done;
1314 enospc = 1;
1317 * reload stale pointers
1319 i = cursor->index;
1320 node = cursor->node->ondisk;
1325 * Push down (push into new node, existing node becomes
1326 * the parent) and continue the search.
1328 error = hammer_cursor_down(cursor);
1329 /* node may have become stale */
1330 if (error)
1331 goto done;
1332 node = cursor->node->ondisk;
1336 * We are at a leaf, do a linear search of the key array.
1338 * On success the index is set to the matching element and 0
1339 * is returned.
1341 * On failure the index is set to the insertion point and ENOENT
1342 * is returned.
1344 * Boundaries are not stored in leaf nodes, so the index can wind
1345 * up to the left of element 0 (index == 0) or past the end of
1346 * the array (index == node->count). It is also possible that the
1347 * leaf might be empty.
1349 ++hammer_stats_btree_iterations;
1350 KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1351 KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1352 if (hammer_debug_btree) {
1353 kprintf("SEARCH-L %016llx count=%d\n",
1354 (long long)cursor->node->node_offset,
1355 node->count);
1359 * Try to shortcut the search before dropping into the
1360 * linear loop. Locate the first node where r <= 1.
1362 i = hammer_btree_search_node(&cursor->key_beg, node);
1363 while (i < node->count) {
1364 ++hammer_stats_btree_elements;
1365 elm = &node->elms[i];
1367 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1369 if (hammer_debug_btree > 1)
1370 kprintf(" ELM %p %d r=%d\n", &node->elms[i], i, r);
1373 * We are at a record element. Stop if we've flipped past
1374 * key_beg, not counting the create_tid test. Allow the
1375 * r == 1 case (key_beg > element but differs only by its
1376 * create_tid) to fall through to the AS-OF check.
1378 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1380 if (r < 0)
1381 goto failed;
1382 if (r > 1) {
1383 ++i;
1384 continue;
1388 * Check our as-of timestamp against the element.
1390 if (flags & HAMMER_CURSOR_ASOF) {
1391 if (hammer_btree_chkts(cursor->asof,
1392 &node->elms[i].base) != 0) {
1393 ++i;
1394 continue;
1396 /* success */
1397 } else {
1398 if (r > 0) { /* can only be +1 */
1399 ++i;
1400 continue;
1402 /* success */
1404 cursor->index = i;
1405 error = 0;
1406 if (hammer_debug_btree) {
1407 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1408 (long long)cursor->node->node_offset, i);
1410 goto done;
1414 * The search of the leaf node failed. i is the insertion point.
1416 failed:
1417 if (hammer_debug_btree) {
1418 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1419 (long long)cursor->node->node_offset, i);
1423 * No exact match was found, i is now at the insertion point.
1425 * If inserting split a full leaf before returning. This
1426 * may have the side effect of adjusting cursor->node and
1427 * cursor->index.
1429 cursor->index = i;
1430 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1431 btree_node_is_full(node)) {
1432 error = btree_split_leaf(cursor);
1433 if (error) {
1434 if (error != ENOSPC)
1435 goto done;
1436 enospc = 1;
1439 * reload stale pointers
1441 /* NOT USED
1442 i = cursor->index;
1443 node = &cursor->node->internal;
1448 * We reached a leaf but did not find the key we were looking for.
1449 * If this is an insert we will be properly positioned for an insert
1450 * (ENOENT) or spike (ENOSPC) operation.
1452 error = enospc ? ENOSPC : ENOENT;
1453 done:
1454 return(error);
1458 * Heuristical search for the first element whos comparison is <= 1. May
1459 * return an index whos compare result is > 1 but may only return an index
1460 * whos compare result is <= 1 if it is the first element with that result.
1463 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1465 int b;
1466 int s;
1467 int i;
1468 int r;
1471 * Don't bother if the node does not have very many elements
1473 b = 0;
1474 s = node->count;
1475 while (s - b > 4) {
1476 i = b + (s - b) / 2;
1477 ++hammer_stats_btree_elements;
1478 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1479 if (r <= 1) {
1480 s = i;
1481 } else {
1482 b = i;
1485 return(b);
1489 /************************************************************************
1490 * SPLITTING AND MERGING *
1491 ************************************************************************
1493 * These routines do all the dirty work required to split and merge nodes.
1497 * Split an internal node into two nodes and move the separator at the split
1498 * point to the parent.
1500 * (cursor->node, cursor->index) indicates the element the caller intends
1501 * to push into. We will adjust node and index if that element winds
1502 * up in the split node.
1504 * If we are at the root of the filesystem a new root must be created with
1505 * two elements, one pointing to the original root and one pointing to the
1506 * newly allocated split node.
1508 static
1510 btree_split_internal(hammer_cursor_t cursor)
1512 hammer_node_ondisk_t ondisk;
1513 hammer_node_t node;
1514 hammer_node_t parent;
1515 hammer_node_t new_node;
1516 hammer_btree_elm_t elm;
1517 hammer_btree_elm_t parent_elm;
1518 struct hammer_node_lock lockroot;
1519 hammer_mount_t hmp = cursor->trans->hmp;
1520 hammer_off_t hint;
1521 int parent_index;
1522 int made_root;
1523 int split;
1524 int error;
1525 int i;
1526 const int esize = sizeof(*elm);
1528 hammer_node_lock_init(&lockroot, cursor->node);
1529 error = hammer_btree_lock_children(cursor, 1, &lockroot);
1530 if (error)
1531 goto done;
1532 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1533 goto done;
1534 ++hammer_stats_btree_splits;
1537 * Calculate the split point. If the insertion point is at the
1538 * end of the leaf we adjust the split point significantly to the
1539 * right to try to optimize node fill and flag it. If we hit
1540 * that same leaf again our heuristic failed and we don't try
1541 * to optimize node fill (it could lead to a degenerate case).
1543 node = cursor->node;
1544 ondisk = node->ondisk;
1545 KKASSERT(ondisk->count > 4);
1546 if (cursor->index == ondisk->count &&
1547 (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1548 split = (ondisk->count + 1) * 3 / 4;
1549 node->flags |= HAMMER_NODE_NONLINEAR;
1550 } else {
1552 * We are splitting but elms[split] will be promoted to
1553 * the parent, leaving the right hand node with one less
1554 * element. If the insertion point will be on the
1555 * left-hand side adjust the split point to give the
1556 * right hand side one additional node.
1558 split = (ondisk->count + 1) / 2;
1559 if (cursor->index <= split)
1560 --split;
1564 * If we are at the root of the filesystem, create a new root node
1565 * with 1 element and split normally. Avoid making major
1566 * modifications until we know the whole operation will work.
1568 if (ondisk->parent == 0) {
1569 parent = hammer_alloc_btree(cursor->trans, node->node_offset,
1570 &error);
1571 if (parent == NULL)
1572 goto done;
1573 hammer_lock_ex(&parent->lock);
1574 hammer_modify_node_noundo(cursor->trans, parent);
1575 ondisk = parent->ondisk;
1576 ondisk->count = 1;
1577 ondisk->parent = 0;
1578 ondisk->mirror_tid = node->ondisk->mirror_tid;
1579 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1580 ondisk->elms[0].base = hmp->root_btree_beg;
1581 ondisk->elms[0].base.btype = node->ondisk->type;
1582 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1583 ondisk->elms[1].base = hmp->root_btree_end;
1584 hammer_modify_node_done(parent);
1585 /* ondisk->elms[1].base.btype - not used */
1586 made_root = 1;
1587 parent_index = 0; /* index of current node in parent */
1588 } else {
1589 made_root = 0;
1590 parent = cursor->parent;
1591 parent_index = cursor->parent_index;
1595 * Calculate a hint for the allocation of the new B-Tree node.
1596 * The most likely expansion is coming from the insertion point
1597 * at cursor->index, so try to localize the allocation of our
1598 * new node to accomodate that sub-tree.
1600 * Use the right-most sub-tree when expandinging on the right edge.
1601 * This is a very common case when copying a directory tree.
1603 if (cursor->index == ondisk->count)
1604 hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1605 else
1606 hint = ondisk->elms[cursor->index].internal.subtree_offset;
1609 * Split node into new_node at the split point.
1611 * B O O O P N N B <-- P = node->elms[split] (index 4)
1612 * 0 1 2 3 4 5 6 <-- subtree indices
1614 * x x P x x
1615 * s S S s
1616 * / \
1617 * B O O O B B N N B <--- inner boundary points are 'P'
1618 * 0 1 2 3 4 5 6
1620 new_node = hammer_alloc_btree(cursor->trans, hint, &error);
1621 if (new_node == NULL) {
1622 if (made_root) {
1623 hammer_unlock(&parent->lock);
1624 hammer_delete_node(cursor->trans, parent);
1625 hammer_rel_node(parent);
1627 goto done;
1629 hammer_lock_ex(&new_node->lock);
1632 * Create the new node. P becomes the left-hand boundary in the
1633 * new node. Copy the right-hand boundary as well.
1635 * elm is the new separator.
1637 hammer_modify_node_noundo(cursor->trans, new_node);
1638 hammer_modify_node_all(cursor->trans, node);
1639 ondisk = node->ondisk;
1640 elm = &ondisk->elms[split];
1641 bcopy(elm, &new_node->ondisk->elms[0],
1642 (ondisk->count - split + 1) * esize);
1643 new_node->ondisk->count = ondisk->count - split;
1644 new_node->ondisk->parent = parent->node_offset;
1645 new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1646 new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1647 KKASSERT(ondisk->type == new_node->ondisk->type);
1648 hammer_cursor_split_node(node, new_node, split);
1651 * Cleanup the original node. Elm (P) becomes the new boundary,
1652 * its subtree_offset was moved to the new node. If we had created
1653 * a new root its parent pointer may have changed.
1655 elm->internal.subtree_offset = 0;
1656 ondisk->count = split;
1659 * Insert the separator into the parent, fixup the parent's
1660 * reference to the original node, and reference the new node.
1661 * The separator is P.
1663 * Remember that base.count does not include the right-hand boundary.
1665 hammer_modify_node_all(cursor->trans, parent);
1666 ondisk = parent->ondisk;
1667 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1668 parent_elm = &ondisk->elms[parent_index+1];
1669 bcopy(parent_elm, parent_elm + 1,
1670 (ondisk->count - parent_index) * esize);
1671 parent_elm->internal.base = elm->base; /* separator P */
1672 parent_elm->internal.base.btype = new_node->ondisk->type;
1673 parent_elm->internal.subtree_offset = new_node->node_offset;
1674 parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1675 ++ondisk->count;
1676 hammer_modify_node_done(parent);
1677 hammer_cursor_inserted_element(parent, parent_index + 1);
1680 * The children of new_node need their parent pointer set to new_node.
1681 * The children have already been locked by
1682 * hammer_btree_lock_children().
1684 for (i = 0; i < new_node->ondisk->count; ++i) {
1685 elm = &new_node->ondisk->elms[i];
1686 error = btree_set_parent(cursor->trans, new_node, elm);
1687 if (error) {
1688 panic("btree_split_internal: btree-fixup problem");
1691 hammer_modify_node_done(new_node);
1694 * The filesystem's root B-Tree pointer may have to be updated.
1696 if (made_root) {
1697 hammer_volume_t volume;
1699 volume = hammer_get_root_volume(hmp, &error);
1700 KKASSERT(error == 0);
1702 hammer_modify_volume_field(cursor->trans, volume,
1703 vol0_btree_root);
1704 volume->ondisk->vol0_btree_root = parent->node_offset;
1705 hammer_modify_volume_done(volume);
1706 node->ondisk->parent = parent->node_offset;
1707 if (cursor->parent) {
1708 hammer_unlock(&cursor->parent->lock);
1709 hammer_rel_node(cursor->parent);
1711 cursor->parent = parent; /* lock'd and ref'd */
1712 hammer_rel_volume(volume, 0);
1714 hammer_modify_node_done(node);
1717 * Ok, now adjust the cursor depending on which element the original
1718 * index was pointing at. If we are >= the split point the push node
1719 * is now in the new node.
1721 * NOTE: If we are at the split point itself we cannot stay with the
1722 * original node because the push index will point at the right-hand
1723 * boundary, which is illegal.
1725 * NOTE: The cursor's parent or parent_index must be adjusted for
1726 * the case where a new parent (new root) was created, and the case
1727 * where the cursor is now pointing at the split node.
1729 if (cursor->index >= split) {
1730 cursor->parent_index = parent_index + 1;
1731 cursor->index -= split;
1732 hammer_unlock(&cursor->node->lock);
1733 hammer_rel_node(cursor->node);
1734 cursor->node = new_node; /* locked and ref'd */
1735 } else {
1736 cursor->parent_index = parent_index;
1737 hammer_unlock(&new_node->lock);
1738 hammer_rel_node(new_node);
1742 * Fixup left and right bounds
1744 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1745 cursor->left_bound = &parent_elm[0].internal.base;
1746 cursor->right_bound = &parent_elm[1].internal.base;
1747 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1748 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1749 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1750 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1752 done:
1753 hammer_btree_unlock_children(cursor, &lockroot);
1754 hammer_cursor_downgrade(cursor);
1755 return (error);
1759 * Same as the above, but splits a full leaf node.
1761 * This function
1763 static
1765 btree_split_leaf(hammer_cursor_t cursor)
1767 hammer_node_ondisk_t ondisk;
1768 hammer_node_t parent;
1769 hammer_node_t leaf;
1770 hammer_mount_t hmp;
1771 hammer_node_t new_leaf;
1772 hammer_btree_elm_t elm;
1773 hammer_btree_elm_t parent_elm;
1774 hammer_base_elm_t mid_boundary;
1775 hammer_off_t hint;
1776 int parent_index;
1777 int made_root;
1778 int split;
1779 int error;
1780 const size_t esize = sizeof(*elm);
1782 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1783 return(error);
1784 ++hammer_stats_btree_splits;
1786 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1787 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1788 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1789 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1792 * Calculate the split point. If the insertion point is at the
1793 * end of the leaf we adjust the split point significantly to the
1794 * right to try to optimize node fill and flag it. If we hit
1795 * that same leaf again our heuristic failed and we don't try
1796 * to optimize node fill (it could lead to a degenerate case).
1798 * Spikes are made up of two leaf elements which cannot be
1799 * safely split.
1801 leaf = cursor->node;
1802 ondisk = leaf->ondisk;
1803 KKASSERT(ondisk->count > 4);
1804 if (cursor->index == ondisk->count &&
1805 (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1806 split = (ondisk->count + 1) * 3 / 4;
1807 leaf->flags |= HAMMER_NODE_NONLINEAR;
1808 } else {
1809 split = (ondisk->count + 1) / 2;
1812 #if 0
1814 * If the insertion point is at the split point shift the
1815 * split point left so we don't have to worry about
1817 if (cursor->index == split)
1818 --split;
1819 #endif
1820 KKASSERT(split > 0 && split < ondisk->count);
1822 error = 0;
1823 hmp = leaf->hmp;
1825 elm = &ondisk->elms[split];
1827 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1828 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1829 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1830 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1833 * If we are at the root of the tree, create a new root node with
1834 * 1 element and split normally. Avoid making major modifications
1835 * until we know the whole operation will work.
1837 if (ondisk->parent == 0) {
1838 parent = hammer_alloc_btree(cursor->trans, leaf->node_offset,
1839 &error);
1840 if (parent == NULL)
1841 goto done;
1842 hammer_lock_ex(&parent->lock);
1843 hammer_modify_node_noundo(cursor->trans, parent);
1844 ondisk = parent->ondisk;
1845 ondisk->count = 1;
1846 ondisk->parent = 0;
1847 ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1848 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1849 ondisk->elms[0].base = hmp->root_btree_beg;
1850 ondisk->elms[0].base.btype = leaf->ondisk->type;
1851 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1852 ondisk->elms[1].base = hmp->root_btree_end;
1853 /* ondisk->elms[1].base.btype = not used */
1854 hammer_modify_node_done(parent);
1855 made_root = 1;
1856 parent_index = 0; /* insertion point in parent */
1857 } else {
1858 made_root = 0;
1859 parent = cursor->parent;
1860 parent_index = cursor->parent_index;
1864 * Calculate a hint for the allocation of the new B-Tree leaf node.
1865 * For now just try to localize it within the same bigblock as
1866 * the current leaf.
1868 * If the insertion point is at the end of the leaf we recognize a
1869 * likely append sequence of some sort (data, meta-data, inodes,
1870 * whatever). Set the hint to zero to allocate out of linear space
1871 * instead of trying to completely fill previously hinted space.
1873 * This also sets the stage for recursive splits to localize using
1874 * the new space.
1876 ondisk = leaf->ondisk;
1877 if (cursor->index == ondisk->count)
1878 hint = 0;
1879 else
1880 hint = leaf->node_offset;
1883 * Split leaf into new_leaf at the split point. Select a separator
1884 * value in-between the two leafs but with a bent towards the right
1885 * leaf since comparisons use an 'elm >= separator' inequality.
1887 * L L L L L L L L
1889 * x x P x x
1890 * s S S s
1891 * / \
1892 * L L L L L L L L
1894 new_leaf = hammer_alloc_btree(cursor->trans, hint, &error);
1895 if (new_leaf == NULL) {
1896 if (made_root) {
1897 hammer_unlock(&parent->lock);
1898 hammer_delete_node(cursor->trans, parent);
1899 hammer_rel_node(parent);
1901 goto done;
1903 hammer_lock_ex(&new_leaf->lock);
1906 * Create the new node and copy the leaf elements from the split
1907 * point on to the new node.
1909 hammer_modify_node_all(cursor->trans, leaf);
1910 hammer_modify_node_noundo(cursor->trans, new_leaf);
1911 ondisk = leaf->ondisk;
1912 elm = &ondisk->elms[split];
1913 bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1914 new_leaf->ondisk->count = ondisk->count - split;
1915 new_leaf->ondisk->parent = parent->node_offset;
1916 new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1917 new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1918 KKASSERT(ondisk->type == new_leaf->ondisk->type);
1919 hammer_modify_node_done(new_leaf);
1920 hammer_cursor_split_node(leaf, new_leaf, split);
1923 * Cleanup the original node. Because this is a leaf node and
1924 * leaf nodes do not have a right-hand boundary, there
1925 * aren't any special edge cases to clean up. We just fixup the
1926 * count.
1928 ondisk->count = split;
1931 * Insert the separator into the parent, fixup the parent's
1932 * reference to the original node, and reference the new node.
1933 * The separator is P.
1935 * Remember that base.count does not include the right-hand boundary.
1936 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1938 hammer_modify_node_all(cursor->trans, parent);
1939 ondisk = parent->ondisk;
1940 KKASSERT(split != 0);
1941 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1942 parent_elm = &ondisk->elms[parent_index+1];
1943 bcopy(parent_elm, parent_elm + 1,
1944 (ondisk->count - parent_index) * esize);
1946 hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1947 parent_elm->internal.base.btype = new_leaf->ondisk->type;
1948 parent_elm->internal.subtree_offset = new_leaf->node_offset;
1949 parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1950 mid_boundary = &parent_elm->base;
1951 ++ondisk->count;
1952 hammer_modify_node_done(parent);
1953 hammer_cursor_inserted_element(parent, parent_index + 1);
1956 * The filesystem's root B-Tree pointer may have to be updated.
1958 if (made_root) {
1959 hammer_volume_t volume;
1961 volume = hammer_get_root_volume(hmp, &error);
1962 KKASSERT(error == 0);
1964 hammer_modify_volume_field(cursor->trans, volume,
1965 vol0_btree_root);
1966 volume->ondisk->vol0_btree_root = parent->node_offset;
1967 hammer_modify_volume_done(volume);
1968 leaf->ondisk->parent = parent->node_offset;
1969 if (cursor->parent) {
1970 hammer_unlock(&cursor->parent->lock);
1971 hammer_rel_node(cursor->parent);
1973 cursor->parent = parent; /* lock'd and ref'd */
1974 hammer_rel_volume(volume, 0);
1976 hammer_modify_node_done(leaf);
1979 * Ok, now adjust the cursor depending on which element the original
1980 * index was pointing at. If we are >= the split point the push node
1981 * is now in the new node.
1983 * NOTE: If we are at the split point itself we need to select the
1984 * old or new node based on where key_beg's insertion point will be.
1985 * If we pick the wrong side the inserted element will wind up in
1986 * the wrong leaf node and outside that node's bounds.
1988 if (cursor->index > split ||
1989 (cursor->index == split &&
1990 hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1991 cursor->parent_index = parent_index + 1;
1992 cursor->index -= split;
1993 hammer_unlock(&cursor->node->lock);
1994 hammer_rel_node(cursor->node);
1995 cursor->node = new_leaf;
1996 } else {
1997 cursor->parent_index = parent_index;
1998 hammer_unlock(&new_leaf->lock);
1999 hammer_rel_node(new_leaf);
2003 * Fixup left and right bounds
2005 parent_elm = &parent->ondisk->elms[cursor->parent_index];
2006 cursor->left_bound = &parent_elm[0].internal.base;
2007 cursor->right_bound = &parent_elm[1].internal.base;
2010 * Assert that the bounds are correct.
2012 KKASSERT(hammer_btree_cmp(cursor->left_bound,
2013 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
2014 KKASSERT(hammer_btree_cmp(cursor->right_bound,
2015 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
2016 KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
2017 KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
2019 done:
2020 hammer_cursor_downgrade(cursor);
2021 return (error);
2024 #if 0
2027 * Recursively correct the right-hand boundary's create_tid to (tid) as
2028 * long as the rest of the key matches. We have to recurse upward in
2029 * the tree as well as down the left side of each parent's right node.
2031 * Return EDEADLK if we were only partially successful, forcing the caller
2032 * to try again. The original cursor is not modified. This routine can
2033 * also fail with EDEADLK if it is forced to throw away a portion of its
2034 * record history.
2036 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2038 struct hammer_rhb {
2039 TAILQ_ENTRY(hammer_rhb) entry;
2040 hammer_node_t node;
2041 int index;
2044 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2047 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2049 struct hammer_mount *hmp;
2050 struct hammer_rhb_list rhb_list;
2051 hammer_base_elm_t elm;
2052 hammer_node_t orig_node;
2053 struct hammer_rhb *rhb;
2054 int orig_index;
2055 int error;
2057 TAILQ_INIT(&rhb_list);
2058 hmp = cursor->trans->hmp;
2061 * Save our position so we can restore it on return. This also
2062 * gives us a stable 'elm'.
2064 orig_node = cursor->node;
2065 hammer_ref_node(orig_node);
2066 hammer_lock_sh(&orig_node->lock);
2067 orig_index = cursor->index;
2068 elm = &orig_node->ondisk->elms[orig_index].base;
2071 * Now build a list of parents going up, allocating a rhb
2072 * structure for each one.
2074 while (cursor->parent) {
2076 * Stop if we no longer have any right-bounds to fix up
2078 if (elm->obj_id != cursor->right_bound->obj_id ||
2079 elm->rec_type != cursor->right_bound->rec_type ||
2080 elm->key != cursor->right_bound->key) {
2081 break;
2085 * Stop if the right-hand bound's create_tid does not
2086 * need to be corrected.
2088 if (cursor->right_bound->create_tid >= tid)
2089 break;
2091 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2092 rhb->node = cursor->parent;
2093 rhb->index = cursor->parent_index;
2094 hammer_ref_node(rhb->node);
2095 hammer_lock_sh(&rhb->node->lock);
2096 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2098 hammer_cursor_up(cursor);
2102 * now safely adjust the right hand bound for each rhb. This may
2103 * also require taking the right side of the tree and iterating down
2104 * ITS left side.
2106 error = 0;
2107 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2108 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2109 if (error)
2110 break;
2111 TAILQ_REMOVE(&rhb_list, rhb, entry);
2112 hammer_unlock(&rhb->node->lock);
2113 hammer_rel_node(rhb->node);
2114 kfree(rhb, hmp->m_misc);
2116 switch (cursor->node->ondisk->type) {
2117 case HAMMER_BTREE_TYPE_INTERNAL:
2119 * Right-boundary for parent at internal node
2120 * is one element to the right of the element whos
2121 * right boundary needs adjusting. We must then
2122 * traverse down the left side correcting any left
2123 * bounds (which may now be too far to the left).
2125 ++cursor->index;
2126 error = hammer_btree_correct_lhb(cursor, tid);
2127 break;
2128 default:
2129 panic("hammer_btree_correct_rhb(): Bad node type");
2130 error = EINVAL;
2131 break;
2136 * Cleanup
2138 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2139 TAILQ_REMOVE(&rhb_list, rhb, entry);
2140 hammer_unlock(&rhb->node->lock);
2141 hammer_rel_node(rhb->node);
2142 kfree(rhb, hmp->m_misc);
2144 error = hammer_cursor_seek(cursor, orig_node, orig_index);
2145 hammer_unlock(&orig_node->lock);
2146 hammer_rel_node(orig_node);
2147 return (error);
2151 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2152 * bound going downward starting at the current cursor position.
2154 * This function does not restore the cursor after use.
2157 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2159 struct hammer_rhb_list rhb_list;
2160 hammer_base_elm_t elm;
2161 hammer_base_elm_t cmp;
2162 struct hammer_rhb *rhb;
2163 struct hammer_mount *hmp;
2164 int error;
2166 TAILQ_INIT(&rhb_list);
2167 hmp = cursor->trans->hmp;
2169 cmp = &cursor->node->ondisk->elms[cursor->index].base;
2172 * Record the node and traverse down the left-hand side for all
2173 * matching records needing a boundary correction.
2175 error = 0;
2176 for (;;) {
2177 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2178 rhb->node = cursor->node;
2179 rhb->index = cursor->index;
2180 hammer_ref_node(rhb->node);
2181 hammer_lock_sh(&rhb->node->lock);
2182 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2184 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2186 * Nothing to traverse down if we are at the right
2187 * boundary of an internal node.
2189 if (cursor->index == cursor->node->ondisk->count)
2190 break;
2191 } else {
2192 elm = &cursor->node->ondisk->elms[cursor->index].base;
2193 if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2194 break;
2195 panic("Illegal leaf record type %02x", elm->btype);
2197 error = hammer_cursor_down(cursor);
2198 if (error)
2199 break;
2201 elm = &cursor->node->ondisk->elms[cursor->index].base;
2202 if (elm->obj_id != cmp->obj_id ||
2203 elm->rec_type != cmp->rec_type ||
2204 elm->key != cmp->key) {
2205 break;
2207 if (elm->create_tid >= tid)
2208 break;
2213 * Now we can safely adjust the left-hand boundary from the bottom-up.
2214 * The last element we remove from the list is the caller's right hand
2215 * boundary, which must also be adjusted.
2217 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2218 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2219 if (error)
2220 break;
2221 TAILQ_REMOVE(&rhb_list, rhb, entry);
2222 hammer_unlock(&rhb->node->lock);
2223 hammer_rel_node(rhb->node);
2224 kfree(rhb, hmp->m_misc);
2226 elm = &cursor->node->ondisk->elms[cursor->index].base;
2227 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2228 hammer_modify_node(cursor->trans, cursor->node,
2229 &elm->create_tid,
2230 sizeof(elm->create_tid));
2231 elm->create_tid = tid;
2232 hammer_modify_node_done(cursor->node);
2233 } else {
2234 panic("hammer_btree_correct_lhb(): Bad element type");
2239 * Cleanup
2241 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2242 TAILQ_REMOVE(&rhb_list, rhb, entry);
2243 hammer_unlock(&rhb->node->lock);
2244 hammer_rel_node(rhb->node);
2245 kfree(rhb, hmp->m_misc);
2247 return (error);
2250 #endif
2253 * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2254 * (cursor->node). Returns 0 on success, EDEADLK if we could not complete
2255 * the operation due to a deadlock, or some other error.
2257 * This routine is initially called with an empty leaf and may be
2258 * recursively called with single-element internal nodes.
2260 * It should also be noted that when removing empty leaves we must be sure
2261 * to test and update mirror_tid because another thread may have deadlocked
2262 * against us (or someone) trying to propagate it up and cannot retry once
2263 * the node has been deleted.
2265 * On return the cursor may end up pointing to an internal node, suitable
2266 * for further iteration but not for an immediate insertion or deletion.
2268 static int
2269 btree_remove(hammer_cursor_t cursor)
2271 hammer_node_ondisk_t ondisk;
2272 hammer_btree_elm_t elm;
2273 hammer_node_t node;
2274 hammer_node_t parent;
2275 const int esize = sizeof(*elm);
2276 int error;
2278 node = cursor->node;
2281 * When deleting the root of the filesystem convert it to
2282 * an empty leaf node. Internal nodes cannot be empty.
2284 ondisk = node->ondisk;
2285 if (ondisk->parent == 0) {
2286 KKASSERT(cursor->parent == NULL);
2287 hammer_modify_node_all(cursor->trans, node);
2288 KKASSERT(ondisk == node->ondisk);
2289 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2290 ondisk->count = 0;
2291 hammer_modify_node_done(node);
2292 cursor->index = 0;
2293 return(0);
2296 parent = cursor->parent;
2299 * Attempt to remove the parent's reference to the child. If the
2300 * parent would become empty we have to recurse. If we fail we
2301 * leave the parent pointing to an empty leaf node.
2303 * We have to recurse successfully before we can delete the internal
2304 * node as it is illegal to have empty internal nodes. Even though
2305 * the operation may be aborted we must still fixup any unlocked
2306 * cursors as if we had deleted the element prior to recursing
2307 * (by calling hammer_cursor_deleted_element()) so those cursors
2308 * are properly forced up the chain by the recursion.
2310 if (parent->ondisk->count == 1) {
2312 * This special cursor_up_locked() call leaves the original
2313 * node exclusively locked and referenced, leaves the
2314 * original parent locked (as the new node), and locks the
2315 * new parent. It can return EDEADLK.
2317 * We cannot call hammer_cursor_removed_node() until we are
2318 * actually able to remove the node. If we did then tracked
2319 * cursors in the middle of iterations could be repointed
2320 * to a parent node. If this occurs they could end up
2321 * scanning newly inserted records into the node (that could
2322 * not be deleted) when they push down again.
2324 * Due to the way the recursion works the final parent is left
2325 * in cursor->parent after the recursion returns. Each
2326 * layer on the way back up is thus able to call
2327 * hammer_cursor_removed_node() and 'jump' the node up to
2328 * the (same) final parent.
2330 * NOTE! The local variable 'parent' is invalid after we
2331 * call hammer_cursor_up_locked().
2333 error = hammer_cursor_up_locked(cursor);
2334 parent = NULL;
2336 if (error == 0) {
2337 hammer_cursor_deleted_element(cursor->node, 0);
2338 error = btree_remove(cursor);
2339 if (error == 0) {
2340 KKASSERT(node != cursor->node);
2341 hammer_cursor_removed_node(
2342 node, cursor->node,
2343 cursor->index);
2344 hammer_modify_node_all(cursor->trans, node);
2345 ondisk = node->ondisk;
2346 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2347 ondisk->count = 0;
2348 hammer_modify_node_done(node);
2349 hammer_flush_node(node);
2350 hammer_delete_node(cursor->trans, node);
2351 } else {
2353 * Defer parent removal because we could not
2354 * get the lock, just let the leaf remain
2355 * empty.
2357 /**/
2359 hammer_unlock(&node->lock);
2360 hammer_rel_node(node);
2361 } else {
2363 * Defer parent removal because we could not
2364 * get the lock, just let the leaf remain
2365 * empty.
2367 /**/
2369 } else {
2370 KKASSERT(parent->ondisk->count > 1);
2372 hammer_modify_node_all(cursor->trans, parent);
2373 ondisk = parent->ondisk;
2374 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2376 elm = &ondisk->elms[cursor->parent_index];
2377 KKASSERT(elm->internal.subtree_offset == node->node_offset);
2378 KKASSERT(ondisk->count > 0);
2381 * We must retain the highest mirror_tid. The deleted
2382 * range is now encompassed by the element to the left.
2383 * If we are already at the left edge the new left edge
2384 * inherits mirror_tid.
2386 * Note that bounds of the parent to our parent may create
2387 * a gap to the left of our left-most node or to the right
2388 * of our right-most node. The gap is silently included
2389 * in the mirror_tid's area of effect from the point of view
2390 * of the scan.
2392 if (cursor->parent_index) {
2393 if (elm[-1].internal.mirror_tid <
2394 elm[0].internal.mirror_tid) {
2395 elm[-1].internal.mirror_tid =
2396 elm[0].internal.mirror_tid;
2398 } else {
2399 if (elm[1].internal.mirror_tid <
2400 elm[0].internal.mirror_tid) {
2401 elm[1].internal.mirror_tid =
2402 elm[0].internal.mirror_tid;
2407 * Delete the subtree reference in the parent. Include
2408 * boundary element at end.
2410 bcopy(&elm[1], &elm[0],
2411 (ondisk->count - cursor->parent_index) * esize);
2412 --ondisk->count;
2413 hammer_modify_node_done(parent);
2414 hammer_cursor_removed_node(node, parent, cursor->parent_index);
2415 hammer_cursor_deleted_element(parent, cursor->parent_index);
2416 hammer_flush_node(node);
2417 hammer_delete_node(cursor->trans, node);
2420 * cursor->node is invalid, cursor up to make the cursor
2421 * valid again.
2423 error = hammer_cursor_up(cursor);
2425 return (error);
2429 * Propagate cursor->trans->tid up the B-Tree starting at the current
2430 * cursor position using pseudofs info gleaned from the passed inode.
2432 * The passed inode has no relationship to the cursor position other
2433 * then being in the same pseudofs as the insertion or deletion we
2434 * are propagating the mirror_tid for.
2436 * WARNING! Because we push and pop the passed cursor, it may be
2437 * modified by other B-Tree operations while it is unlocked
2438 * and things like the node & leaf pointers, and indexes might
2439 * change.
2441 void
2442 hammer_btree_do_propagation(hammer_cursor_t cursor,
2443 hammer_pseudofs_inmem_t pfsm,
2444 hammer_btree_leaf_elm_t leaf)
2446 hammer_cursor_t ncursor;
2447 hammer_tid_t mirror_tid;
2448 int error;
2451 * We do not propagate a mirror_tid if the filesystem was mounted
2452 * in no-mirror mode.
2454 if (cursor->trans->hmp->master_id < 0)
2455 return;
2458 * This is a bit of a hack because we cannot deadlock or return
2459 * EDEADLK here. The related operation has already completed and
2460 * we must propagate the mirror_tid now regardless.
2462 * Generate a new cursor which inherits the original's locks and
2463 * unlock the original. Use the new cursor to propagate the
2464 * mirror_tid. Then clean up the new cursor and reacquire locks
2465 * on the original.
2467 * hammer_dup_cursor() cannot dup locks. The dup inherits the
2468 * original's locks and the original is tracked and must be
2469 * re-locked.
2471 mirror_tid = cursor->node->ondisk->mirror_tid;
2472 KKASSERT(mirror_tid != 0);
2473 ncursor = hammer_push_cursor(cursor);
2474 error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2475 KKASSERT(error == 0);
2476 hammer_pop_cursor(cursor, ncursor);
2477 /* WARNING: cursor's leaf pointer may change after pop */
2482 * Propagate a mirror TID update upwards through the B-Tree to the root.
2484 * A locked internal node must be passed in. The node will remain locked
2485 * on return.
2487 * This function syncs mirror_tid at the specified internal node's element,
2488 * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2490 static int
2491 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2493 hammer_btree_internal_elm_t elm;
2494 hammer_node_t node;
2495 int error;
2497 for (;;) {
2498 error = hammer_cursor_up(cursor);
2499 if (error == 0)
2500 error = hammer_cursor_upgrade(cursor);
2503 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2504 * cursor will still be properly positioned for
2505 * mirror propagation, just not for iterations.
2507 while (error == EDEADLK) {
2508 hammer_recover_cursor(cursor);
2509 error = hammer_cursor_upgrade(cursor);
2511 if (error)
2512 break;
2515 * If the cursor deadlocked it could end up at a leaf
2516 * after we lost the lock.
2518 node = cursor->node;
2519 if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2520 continue;
2523 * Adjust the node's element
2525 elm = &node->ondisk->elms[cursor->index].internal;
2526 if (elm->mirror_tid >= mirror_tid)
2527 break;
2528 hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2529 sizeof(elm->mirror_tid));
2530 elm->mirror_tid = mirror_tid;
2531 hammer_modify_node_done(node);
2532 if (hammer_debug_general & 0x0002) {
2533 kprintf("mirror_propagate: propagate "
2534 "%016llx @%016llx:%d\n",
2535 (long long)mirror_tid,
2536 (long long)node->node_offset,
2537 cursor->index);
2542 * Adjust the node's mirror_tid aggregator
2544 if (node->ondisk->mirror_tid >= mirror_tid)
2545 return(0);
2546 hammer_modify_node_field(cursor->trans, node, mirror_tid);
2547 node->ondisk->mirror_tid = mirror_tid;
2548 hammer_modify_node_done(node);
2549 if (hammer_debug_general & 0x0002) {
2550 kprintf("mirror_propagate: propagate "
2551 "%016llx @%016llx\n",
2552 (long long)mirror_tid,
2553 (long long)node->node_offset);
2556 if (error == ENOENT)
2557 error = 0;
2558 return(error);
2561 hammer_node_t
2562 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2563 int *parent_indexp, int *errorp, int try_exclusive)
2565 hammer_node_t parent;
2566 hammer_btree_elm_t elm;
2567 int i;
2570 * Get the node
2572 parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2573 if (*errorp) {
2574 KKASSERT(parent == NULL);
2575 return(NULL);
2577 KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2580 * Lock the node
2582 if (try_exclusive) {
2583 if (hammer_lock_ex_try(&parent->lock)) {
2584 hammer_rel_node(parent);
2585 *errorp = EDEADLK;
2586 return(NULL);
2588 } else {
2589 hammer_lock_sh(&parent->lock);
2593 * Figure out which element in the parent is pointing to the
2594 * child.
2596 if (node->ondisk->count) {
2597 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2598 parent->ondisk);
2599 } else {
2600 i = 0;
2602 while (i < parent->ondisk->count) {
2603 elm = &parent->ondisk->elms[i];
2604 if (elm->internal.subtree_offset == node->node_offset)
2605 break;
2606 ++i;
2608 if (i == parent->ondisk->count) {
2609 hammer_unlock(&parent->lock);
2610 panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2612 *parent_indexp = i;
2613 KKASSERT(*errorp == 0);
2614 return(parent);
2618 * The element (elm) has been moved to a new internal node (node).
2620 * If the element represents a pointer to an internal node that node's
2621 * parent must be adjusted to the element's new location.
2623 * XXX deadlock potential here with our exclusive locks
2626 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2627 hammer_btree_elm_t elm)
2629 hammer_node_t child;
2630 int error;
2632 error = 0;
2634 switch(elm->base.btype) {
2635 case HAMMER_BTREE_TYPE_INTERNAL:
2636 case HAMMER_BTREE_TYPE_LEAF:
2637 child = hammer_get_node(trans, elm->internal.subtree_offset,
2638 0, &error);
2639 if (error == 0) {
2640 hammer_modify_node_field(trans, child, parent);
2641 child->ondisk->parent = node->node_offset;
2642 hammer_modify_node_done(child);
2643 hammer_rel_node(child);
2645 break;
2646 default:
2647 break;
2649 return(error);
2653 * Initialize the root of a recursive B-Tree node lock list structure.
2655 void
2656 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2658 TAILQ_INIT(&parent->list);
2659 parent->parent = NULL;
2660 parent->node = node;
2661 parent->index = -1;
2662 parent->count = node->ondisk->count;
2663 parent->copy = NULL;
2664 parent->flags = 0;
2668 * Exclusively lock all the children of node. This is used by the split
2669 * code to prevent anyone from accessing the children of a cursor node
2670 * while we fix-up its parent offset.
2672 * If we don't lock the children we can really mess up cursors which block
2673 * trying to cursor-up into our node.
2675 * On failure EDEADLK (or some other error) is returned. If a deadlock
2676 * error is returned the cursor is adjusted to block on termination.
2678 * The caller is responsible for managing parent->node, the root's node
2679 * is usually aliased from a cursor.
2682 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2683 hammer_node_lock_t parent)
2685 hammer_node_t node;
2686 hammer_node_lock_t item;
2687 hammer_node_ondisk_t ondisk;
2688 hammer_btree_elm_t elm;
2689 hammer_node_t child;
2690 struct hammer_mount *hmp;
2691 int error;
2692 int i;
2694 node = parent->node;
2695 ondisk = node->ondisk;
2696 error = 0;
2697 hmp = cursor->trans->hmp;
2700 * We really do not want to block on I/O with exclusive locks held,
2701 * pre-get the children before trying to lock the mess. This is
2702 * only done one-level deep for now.
2704 for (i = 0; i < ondisk->count; ++i) {
2705 ++hammer_stats_btree_elements;
2706 elm = &ondisk->elms[i];
2707 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2708 elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2709 continue;
2711 child = hammer_get_node(cursor->trans,
2712 elm->internal.subtree_offset,
2713 0, &error);
2714 if (child)
2715 hammer_rel_node(child);
2719 * Do it for real
2721 for (i = 0; error == 0 && i < ondisk->count; ++i) {
2722 ++hammer_stats_btree_elements;
2723 elm = &ondisk->elms[i];
2725 switch(elm->base.btype) {
2726 case HAMMER_BTREE_TYPE_INTERNAL:
2727 case HAMMER_BTREE_TYPE_LEAF:
2728 KKASSERT(elm->internal.subtree_offset != 0);
2729 child = hammer_get_node(cursor->trans,
2730 elm->internal.subtree_offset,
2731 0, &error);
2732 break;
2733 default:
2734 child = NULL;
2735 break;
2737 if (child) {
2738 if (hammer_lock_ex_try(&child->lock) != 0) {
2739 if (cursor->deadlk_node == NULL) {
2740 cursor->deadlk_node = child;
2741 hammer_ref_node(cursor->deadlk_node);
2743 error = EDEADLK;
2744 hammer_rel_node(child);
2745 } else {
2746 item = kmalloc(sizeof(*item), hmp->m_misc,
2747 M_WAITOK|M_ZERO);
2748 TAILQ_INSERT_TAIL(&parent->list, item, entry);
2749 TAILQ_INIT(&item->list);
2750 item->parent = parent;
2751 item->node = child;
2752 item->index = i;
2753 item->count = child->ondisk->count;
2756 * Recurse (used by the rebalancing code)
2758 if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2759 error = hammer_btree_lock_children(
2760 cursor,
2761 depth - 1,
2762 item);
2767 if (error)
2768 hammer_btree_unlock_children(cursor, parent);
2769 return(error);
2773 * Create an in-memory copy of all B-Tree nodes listed, recursively,
2774 * including the parent.
2776 void
2777 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2779 hammer_mount_t hmp = cursor->trans->hmp;
2780 hammer_node_lock_t item;
2782 if (parent->copy == NULL) {
2783 parent->copy = kmalloc(sizeof(*parent->copy), hmp->m_misc,
2784 M_WAITOK);
2785 *parent->copy = *parent->node->ondisk;
2787 TAILQ_FOREACH(item, &parent->list, entry) {
2788 hammer_btree_lock_copy(cursor, item);
2793 * Recursively sync modified copies to the media.
2796 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2798 hammer_node_lock_t item;
2799 int count = 0;
2801 if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2802 ++count;
2803 hammer_modify_node_all(cursor->trans, parent->node);
2804 *parent->node->ondisk = *parent->copy;
2805 hammer_modify_node_done(parent->node);
2806 if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2807 hammer_flush_node(parent->node);
2808 hammer_delete_node(cursor->trans, parent->node);
2811 TAILQ_FOREACH(item, &parent->list, entry) {
2812 count += hammer_btree_sync_copy(cursor, item);
2814 return(count);
2818 * Release previously obtained node locks. The caller is responsible for
2819 * cleaning up parent->node itself (its usually just aliased from a cursor),
2820 * but this function will take care of the copies.
2822 void
2823 hammer_btree_unlock_children(hammer_cursor_t cursor, hammer_node_lock_t parent)
2825 hammer_node_lock_t item;
2827 if (parent->copy) {
2828 kfree(parent->copy, cursor->trans->hmp->m_misc);
2829 parent->copy = NULL; /* safety */
2831 while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2832 TAILQ_REMOVE(&parent->list, item, entry);
2833 hammer_btree_unlock_children(cursor, item);
2834 hammer_unlock(&item->node->lock);
2835 hammer_rel_node(item->node);
2836 kfree(item, cursor->trans->hmp->m_misc);
2840 /************************************************************************
2841 * MISCELLANIOUS SUPPORT *
2842 ************************************************************************/
2845 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2847 * Note that for this particular function a return value of -1, 0, or +1
2848 * can denote a match if create_tid is otherwise discounted. A create_tid
2849 * of zero is considered to be 'infinity' in comparisons.
2851 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2854 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2856 if (key1->localization < key2->localization)
2857 return(-5);
2858 if (key1->localization > key2->localization)
2859 return(5);
2861 if (key1->obj_id < key2->obj_id)
2862 return(-4);
2863 if (key1->obj_id > key2->obj_id)
2864 return(4);
2866 if (key1->rec_type < key2->rec_type)
2867 return(-3);
2868 if (key1->rec_type > key2->rec_type)
2869 return(3);
2871 if (key1->key < key2->key)
2872 return(-2);
2873 if (key1->key > key2->key)
2874 return(2);
2877 * A create_tid of zero indicates a record which is undeletable
2878 * and must be considered to have a value of positive infinity.
2880 if (key1->create_tid == 0) {
2881 if (key2->create_tid == 0)
2882 return(0);
2883 return(1);
2885 if (key2->create_tid == 0)
2886 return(-1);
2887 if (key1->create_tid < key2->create_tid)
2888 return(-1);
2889 if (key1->create_tid > key2->create_tid)
2890 return(1);
2891 return(0);
2895 * Test a timestamp against an element to determine whether the
2896 * element is visible. A timestamp of 0 means 'infinity'.
2899 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2901 if (asof == 0) {
2902 if (base->delete_tid)
2903 return(1);
2904 return(0);
2906 if (asof < base->create_tid)
2907 return(-1);
2908 if (base->delete_tid && asof >= base->delete_tid)
2909 return(1);
2910 return(0);
2914 * Create a separator half way inbetween key1 and key2. For fields just
2915 * one unit apart, the separator will match key2. key1 is on the left-hand
2916 * side and key2 is on the right-hand side.
2918 * key2 must be >= the separator. It is ok for the separator to match key2.
2920 * NOTE: Even if key1 does not match key2, the separator may wind up matching
2921 * key2.
2923 * NOTE: It might be beneficial to just scrap this whole mess and just
2924 * set the separator to key2.
2926 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2927 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2929 static void
2930 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2931 hammer_base_elm_t dest)
2933 bzero(dest, sizeof(*dest));
2935 dest->rec_type = key2->rec_type;
2936 dest->key = key2->key;
2937 dest->obj_id = key2->obj_id;
2938 dest->create_tid = key2->create_tid;
2940 MAKE_SEPARATOR(key1, key2, dest, localization);
2941 if (key1->localization == key2->localization) {
2942 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2943 if (key1->obj_id == key2->obj_id) {
2944 MAKE_SEPARATOR(key1, key2, dest, rec_type);
2945 if (key1->rec_type == key2->rec_type) {
2946 MAKE_SEPARATOR(key1, key2, dest, key);
2948 * Don't bother creating a separator for
2949 * create_tid, which also conveniently avoids
2950 * having to handle the create_tid == 0
2951 * (infinity) case. Just leave create_tid
2952 * set to key2.
2954 * Worst case, dest matches key2 exactly,
2955 * which is acceptable.
2962 #undef MAKE_SEPARATOR
2965 * Return whether a generic internal or leaf node is full
2967 static int
2968 btree_node_is_full(hammer_node_ondisk_t node)
2970 switch(node->type) {
2971 case HAMMER_BTREE_TYPE_INTERNAL:
2972 if (node->count == HAMMER_BTREE_INT_ELMS)
2973 return(1);
2974 break;
2975 case HAMMER_BTREE_TYPE_LEAF:
2976 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2977 return(1);
2978 break;
2979 default:
2980 panic("illegal btree subtype");
2982 return(0);
2985 #if 0
2986 static int
2987 btree_max_elements(u_int8_t type)
2989 if (type == HAMMER_BTREE_TYPE_LEAF)
2990 return(HAMMER_BTREE_LEAF_ELMS);
2991 if (type == HAMMER_BTREE_TYPE_INTERNAL)
2992 return(HAMMER_BTREE_INT_ELMS);
2993 panic("btree_max_elements: bad type %d\n", type);
2995 #endif
2997 void
2998 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3000 hammer_btree_elm_t elm;
3001 int i;
3003 kprintf("node %p count=%d parent=%016llx type=%c\n",
3004 ondisk, ondisk->count,
3005 (long long)ondisk->parent, ondisk->type);
3008 * Dump both boundary elements if an internal node
3010 if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3011 for (i = 0; i <= ondisk->count; ++i) {
3012 elm = &ondisk->elms[i];
3013 hammer_print_btree_elm(elm, ondisk->type, i);
3015 } else {
3016 for (i = 0; i < ondisk->count; ++i) {
3017 elm = &ondisk->elms[i];
3018 hammer_print_btree_elm(elm, ondisk->type, i);
3023 void
3024 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3026 kprintf(" %2d", i);
3027 kprintf("\tobj_id = %016llx\n", (long long)elm->base.obj_id);
3028 kprintf("\tkey = %016llx\n", (long long)elm->base.key);
3029 kprintf("\tcreate_tid = %016llx\n", (long long)elm->base.create_tid);
3030 kprintf("\tdelete_tid = %016llx\n", (long long)elm->base.delete_tid);
3031 kprintf("\trec_type = %04x\n", elm->base.rec_type);
3032 kprintf("\tobj_type = %02x\n", elm->base.obj_type);
3033 kprintf("\tbtype = %02x (%c)\n",
3034 elm->base.btype,
3035 (elm->base.btype ? elm->base.btype : '?'));
3036 kprintf("\tlocalization = %02x\n", elm->base.localization);
3038 switch(type) {
3039 case HAMMER_BTREE_TYPE_INTERNAL:
3040 kprintf("\tsubtree_off = %016llx\n",
3041 (long long)elm->internal.subtree_offset);
3042 break;
3043 case HAMMER_BTREE_TYPE_RECORD:
3044 kprintf("\tdata_offset = %016llx\n",
3045 (long long)elm->leaf.data_offset);
3046 kprintf("\tdata_len = %08x\n", elm->leaf.data_len);
3047 kprintf("\tdata_crc = %08x\n", elm->leaf.data_crc);
3048 break;