HAMMER VFS - Major retooling of the refcount mechanics, and fix a deadlock
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blob78bac00c0a8048f556a2597f3b04e30dc59c0354
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.114 2008/09/24 00:53:51 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
40 static int hammer_unload_inode(struct hammer_inode *ip);
41 static void hammer_free_inode(hammer_inode_t ip);
42 static void hammer_flush_inode_core(hammer_inode_t ip,
43 hammer_flush_group_t flg, int flags);
44 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45 #if 0
46 static int hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
47 #endif
48 static int hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
49 hammer_flush_group_t flg);
50 static int hammer_setup_parent_inodes_helper(hammer_record_t record,
51 int depth, hammer_flush_group_t flg);
52 static void hammer_inode_wakereclaims(hammer_inode_t ip);
53 static struct hammer_inostats *hammer_inode_inostats(hammer_mount_t hmp,
54 pid_t pid);
56 #ifdef DEBUG_TRUNCATE
57 extern struct hammer_inode *HammerTruncIp;
58 #endif
61 * RB-Tree support for inode structures
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
66 if (ip1->obj_localization < ip2->obj_localization)
67 return(-1);
68 if (ip1->obj_localization > ip2->obj_localization)
69 return(1);
70 if (ip1->obj_id < ip2->obj_id)
71 return(-1);
72 if (ip1->obj_id > ip2->obj_id)
73 return(1);
74 if (ip1->obj_asof < ip2->obj_asof)
75 return(-1);
76 if (ip1->obj_asof > ip2->obj_asof)
77 return(1);
78 return(0);
81 int
82 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
84 if (ip1->redo_fifo_start < ip2->redo_fifo_start)
85 return(-1);
86 if (ip1->redo_fifo_start > ip2->redo_fifo_start)
87 return(1);
88 return(0);
92 * RB-Tree support for inode structures / special LOOKUP_INFO
94 static int
95 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
97 if (info->obj_localization < ip->obj_localization)
98 return(-1);
99 if (info->obj_localization > ip->obj_localization)
100 return(1);
101 if (info->obj_id < ip->obj_id)
102 return(-1);
103 if (info->obj_id > ip->obj_id)
104 return(1);
105 if (info->obj_asof < ip->obj_asof)
106 return(-1);
107 if (info->obj_asof > ip->obj_asof)
108 return(1);
109 return(0);
113 * Used by hammer_scan_inode_snapshots() to locate all of an object's
114 * snapshots. Note that the asof field is not tested, which we can get
115 * away with because it is the lowest-priority field.
117 static int
118 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
120 hammer_inode_info_t info = data;
122 if (ip->obj_localization > info->obj_localization)
123 return(1);
124 if (ip->obj_localization < info->obj_localization)
125 return(-1);
126 if (ip->obj_id > info->obj_id)
127 return(1);
128 if (ip->obj_id < info->obj_id)
129 return(-1);
130 return(0);
134 * Used by hammer_unload_pseudofs() to locate all inodes associated with
135 * a particular PFS.
137 static int
138 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
140 u_int32_t localization = *(u_int32_t *)data;
141 if (ip->obj_localization > localization)
142 return(1);
143 if (ip->obj_localization < localization)
144 return(-1);
145 return(0);
149 * RB-Tree support for pseudofs structures
151 static int
152 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
154 if (p1->localization < p2->localization)
155 return(-1);
156 if (p1->localization > p2->localization)
157 return(1);
158 return(0);
162 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
163 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
164 hammer_inode_info_cmp, hammer_inode_info_t);
165 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
166 hammer_pfs_rb_compare, u_int32_t, localization);
169 * The kernel is not actively referencing this vnode but is still holding
170 * it cached.
172 * This is called from the frontend.
174 * MPALMOSTSAFE
177 hammer_vop_inactive(struct vop_inactive_args *ap)
179 struct hammer_inode *ip = VTOI(ap->a_vp);
182 * Degenerate case
184 if (ip == NULL) {
185 vrecycle(ap->a_vp);
186 return(0);
190 * If the inode no longer has visibility in the filesystem try to
191 * recycle it immediately, even if the inode is dirty. Recycling
192 * it quickly allows the system to reclaim buffer cache and VM
193 * resources which can matter a lot in a heavily loaded system.
195 * This can deadlock in vfsync() if we aren't careful.
197 * Do not queue the inode to the flusher if we still have visibility,
198 * otherwise namespace calls such as chmod will unnecessarily generate
199 * multiple inode updates.
201 if (ip->ino_data.nlinks == 0) {
202 get_mplock();
203 hammer_inode_unloadable_check(ip, 0);
204 if (ip->flags & HAMMER_INODE_MODMASK)
205 hammer_flush_inode(ip, 0);
206 vrecycle(ap->a_vp);
207 rel_mplock();
209 return(0);
213 * Release the vnode association. This is typically (but not always)
214 * the last reference on the inode.
216 * Once the association is lost we are on our own with regards to
217 * flushing the inode.
219 * We must interlock ip->vp so hammer_get_vnode() can avoid races.
222 hammer_vop_reclaim(struct vop_reclaim_args *ap)
224 struct hammer_inode *ip;
225 hammer_mount_t hmp;
226 struct vnode *vp;
228 vp = ap->a_vp;
230 if ((ip = vp->v_data) != NULL) {
231 hmp = ip->hmp;
232 hammer_lock_ex(&ip->lock);
233 vp->v_data = NULL;
234 ip->vp = NULL;
236 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
237 ++hammer_count_reclaiming;
238 ++hmp->inode_reclaims;
239 ip->flags |= HAMMER_INODE_RECLAIM;
241 hammer_unlock(&ip->lock);
242 hammer_rel_inode(ip, 1);
244 return(0);
248 * Return a locked vnode for the specified inode. The inode must be
249 * referenced but NOT LOCKED on entry and will remain referenced on
250 * return.
252 * Called from the frontend.
255 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
257 hammer_mount_t hmp;
258 struct vnode *vp;
259 int error = 0;
260 u_int8_t obj_type;
262 hmp = ip->hmp;
264 for (;;) {
265 if ((vp = ip->vp) == NULL) {
266 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
267 if (error)
268 break;
269 hammer_lock_ex(&ip->lock);
270 if (ip->vp != NULL) {
271 hammer_unlock(&ip->lock);
272 vp = *vpp;
273 vp->v_type = VBAD;
274 vx_put(vp);
275 continue;
277 hammer_ref(&ip->lock);
278 vp = *vpp;
279 ip->vp = vp;
281 obj_type = ip->ino_data.obj_type;
282 vp->v_type = hammer_get_vnode_type(obj_type);
284 hammer_inode_wakereclaims(ip);
286 switch(ip->ino_data.obj_type) {
287 case HAMMER_OBJTYPE_CDEV:
288 case HAMMER_OBJTYPE_BDEV:
289 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
290 addaliasu(vp, ip->ino_data.rmajor,
291 ip->ino_data.rminor);
292 break;
293 case HAMMER_OBJTYPE_FIFO:
294 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
295 break;
296 case HAMMER_OBJTYPE_REGFILE:
297 break;
298 default:
299 break;
303 * Only mark as the root vnode if the ip is not
304 * historical, otherwise the VFS cache will get
305 * confused. The other half of the special handling
306 * is in hammer_vop_nlookupdotdot().
308 * Pseudo-filesystem roots can be accessed via
309 * non-root filesystem paths and setting VROOT may
310 * confuse the namecache. Set VPFSROOT instead.
312 if (ip->obj_id == HAMMER_OBJID_ROOT &&
313 ip->obj_asof == hmp->asof) {
314 if (ip->obj_localization == 0)
315 vsetflags(vp, VROOT);
316 else
317 vsetflags(vp, VPFSROOT);
320 vp->v_data = (void *)ip;
321 /* vnode locked by getnewvnode() */
322 /* make related vnode dirty if inode dirty? */
323 hammer_unlock(&ip->lock);
324 if (vp->v_type == VREG) {
325 vinitvmio(vp, ip->ino_data.size,
326 hammer_blocksize(ip->ino_data.size),
327 hammer_blockoff(ip->ino_data.size));
329 break;
333 * Interlock vnode clearing. This does not prevent the
334 * vnode from going into a reclaimed state but it does
335 * prevent it from being destroyed or reused so the vget()
336 * will properly fail.
338 hammer_lock_ex(&ip->lock);
339 if ((vp = ip->vp) == NULL) {
340 hammer_unlock(&ip->lock);
341 continue;
343 vhold_interlocked(vp);
344 hammer_unlock(&ip->lock);
347 * loop if the vget fails (aka races), or if the vp
348 * no longer matches ip->vp.
350 if (vget(vp, LK_EXCLUSIVE) == 0) {
351 if (vp == ip->vp) {
352 vdrop(vp);
353 break;
355 vput(vp);
357 vdrop(vp);
359 *vpp = vp;
360 return(error);
364 * Locate all copies of the inode for obj_id compatible with the specified
365 * asof, reference, and issue the related call-back. This routine is used
366 * for direct-io invalidation and does not create any new inodes.
368 void
369 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
370 int (*callback)(hammer_inode_t ip, void *data),
371 void *data)
373 hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
374 hammer_inode_info_cmp_all_history,
375 callback, iinfo);
379 * Acquire a HAMMER inode. The returned inode is not locked. These functions
380 * do not attach or detach the related vnode (use hammer_get_vnode() for
381 * that).
383 * The flags argument is only applied for newly created inodes, and only
384 * certain flags are inherited.
386 * Called from the frontend.
388 struct hammer_inode *
389 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
390 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
391 int flags, int *errorp)
393 hammer_mount_t hmp = trans->hmp;
394 struct hammer_node_cache *cachep;
395 struct hammer_inode_info iinfo;
396 struct hammer_cursor cursor;
397 struct hammer_inode *ip;
401 * Determine if we already have an inode cached. If we do then
402 * we are golden.
404 * If we find an inode with no vnode we have to mark the
405 * transaction such that hammer_inode_waitreclaims() is
406 * called later on to avoid building up an infinite number
407 * of inodes. Otherwise we can continue to * add new inodes
408 * faster then they can be disposed of, even with the tsleep
409 * delay.
411 * If we find a dummy inode we return a failure so dounlink
412 * (which does another lookup) doesn't try to mess with the
413 * link count. hammer_vop_nresolve() uses hammer_get_dummy_inode()
414 * to ref dummy inodes.
416 iinfo.obj_id = obj_id;
417 iinfo.obj_asof = asof;
418 iinfo.obj_localization = localization;
419 loop:
420 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
421 if (ip) {
422 if (ip->flags & HAMMER_INODE_DUMMY) {
423 *errorp = ENOENT;
424 return(NULL);
426 hammer_ref(&ip->lock);
427 *errorp = 0;
428 return(ip);
432 * Allocate a new inode structure and deal with races later.
434 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
435 ++hammer_count_inodes;
436 ++hmp->count_inodes;
437 ip->obj_id = obj_id;
438 ip->obj_asof = iinfo.obj_asof;
439 ip->obj_localization = localization;
440 ip->hmp = hmp;
441 ip->flags = flags & HAMMER_INODE_RO;
442 ip->cache[0].ip = ip;
443 ip->cache[1].ip = ip;
444 ip->cache[2].ip = ip;
445 ip->cache[3].ip = ip;
446 if (hmp->ronly)
447 ip->flags |= HAMMER_INODE_RO;
448 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
449 0x7FFFFFFFFFFFFFFFLL;
450 RB_INIT(&ip->rec_tree);
451 TAILQ_INIT(&ip->target_list);
452 hammer_ref(&ip->lock);
455 * Locate the on-disk inode. If this is a PFS root we always
456 * access the current version of the root inode and (if it is not
457 * a master) always access information under it with a snapshot
458 * TID.
460 * We cache recent inode lookups in this directory in dip->cache[2].
461 * If we can't find it we assume the inode we are looking for is
462 * close to the directory inode.
464 retry:
465 cachep = NULL;
466 if (dip) {
467 if (dip->cache[2].node)
468 cachep = &dip->cache[2];
469 else
470 cachep = &dip->cache[0];
472 hammer_init_cursor(trans, &cursor, cachep, NULL);
473 cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
474 cursor.key_beg.obj_id = ip->obj_id;
475 cursor.key_beg.key = 0;
476 cursor.key_beg.create_tid = 0;
477 cursor.key_beg.delete_tid = 0;
478 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
479 cursor.key_beg.obj_type = 0;
481 cursor.asof = iinfo.obj_asof;
482 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
483 HAMMER_CURSOR_ASOF;
485 *errorp = hammer_btree_lookup(&cursor);
486 if (*errorp == EDEADLK) {
487 hammer_done_cursor(&cursor);
488 goto retry;
492 * On success the B-Tree lookup will hold the appropriate
493 * buffer cache buffers and provide a pointer to the requested
494 * information. Copy the information to the in-memory inode
495 * and cache the B-Tree node to improve future operations.
497 if (*errorp == 0) {
498 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
499 ip->ino_data = cursor.data->inode;
502 * cache[0] tries to cache the location of the object inode.
503 * The assumption is that it is near the directory inode.
505 * cache[1] tries to cache the location of the object data.
506 * We might have something in the governing directory from
507 * scan optimizations (see the strategy code in
508 * hammer_vnops.c).
510 * We update dip->cache[2], if possible, with the location
511 * of the object inode for future directory shortcuts.
513 hammer_cache_node(&ip->cache[0], cursor.node);
514 if (dip) {
515 if (dip->cache[3].node) {
516 hammer_cache_node(&ip->cache[1],
517 dip->cache[3].node);
519 hammer_cache_node(&dip->cache[2], cursor.node);
523 * The file should not contain any data past the file size
524 * stored in the inode. Setting save_trunc_off to the
525 * file size instead of max reduces B-Tree lookup overheads
526 * on append by allowing the flusher to avoid checking for
527 * record overwrites.
529 ip->save_trunc_off = ip->ino_data.size;
532 * Locate and assign the pseudofs management structure to
533 * the inode.
535 if (dip && dip->obj_localization == ip->obj_localization) {
536 ip->pfsm = dip->pfsm;
537 hammer_ref(&ip->pfsm->lock);
538 } else {
539 ip->pfsm = hammer_load_pseudofs(trans,
540 ip->obj_localization,
541 errorp);
542 *errorp = 0; /* ignore ENOENT */
547 * The inode is placed on the red-black tree and will be synced to
548 * the media when flushed or by the filesystem sync. If this races
549 * another instantiation/lookup the insertion will fail.
551 if (*errorp == 0) {
552 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
553 hammer_free_inode(ip);
554 hammer_done_cursor(&cursor);
555 goto loop;
557 ip->flags |= HAMMER_INODE_ONDISK;
558 } else {
559 if (ip->flags & HAMMER_INODE_RSV_INODES) {
560 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
561 --hmp->rsv_inodes;
564 hammer_free_inode(ip);
565 ip = NULL;
567 hammer_done_cursor(&cursor);
570 * NEWINODE is only set if the inode becomes dirty later,
571 * setting it here just leads to unnecessary stalls.
573 * trans->flags |= HAMMER_TRANSF_NEWINODE;
575 return (ip);
579 * Get a dummy inode to placemark a broken directory entry.
581 struct hammer_inode *
582 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
583 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
584 int flags, int *errorp)
586 hammer_mount_t hmp = trans->hmp;
587 struct hammer_inode_info iinfo;
588 struct hammer_inode *ip;
591 * Determine if we already have an inode cached. If we do then
592 * we are golden.
594 * If we find an inode with no vnode we have to mark the
595 * transaction such that hammer_inode_waitreclaims() is
596 * called later on to avoid building up an infinite number
597 * of inodes. Otherwise we can continue to * add new inodes
598 * faster then they can be disposed of, even with the tsleep
599 * delay.
601 * If we find a non-fake inode we return an error. Only fake
602 * inodes can be returned by this routine.
604 iinfo.obj_id = obj_id;
605 iinfo.obj_asof = asof;
606 iinfo.obj_localization = localization;
607 loop:
608 *errorp = 0;
609 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
610 if (ip) {
611 if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
612 *errorp = ENOENT;
613 return(NULL);
615 hammer_ref(&ip->lock);
616 return(ip);
620 * Allocate a new inode structure and deal with races later.
622 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
623 ++hammer_count_inodes;
624 ++hmp->count_inodes;
625 ip->obj_id = obj_id;
626 ip->obj_asof = iinfo.obj_asof;
627 ip->obj_localization = localization;
628 ip->hmp = hmp;
629 ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
630 ip->cache[0].ip = ip;
631 ip->cache[1].ip = ip;
632 ip->cache[2].ip = ip;
633 ip->cache[3].ip = ip;
634 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
635 0x7FFFFFFFFFFFFFFFLL;
636 RB_INIT(&ip->rec_tree);
637 TAILQ_INIT(&ip->target_list);
638 hammer_ref(&ip->lock);
641 * Populate the dummy inode. Leave everything zero'd out.
643 * (ip->ino_leaf and ip->ino_data)
645 * Make the dummy inode a FIFO object which most copy programs
646 * will properly ignore.
648 ip->save_trunc_off = ip->ino_data.size;
649 ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
652 * Locate and assign the pseudofs management structure to
653 * the inode.
655 if (dip && dip->obj_localization == ip->obj_localization) {
656 ip->pfsm = dip->pfsm;
657 hammer_ref(&ip->pfsm->lock);
658 } else {
659 ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
660 errorp);
661 *errorp = 0; /* ignore ENOENT */
665 * The inode is placed on the red-black tree and will be synced to
666 * the media when flushed or by the filesystem sync. If this races
667 * another instantiation/lookup the insertion will fail.
669 * NOTE: Do not set HAMMER_INODE_ONDISK. The inode is a fake.
671 if (*errorp == 0) {
672 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
673 hammer_free_inode(ip);
674 goto loop;
676 } else {
677 if (ip->flags & HAMMER_INODE_RSV_INODES) {
678 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
679 --hmp->rsv_inodes;
681 hammer_free_inode(ip);
682 ip = NULL;
684 trans->flags |= HAMMER_TRANSF_NEWINODE;
685 return (ip);
689 * Return a referenced inode only if it is in our inode cache.
691 * Dummy inodes do not count.
693 struct hammer_inode *
694 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
695 hammer_tid_t asof, u_int32_t localization)
697 hammer_mount_t hmp = trans->hmp;
698 struct hammer_inode_info iinfo;
699 struct hammer_inode *ip;
701 iinfo.obj_id = obj_id;
702 iinfo.obj_asof = asof;
703 iinfo.obj_localization = localization;
705 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
706 if (ip) {
707 if (ip->flags & HAMMER_INODE_DUMMY)
708 ip = NULL;
709 else
710 hammer_ref(&ip->lock);
712 return(ip);
716 * Create a new filesystem object, returning the inode in *ipp. The
717 * returned inode will be referenced. The inode is created in-memory.
719 * If pfsm is non-NULL the caller wishes to create the root inode for
720 * a master PFS.
723 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
724 struct ucred *cred,
725 hammer_inode_t dip, const char *name, int namelen,
726 hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
728 hammer_mount_t hmp;
729 hammer_inode_t ip;
730 uid_t xuid;
731 int error;
732 int64_t namekey;
733 u_int32_t dummy;
735 hmp = trans->hmp;
737 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
738 ++hammer_count_inodes;
739 ++hmp->count_inodes;
740 trans->flags |= HAMMER_TRANSF_NEWINODE;
742 if (pfsm) {
743 KKASSERT(pfsm->localization != 0);
744 ip->obj_id = HAMMER_OBJID_ROOT;
745 ip->obj_localization = pfsm->localization;
746 } else {
747 KKASSERT(dip != NULL);
748 namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
749 ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
750 ip->obj_localization = dip->obj_localization;
753 KKASSERT(ip->obj_id != 0);
754 ip->obj_asof = hmp->asof;
755 ip->hmp = hmp;
756 ip->flush_state = HAMMER_FST_IDLE;
757 ip->flags = HAMMER_INODE_DDIRTY |
758 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
759 ip->cache[0].ip = ip;
760 ip->cache[1].ip = ip;
761 ip->cache[2].ip = ip;
762 ip->cache[3].ip = ip;
764 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
765 /* ip->save_trunc_off = 0; (already zero) */
766 RB_INIT(&ip->rec_tree);
767 TAILQ_INIT(&ip->target_list);
769 ip->ino_data.atime = trans->time;
770 ip->ino_data.mtime = trans->time;
771 ip->ino_data.size = 0;
772 ip->ino_data.nlinks = 0;
775 * A nohistory designator on the parent directory is inherited by
776 * the child. We will do this even for pseudo-fs creation... the
777 * sysad can turn it off.
779 if (dip) {
780 ip->ino_data.uflags = dip->ino_data.uflags &
781 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
784 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
785 ip->ino_leaf.base.localization = ip->obj_localization +
786 HAMMER_LOCALIZE_INODE;
787 ip->ino_leaf.base.obj_id = ip->obj_id;
788 ip->ino_leaf.base.key = 0;
789 ip->ino_leaf.base.create_tid = 0;
790 ip->ino_leaf.base.delete_tid = 0;
791 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
792 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
794 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
795 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
796 ip->ino_data.mode = vap->va_mode;
797 ip->ino_data.ctime = trans->time;
800 * If we are running version 2 or greater directory entries are
801 * inode-localized instead of data-localized.
803 if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
804 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
805 ip->ino_data.cap_flags |=
806 HAMMER_INODE_CAP_DIR_LOCAL_INO;
811 * Setup the ".." pointer. This only needs to be done for directories
812 * but we do it for all objects as a recovery aid.
814 if (dip)
815 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
816 #if 0
818 * The parent_obj_localization field only applies to pseudo-fs roots.
819 * XXX this is no longer applicable, PFSs are no longer directly
820 * tied into the parent's directory structure.
822 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
823 ip->obj_id == HAMMER_OBJID_ROOT) {
824 ip->ino_data.ext.obj.parent_obj_localization =
825 dip->obj_localization;
827 #endif
829 switch(ip->ino_leaf.base.obj_type) {
830 case HAMMER_OBJTYPE_CDEV:
831 case HAMMER_OBJTYPE_BDEV:
832 ip->ino_data.rmajor = vap->va_rmajor;
833 ip->ino_data.rminor = vap->va_rminor;
834 break;
835 default:
836 break;
840 * Calculate default uid/gid and overwrite with information from
841 * the vap.
843 if (dip) {
844 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
845 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
846 xuid, cred, &vap->va_mode);
847 } else {
848 xuid = 0;
850 ip->ino_data.mode = vap->va_mode;
852 if (vap->va_vaflags & VA_UID_UUID_VALID)
853 ip->ino_data.uid = vap->va_uid_uuid;
854 else if (vap->va_uid != (uid_t)VNOVAL)
855 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
856 else
857 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
859 if (vap->va_vaflags & VA_GID_UUID_VALID)
860 ip->ino_data.gid = vap->va_gid_uuid;
861 else if (vap->va_gid != (gid_t)VNOVAL)
862 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
863 else if (dip)
864 ip->ino_data.gid = dip->ino_data.gid;
866 hammer_ref(&ip->lock);
868 if (pfsm) {
869 ip->pfsm = pfsm;
870 hammer_ref(&pfsm->lock);
871 error = 0;
872 } else if (dip->obj_localization == ip->obj_localization) {
873 ip->pfsm = dip->pfsm;
874 hammer_ref(&ip->pfsm->lock);
875 error = 0;
876 } else {
877 ip->pfsm = hammer_load_pseudofs(trans,
878 ip->obj_localization,
879 &error);
880 error = 0; /* ignore ENOENT */
883 if (error) {
884 hammer_free_inode(ip);
885 ip = NULL;
886 } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
887 panic("hammer_create_inode: duplicate obj_id %llx",
888 (long long)ip->obj_id);
889 /* not reached */
890 hammer_free_inode(ip);
892 *ipp = ip;
893 return(error);
897 * Final cleanup / freeing of an inode structure
899 static void
900 hammer_free_inode(hammer_inode_t ip)
902 struct hammer_mount *hmp;
904 hmp = ip->hmp;
905 KKASSERT(hammer_oneref(&ip->lock));
906 hammer_uncache_node(&ip->cache[0]);
907 hammer_uncache_node(&ip->cache[1]);
908 hammer_uncache_node(&ip->cache[2]);
909 hammer_uncache_node(&ip->cache[3]);
910 hammer_inode_wakereclaims(ip);
911 if (ip->objid_cache)
912 hammer_clear_objid(ip);
913 --hammer_count_inodes;
914 --hmp->count_inodes;
915 if (ip->pfsm) {
916 hammer_rel_pseudofs(hmp, ip->pfsm);
917 ip->pfsm = NULL;
919 kfree(ip, hmp->m_inodes);
920 ip = NULL;
924 * Retrieve pseudo-fs data. NULL will never be returned.
926 * If an error occurs *errorp will be set and a default template is returned,
927 * otherwise *errorp is set to 0. Typically when an error occurs it will
928 * be ENOENT.
930 hammer_pseudofs_inmem_t
931 hammer_load_pseudofs(hammer_transaction_t trans,
932 u_int32_t localization, int *errorp)
934 hammer_mount_t hmp = trans->hmp;
935 hammer_inode_t ip;
936 hammer_pseudofs_inmem_t pfsm;
937 struct hammer_cursor cursor;
938 int bytes;
940 retry:
941 pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
942 if (pfsm) {
943 hammer_ref(&pfsm->lock);
944 *errorp = 0;
945 return(pfsm);
949 * PFS records are stored in the root inode (not the PFS root inode,
950 * but the real root). Avoid an infinite recursion if loading
951 * the PFS for the real root.
953 if (localization) {
954 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
955 HAMMER_MAX_TID,
956 HAMMER_DEF_LOCALIZATION, 0, errorp);
957 } else {
958 ip = NULL;
961 pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
962 pfsm->localization = localization;
963 pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
964 pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
966 hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
967 cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
968 HAMMER_LOCALIZE_MISC;
969 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
970 cursor.key_beg.create_tid = 0;
971 cursor.key_beg.delete_tid = 0;
972 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
973 cursor.key_beg.obj_type = 0;
974 cursor.key_beg.key = localization;
975 cursor.asof = HAMMER_MAX_TID;
976 cursor.flags |= HAMMER_CURSOR_ASOF;
978 if (ip)
979 *errorp = hammer_ip_lookup(&cursor);
980 else
981 *errorp = hammer_btree_lookup(&cursor);
982 if (*errorp == 0) {
983 *errorp = hammer_ip_resolve_data(&cursor);
984 if (*errorp == 0) {
985 if (cursor.data->pfsd.mirror_flags &
986 HAMMER_PFSD_DELETED) {
987 *errorp = ENOENT;
988 } else {
989 bytes = cursor.leaf->data_len;
990 if (bytes > sizeof(pfsm->pfsd))
991 bytes = sizeof(pfsm->pfsd);
992 bcopy(cursor.data, &pfsm->pfsd, bytes);
996 hammer_done_cursor(&cursor);
998 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
999 hammer_ref(&pfsm->lock);
1000 if (ip)
1001 hammer_rel_inode(ip, 0);
1002 if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
1003 kfree(pfsm, hmp->m_misc);
1004 goto retry;
1006 return(pfsm);
1010 * Store pseudo-fs data. The backend will automatically delete any prior
1011 * on-disk pseudo-fs data but we have to delete in-memory versions.
1014 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1016 struct hammer_cursor cursor;
1017 hammer_record_t record;
1018 hammer_inode_t ip;
1019 int error;
1021 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1022 HAMMER_DEF_LOCALIZATION, 0, &error);
1023 retry:
1024 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1025 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1026 cursor.key_beg.localization = ip->obj_localization +
1027 HAMMER_LOCALIZE_MISC;
1028 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1029 cursor.key_beg.create_tid = 0;
1030 cursor.key_beg.delete_tid = 0;
1031 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1032 cursor.key_beg.obj_type = 0;
1033 cursor.key_beg.key = pfsm->localization;
1034 cursor.asof = HAMMER_MAX_TID;
1035 cursor.flags |= HAMMER_CURSOR_ASOF;
1038 * Replace any in-memory version of the record.
1040 error = hammer_ip_lookup(&cursor);
1041 if (error == 0 && hammer_cursor_inmem(&cursor)) {
1042 record = cursor.iprec;
1043 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1044 KKASSERT(cursor.deadlk_rec == NULL);
1045 hammer_ref(&record->lock);
1046 cursor.deadlk_rec = record;
1047 error = EDEADLK;
1048 } else {
1049 record->flags |= HAMMER_RECF_DELETED_FE;
1050 error = 0;
1055 * Allocate replacement general record. The backend flush will
1056 * delete any on-disk version of the record.
1058 if (error == 0 || error == ENOENT) {
1059 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1060 record->type = HAMMER_MEM_RECORD_GENERAL;
1062 record->leaf.base.localization = ip->obj_localization +
1063 HAMMER_LOCALIZE_MISC;
1064 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1065 record->leaf.base.key = pfsm->localization;
1066 record->leaf.data_len = sizeof(pfsm->pfsd);
1067 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1068 error = hammer_ip_add_record(trans, record);
1070 hammer_done_cursor(&cursor);
1071 if (error == EDEADLK)
1072 goto retry;
1073 hammer_rel_inode(ip, 0);
1074 return(error);
1078 * Create a root directory for a PFS if one does not alredy exist.
1080 * The PFS root stands alone so we must also bump the nlinks count
1081 * to prevent it from being destroyed on release.
1084 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1085 hammer_pseudofs_inmem_t pfsm)
1087 hammer_inode_t ip;
1088 struct vattr vap;
1089 int error;
1091 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1092 pfsm->localization, 0, &error);
1093 if (ip == NULL) {
1094 vattr_null(&vap);
1095 vap.va_mode = 0755;
1096 vap.va_type = VDIR;
1097 error = hammer_create_inode(trans, &vap, cred,
1098 NULL, NULL, 0,
1099 pfsm, &ip);
1100 if (error == 0) {
1101 ++ip->ino_data.nlinks;
1102 hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
1105 if (ip)
1106 hammer_rel_inode(ip, 0);
1107 return(error);
1111 * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1112 * if we are unable to disassociate all the inodes.
1114 static
1116 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1118 int res;
1120 hammer_ref(&ip->lock);
1121 if (hammer_isactive(&ip->lock) == 2 && ip->vp)
1122 vclean_unlocked(ip->vp);
1123 if (hammer_isactive(&ip->lock) == 1 && ip->vp == NULL)
1124 res = 0;
1125 else
1126 res = -1; /* stop, someone is using the inode */
1127 hammer_rel_inode(ip, 0);
1128 return(res);
1132 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1134 int res;
1135 int try;
1137 for (try = res = 0; try < 4; ++try) {
1138 res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1139 hammer_inode_pfs_cmp,
1140 hammer_unload_pseudofs_callback,
1141 &localization);
1142 if (res == 0 && try > 1)
1143 break;
1144 hammer_flusher_sync(trans->hmp);
1146 if (res != 0)
1147 res = ENOTEMPTY;
1148 return(res);
1153 * Release a reference on a PFS
1155 void
1156 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1158 hammer_rel(&pfsm->lock);
1159 if (hammer_norefs(&pfsm->lock)) {
1160 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1161 kfree(pfsm, hmp->m_misc);
1166 * Called by hammer_sync_inode().
1168 static int
1169 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1171 hammer_transaction_t trans = cursor->trans;
1172 hammer_record_t record;
1173 int error;
1174 int redirty;
1176 retry:
1177 error = 0;
1180 * If the inode has a presence on-disk then locate it and mark
1181 * it deleted, setting DELONDISK.
1183 * The record may or may not be physically deleted, depending on
1184 * the retention policy.
1186 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1187 HAMMER_INODE_ONDISK) {
1188 hammer_normalize_cursor(cursor);
1189 cursor->key_beg.localization = ip->obj_localization +
1190 HAMMER_LOCALIZE_INODE;
1191 cursor->key_beg.obj_id = ip->obj_id;
1192 cursor->key_beg.key = 0;
1193 cursor->key_beg.create_tid = 0;
1194 cursor->key_beg.delete_tid = 0;
1195 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1196 cursor->key_beg.obj_type = 0;
1197 cursor->asof = ip->obj_asof;
1198 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1199 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1200 cursor->flags |= HAMMER_CURSOR_BACKEND;
1202 error = hammer_btree_lookup(cursor);
1203 if (hammer_debug_inode)
1204 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1206 if (error == 0) {
1207 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1208 if (hammer_debug_inode)
1209 kprintf(" error %d\n", error);
1210 if (error == 0) {
1211 ip->flags |= HAMMER_INODE_DELONDISK;
1213 if (cursor->node)
1214 hammer_cache_node(&ip->cache[0], cursor->node);
1216 if (error == EDEADLK) {
1217 hammer_done_cursor(cursor);
1218 error = hammer_init_cursor(trans, cursor,
1219 &ip->cache[0], ip);
1220 if (hammer_debug_inode)
1221 kprintf("IPDED %p %d\n", ip, error);
1222 if (error == 0)
1223 goto retry;
1228 * Ok, write out the initial record or a new record (after deleting
1229 * the old one), unless the DELETED flag is set. This routine will
1230 * clear DELONDISK if it writes out a record.
1232 * Update our inode statistics if this is the first application of
1233 * the inode on-disk.
1235 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1237 * Generate a record and write it to the media. We clean-up
1238 * the state before releasing so we do not have to set-up
1239 * a flush_group.
1241 record = hammer_alloc_mem_record(ip, 0);
1242 record->type = HAMMER_MEM_RECORD_INODE;
1243 record->flush_state = HAMMER_FST_FLUSH;
1244 record->leaf = ip->sync_ino_leaf;
1245 record->leaf.base.create_tid = trans->tid;
1246 record->leaf.data_len = sizeof(ip->sync_ino_data);
1247 record->leaf.create_ts = trans->time32;
1248 record->data = (void *)&ip->sync_ino_data;
1249 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1252 * If this flag is set we cannot sync the new file size
1253 * because we haven't finished related truncations. The
1254 * inode will be flushed in another flush group to finish
1255 * the job.
1257 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1258 ip->sync_ino_data.size != ip->ino_data.size) {
1259 redirty = 1;
1260 ip->sync_ino_data.size = ip->ino_data.size;
1261 } else {
1262 redirty = 0;
1265 for (;;) {
1266 error = hammer_ip_sync_record_cursor(cursor, record);
1267 if (hammer_debug_inode)
1268 kprintf("GENREC %p rec %08x %d\n",
1269 ip, record->flags, error);
1270 if (error != EDEADLK)
1271 break;
1272 hammer_done_cursor(cursor);
1273 error = hammer_init_cursor(trans, cursor,
1274 &ip->cache[0], ip);
1275 if (hammer_debug_inode)
1276 kprintf("GENREC reinit %d\n", error);
1277 if (error)
1278 break;
1282 * Note: The record was never on the inode's record tree
1283 * so just wave our hands importantly and destroy it.
1285 record->flags |= HAMMER_RECF_COMMITTED;
1286 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1287 record->flush_state = HAMMER_FST_IDLE;
1288 ++ip->rec_generation;
1289 hammer_rel_mem_record(record);
1292 * Finish up.
1294 if (error == 0) {
1295 if (hammer_debug_inode)
1296 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1297 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1298 HAMMER_INODE_SDIRTY |
1299 HAMMER_INODE_ATIME |
1300 HAMMER_INODE_MTIME);
1301 ip->flags &= ~HAMMER_INODE_DELONDISK;
1302 if (redirty)
1303 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1306 * Root volume count of inodes
1308 hammer_sync_lock_sh(trans);
1309 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1310 hammer_modify_volume_field(trans,
1311 trans->rootvol,
1312 vol0_stat_inodes);
1313 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1314 hammer_modify_volume_done(trans->rootvol);
1315 ip->flags |= HAMMER_INODE_ONDISK;
1316 if (hammer_debug_inode)
1317 kprintf("NOWONDISK %p\n", ip);
1319 hammer_sync_unlock(trans);
1324 * If the inode has been destroyed, clean out any left-over flags
1325 * that may have been set by the frontend.
1327 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1328 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1329 HAMMER_INODE_SDIRTY |
1330 HAMMER_INODE_ATIME |
1331 HAMMER_INODE_MTIME);
1333 return(error);
1337 * Update only the itimes fields.
1339 * ATIME can be updated without generating any UNDO. MTIME is updated
1340 * with UNDO so it is guaranteed to be synchronized properly in case of
1341 * a crash.
1343 * Neither field is included in the B-Tree leaf element's CRC, which is how
1344 * we can get away with updating ATIME the way we do.
1346 static int
1347 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1349 hammer_transaction_t trans = cursor->trans;
1350 int error;
1352 retry:
1353 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1354 HAMMER_INODE_ONDISK) {
1355 return(0);
1358 hammer_normalize_cursor(cursor);
1359 cursor->key_beg.localization = ip->obj_localization +
1360 HAMMER_LOCALIZE_INODE;
1361 cursor->key_beg.obj_id = ip->obj_id;
1362 cursor->key_beg.key = 0;
1363 cursor->key_beg.create_tid = 0;
1364 cursor->key_beg.delete_tid = 0;
1365 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1366 cursor->key_beg.obj_type = 0;
1367 cursor->asof = ip->obj_asof;
1368 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1369 cursor->flags |= HAMMER_CURSOR_ASOF;
1370 cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1371 cursor->flags |= HAMMER_CURSOR_GET_DATA;
1372 cursor->flags |= HAMMER_CURSOR_BACKEND;
1374 error = hammer_btree_lookup(cursor);
1375 if (error == 0) {
1376 hammer_cache_node(&ip->cache[0], cursor->node);
1377 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1379 * Updating MTIME requires an UNDO. Just cover
1380 * both atime and mtime.
1382 hammer_sync_lock_sh(trans);
1383 hammer_modify_buffer(trans, cursor->data_buffer,
1384 HAMMER_ITIMES_BASE(&cursor->data->inode),
1385 HAMMER_ITIMES_BYTES);
1386 cursor->data->inode.atime = ip->sync_ino_data.atime;
1387 cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1388 hammer_modify_buffer_done(cursor->data_buffer);
1389 hammer_sync_unlock(trans);
1390 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1392 * Updating atime only can be done in-place with
1393 * no UNDO.
1395 hammer_sync_lock_sh(trans);
1396 hammer_modify_buffer(trans, cursor->data_buffer,
1397 NULL, 0);
1398 cursor->data->inode.atime = ip->sync_ino_data.atime;
1399 hammer_modify_buffer_done(cursor->data_buffer);
1400 hammer_sync_unlock(trans);
1402 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1404 if (error == EDEADLK) {
1405 hammer_done_cursor(cursor);
1406 error = hammer_init_cursor(trans, cursor,
1407 &ip->cache[0], ip);
1408 if (error == 0)
1409 goto retry;
1411 return(error);
1415 * Release a reference on an inode, flush as requested.
1417 * On the last reference we queue the inode to the flusher for its final
1418 * disposition.
1420 void
1421 hammer_rel_inode(struct hammer_inode *ip, int flush)
1423 /*hammer_mount_t hmp = ip->hmp;*/
1426 * Handle disposition when dropping the last ref.
1428 for (;;) {
1429 if (hammer_oneref(&ip->lock)) {
1431 * Determine whether on-disk action is needed for
1432 * the inode's final disposition.
1434 KKASSERT(ip->vp == NULL);
1435 hammer_inode_unloadable_check(ip, 0);
1436 if (ip->flags & HAMMER_INODE_MODMASK) {
1437 hammer_flush_inode(ip, 0);
1438 } else if (hammer_oneref(&ip->lock)) {
1439 hammer_unload_inode(ip);
1440 break;
1442 } else {
1443 if (flush)
1444 hammer_flush_inode(ip, 0);
1447 * The inode still has multiple refs, try to drop
1448 * one ref.
1450 KKASSERT(hammer_isactive(&ip->lock) >= 1);
1451 if (hammer_isactive(&ip->lock) > 1) {
1452 hammer_rel(&ip->lock);
1453 break;
1460 * Unload and destroy the specified inode. Must be called with one remaining
1461 * reference. The reference is disposed of.
1463 * The inode must be completely clean.
1465 static int
1466 hammer_unload_inode(struct hammer_inode *ip)
1468 hammer_mount_t hmp = ip->hmp;
1470 KASSERT(hammer_oneref(&ip->lock),
1471 ("hammer_unload_inode: %d refs\n", hammer_isactive(&ip->lock)));
1472 KKASSERT(ip->vp == NULL);
1473 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1474 KKASSERT(ip->cursor_ip_refs == 0);
1475 KKASSERT(hammer_notlocked(&ip->lock));
1476 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1478 KKASSERT(RB_EMPTY(&ip->rec_tree));
1479 KKASSERT(TAILQ_EMPTY(&ip->target_list));
1481 if (ip->flags & HAMMER_INODE_RDIRTY) {
1482 RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1483 ip->flags &= ~HAMMER_INODE_RDIRTY;
1485 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1487 hammer_free_inode(ip);
1488 return(0);
1492 * Called during unmounting if a critical error occured. The in-memory
1493 * inode and all related structures are destroyed.
1495 * If a critical error did not occur the unmount code calls the standard
1496 * release and asserts that the inode is gone.
1499 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1501 hammer_record_t rec;
1504 * Get rid of the inodes in-memory records, regardless of their
1505 * state, and clear the mod-mask.
1507 while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1508 TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1509 rec->target_ip = NULL;
1510 if (rec->flush_state == HAMMER_FST_SETUP)
1511 rec->flush_state = HAMMER_FST_IDLE;
1513 while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1514 if (rec->flush_state == HAMMER_FST_FLUSH)
1515 --rec->flush_group->refs;
1516 else
1517 hammer_ref(&rec->lock);
1518 KKASSERT(hammer_oneref(&rec->lock));
1519 rec->flush_state = HAMMER_FST_IDLE;
1520 rec->flush_group = NULL;
1521 rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1522 rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1523 ++ip->rec_generation;
1524 hammer_rel_mem_record(rec);
1526 ip->flags &= ~HAMMER_INODE_MODMASK;
1527 ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1528 KKASSERT(ip->vp == NULL);
1531 * Remove the inode from any flush group, force it idle. FLUSH
1532 * and SETUP states have an inode ref.
1534 switch(ip->flush_state) {
1535 case HAMMER_FST_FLUSH:
1536 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1537 --ip->flush_group->refs;
1538 ip->flush_group = NULL;
1539 /* fall through */
1540 case HAMMER_FST_SETUP:
1541 hammer_rel(&ip->lock);
1542 ip->flush_state = HAMMER_FST_IDLE;
1543 /* fall through */
1544 case HAMMER_FST_IDLE:
1545 break;
1549 * There shouldn't be any associated vnode. The unload needs at
1550 * least one ref, if we do have a vp steal its ip ref.
1552 if (ip->vp) {
1553 kprintf("hammer_destroy_inode_callback: Unexpected "
1554 "vnode association ip %p vp %p\n", ip, ip->vp);
1555 ip->vp->v_data = NULL;
1556 ip->vp = NULL;
1557 } else {
1558 hammer_ref(&ip->lock);
1560 hammer_unload_inode(ip);
1561 return(0);
1565 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
1566 * the read-only flag for cached inodes.
1568 * This routine is called from a RB_SCAN().
1571 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1573 hammer_mount_t hmp = ip->hmp;
1575 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1576 ip->flags |= HAMMER_INODE_RO;
1577 else
1578 ip->flags &= ~HAMMER_INODE_RO;
1579 return(0);
1583 * A transaction has modified an inode, requiring updates as specified by
1584 * the passed flags.
1586 * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1587 * and not including size changes due to write-append
1588 * (but other size changes are included).
1589 * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1590 * write-append.
1591 * HAMMER_INODE_XDIRTY: Dirty in-memory records
1592 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
1593 * HAMMER_INODE_DELETED: Inode record/data must be deleted
1594 * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1596 void
1597 hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
1600 * ronly of 0 or 2 does not trigger assertion.
1601 * 2 is a special error state
1603 KKASSERT(ip->hmp->ronly != 1 ||
1604 (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1605 HAMMER_INODE_SDIRTY |
1606 HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1607 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1608 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1609 ip->flags |= HAMMER_INODE_RSV_INODES;
1610 ++ip->hmp->rsv_inodes;
1614 * Set the NEWINODE flag in the transaction if the inode
1615 * transitions to a dirty state. This is used to track
1616 * the load on the inode cache.
1618 if (trans &&
1619 (ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1620 (flags & HAMMER_INODE_MODMASK)) {
1621 trans->flags |= HAMMER_TRANSF_NEWINODE;
1624 ip->flags |= flags;
1628 * Request that an inode be flushed. This whole mess cannot block and may
1629 * recurse (if not synchronous). Once requested HAMMER will attempt to
1630 * actively flush the inode until the flush can be done.
1632 * The inode may already be flushing, or may be in a setup state. We can
1633 * place the inode in a flushing state if it is currently idle and flag it
1634 * to reflush if it is currently flushing.
1636 * Upon return if the inode could not be flushed due to a setup
1637 * dependancy, then it will be automatically flushed when the dependancy
1638 * is satisfied.
1640 void
1641 hammer_flush_inode(hammer_inode_t ip, int flags)
1643 hammer_mount_t hmp;
1644 hammer_flush_group_t flg;
1645 int good;
1648 * next_flush_group is the first flush group we can place the inode
1649 * in. It may be NULL. If it becomes full we append a new flush
1650 * group and make that the next_flush_group.
1652 hmp = ip->hmp;
1653 while ((flg = hmp->next_flush_group) != NULL) {
1654 KKASSERT(flg->running == 0);
1655 if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1656 break;
1657 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1658 hammer_flusher_async(ip->hmp, flg);
1660 if (flg == NULL) {
1661 flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1662 hmp->next_flush_group = flg;
1663 RB_INIT(&flg->flush_tree);
1664 TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1668 * Trivial 'nothing to flush' case. If the inode is in a SETUP
1669 * state we have to put it back into an IDLE state so we can
1670 * drop the extra ref.
1672 * If we have a parent dependancy we must still fall through
1673 * so we can run it.
1675 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1676 if (ip->flush_state == HAMMER_FST_SETUP &&
1677 TAILQ_EMPTY(&ip->target_list)) {
1678 ip->flush_state = HAMMER_FST_IDLE;
1679 hammer_rel_inode(ip, 0);
1681 if (ip->flush_state == HAMMER_FST_IDLE)
1682 return;
1686 * Our flush action will depend on the current state.
1688 switch(ip->flush_state) {
1689 case HAMMER_FST_IDLE:
1691 * We have no dependancies and can flush immediately. Some
1692 * our children may not be flushable so we have to re-test
1693 * with that additional knowledge.
1695 hammer_flush_inode_core(ip, flg, flags);
1696 break;
1697 case HAMMER_FST_SETUP:
1699 * Recurse upwards through dependancies via target_list
1700 * and start their flusher actions going if possible.
1702 * 'good' is our connectivity. -1 means we have none and
1703 * can't flush, 0 means there weren't any dependancies, and
1704 * 1 means we have good connectivity.
1706 good = hammer_setup_parent_inodes(ip, 0, flg);
1708 if (good >= 0) {
1710 * We can continue if good >= 0. Determine how
1711 * many records under our inode can be flushed (and
1712 * mark them).
1714 hammer_flush_inode_core(ip, flg, flags);
1715 } else {
1717 * Parent has no connectivity, tell it to flush
1718 * us as soon as it does.
1720 * The REFLUSH flag is also needed to trigger
1721 * dependancy wakeups.
1723 ip->flags |= HAMMER_INODE_CONN_DOWN |
1724 HAMMER_INODE_REFLUSH;
1725 if (flags & HAMMER_FLUSH_SIGNAL) {
1726 ip->flags |= HAMMER_INODE_RESIGNAL;
1727 hammer_flusher_async(ip->hmp, flg);
1730 break;
1731 case HAMMER_FST_FLUSH:
1733 * We are already flushing, flag the inode to reflush
1734 * if needed after it completes its current flush.
1736 * The REFLUSH flag is also needed to trigger
1737 * dependancy wakeups.
1739 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1740 ip->flags |= HAMMER_INODE_REFLUSH;
1741 if (flags & HAMMER_FLUSH_SIGNAL) {
1742 ip->flags |= HAMMER_INODE_RESIGNAL;
1743 hammer_flusher_async(ip->hmp, flg);
1745 break;
1750 * Scan ip->target_list, which is a list of records owned by PARENTS to our
1751 * ip which reference our ip.
1753 * XXX This is a huge mess of recursive code, but not one bit of it blocks
1754 * so for now do not ref/deref the structures. Note that if we use the
1755 * ref/rel code later, the rel CAN block.
1757 static int
1758 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1759 hammer_flush_group_t flg)
1761 hammer_record_t depend;
1762 int good;
1763 int r;
1766 * If we hit our recursion limit and we have parent dependencies
1767 * We cannot continue. Returning < 0 will cause us to be flagged
1768 * for reflush. Returning -2 cuts off additional dependency checks
1769 * because they are likely to also hit the depth limit.
1771 * We cannot return < 0 if there are no dependencies or there might
1772 * not be anything to wakeup (ip).
1774 if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1775 kprintf("HAMMER Warning: depth limit reached on "
1776 "setup recursion, inode %p %016llx\n",
1777 ip, (long long)ip->obj_id);
1778 return(-2);
1782 * Scan dependencies
1784 good = 0;
1785 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1786 r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1787 KKASSERT(depend->target_ip == ip);
1788 if (r < 0 && good == 0)
1789 good = -1;
1790 if (r > 0)
1791 good = 1;
1794 * If we failed due to the recursion depth limit then stop
1795 * now.
1797 if (r == -2)
1798 break;
1800 return(good);
1804 * This helper function takes a record representing the dependancy between
1805 * the parent inode and child inode.
1807 * record->ip = parent inode
1808 * record->target_ip = child inode
1810 * We are asked to recurse upwards and convert the record from SETUP
1811 * to FLUSH if possible.
1813 * Return 1 if the record gives us connectivity
1815 * Return 0 if the record is not relevant
1817 * Return -1 if we can't resolve the dependancy and there is no connectivity.
1819 static int
1820 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1821 hammer_flush_group_t flg)
1823 hammer_mount_t hmp;
1824 hammer_inode_t pip;
1825 int good;
1827 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1828 pip = record->ip;
1829 hmp = pip->hmp;
1832 * If the record is already flushing, is it in our flush group?
1834 * If it is in our flush group but it is a general record or a
1835 * delete-on-disk, it does not improve our connectivity (return 0),
1836 * and if the target inode is not trying to destroy itself we can't
1837 * allow the operation yet anyway (the second return -1).
1839 if (record->flush_state == HAMMER_FST_FLUSH) {
1841 * If not in our flush group ask the parent to reflush
1842 * us as soon as possible.
1844 if (record->flush_group != flg) {
1845 pip->flags |= HAMMER_INODE_REFLUSH;
1846 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1847 return(-1);
1851 * If in our flush group everything is already set up,
1852 * just return whether the record will improve our
1853 * visibility or not.
1855 if (record->type == HAMMER_MEM_RECORD_ADD)
1856 return(1);
1857 return(0);
1861 * It must be a setup record. Try to resolve the setup dependancies
1862 * by recursing upwards so we can place ip on the flush list.
1864 * Limit ourselves to 20 levels of recursion to avoid blowing out
1865 * the kernel stack. If we hit the recursion limit we can't flush
1866 * until the parent flushes. The parent will flush independantly
1867 * on its own and ultimately a deep recursion will be resolved.
1869 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1871 good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1874 * If good < 0 the parent has no connectivity and we cannot safely
1875 * flush the directory entry, which also means we can't flush our
1876 * ip. Flag us for downward recursion once the parent's
1877 * connectivity is resolved. Flag the parent for [re]flush or it
1878 * may not check for downward recursions.
1880 if (good < 0) {
1881 pip->flags |= HAMMER_INODE_REFLUSH;
1882 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1883 return(good);
1887 * We are go, place the parent inode in a flushing state so we can
1888 * place its record in a flushing state. Note that the parent
1889 * may already be flushing. The record must be in the same flush
1890 * group as the parent.
1892 if (pip->flush_state != HAMMER_FST_FLUSH)
1893 hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1894 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1895 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1897 #if 0
1898 if (record->type == HAMMER_MEM_RECORD_DEL &&
1899 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1901 * Regardless of flushing state we cannot sync this path if the
1902 * record represents a delete-on-disk but the target inode
1903 * is not ready to sync its own deletion.
1905 * XXX need to count effective nlinks to determine whether
1906 * the flush is ok, otherwise removing a hardlink will
1907 * just leave the DEL record to rot.
1909 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1910 return(-1);
1911 } else
1912 #endif
1913 if (pip->flush_group == flg) {
1915 * Because we have not calculated nlinks yet we can just
1916 * set records to the flush state if the parent is in
1917 * the same flush group as we are.
1919 record->flush_state = HAMMER_FST_FLUSH;
1920 record->flush_group = flg;
1921 ++record->flush_group->refs;
1922 hammer_ref(&record->lock);
1925 * A general directory-add contributes to our visibility.
1927 * Otherwise it is probably a directory-delete or
1928 * delete-on-disk record and does not contribute to our
1929 * visbility (but we can still flush it).
1931 if (record->type == HAMMER_MEM_RECORD_ADD)
1932 return(1);
1933 return(0);
1934 } else {
1936 * If the parent is not in our flush group we cannot
1937 * flush this record yet, there is no visibility.
1938 * We tell the parent to reflush and mark ourselves
1939 * so the parent knows it should flush us too.
1941 pip->flags |= HAMMER_INODE_REFLUSH;
1942 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1943 return(-1);
1948 * This is the core routine placing an inode into the FST_FLUSH state.
1950 static void
1951 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1953 int go_count;
1956 * Set flush state and prevent the flusher from cycling into
1957 * the next flush group. Do not place the ip on the list yet.
1958 * Inodes not in the idle state get an extra reference.
1960 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1961 if (ip->flush_state == HAMMER_FST_IDLE)
1962 hammer_ref(&ip->lock);
1963 ip->flush_state = HAMMER_FST_FLUSH;
1964 ip->flush_group = flg;
1965 ++ip->hmp->flusher.group_lock;
1966 ++ip->hmp->count_iqueued;
1967 ++hammer_count_iqueued;
1968 ++flg->total_count;
1969 hammer_redo_fifo_start_flush(ip);
1972 * If the flush group reaches the autoflush limit we want to signal
1973 * the flusher. This is particularly important for remove()s.
1975 * If the default hammer_limit_reclaim is changed via sysctl
1976 * make sure we don't hit a degenerate case where we don't start
1977 * a flush but blocked on further inode ops.
1979 if (flg->total_count == hammer_autoflush ||
1980 flg->total_count >= hammer_limit_reclaim / 4)
1981 flags |= HAMMER_FLUSH_SIGNAL;
1983 #if 0
1985 * We need to be able to vfsync/truncate from the backend.
1987 * XXX Any truncation from the backend will acquire the vnode
1988 * independently.
1990 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1991 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1992 ip->flags |= HAMMER_INODE_VHELD;
1993 vref(ip->vp);
1995 #endif
1998 * Figure out how many in-memory records we can actually flush
1999 * (not including inode meta-data, buffers, etc).
2001 KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
2002 if (flags & HAMMER_FLUSH_RECURSION) {
2004 * If this is a upwards recursion we do not want to
2005 * recurse down again!
2007 go_count = 1;
2008 #if 0
2009 } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2011 * No new records are added if we must complete a flush
2012 * from a previous cycle, but we do have to move the records
2013 * from the previous cycle to the current one.
2015 #if 0
2016 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2017 hammer_syncgrp_child_callback, NULL);
2018 #endif
2019 go_count = 1;
2020 #endif
2021 } else {
2023 * Normal flush, scan records and bring them into the flush.
2024 * Directory adds and deletes are usually skipped (they are
2025 * grouped with the related inode rather then with the
2026 * directory).
2028 * go_count can be negative, which means the scan aborted
2029 * due to the flush group being over-full and we should
2030 * flush what we have.
2032 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2033 hammer_setup_child_callback, NULL);
2037 * This is a more involved test that includes go_count. If we
2038 * can't flush, flag the inode and return. If go_count is 0 we
2039 * were are unable to flush any records in our rec_tree and
2040 * must ignore the XDIRTY flag.
2042 if (go_count == 0) {
2043 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2044 --ip->hmp->count_iqueued;
2045 --hammer_count_iqueued;
2047 --flg->total_count;
2048 ip->flush_state = HAMMER_FST_SETUP;
2049 ip->flush_group = NULL;
2050 #if 0
2051 if (ip->flags & HAMMER_INODE_VHELD) {
2052 ip->flags &= ~HAMMER_INODE_VHELD;
2053 vrele(ip->vp);
2055 #endif
2058 * REFLUSH is needed to trigger dependancy wakeups
2059 * when an inode is in SETUP.
2061 ip->flags |= HAMMER_INODE_REFLUSH;
2062 if (flags & HAMMER_FLUSH_SIGNAL) {
2063 ip->flags |= HAMMER_INODE_RESIGNAL;
2064 hammer_flusher_async(ip->hmp, flg);
2066 if (--ip->hmp->flusher.group_lock == 0)
2067 wakeup(&ip->hmp->flusher.group_lock);
2068 return;
2073 * Snapshot the state of the inode for the backend flusher.
2075 * We continue to retain save_trunc_off even when all truncations
2076 * have been resolved as an optimization to determine if we can
2077 * skip the B-Tree lookup for overwrite deletions.
2079 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2080 * and stays in ip->flags. Once set, it stays set until the
2081 * inode is destroyed.
2083 if (ip->flags & HAMMER_INODE_TRUNCATED) {
2084 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2085 ip->sync_trunc_off = ip->trunc_off;
2086 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2087 ip->flags &= ~HAMMER_INODE_TRUNCATED;
2088 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2091 * The save_trunc_off used to cache whether the B-Tree
2092 * holds any records past that point is not used until
2093 * after the truncation has succeeded, so we can safely
2094 * set it now.
2096 if (ip->save_trunc_off > ip->sync_trunc_off)
2097 ip->save_trunc_off = ip->sync_trunc_off;
2099 ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2100 ~HAMMER_INODE_TRUNCATED);
2101 ip->sync_ino_leaf = ip->ino_leaf;
2102 ip->sync_ino_data = ip->ino_data;
2103 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2104 #ifdef DEBUG_TRUNCATE
2105 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2106 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2107 #endif
2110 * The flusher list inherits our inode and reference.
2112 KKASSERT(flg->running == 0);
2113 RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2114 if (--ip->hmp->flusher.group_lock == 0)
2115 wakeup(&ip->hmp->flusher.group_lock);
2117 if (flags & HAMMER_FLUSH_SIGNAL) {
2118 hammer_flusher_async(ip->hmp, flg);
2123 * Callback for scan of ip->rec_tree. Try to include each record in our
2124 * flush. ip->flush_group has been set but the inode has not yet been
2125 * moved into a flushing state.
2127 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2128 * both inodes.
2130 * We return 1 for any record placed or found in FST_FLUSH, which prevents
2131 * the caller from shortcutting the flush.
2133 static int
2134 hammer_setup_child_callback(hammer_record_t rec, void *data)
2136 hammer_flush_group_t flg;
2137 hammer_inode_t target_ip;
2138 hammer_inode_t ip;
2139 int r;
2142 * Records deleted or committed by the backend are ignored.
2143 * Note that the flush detects deleted frontend records at
2144 * multiple points to deal with races. This is just the first
2145 * line of defense. The only time HAMMER_RECF_DELETED_FE cannot
2146 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2147 * messes up link-count calculations.
2149 * NOTE: Don't get confused between record deletion and, say,
2150 * directory entry deletion. The deletion of a directory entry
2151 * which is on-media has nothing to do with the record deletion
2152 * flags.
2154 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2155 HAMMER_RECF_COMMITTED)) {
2156 if (rec->flush_state == HAMMER_FST_FLUSH) {
2157 KKASSERT(rec->flush_group == rec->ip->flush_group);
2158 r = 1;
2159 } else {
2160 r = 0;
2162 return(r);
2166 * If the record is in an idle state it has no dependancies and
2167 * can be flushed.
2169 ip = rec->ip;
2170 flg = ip->flush_group;
2171 r = 0;
2173 switch(rec->flush_state) {
2174 case HAMMER_FST_IDLE:
2176 * The record has no setup dependancy, we can flush it.
2178 KKASSERT(rec->target_ip == NULL);
2179 rec->flush_state = HAMMER_FST_FLUSH;
2180 rec->flush_group = flg;
2181 ++flg->refs;
2182 hammer_ref(&rec->lock);
2183 r = 1;
2184 break;
2185 case HAMMER_FST_SETUP:
2187 * The record has a setup dependancy. These are typically
2188 * directory entry adds and deletes. Such entries will be
2189 * flushed when their inodes are flushed so we do not
2190 * usually have to add them to the flush here. However,
2191 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2192 * it is asking us to flush this record (and it).
2194 target_ip = rec->target_ip;
2195 KKASSERT(target_ip != NULL);
2196 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2199 * If the target IP is already flushing in our group
2200 * we could associate the record, but target_ip has
2201 * already synced ino_data to sync_ino_data and we
2202 * would also have to adjust nlinks. Plus there are
2203 * ordering issues for adds and deletes.
2205 * Reflush downward if this is an ADD, and upward if
2206 * this is a DEL.
2208 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2209 if (rec->flush_state == HAMMER_MEM_RECORD_ADD)
2210 ip->flags |= HAMMER_INODE_REFLUSH;
2211 else
2212 target_ip->flags |= HAMMER_INODE_REFLUSH;
2213 break;
2217 * Target IP is not yet flushing. This can get complex
2218 * because we have to be careful about the recursion.
2220 * Directories create an issue for us in that if a flush
2221 * of a directory is requested the expectation is to flush
2222 * any pending directory entries, but this will cause the
2223 * related inodes to recursively flush as well. We can't
2224 * really defer the operation so just get as many as we
2225 * can and
2227 #if 0
2228 if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2229 (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2231 * We aren't reclaiming and the target ip was not
2232 * previously prevented from flushing due to this
2233 * record dependancy. Do not flush this record.
2235 /*r = 0;*/
2236 } else
2237 #endif
2238 if (flg->total_count + flg->refs >
2239 ip->hmp->undo_rec_limit) {
2241 * Our flush group is over-full and we risk blowing
2242 * out the UNDO FIFO. Stop the scan, flush what we
2243 * have, then reflush the directory.
2245 * The directory may be forced through multiple
2246 * flush groups before it can be completely
2247 * flushed.
2249 ip->flags |= HAMMER_INODE_RESIGNAL |
2250 HAMMER_INODE_REFLUSH;
2251 r = -1;
2252 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2254 * If the target IP is not flushing we can force
2255 * it to flush, even if it is unable to write out
2256 * any of its own records we have at least one in
2257 * hand that we CAN deal with.
2259 rec->flush_state = HAMMER_FST_FLUSH;
2260 rec->flush_group = flg;
2261 ++flg->refs;
2262 hammer_ref(&rec->lock);
2263 hammer_flush_inode_core(target_ip, flg,
2264 HAMMER_FLUSH_RECURSION);
2265 r = 1;
2266 } else {
2268 * General or delete-on-disk record.
2270 * XXX this needs help. If a delete-on-disk we could
2271 * disconnect the target. If the target has its own
2272 * dependancies they really need to be flushed.
2274 * XXX
2276 rec->flush_state = HAMMER_FST_FLUSH;
2277 rec->flush_group = flg;
2278 ++flg->refs;
2279 hammer_ref(&rec->lock);
2280 hammer_flush_inode_core(target_ip, flg,
2281 HAMMER_FLUSH_RECURSION);
2282 r = 1;
2284 break;
2285 case HAMMER_FST_FLUSH:
2287 * The flush_group should already match.
2289 KKASSERT(rec->flush_group == flg);
2290 r = 1;
2291 break;
2293 return(r);
2296 #if 0
2298 * This version just moves records already in a flush state to the new
2299 * flush group and that is it.
2301 static int
2302 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2304 hammer_inode_t ip = rec->ip;
2306 switch(rec->flush_state) {
2307 case HAMMER_FST_FLUSH:
2308 KKASSERT(rec->flush_group == ip->flush_group);
2309 break;
2310 default:
2311 break;
2313 return(0);
2315 #endif
2318 * Wait for a previously queued flush to complete.
2320 * If a critical error occured we don't try to wait.
2322 void
2323 hammer_wait_inode(hammer_inode_t ip)
2325 hammer_flush_group_t flg;
2327 flg = NULL;
2328 if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2329 while (ip->flush_state != HAMMER_FST_IDLE &&
2330 (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2331 if (ip->flush_state == HAMMER_FST_SETUP)
2332 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2333 if (ip->flush_state != HAMMER_FST_IDLE) {
2334 ip->flags |= HAMMER_INODE_FLUSHW;
2335 tsleep(&ip->flags, 0, "hmrwin", 0);
2342 * Called by the backend code when a flush has been completed.
2343 * The inode has already been removed from the flush list.
2345 * A pipelined flush can occur, in which case we must re-enter the
2346 * inode on the list and re-copy its fields.
2348 void
2349 hammer_flush_inode_done(hammer_inode_t ip, int error)
2351 hammer_mount_t hmp;
2352 int dorel;
2354 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2356 hmp = ip->hmp;
2359 * Auto-reflush if the backend could not completely flush
2360 * the inode. This fixes a case where a deferred buffer flush
2361 * could cause fsync to return early.
2363 if (ip->sync_flags & HAMMER_INODE_MODMASK)
2364 ip->flags |= HAMMER_INODE_REFLUSH;
2367 * Merge left-over flags back into the frontend and fix the state.
2368 * Incomplete truncations are retained by the backend.
2370 ip->error = error;
2371 ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2372 ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2375 * The backend may have adjusted nlinks, so if the adjusted nlinks
2376 * does not match the fronttend set the frontend's DDIRTY flag again.
2378 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2379 ip->flags |= HAMMER_INODE_DDIRTY;
2382 * Fix up the dirty buffer status.
2384 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2385 ip->flags |= HAMMER_INODE_BUFS;
2387 hammer_redo_fifo_end_flush(ip);
2390 * Re-set the XDIRTY flag if some of the inode's in-memory records
2391 * could not be flushed.
2393 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2394 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2395 (!RB_EMPTY(&ip->rec_tree) &&
2396 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2399 * Do not lose track of inodes which no longer have vnode
2400 * assocations, otherwise they may never get flushed again.
2402 * The reflush flag can be set superfluously, causing extra pain
2403 * for no reason. If the inode is no longer modified it no longer
2404 * needs to be flushed.
2406 if (ip->flags & HAMMER_INODE_MODMASK) {
2407 if (ip->vp == NULL)
2408 ip->flags |= HAMMER_INODE_REFLUSH;
2409 } else {
2410 ip->flags &= ~HAMMER_INODE_REFLUSH;
2414 * Adjust the flush state.
2416 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2418 * We were unable to flush out all our records, leave the
2419 * inode in a flush state and in the current flush group.
2420 * The flush group will be re-run.
2422 * This occurs if the UNDO block gets too full or there is
2423 * too much dirty meta-data and allows the flusher to
2424 * finalize the UNDO block and then re-flush.
2426 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2427 dorel = 0;
2428 } else {
2430 * Remove from the flush_group
2432 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2433 ip->flush_group = NULL;
2435 #if 0
2437 * Clean up the vnode ref and tracking counts.
2439 if (ip->flags & HAMMER_INODE_VHELD) {
2440 ip->flags &= ~HAMMER_INODE_VHELD;
2441 vrele(ip->vp);
2443 #endif
2444 --hmp->count_iqueued;
2445 --hammer_count_iqueued;
2448 * And adjust the state.
2450 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2451 ip->flush_state = HAMMER_FST_IDLE;
2452 dorel = 1;
2453 } else {
2454 ip->flush_state = HAMMER_FST_SETUP;
2455 dorel = 0;
2459 * If the frontend is waiting for a flush to complete,
2460 * wake it up.
2462 if (ip->flags & HAMMER_INODE_FLUSHW) {
2463 ip->flags &= ~HAMMER_INODE_FLUSHW;
2464 wakeup(&ip->flags);
2468 * If the frontend made more changes and requested another
2469 * flush, then try to get it running.
2471 * Reflushes are aborted when the inode is errored out.
2473 if (ip->flags & HAMMER_INODE_REFLUSH) {
2474 ip->flags &= ~HAMMER_INODE_REFLUSH;
2475 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2476 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2477 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2478 } else {
2479 hammer_flush_inode(ip, 0);
2485 * If we have no parent dependancies we can clear CONN_DOWN
2487 if (TAILQ_EMPTY(&ip->target_list))
2488 ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2491 * If the inode is now clean drop the space reservation.
2493 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2494 (ip->flags & HAMMER_INODE_RSV_INODES)) {
2495 ip->flags &= ~HAMMER_INODE_RSV_INODES;
2496 --hmp->rsv_inodes;
2499 if (dorel)
2500 hammer_rel_inode(ip, 0);
2504 * Called from hammer_sync_inode() to synchronize in-memory records
2505 * to the media.
2507 static int
2508 hammer_sync_record_callback(hammer_record_t record, void *data)
2510 hammer_cursor_t cursor = data;
2511 hammer_transaction_t trans = cursor->trans;
2512 hammer_mount_t hmp = trans->hmp;
2513 int error;
2516 * Skip records that do not belong to the current flush.
2518 ++hammer_stats_record_iterations;
2519 if (record->flush_state != HAMMER_FST_FLUSH)
2520 return(0);
2522 #if 1
2523 if (record->flush_group != record->ip->flush_group) {
2524 kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2525 if (hammer_debug_critical)
2526 Debugger("blah2");
2527 return(0);
2529 #endif
2530 KKASSERT(record->flush_group == record->ip->flush_group);
2533 * Interlock the record using the BE flag. Once BE is set the
2534 * frontend cannot change the state of FE.
2536 * NOTE: If FE is set prior to us setting BE we still sync the
2537 * record out, but the flush completion code converts it to
2538 * a delete-on-disk record instead of destroying it.
2540 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2541 record->flags |= HAMMER_RECF_INTERLOCK_BE;
2544 * The backend has already disposed of the record.
2546 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2547 error = 0;
2548 goto done;
2552 * If the whole inode is being deleting all on-disk records will
2553 * be deleted very soon, we can't sync any new records to disk
2554 * because they will be deleted in the same transaction they were
2555 * created in (delete_tid == create_tid), which will assert.
2557 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2558 * that we currently panic on.
2560 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2561 switch(record->type) {
2562 case HAMMER_MEM_RECORD_DATA:
2564 * We don't have to do anything, if the record was
2565 * committed the space will have been accounted for
2566 * in the blockmap.
2568 /* fall through */
2569 case HAMMER_MEM_RECORD_GENERAL:
2571 * Set deleted-by-backend flag. Do not set the
2572 * backend committed flag, because we are throwing
2573 * the record away.
2575 record->flags |= HAMMER_RECF_DELETED_BE;
2576 ++record->ip->rec_generation;
2577 error = 0;
2578 goto done;
2579 case HAMMER_MEM_RECORD_ADD:
2580 panic("hammer_sync_record_callback: illegal add "
2581 "during inode deletion record %p", record);
2582 break; /* NOT REACHED */
2583 case HAMMER_MEM_RECORD_INODE:
2584 panic("hammer_sync_record_callback: attempt to "
2585 "sync inode record %p?", record);
2586 break; /* NOT REACHED */
2587 case HAMMER_MEM_RECORD_DEL:
2589 * Follow through and issue the on-disk deletion
2591 break;
2596 * If DELETED_FE is set special handling is needed for directory
2597 * entries. Dependant pieces related to the directory entry may
2598 * have already been synced to disk. If this occurs we have to
2599 * sync the directory entry and then change the in-memory record
2600 * from an ADD to a DELETE to cover the fact that it's been
2601 * deleted by the frontend.
2603 * A directory delete covering record (MEM_RECORD_DEL) can never
2604 * be deleted by the frontend.
2606 * Any other record type (aka DATA) can be deleted by the frontend.
2607 * XXX At the moment the flusher must skip it because there may
2608 * be another data record in the flush group for the same block,
2609 * meaning that some frontend data changes can leak into the backend's
2610 * synchronization point.
2612 if (record->flags & HAMMER_RECF_DELETED_FE) {
2613 if (record->type == HAMMER_MEM_RECORD_ADD) {
2615 * Convert a front-end deleted directory-add to
2616 * a directory-delete entry later.
2618 record->flags |= HAMMER_RECF_CONVERT_DELETE;
2619 } else {
2621 * Dispose of the record (race case). Mark as
2622 * deleted by backend (and not committed).
2624 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2625 record->flags |= HAMMER_RECF_DELETED_BE;
2626 ++record->ip->rec_generation;
2627 error = 0;
2628 goto done;
2633 * Assign the create_tid for new records. Deletions already
2634 * have the record's entire key properly set up.
2636 if (record->type != HAMMER_MEM_RECORD_DEL) {
2637 record->leaf.base.create_tid = trans->tid;
2638 record->leaf.create_ts = trans->time32;
2642 * This actually moves the record to the on-media B-Tree. We
2643 * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2644 * indicating that the related REDO_WRITE(s) have been committed.
2646 * During recovery any REDO_TERM's within the nominal recovery span
2647 * are ignored since the related meta-data is being undone, causing
2648 * any matching REDO_WRITEs to execute. The REDO_TERMs outside
2649 * the nominal recovery span will match against REDO_WRITEs and
2650 * prevent them from being executed (because the meta-data has
2651 * already been synchronized).
2653 if (record->flags & HAMMER_RECF_REDO) {
2654 KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2655 hammer_generate_redo(trans, record->ip,
2656 record->leaf.base.key -
2657 record->leaf.data_len,
2658 HAMMER_REDO_TERM_WRITE,
2659 NULL,
2660 record->leaf.data_len);
2662 for (;;) {
2663 error = hammer_ip_sync_record_cursor(cursor, record);
2664 if (error != EDEADLK)
2665 break;
2666 hammer_done_cursor(cursor);
2667 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2668 record->ip);
2669 if (error)
2670 break;
2672 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2674 if (error)
2675 error = -error;
2676 done:
2677 hammer_flush_record_done(record, error);
2680 * Do partial finalization if we have built up too many dirty
2681 * buffers. Otherwise a buffer cache deadlock can occur when
2682 * doing things like creating tens of thousands of tiny files.
2684 * We must release our cursor lock to avoid a 3-way deadlock
2685 * due to the exclusive sync lock the finalizer must get.
2687 * WARNING: See warnings in hammer_unlock_cursor() function.
2689 if (hammer_flusher_meta_limit(hmp)) {
2690 hammer_unlock_cursor(cursor);
2691 hammer_flusher_finalize(trans, 0);
2692 hammer_lock_cursor(cursor);
2695 return(error);
2699 * Backend function called by the flusher to sync an inode to media.
2702 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2704 struct hammer_cursor cursor;
2705 hammer_node_t tmp_node;
2706 hammer_record_t depend;
2707 hammer_record_t next;
2708 int error, tmp_error;
2709 u_int64_t nlinks;
2711 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2712 return(0);
2714 error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2715 if (error)
2716 goto done;
2719 * Any directory records referencing this inode which are not in
2720 * our current flush group must adjust our nlink count for the
2721 * purposes of synchronizating to disk.
2723 * Records which are in our flush group can be unlinked from our
2724 * inode now, potentially allowing the inode to be physically
2725 * deleted.
2727 * This cannot block.
2729 nlinks = ip->ino_data.nlinks;
2730 next = TAILQ_FIRST(&ip->target_list);
2731 while ((depend = next) != NULL) {
2732 next = TAILQ_NEXT(depend, target_entry);
2733 if (depend->flush_state == HAMMER_FST_FLUSH &&
2734 depend->flush_group == ip->flush_group) {
2736 * If this is an ADD that was deleted by the frontend
2737 * the frontend nlinks count will have already been
2738 * decremented, but the backend is going to sync its
2739 * directory entry and must account for it. The
2740 * record will be converted to a delete-on-disk when
2741 * it gets synced.
2743 * If the ADD was not deleted by the frontend we
2744 * can remove the dependancy from our target_list.
2746 if (depend->flags & HAMMER_RECF_DELETED_FE) {
2747 ++nlinks;
2748 } else {
2749 TAILQ_REMOVE(&ip->target_list, depend,
2750 target_entry);
2751 depend->target_ip = NULL;
2753 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2755 * Not part of our flush group and not deleted by
2756 * the front-end, adjust the link count synced to
2757 * the media (undo what the frontend did when it
2758 * queued the record).
2760 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2761 switch(depend->type) {
2762 case HAMMER_MEM_RECORD_ADD:
2763 --nlinks;
2764 break;
2765 case HAMMER_MEM_RECORD_DEL:
2766 ++nlinks;
2767 break;
2768 default:
2769 break;
2775 * Set dirty if we had to modify the link count.
2777 if (ip->sync_ino_data.nlinks != nlinks) {
2778 KKASSERT((int64_t)nlinks >= 0);
2779 ip->sync_ino_data.nlinks = nlinks;
2780 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2784 * If there is a trunction queued destroy any data past the (aligned)
2785 * truncation point. Userland will have dealt with the buffer
2786 * containing the truncation point for us.
2788 * We don't flush pending frontend data buffers until after we've
2789 * dealt with the truncation.
2791 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2793 * Interlock trunc_off. The VOP front-end may continue to
2794 * make adjustments to it while we are blocked.
2796 off_t trunc_off;
2797 off_t aligned_trunc_off;
2798 int blkmask;
2800 trunc_off = ip->sync_trunc_off;
2801 blkmask = hammer_blocksize(trunc_off) - 1;
2802 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2805 * Delete any whole blocks on-media. The front-end has
2806 * already cleaned out any partial block and made it
2807 * pending. The front-end may have updated trunc_off
2808 * while we were blocked so we only use sync_trunc_off.
2810 * This operation can blow out the buffer cache, EWOULDBLOCK
2811 * means we were unable to complete the deletion. The
2812 * deletion will update sync_trunc_off in that case.
2814 error = hammer_ip_delete_range(&cursor, ip,
2815 aligned_trunc_off,
2816 0x7FFFFFFFFFFFFFFFLL, 2);
2817 if (error == EWOULDBLOCK) {
2818 ip->flags |= HAMMER_INODE_WOULDBLOCK;
2819 error = 0;
2820 goto defer_buffer_flush;
2823 if (error)
2824 goto done;
2827 * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
2829 * XXX we do this even if we did not previously generate
2830 * a REDO_TRUNC record. This operation may enclosed the
2831 * range for multiple prior truncation entries in the REDO
2832 * log.
2834 if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
2835 (ip->flags & HAMMER_INODE_RDIRTY)) {
2836 hammer_generate_redo(trans, ip, aligned_trunc_off,
2837 HAMMER_REDO_TERM_TRUNC,
2838 NULL, 0);
2842 * Clear the truncation flag on the backend after we have
2843 * completed the deletions. Backend data is now good again
2844 * (including new records we are about to sync, below).
2846 * Leave sync_trunc_off intact. As we write additional
2847 * records the backend will update sync_trunc_off. This
2848 * tells the backend whether it can skip the overwrite
2849 * test. This should work properly even when the backend
2850 * writes full blocks where the truncation point straddles
2851 * the block because the comparison is against the base
2852 * offset of the record.
2854 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2855 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2856 } else {
2857 error = 0;
2861 * Now sync related records. These will typically be directory
2862 * entries, records tracking direct-writes, or delete-on-disk records.
2864 if (error == 0) {
2865 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2866 hammer_sync_record_callback, &cursor);
2867 if (tmp_error < 0)
2868 tmp_error = -error;
2869 if (tmp_error)
2870 error = tmp_error;
2872 hammer_cache_node(&ip->cache[1], cursor.node);
2875 * Re-seek for inode update, assuming our cache hasn't been ripped
2876 * out from under us.
2878 if (error == 0) {
2879 tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
2880 if (tmp_node) {
2881 hammer_cursor_downgrade(&cursor);
2882 hammer_lock_sh(&tmp_node->lock);
2883 if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2884 hammer_cursor_seek(&cursor, tmp_node, 0);
2885 hammer_unlock(&tmp_node->lock);
2886 hammer_rel_node(tmp_node);
2888 error = 0;
2892 * If we are deleting the inode the frontend had better not have
2893 * any active references on elements making up the inode.
2895 * The call to hammer_ip_delete_clean() cleans up auxillary records
2896 * but not DB or DATA records. Those must have already been deleted
2897 * by the normal truncation mechanic.
2899 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2900 RB_EMPTY(&ip->rec_tree) &&
2901 (ip->sync_flags & HAMMER_INODE_DELETING) &&
2902 (ip->flags & HAMMER_INODE_DELETED) == 0) {
2903 int count1 = 0;
2905 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2906 if (error == 0) {
2907 ip->flags |= HAMMER_INODE_DELETED;
2908 ip->sync_flags &= ~HAMMER_INODE_DELETING;
2909 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2910 KKASSERT(RB_EMPTY(&ip->rec_tree));
2913 * Set delete_tid in both the frontend and backend
2914 * copy of the inode record. The DELETED flag handles
2915 * this, do not set DDIRTY.
2917 ip->ino_leaf.base.delete_tid = trans->tid;
2918 ip->sync_ino_leaf.base.delete_tid = trans->tid;
2919 ip->ino_leaf.delete_ts = trans->time32;
2920 ip->sync_ino_leaf.delete_ts = trans->time32;
2924 * Adjust the inode count in the volume header
2926 hammer_sync_lock_sh(trans);
2927 if (ip->flags & HAMMER_INODE_ONDISK) {
2928 hammer_modify_volume_field(trans,
2929 trans->rootvol,
2930 vol0_stat_inodes);
2931 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2932 hammer_modify_volume_done(trans->rootvol);
2934 hammer_sync_unlock(trans);
2938 if (error)
2939 goto done;
2940 ip->sync_flags &= ~HAMMER_INODE_BUFS;
2942 defer_buffer_flush:
2944 * Now update the inode's on-disk inode-data and/or on-disk record.
2945 * DELETED and ONDISK are managed only in ip->flags.
2947 * In the case of a defered buffer flush we still update the on-disk
2948 * inode to satisfy visibility requirements if there happen to be
2949 * directory dependancies.
2951 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2952 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2954 * If deleted and on-disk, don't set any additional flags.
2955 * the delete flag takes care of things.
2957 * Clear flags which may have been set by the frontend.
2959 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2960 HAMMER_INODE_SDIRTY |
2961 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2962 HAMMER_INODE_DELETING);
2963 break;
2964 case HAMMER_INODE_DELETED:
2966 * Take care of the case where a deleted inode was never
2967 * flushed to the disk in the first place.
2969 * Clear flags which may have been set by the frontend.
2971 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2972 HAMMER_INODE_SDIRTY |
2973 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2974 HAMMER_INODE_DELETING);
2975 while (RB_ROOT(&ip->rec_tree)) {
2976 hammer_record_t record = RB_ROOT(&ip->rec_tree);
2977 hammer_ref(&record->lock);
2978 KKASSERT(hammer_oneref(&record->lock));
2979 record->flags |= HAMMER_RECF_DELETED_BE;
2980 ++record->ip->rec_generation;
2981 hammer_rel_mem_record(record);
2983 break;
2984 case HAMMER_INODE_ONDISK:
2986 * If already on-disk, do not set any additional flags.
2988 break;
2989 default:
2991 * If not on-disk and not deleted, set DDIRTY to force
2992 * an initial record to be written.
2994 * Also set the create_tid in both the frontend and backend
2995 * copy of the inode record.
2997 ip->ino_leaf.base.create_tid = trans->tid;
2998 ip->ino_leaf.create_ts = trans->time32;
2999 ip->sync_ino_leaf.base.create_tid = trans->tid;
3000 ip->sync_ino_leaf.create_ts = trans->time32;
3001 ip->sync_flags |= HAMMER_INODE_DDIRTY;
3002 break;
3006 * If DDIRTY or SDIRTY is set, write out a new record.
3007 * If the inode is already on-disk the old record is marked as
3008 * deleted.
3010 * If DELETED is set hammer_update_inode() will delete the existing
3011 * record without writing out a new one.
3013 * If *ONLY* the ITIMES flag is set we can update the record in-place.
3015 if (ip->flags & HAMMER_INODE_DELETED) {
3016 error = hammer_update_inode(&cursor, ip);
3017 } else
3018 if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3019 (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3020 error = hammer_update_itimes(&cursor, ip);
3021 } else
3022 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3023 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3024 error = hammer_update_inode(&cursor, ip);
3026 done:
3027 if (error) {
3028 hammer_critical_error(ip->hmp, ip, error,
3029 "while syncing inode");
3031 hammer_done_cursor(&cursor);
3032 return(error);
3036 * This routine is called when the OS is no longer actively referencing
3037 * the inode (but might still be keeping it cached), or when releasing
3038 * the last reference to an inode.
3040 * At this point if the inode's nlinks count is zero we want to destroy
3041 * it, which may mean destroying it on-media too.
3043 void
3044 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3046 struct vnode *vp;
3049 * Set the DELETING flag when the link count drops to 0 and the
3050 * OS no longer has any opens on the inode.
3052 * The backend will clear DELETING (a mod flag) and set DELETED
3053 * (a state flag) when it is actually able to perform the
3054 * operation.
3056 * Don't reflag the deletion if the flusher is currently syncing
3057 * one that was already flagged. A previously set DELETING flag
3058 * may bounce around flags and sync_flags until the operation is
3059 * completely done.
3061 if (ip->ino_data.nlinks == 0 &&
3062 ((ip->flags | ip->sync_flags) & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3063 ip->flags |= HAMMER_INODE_DELETING;
3064 ip->flags |= HAMMER_INODE_TRUNCATED;
3065 ip->trunc_off = 0;
3066 vp = NULL;
3067 if (getvp) {
3068 if (hammer_get_vnode(ip, &vp) != 0)
3069 return;
3073 * Final cleanup
3075 if (ip->vp)
3076 nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0);
3077 if (getvp)
3078 vput(vp);
3083 * After potentially resolving a dependancy the inode is tested
3084 * to determine whether it needs to be reflushed.
3086 void
3087 hammer_test_inode(hammer_inode_t ip)
3089 if (ip->flags & HAMMER_INODE_REFLUSH) {
3090 ip->flags &= ~HAMMER_INODE_REFLUSH;
3091 hammer_ref(&ip->lock);
3092 if (ip->flags & HAMMER_INODE_RESIGNAL) {
3093 ip->flags &= ~HAMMER_INODE_RESIGNAL;
3094 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3095 } else {
3096 hammer_flush_inode(ip, 0);
3098 hammer_rel_inode(ip, 0);
3103 * Clear the RECLAIM flag on an inode. This occurs when the inode is
3104 * reassociated with a vp or just before it gets freed.
3106 * Pipeline wakeups to threads blocked due to an excessive number of
3107 * detached inodes. This typically occurs when atime updates accumulate
3108 * while scanning a directory tree.
3110 static void
3111 hammer_inode_wakereclaims(hammer_inode_t ip)
3113 struct hammer_reclaim *reclaim;
3114 hammer_mount_t hmp = ip->hmp;
3116 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3117 return;
3119 --hammer_count_reclaiming;
3120 --hmp->inode_reclaims;
3121 ip->flags &= ~HAMMER_INODE_RECLAIM;
3123 while ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3124 if (reclaim->count > 0 && --reclaim->count == 0) {
3125 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3126 wakeup(reclaim);
3128 if (hmp->inode_reclaims > hammer_limit_reclaim / 2)
3129 break;
3134 * Setup our reclaim pipeline. We only let so many detached (and dirty)
3135 * inodes build up before we start blocking. This routine is called
3136 * if a new inode is created or an inode is loaded from media.
3138 * When we block we don't care *which* inode has finished reclaiming,
3139 * as lone as one does.
3141 void
3142 hammer_inode_waitreclaims(hammer_transaction_t trans)
3144 hammer_mount_t hmp = trans->hmp;
3145 struct hammer_reclaim reclaim;
3148 * Track inode load
3150 if (curthread->td_proc) {
3151 struct hammer_inostats *stats;
3152 int lower_limit;
3154 stats = hammer_inode_inostats(hmp, curthread->td_proc->p_pid);
3155 ++stats->count;
3157 if (stats->count > hammer_limit_reclaim / 2)
3158 stats->count = hammer_limit_reclaim / 2;
3159 lower_limit = hammer_limit_reclaim - stats->count;
3160 if (hammer_debug_general & 0x10000)
3161 kprintf("pid %5d limit %d\n", (int)curthread->td_proc->p_pid, lower_limit);
3163 if (hmp->inode_reclaims < lower_limit)
3164 return;
3165 } else {
3167 * Default mode
3169 if (hmp->inode_reclaims < hammer_limit_reclaim)
3170 return;
3172 reclaim.count = 1;
3173 TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3174 tsleep(&reclaim, 0, "hmrrcm", hz);
3175 if (reclaim.count > 0)
3176 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3179 static
3180 struct hammer_inostats *
3181 hammer_inode_inostats(hammer_mount_t hmp, pid_t pid)
3183 struct hammer_inostats *stats;
3184 int delta;
3185 int chain;
3187 for (chain = 0; chain < 4; ++chain) {
3188 stats = &hmp->inostats[(pid + chain) & HAMMER_INOSTATS_HMASK];
3189 if (stats->pid == pid)
3190 break;
3192 if (chain == 4) {
3193 stats = &hmp->inostats[(pid + ticks) & HAMMER_INOSTATS_HMASK];
3194 stats->pid = pid;
3197 if (stats->count && stats->ltick != ticks) {
3198 delta = ticks - stats->ltick;
3199 stats->ltick = ticks;
3200 if (delta <= 0 || delta > hz * 60)
3201 stats->count = 0;
3202 else
3203 stats->count = stats->count * hz / (hz + delta);
3205 if (hammer_debug_general & 0x10000)
3206 kprintf("pid %5d stats %d\n", (int)pid, stats->count);
3207 return (stats);
3210 #if 0
3213 * XXX not used, doesn't work very well due to the large batching nature
3214 * of flushes.
3216 * A larger then normal backlog of inodes is sitting in the flusher,
3217 * enforce a general slowdown to let it catch up. This routine is only
3218 * called on completion of a non-flusher-related transaction which
3219 * performed B-Tree node I/O.
3221 * It is possible for the flusher to stall in a continuous load.
3222 * blogbench -i1000 -o seems to do a good job generating this sort of load.
3223 * If the flusher is unable to catch up the inode count can bloat until
3224 * we run out of kvm.
3226 * This is a bit of a hack.
3228 void
3229 hammer_inode_waithard(hammer_mount_t hmp)
3232 * Hysteresis.
3234 if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3235 if (hmp->inode_reclaims < hammer_limit_reclaim / 2 &&
3236 hmp->count_iqueued < hmp->count_inodes / 20) {
3237 hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3238 return;
3240 } else {
3241 if (hmp->inode_reclaims < hammer_limit_reclaim ||
3242 hmp->count_iqueued < hmp->count_inodes / 10) {
3243 return;
3245 hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3249 * Block for one flush cycle.
3251 hammer_flusher_wait_next(hmp);
3254 #endif