HAMMER VFS - Major retooling of the refcount mechanics, and fix a deadlock
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
blobd71bdab1f37b6dacd31ad569d7dc48e81e6113ff
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
37 * Manage HAMMER's on-disk structures. These routines are primarily
38 * responsible for interfacing with the kernel's I/O subsystem and for
39 * managing in-memory structures.
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_transaction_t trans,
52 hammer_node_t node, int isnew);
53 static void _hammer_rel_node(hammer_node_t node, int locked);
55 static int
56 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
58 if (vol1->vol_no < vol2->vol_no)
59 return(-1);
60 if (vol1->vol_no > vol2->vol_no)
61 return(1);
62 return(0);
66 * hammer_buffer structures are indexed via their zoneX_offset, not
67 * their zone2_offset.
69 static int
70 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
72 if (buf1->zoneX_offset < buf2->zoneX_offset)
73 return(-1);
74 if (buf1->zoneX_offset > buf2->zoneX_offset)
75 return(1);
76 return(0);
79 static int
80 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
82 if (node1->node_offset < node2->node_offset)
83 return(-1);
84 if (node1->node_offset > node2->node_offset)
85 return(1);
86 return(0);
89 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
90 hammer_vol_rb_compare, int32_t, vol_no);
91 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
92 hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
93 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
94 hammer_nod_rb_compare, hammer_off_t, node_offset);
96 /************************************************************************
97 * VOLUMES *
98 ************************************************************************
100 * Load a HAMMER volume by name. Returns 0 on success or a positive error
101 * code on failure. Volumes must be loaded at mount time, get_volume() will
102 * not load a new volume.
104 * Calls made to hammer_load_volume() or single-threaded
107 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
108 struct vnode *devvp)
110 struct mount *mp;
111 hammer_volume_t volume;
112 struct hammer_volume_ondisk *ondisk;
113 struct nlookupdata nd;
114 struct buf *bp = NULL;
115 int error;
116 int ronly;
117 int setmp = 0;
119 mp = hmp->mp;
120 ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
123 * Allocate a volume structure
125 ++hammer_count_volumes;
126 volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
127 volume->vol_name = kstrdup(volname, hmp->m_misc);
128 volume->io.hmp = hmp; /* bootstrap */
129 hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
130 volume->io.offset = 0LL;
131 volume->io.bytes = HAMMER_BUFSIZE;
134 * Get the device vnode
136 if (devvp == NULL) {
137 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
138 if (error == 0)
139 error = nlookup(&nd);
140 if (error == 0)
141 error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
142 nlookup_done(&nd);
143 } else {
144 error = 0;
145 volume->devvp = devvp;
148 if (error == 0) {
149 if (vn_isdisk(volume->devvp, &error)) {
150 error = vfs_mountedon(volume->devvp);
153 if (error == 0 && vcount(volume->devvp) > 0)
154 error = EBUSY;
155 if (error == 0) {
156 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
157 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
158 if (error == 0) {
159 error = VOP_OPEN(volume->devvp,
160 (ronly ? FREAD : FREAD|FWRITE),
161 FSCRED, NULL);
163 vn_unlock(volume->devvp);
165 if (error) {
166 hammer_free_volume(volume);
167 return(error);
169 volume->devvp->v_rdev->si_mountpoint = mp;
170 setmp = 1;
173 * Extract the volume number from the volume header and do various
174 * sanity checks.
176 error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
177 if (error)
178 goto late_failure;
179 ondisk = (void *)bp->b_data;
180 if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
181 kprintf("hammer_mount: volume %s has an invalid header\n",
182 volume->vol_name);
183 error = EFTYPE;
184 goto late_failure;
186 volume->vol_no = ondisk->vol_no;
187 volume->buffer_base = ondisk->vol_buf_beg;
188 volume->vol_flags = ondisk->vol_flags;
189 volume->nblocks = ondisk->vol_nblocks;
190 volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
191 ondisk->vol_buf_end - ondisk->vol_buf_beg);
192 volume->maxraw_off = ondisk->vol_buf_end;
194 if (RB_EMPTY(&hmp->rb_vols_root)) {
195 hmp->fsid = ondisk->vol_fsid;
196 } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
197 kprintf("hammer_mount: volume %s's fsid does not match "
198 "other volumes\n", volume->vol_name);
199 error = EFTYPE;
200 goto late_failure;
204 * Insert the volume structure into the red-black tree.
206 if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
207 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
208 volume->vol_name, volume->vol_no);
209 error = EEXIST;
213 * Set the root volume . HAMMER special cases rootvol the structure.
214 * We do not hold a ref because this would prevent related I/O
215 * from being flushed.
217 if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
218 hmp->rootvol = volume;
219 hmp->nvolumes = ondisk->vol_count;
220 if (bp) {
221 brelse(bp);
222 bp = NULL;
224 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
225 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
226 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
227 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
229 late_failure:
230 if (bp)
231 brelse(bp);
232 if (error) {
233 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
234 if (setmp)
235 volume->devvp->v_rdev->si_mountpoint = NULL;
236 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
237 hammer_free_volume(volume);
239 return (error);
243 * This is called for each volume when updating the mount point from
244 * read-write to read-only or vise-versa.
247 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
249 if (volume->devvp) {
250 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
251 if (volume->io.hmp->ronly) {
252 /* do not call vinvalbuf */
253 VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
254 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
255 } else {
256 /* do not call vinvalbuf */
257 VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
258 VOP_CLOSE(volume->devvp, FREAD);
260 vn_unlock(volume->devvp);
262 return(0);
266 * Unload and free a HAMMER volume. Must return >= 0 to continue scan
267 * so returns -1 on failure.
270 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
272 hammer_mount_t hmp = volume->io.hmp;
273 int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
276 * Clean up the root volume pointer, which is held unlocked in hmp.
278 if (hmp->rootvol == volume)
279 hmp->rootvol = NULL;
282 * We must not flush a dirty buffer to disk on umount. It should
283 * have already been dealt with by the flusher, or we may be in
284 * catastrophic failure.
286 hammer_io_clear_modify(&volume->io, 1);
287 volume->io.waitdep = 1;
290 * Clean up the persistent ref ioerror might have on the volume
292 if (volume->io.ioerror) {
293 volume->io.ioerror = 0;
294 hammer_rel(&volume->io.lock);
298 * This should release the bp. Releasing the volume with flush set
299 * implies the interlock is set.
301 hammer_ref_interlock_true(&volume->io.lock);
302 hammer_rel_volume(volume, 1);
303 KKASSERT(volume->io.bp == NULL);
306 * There should be no references on the volume, no clusters, and
307 * no super-clusters.
309 KKASSERT(hammer_norefs(&volume->io.lock));
311 volume->ondisk = NULL;
312 if (volume->devvp) {
313 if (volume->devvp->v_rdev &&
314 volume->devvp->v_rdev->si_mountpoint == hmp->mp
316 volume->devvp->v_rdev->si_mountpoint = NULL;
318 if (ronly) {
320 * Make sure we don't sync anything to disk if we
321 * are in read-only mode (1) or critically-errored
322 * (2). Note that there may be dirty buffers in
323 * normal read-only mode from crash recovery.
325 vinvalbuf(volume->devvp, 0, 0, 0);
326 VOP_CLOSE(volume->devvp, FREAD);
327 } else {
329 * Normal termination, save any dirty buffers
330 * (XXX there really shouldn't be any).
332 vinvalbuf(volume->devvp, V_SAVE, 0, 0);
333 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
338 * Destroy the structure
340 RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
341 hammer_free_volume(volume);
342 return(0);
345 static
346 void
347 hammer_free_volume(hammer_volume_t volume)
349 hammer_mount_t hmp = volume->io.hmp;
351 if (volume->vol_name) {
352 kfree(volume->vol_name, hmp->m_misc);
353 volume->vol_name = NULL;
355 if (volume->devvp) {
356 vrele(volume->devvp);
357 volume->devvp = NULL;
359 --hammer_count_volumes;
360 kfree(volume, hmp->m_misc);
364 * Get a HAMMER volume. The volume must already exist.
366 hammer_volume_t
367 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
369 struct hammer_volume *volume;
372 * Locate the volume structure
374 volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
375 if (volume == NULL) {
376 *errorp = ENOENT;
377 return(NULL);
381 * Reference the volume, load/check the data on the 0->1 transition.
382 * hammer_load_volume() will dispose of the interlock on return,
383 * and also clean up the ref count on error.
385 if (hammer_ref_interlock(&volume->io.lock)) {
386 *errorp = hammer_load_volume(volume);
387 if (*errorp)
388 volume = NULL;
389 } else {
390 KKASSERT(volume->ondisk);
391 *errorp = 0;
393 return(volume);
397 hammer_ref_volume(hammer_volume_t volume)
399 int error;
402 * Reference the volume and deal with the check condition used to
403 * load its ondisk info.
405 if (hammer_ref_interlock(&volume->io.lock)) {
406 error = hammer_load_volume(volume);
407 } else {
408 KKASSERT(volume->ondisk);
409 error = 0;
411 return (error);
414 hammer_volume_t
415 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
417 hammer_volume_t volume;
419 volume = hmp->rootvol;
420 KKASSERT(volume != NULL);
423 * Reference the volume and deal with the check condition used to
424 * load its ondisk info.
426 if (hammer_ref_interlock(&volume->io.lock)) {
427 *errorp = hammer_load_volume(volume);
428 if (*errorp)
429 volume = NULL;
430 } else {
431 KKASSERT(volume->ondisk);
432 *errorp = 0;
434 return (volume);
438 * Load a volume's on-disk information. The volume must be referenced and
439 * the interlock is held on call. The interlock will be released on return.
440 * The reference will also be released on return if an error occurs.
442 static int
443 hammer_load_volume(hammer_volume_t volume)
445 int error;
447 if (volume->ondisk == NULL) {
448 error = hammer_io_read(volume->devvp, &volume->io,
449 volume->maxraw_off);
450 if (error == 0) {
451 volume->ondisk = (void *)volume->io.bp->b_data;
452 hammer_ref_interlock_done(&volume->io.lock);
453 } else {
454 hammer_rel_volume(volume, 1);
456 } else {
457 error = 0;
459 return(error);
463 * Release a previously acquired reference on the volume.
465 * Volumes are not unloaded from memory during normal operation.
467 void
468 hammer_rel_volume(hammer_volume_t volume, int locked)
470 struct buf *bp;
472 if (hammer_rel_interlock(&volume->io.lock, locked)) {
473 volume->ondisk = NULL;
474 bp = hammer_io_release(&volume->io, locked);
475 hammer_rel_interlock_done(&volume->io.lock, locked);
476 if (bp)
477 brelse(bp);
482 hammer_mountcheck_volumes(struct hammer_mount *hmp)
484 hammer_volume_t vol;
485 int i;
487 for (i = 0; i < hmp->nvolumes; ++i) {
488 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
489 if (vol == NULL)
490 return(EINVAL);
492 return(0);
495 /************************************************************************
496 * BUFFERS *
497 ************************************************************************
499 * Manage buffers. Currently most blockmap-backed zones are direct-mapped
500 * to zone-2 buffer offsets, without a translation stage. However, the
501 * hammer_buffer structure is indexed by its zoneX_offset, not its
502 * zone2_offset.
504 * The proper zone must be maintained throughout the code-base all the way
505 * through to the big-block allocator, or routines like hammer_del_buffers()
506 * will not be able to locate all potentially conflicting buffers.
508 hammer_buffer_t
509 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
510 int bytes, int isnew, int *errorp)
512 hammer_buffer_t buffer;
513 hammer_volume_t volume;
514 hammer_off_t zone2_offset;
515 hammer_io_type_t iotype;
516 int vol_no;
517 int zone;
519 buf_offset &= ~HAMMER_BUFMASK64;
520 again:
522 * Shortcut if the buffer is already cached
524 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
525 if (buffer) {
527 * Once refed the ondisk field will not be cleared by
528 * any other action. Shortcut the operation if the
529 * ondisk structure is valid.
531 if (hammer_ref_interlock(&buffer->io.lock) == 0) {
532 hammer_io_advance(&buffer->io);
533 KKASSERT(buffer->ondisk);
534 *errorp = 0;
535 return(buffer);
539 * 0->1 transition or defered 0->1 transition (CHECK),
540 * interlock now held. Shortcut if ondisk is already
541 * assigned.
543 ++hammer_count_refedbufs;
544 if (buffer->ondisk) {
545 hammer_io_advance(&buffer->io);
546 hammer_ref_interlock_done(&buffer->io.lock);
547 *errorp = 0;
548 return(buffer);
552 * The buffer is no longer loose if it has a ref, and
553 * cannot become loose once it gains a ref. Loose
554 * buffers will never be in a modified state. This should
555 * only occur on the 0->1 transition of refs.
557 * lose_list can be modified via a biodone() interrupt.
559 if (buffer->io.mod_list == &hmp->lose_list) {
560 crit_enter(); /* biodone race against list */
561 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
562 mod_entry);
563 crit_exit();
564 buffer->io.mod_list = NULL;
565 KKASSERT(buffer->io.modified == 0);
567 goto found;
571 * What is the buffer class?
573 zone = HAMMER_ZONE_DECODE(buf_offset);
575 switch(zone) {
576 case HAMMER_ZONE_LARGE_DATA_INDEX:
577 case HAMMER_ZONE_SMALL_DATA_INDEX:
578 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
579 break;
580 case HAMMER_ZONE_UNDO_INDEX:
581 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
582 break;
583 case HAMMER_ZONE_META_INDEX:
584 default:
586 * NOTE: inode data and directory entries are placed in this
587 * zone. inode atime/mtime is updated in-place and thus
588 * buffers containing inodes must be synchronized as
589 * meta-buffers, same as buffers containing B-Tree info.
591 iotype = HAMMER_STRUCTURE_META_BUFFER;
592 break;
596 * Handle blockmap offset translations
598 if (zone >= HAMMER_ZONE_BTREE_INDEX) {
599 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
600 } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
601 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
602 } else {
603 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
604 zone2_offset = buf_offset;
605 *errorp = 0;
607 if (*errorp)
608 return(NULL);
611 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
612 * specifications.
614 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
615 HAMMER_ZONE_RAW_BUFFER);
616 vol_no = HAMMER_VOL_DECODE(zone2_offset);
617 volume = hammer_get_volume(hmp, vol_no, errorp);
618 if (volume == NULL)
619 return(NULL);
621 KKASSERT(zone2_offset < volume->maxbuf_off);
624 * Allocate a new buffer structure. We will check for races later.
626 ++hammer_count_buffers;
627 buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
628 M_WAITOK|M_ZERO|M_USE_RESERVE);
629 buffer->zone2_offset = zone2_offset;
630 buffer->zoneX_offset = buf_offset;
632 hammer_io_init(&buffer->io, volume, iotype);
633 buffer->io.offset = volume->ondisk->vol_buf_beg +
634 (zone2_offset & HAMMER_OFF_SHORT_MASK);
635 buffer->io.bytes = bytes;
636 TAILQ_INIT(&buffer->clist);
637 hammer_ref_interlock_true(&buffer->io.lock);
640 * Insert the buffer into the RB tree and handle late collisions.
642 if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
643 hammer_rel_volume(volume, 0);
644 buffer->io.volume = NULL; /* safety */
645 if (hammer_rel_interlock(&buffer->io.lock, 1)) /* safety */
646 hammer_rel_interlock_done(&buffer->io.lock, 1);
647 --hammer_count_buffers;
648 kfree(buffer, hmp->m_misc);
649 goto again;
651 ++hammer_count_refedbufs;
652 found:
655 * The buffer is referenced and interlocked. Load the buffer
656 * if necessary. hammer_load_buffer() deals with the interlock
657 * and, if an error is returned, also deals with the ref.
659 if (buffer->ondisk == NULL) {
660 *errorp = hammer_load_buffer(buffer, isnew);
661 if (*errorp)
662 buffer = NULL;
663 } else {
664 hammer_io_advance(&buffer->io);
665 hammer_ref_interlock_done(&buffer->io.lock);
666 *errorp = 0;
668 return(buffer);
672 * This is used by the direct-read code to deal with large-data buffers
673 * created by the reblocker and mirror-write code. The direct-read code
674 * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
675 * running hammer buffers must be fully synced to disk before we can issue
676 * the direct-read.
678 * This code path is not considered critical as only the rebocker and
679 * mirror-write code will create large-data buffers via the HAMMER buffer
680 * subsystem. They do that because they operate at the B-Tree level and
681 * do not access the vnode/inode structures.
683 void
684 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
686 hammer_buffer_t buffer;
687 int error;
689 KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
690 HAMMER_ZONE_LARGE_DATA);
692 while (bytes > 0) {
693 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
694 base_offset);
695 if (buffer && (buffer->io.modified || buffer->io.running)) {
696 error = hammer_ref_buffer(buffer);
697 if (error == 0) {
698 hammer_io_wait(&buffer->io);
699 if (buffer->io.modified) {
700 hammer_io_write_interlock(&buffer->io);
701 hammer_io_flush(&buffer->io, 0);
702 hammer_io_done_interlock(&buffer->io);
703 hammer_io_wait(&buffer->io);
705 hammer_rel_buffer(buffer, 0);
708 base_offset += HAMMER_BUFSIZE;
709 bytes -= HAMMER_BUFSIZE;
714 * Destroy all buffers covering the specified zoneX offset range. This
715 * is called when the related blockmap layer2 entry is freed or when
716 * a direct write bypasses our buffer/buffer-cache subsystem.
718 * The buffers may be referenced by the caller itself. Setting reclaim
719 * will cause the buffer to be destroyed when it's ref count reaches zero.
721 * Return 0 on success, EAGAIN if some buffers could not be destroyed due
722 * to additional references held by other threads, or some other (typically
723 * fatal) error.
726 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
727 hammer_off_t zone2_offset, int bytes,
728 int report_conflicts)
730 hammer_buffer_t buffer;
731 hammer_volume_t volume;
732 int vol_no;
733 int error;
734 int ret_error;
736 vol_no = HAMMER_VOL_DECODE(zone2_offset);
737 volume = hammer_get_volume(hmp, vol_no, &ret_error);
738 KKASSERT(ret_error == 0);
740 while (bytes > 0) {
741 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
742 base_offset);
743 if (buffer) {
744 error = hammer_ref_buffer(buffer);
745 if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
746 error = EAGAIN;
747 hammer_rel_buffer(buffer, 0);
749 if (error == 0) {
750 KKASSERT(buffer->zone2_offset == zone2_offset);
751 hammer_io_clear_modify(&buffer->io, 1);
752 buffer->io.reclaim = 1;
753 buffer->io.waitdep = 1;
754 KKASSERT(buffer->io.volume == volume);
755 hammer_rel_buffer(buffer, 0);
757 } else {
758 error = hammer_io_inval(volume, zone2_offset);
760 if (error) {
761 ret_error = error;
762 if (report_conflicts ||
763 (hammer_debug_general & 0x8000)) {
764 kprintf("hammer_del_buffers: unable to "
765 "invalidate %016llx buffer=%p rep=%d\n",
766 (long long)base_offset,
767 buffer, report_conflicts);
770 base_offset += HAMMER_BUFSIZE;
771 zone2_offset += HAMMER_BUFSIZE;
772 bytes -= HAMMER_BUFSIZE;
774 hammer_rel_volume(volume, 0);
775 return (ret_error);
779 * Given a referenced and interlocked buffer load/validate the data.
781 * The buffer interlock will be released on return. If an error is
782 * returned the buffer reference will also be released (and the buffer
783 * pointer will thus be stale).
785 static int
786 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
788 hammer_volume_t volume;
789 int error;
792 * Load the buffer's on-disk info
794 volume = buffer->io.volume;
796 if (hammer_debug_io & 0x0001) {
797 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
798 (long long)buffer->zoneX_offset,
799 (long long)buffer->zone2_offset,
800 isnew, buffer->ondisk);
803 if (buffer->ondisk == NULL) {
804 if (isnew) {
805 error = hammer_io_new(volume->devvp, &buffer->io);
806 } else {
807 error = hammer_io_read(volume->devvp, &buffer->io,
808 volume->maxraw_off);
810 if (error == 0)
811 buffer->ondisk = (void *)buffer->io.bp->b_data;
812 } else if (isnew) {
813 error = hammer_io_new(volume->devvp, &buffer->io);
814 } else {
815 error = 0;
817 if (error == 0) {
818 hammer_io_advance(&buffer->io);
819 hammer_ref_interlock_done(&buffer->io.lock);
820 } else {
821 hammer_rel_buffer(buffer, 1);
823 return (error);
827 * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
828 * This routine is only called during unmount or when a volume is
829 * removed.
831 * If data != NULL, it specifies a volume whoose buffers should
832 * be unloaded.
835 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
837 struct hammer_volume *volume = (struct hammer_volume *) data;
840 * If volume != NULL we are only interested in unloading buffers
841 * associated with a particular volume.
843 if (volume != NULL && volume != buffer->io.volume)
844 return 0;
847 * Clean up the persistent ref ioerror might have on the buffer
848 * and acquire a ref. Expect a 0->1 transition.
850 if (buffer->io.ioerror) {
851 buffer->io.ioerror = 0;
852 hammer_rel(&buffer->io.lock);
853 --hammer_count_refedbufs;
855 hammer_ref_interlock_true(&buffer->io.lock);
856 ++hammer_count_refedbufs;
859 * We must not flush a dirty buffer to disk on umount. It should
860 * have already been dealt with by the flusher, or we may be in
861 * catastrophic failure.
863 * We must set waitdep to ensure that a running buffer is waited
864 * on and released prior to us trying to unload the volume.
866 hammer_io_clear_modify(&buffer->io, 1);
867 hammer_flush_buffer_nodes(buffer);
868 buffer->io.waitdep = 1;
869 hammer_rel_buffer(buffer, 1);
870 return(0);
874 * Reference a buffer that is either already referenced or via a specially
875 * handled pointer (aka cursor->buffer).
878 hammer_ref_buffer(hammer_buffer_t buffer)
880 int error;
881 int locked;
884 * Acquire a ref, plus the buffer will be interlocked on the
885 * 0->1 transition.
887 locked = hammer_ref_interlock(&buffer->io.lock);
890 * At this point a biodone() will not touch the buffer other then
891 * incidental bits. However, lose_list can be modified via
892 * a biodone() interrupt.
894 * No longer loose
896 if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
897 crit_enter();
898 if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
899 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
900 mod_entry);
901 buffer->io.mod_list = NULL;
903 crit_exit();
906 if (locked) {
907 ++hammer_count_refedbufs;
908 error = hammer_load_buffer(buffer, 0);
909 /* NOTE: on error the buffer pointer is stale */
910 } else {
911 error = 0;
913 return(error);
917 * Release a reference on the buffer. On the 1->0 transition the
918 * underlying IO will be released but the data reference is left
919 * cached.
921 * Only destroy the structure itself if the related buffer cache buffer
922 * was disassociated from it. This ties the management of the structure
923 * to the buffer cache subsystem. buffer->ondisk determines whether the
924 * embedded io is referenced or not.
926 void
927 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
929 hammer_volume_t volume;
930 hammer_mount_t hmp;
931 struct buf *bp = NULL;
932 int freeme = 0;
934 hmp = buffer->io.hmp;
936 if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
937 return;
940 * hammer_count_refedbufs accounting. Decrement if we are in
941 * the error path or if CHECK is clear.
943 * If we are not in the error path and CHECK is set the caller
944 * probably just did a hammer_ref() and didn't account for it,
945 * so we don't account for the loss here.
947 if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
948 --hammer_count_refedbufs;
951 * If the caller locked us or the normal released transitions
952 * from 1->0 (and acquired the lock) attempt to release the
953 * io. If the called locked us we tell hammer_io_release()
954 * to flush (which would be the unload or failure path).
956 bp = hammer_io_release(&buffer->io, locked);
959 * If the buffer has no bp association and no refs we can destroy
960 * it.
962 * NOTE: It is impossible for any associated B-Tree nodes to have
963 * refs if the buffer has no additional refs.
965 if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
966 RB_REMOVE(hammer_buf_rb_tree,
967 &buffer->io.hmp->rb_bufs_root,
968 buffer);
969 volume = buffer->io.volume;
970 buffer->io.volume = NULL; /* sanity */
971 hammer_rel_volume(volume, 0);
972 hammer_io_clear_modlist(&buffer->io);
973 hammer_flush_buffer_nodes(buffer);
974 KKASSERT(TAILQ_EMPTY(&buffer->clist));
975 freeme = 1;
979 * Cleanup
981 hammer_rel_interlock_done(&buffer->io.lock, locked);
982 if (bp)
983 brelse(bp);
984 if (freeme) {
985 --hammer_count_buffers;
986 kfree(buffer, hmp->m_misc);
991 * Access the filesystem buffer containing the specified hammer offset.
992 * buf_offset is a conglomeration of the volume number and vol_buf_beg
993 * relative buffer offset. It must also have bit 55 set to be valid.
994 * (see hammer_off_t in hammer_disk.h).
996 * Any prior buffer in *bufferp will be released and replaced by the
997 * requested buffer.
999 * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1000 * passed cached *bufferp to match against either zoneX or zone2.
1002 static __inline
1003 void *
1004 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1005 int *errorp, struct hammer_buffer **bufferp)
1007 hammer_buffer_t buffer;
1008 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1010 buf_offset &= ~HAMMER_BUFMASK64;
1011 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1013 buffer = *bufferp;
1014 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1015 buffer->zoneX_offset != buf_offset)) {
1016 if (buffer)
1017 hammer_rel_buffer(buffer, 0);
1018 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1019 *bufferp = buffer;
1020 } else {
1021 *errorp = 0;
1025 * Return a pointer to the buffer data.
1027 if (buffer == NULL)
1028 return(NULL);
1029 else
1030 return((char *)buffer->ondisk + xoff);
1033 void *
1034 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1035 int *errorp, struct hammer_buffer **bufferp)
1037 return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1040 void *
1041 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1042 int *errorp, struct hammer_buffer **bufferp)
1044 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1045 return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1049 * Access the filesystem buffer containing the specified hammer offset.
1050 * No disk read operation occurs. The result buffer may contain garbage.
1052 * Any prior buffer in *bufferp will be released and replaced by the
1053 * requested buffer.
1055 * This function marks the buffer dirty but does not increment its
1056 * modify_refs count.
1058 static __inline
1059 void *
1060 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1061 int *errorp, struct hammer_buffer **bufferp)
1063 hammer_buffer_t buffer;
1064 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1066 buf_offset &= ~HAMMER_BUFMASK64;
1068 buffer = *bufferp;
1069 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1070 buffer->zoneX_offset != buf_offset)) {
1071 if (buffer)
1072 hammer_rel_buffer(buffer, 0);
1073 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1074 *bufferp = buffer;
1075 } else {
1076 *errorp = 0;
1080 * Return a pointer to the buffer data.
1082 if (buffer == NULL)
1083 return(NULL);
1084 else
1085 return((char *)buffer->ondisk + xoff);
1088 void *
1089 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1090 int *errorp, struct hammer_buffer **bufferp)
1092 return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1095 void *
1096 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1097 int *errorp, struct hammer_buffer **bufferp)
1099 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1100 return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1103 /************************************************************************
1104 * NODES *
1105 ************************************************************************
1107 * Manage B-Tree nodes. B-Tree nodes represent the primary indexing
1108 * method used by the HAMMER filesystem.
1110 * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1111 * associated with its buffer, and will only referenced the buffer while
1112 * the node itself is referenced.
1114 * A hammer_node can also be passively associated with other HAMMER
1115 * structures, such as inodes, while retaining 0 references. These
1116 * associations can be cleared backwards using a pointer-to-pointer in
1117 * the hammer_node.
1119 * This allows the HAMMER implementation to cache hammer_nodes long-term
1120 * and short-cut a great deal of the infrastructure's complexity. In
1121 * most cases a cached node can be reacquired without having to dip into
1122 * either the buffer or cluster management code.
1124 * The caller must pass a referenced cluster on call and will retain
1125 * ownership of the reference on return. The node will acquire its own
1126 * additional references, if necessary.
1128 hammer_node_t
1129 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1130 int isnew, int *errorp)
1132 hammer_mount_t hmp = trans->hmp;
1133 hammer_node_t node;
1134 int doload;
1136 KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1139 * Locate the structure, allocating one if necessary.
1141 again:
1142 node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1143 if (node == NULL) {
1144 ++hammer_count_nodes;
1145 node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1146 node->node_offset = node_offset;
1147 node->hmp = hmp;
1148 TAILQ_INIT(&node->cursor_list);
1149 TAILQ_INIT(&node->cache_list);
1150 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1151 --hammer_count_nodes;
1152 kfree(node, hmp->m_misc);
1153 goto again;
1155 doload = hammer_ref_interlock_true(&node->lock);
1156 } else {
1157 doload = hammer_ref_interlock(&node->lock);
1159 if (doload) {
1160 *errorp = hammer_load_node(trans, node, isnew);
1161 trans->flags |= HAMMER_TRANSF_DIDIO;
1162 if (*errorp)
1163 node = NULL;
1164 } else {
1165 KKASSERT(node->ondisk);
1166 *errorp = 0;
1167 hammer_io_advance(&node->buffer->io);
1169 return(node);
1173 * Reference an already-referenced node. 0->1 transitions should assert
1174 * so we do not have to deal with hammer_ref() setting CHECK.
1176 void
1177 hammer_ref_node(hammer_node_t node)
1179 KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1180 hammer_ref(&node->lock);
1184 * Load a node's on-disk data reference. Called with the node referenced
1185 * and interlocked.
1187 * On return the node interlock will be unlocked. If a non-zero error code
1188 * is returned the node will also be dereferenced (and the caller's pointer
1189 * will be stale).
1191 static int
1192 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1194 hammer_buffer_t buffer;
1195 hammer_off_t buf_offset;
1196 int error;
1198 error = 0;
1199 if (node->ondisk == NULL) {
1201 * This is a little confusing but the jist is that
1202 * node->buffer determines whether the node is on
1203 * the buffer's clist and node->ondisk determines
1204 * whether the buffer is referenced.
1206 * We could be racing a buffer release, in which case
1207 * node->buffer may become NULL while we are blocked
1208 * referencing the buffer.
1210 if ((buffer = node->buffer) != NULL) {
1211 error = hammer_ref_buffer(buffer);
1212 if (error == 0 && node->buffer == NULL) {
1213 TAILQ_INSERT_TAIL(&buffer->clist,
1214 node, entry);
1215 node->buffer = buffer;
1217 } else {
1218 buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1219 buffer = hammer_get_buffer(node->hmp, buf_offset,
1220 HAMMER_BUFSIZE, 0, &error);
1221 if (buffer) {
1222 KKASSERT(error == 0);
1223 TAILQ_INSERT_TAIL(&buffer->clist,
1224 node, entry);
1225 node->buffer = buffer;
1228 if (error)
1229 goto failed;
1230 node->ondisk = (void *)((char *)buffer->ondisk +
1231 (node->node_offset & HAMMER_BUFMASK));
1234 * Check CRC. NOTE: Neither flag is set and the CRC is not
1235 * generated on new B-Tree nodes.
1237 if (isnew == 0 &&
1238 (node->flags & HAMMER_NODE_CRCANY) == 0) {
1239 if (hammer_crc_test_btree(node->ondisk) == 0) {
1240 if (hammer_debug_critical)
1241 Debugger("CRC FAILED: B-TREE NODE");
1242 node->flags |= HAMMER_NODE_CRCBAD;
1243 } else {
1244 node->flags |= HAMMER_NODE_CRCGOOD;
1248 if (node->flags & HAMMER_NODE_CRCBAD) {
1249 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1250 error = EDOM;
1251 else
1252 error = EIO;
1254 failed:
1255 if (error) {
1256 _hammer_rel_node(node, 1);
1257 } else {
1258 hammer_ref_interlock_done(&node->lock);
1260 return (error);
1264 * Safely reference a node, interlock against flushes via the IO subsystem.
1266 hammer_node_t
1267 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1268 int *errorp)
1270 hammer_node_t node;
1271 int doload;
1273 node = cache->node;
1274 if (node != NULL) {
1275 doload = hammer_ref_interlock(&node->lock);
1276 if (doload) {
1277 *errorp = hammer_load_node(trans, node, 0);
1278 if (*errorp)
1279 node = NULL;
1280 } else {
1281 KKASSERT(node->ondisk);
1282 if (node->flags & HAMMER_NODE_CRCBAD) {
1283 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1284 *errorp = EDOM;
1285 else
1286 *errorp = EIO;
1287 _hammer_rel_node(node, 0);
1288 node = NULL;
1289 } else {
1290 *errorp = 0;
1293 } else {
1294 *errorp = ENOENT;
1296 return(node);
1300 * Release a hammer_node. On the last release the node dereferences
1301 * its underlying buffer and may or may not be destroyed.
1303 * If locked is non-zero the passed node has been interlocked by the
1304 * caller and we are in the failure/unload path, otherwise it has not and
1305 * we are doing a normal release.
1307 * This function will dispose of the interlock and the reference.
1308 * On return the node pointer is stale.
1310 void
1311 _hammer_rel_node(hammer_node_t node, int locked)
1313 hammer_buffer_t buffer;
1316 * Deref the node. If this isn't the 1->0 transition we're basically
1317 * done. If locked is non-zero this function will just deref the
1318 * locked node and return TRUE, otherwise it will deref the locked
1319 * node and either lock and return TRUE on the 1->0 transition or
1320 * not lock and return FALSE.
1322 if (hammer_rel_interlock(&node->lock, locked) == 0)
1323 return;
1326 * Either locked was non-zero and we are interlocked, or the
1327 * hammer_rel_interlock() call returned non-zero and we are
1328 * interlocked.
1330 * The ref-count must still be decremented if locked != 0 so
1331 * the cleanup required still varies a bit.
1333 * hammer_flush_node() when called with 1 or 2 will dispose of
1334 * the lock and possible ref-count.
1336 if (node->ondisk == NULL) {
1337 hammer_flush_node(node, locked + 1);
1338 /* node is stale now */
1339 return;
1343 * Do not disassociate the node from the buffer if it represents
1344 * a modified B-Tree node that still needs its crc to be generated.
1346 if (node->flags & HAMMER_NODE_NEEDSCRC) {
1347 hammer_rel_interlock_done(&node->lock, locked);
1348 return;
1352 * Do final cleanups and then either destroy the node and leave it
1353 * passively cached. The buffer reference is removed regardless.
1355 buffer = node->buffer;
1356 node->ondisk = NULL;
1358 if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1360 * Normal release.
1362 hammer_rel_interlock_done(&node->lock, locked);
1363 } else {
1365 * Destroy the node.
1367 hammer_flush_node(node, locked + 1);
1368 /* node is stale */
1371 hammer_rel_buffer(buffer, 0);
1374 void
1375 hammer_rel_node(hammer_node_t node)
1377 _hammer_rel_node(node, 0);
1381 * Free space on-media associated with a B-Tree node.
1383 void
1384 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1386 KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1387 node->flags |= HAMMER_NODE_DELETED;
1388 hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1392 * Passively cache a referenced hammer_node. The caller may release
1393 * the node on return.
1395 void
1396 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1399 * If the node doesn't exist, or is being deleted, don't cache it!
1401 * The node can only ever be NULL in the I/O failure path.
1403 if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1404 return;
1405 if (cache->node == node)
1406 return;
1407 while (cache->node)
1408 hammer_uncache_node(cache);
1409 if (node->flags & HAMMER_NODE_DELETED)
1410 return;
1411 cache->node = node;
1412 TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1415 void
1416 hammer_uncache_node(hammer_node_cache_t cache)
1418 hammer_node_t node;
1420 if ((node = cache->node) != NULL) {
1421 TAILQ_REMOVE(&node->cache_list, cache, entry);
1422 cache->node = NULL;
1423 if (TAILQ_EMPTY(&node->cache_list))
1424 hammer_flush_node(node, 0);
1429 * Remove a node's cache references and destroy the node if it has no
1430 * other references or backing store.
1432 * locked == 0 Normal unlocked operation
1433 * locked == 1 Call hammer_rel_interlock_done(..., 0);
1434 * locked == 2 Call hammer_rel_interlock_done(..., 1);
1436 * XXX for now this isn't even close to being MPSAFE so the refs check
1437 * is sufficient.
1439 void
1440 hammer_flush_node(hammer_node_t node, int locked)
1442 hammer_node_cache_t cache;
1443 hammer_buffer_t buffer;
1444 hammer_mount_t hmp = node->hmp;
1445 int dofree;
1447 while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1448 TAILQ_REMOVE(&node->cache_list, cache, entry);
1449 cache->node = NULL;
1453 * NOTE: refs is predisposed if another thread is blocking and
1454 * will be larger than 0 in that case. We aren't MPSAFE
1455 * here.
1457 if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1458 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1459 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1460 if ((buffer = node->buffer) != NULL) {
1461 node->buffer = NULL;
1462 TAILQ_REMOVE(&buffer->clist, node, entry);
1463 /* buffer is unreferenced because ondisk is NULL */
1465 dofree = 1;
1466 } else {
1467 dofree = 0;
1471 * Deal with the interlock if locked == 1 or locked == 2.
1473 if (locked)
1474 hammer_rel_interlock_done(&node->lock, locked - 1);
1477 * Destroy if requested
1479 if (dofree) {
1480 --hammer_count_nodes;
1481 kfree(node, hmp->m_misc);
1486 * Flush passively cached B-Tree nodes associated with this buffer.
1487 * This is only called when the buffer is about to be destroyed, so
1488 * none of the nodes should have any references. The buffer is locked.
1490 * We may be interlocked with the buffer.
1492 void
1493 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1495 hammer_node_t node;
1497 while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1498 KKASSERT(node->ondisk == NULL);
1499 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1501 if (hammer_try_interlock_norefs(&node->lock)) {
1502 hammer_ref(&node->lock);
1503 node->flags |= HAMMER_NODE_FLUSH;
1504 _hammer_rel_node(node, 1);
1505 } else {
1506 KKASSERT(node->buffer != NULL);
1507 buffer = node->buffer;
1508 node->buffer = NULL;
1509 TAILQ_REMOVE(&buffer->clist, node, entry);
1510 /* buffer is unreferenced because ondisk is NULL */
1516 /************************************************************************
1517 * ALLOCATORS *
1518 ************************************************************************/
1521 * Allocate a B-Tree node.
1523 hammer_node_t
1524 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1526 hammer_buffer_t buffer = NULL;
1527 hammer_node_t node = NULL;
1528 hammer_off_t node_offset;
1530 node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1531 sizeof(struct hammer_node_ondisk),
1532 hint, errorp);
1533 if (*errorp == 0) {
1534 node = hammer_get_node(trans, node_offset, 1, errorp);
1535 hammer_modify_node_noundo(trans, node);
1536 bzero(node->ondisk, sizeof(*node->ondisk));
1537 hammer_modify_node_done(node);
1539 if (buffer)
1540 hammer_rel_buffer(buffer, 0);
1541 return(node);
1545 * Allocate data. If the address of a data buffer is supplied then
1546 * any prior non-NULL *data_bufferp will be released and *data_bufferp
1547 * will be set to the related buffer. The caller must release it when
1548 * finally done. The initial *data_bufferp should be set to NULL by
1549 * the caller.
1551 * The caller is responsible for making hammer_modify*() calls on the
1552 * *data_bufferp.
1554 void *
1555 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1556 u_int16_t rec_type, hammer_off_t *data_offsetp,
1557 struct hammer_buffer **data_bufferp,
1558 hammer_off_t hint, int *errorp)
1560 void *data;
1561 int zone;
1564 * Allocate data
1566 if (data_len) {
1567 switch(rec_type) {
1568 case HAMMER_RECTYPE_INODE:
1569 case HAMMER_RECTYPE_DIRENTRY:
1570 case HAMMER_RECTYPE_EXT:
1571 case HAMMER_RECTYPE_FIX:
1572 case HAMMER_RECTYPE_PFS:
1573 case HAMMER_RECTYPE_SNAPSHOT:
1574 case HAMMER_RECTYPE_CONFIG:
1575 zone = HAMMER_ZONE_META_INDEX;
1576 break;
1577 case HAMMER_RECTYPE_DATA:
1578 case HAMMER_RECTYPE_DB:
1579 if (data_len <= HAMMER_BUFSIZE / 2) {
1580 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1581 } else {
1582 data_len = (data_len + HAMMER_BUFMASK) &
1583 ~HAMMER_BUFMASK;
1584 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1586 break;
1587 default:
1588 panic("hammer_alloc_data: rec_type %04x unknown",
1589 rec_type);
1590 zone = 0; /* NOT REACHED */
1591 break;
1593 *data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1594 hint, errorp);
1595 } else {
1596 *data_offsetp = 0;
1598 if (*errorp == 0 && data_bufferp) {
1599 if (data_len) {
1600 data = hammer_bread_ext(trans->hmp, *data_offsetp,
1601 data_len, errorp, data_bufferp);
1602 } else {
1603 data = NULL;
1605 } else {
1606 data = NULL;
1608 return(data);
1612 * Sync dirty buffers to the media and clean-up any loose ends.
1614 * These functions do not start the flusher going, they simply
1615 * queue everything up to the flusher.
1617 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1618 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1621 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1623 struct hammer_sync_info info;
1625 info.error = 0;
1626 info.waitfor = waitfor;
1627 if (waitfor == MNT_WAIT) {
1628 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1629 hammer_sync_scan1, hammer_sync_scan2, &info);
1630 } else {
1631 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1632 hammer_sync_scan1, hammer_sync_scan2, &info);
1634 return(info.error);
1638 * Filesystem sync. If doing a synchronous sync make a second pass on
1639 * the vnodes in case any were already flushing during the first pass,
1640 * and activate the flusher twice (the second time brings the UNDO FIFO's
1641 * start position up to the end position after the first call).
1644 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1646 struct hammer_sync_info info;
1648 info.error = 0;
1649 info.waitfor = MNT_NOWAIT;
1650 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1651 hammer_sync_scan1, hammer_sync_scan2, &info);
1652 if (info.error == 0 && waitfor == MNT_WAIT) {
1653 info.waitfor = waitfor;
1654 vmntvnodescan(hmp->mp, VMSC_GETVP,
1655 hammer_sync_scan1, hammer_sync_scan2, &info);
1657 if (waitfor == MNT_WAIT) {
1658 hammer_flusher_sync(hmp);
1659 hammer_flusher_sync(hmp);
1660 } else {
1661 hammer_flusher_async(hmp, NULL);
1662 hammer_flusher_async(hmp, NULL);
1664 return(info.error);
1667 static int
1668 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1670 struct hammer_inode *ip;
1672 ip = VTOI(vp);
1673 if (vp->v_type == VNON || ip == NULL ||
1674 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1675 RB_EMPTY(&vp->v_rbdirty_tree))) {
1676 return(-1);
1678 return(0);
1681 static int
1682 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1684 struct hammer_sync_info *info = data;
1685 struct hammer_inode *ip;
1686 int error;
1688 ip = VTOI(vp);
1689 if (vp->v_type == VNON || vp->v_type == VBAD ||
1690 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1691 RB_EMPTY(&vp->v_rbdirty_tree))) {
1692 return(0);
1694 error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1695 if (error)
1696 info->error = error;
1697 return(0);