MFC numerous features from HEAD.
[dragonfly.git] / sys / kern / vfs_bio.c
blob62ba732515da36f022401c1999e4190338818903
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.112.2.2 2008/09/25 01:44:52 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Buffer queues.
70 enum bufq_type {
71 BQUEUE_NONE, /* not on any queue */
72 BQUEUE_LOCKED, /* locked buffers */
73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
74 BQUEUE_DIRTY, /* B_DELWRI buffers */
75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY, /* empty buffer headers */
79 BUFFER_QUEUES /* number of buffer queues */
82 typedef enum bufq_type bufq_type_t;
84 #define BD_WAKE_SIZE 128
85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
89 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
91 struct buf *buf; /* buffer header pool */
93 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
94 int pageno, vm_page_t m);
95 static void vfs_clean_pages(struct buf *bp);
96 static void vfs_setdirty(struct buf *bp);
97 static void vfs_vmio_release(struct buf *bp);
98 static int flushbufqueues(bufq_type_t q);
99 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
101 static void bd_signal(int totalspace);
102 static void buf_daemon(void);
103 static void buf_daemon_hw(void);
106 * bogus page -- for I/O to/from partially complete buffers
107 * this is a temporary solution to the problem, but it is not
108 * really that bad. it would be better to split the buffer
109 * for input in the case of buffers partially already in memory,
110 * but the code is intricate enough already.
112 vm_page_t bogus_page;
115 * These are all static, but make the ones we export globals so we do
116 * not need to use compiler magic.
118 int bufspace, maxbufspace,
119 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
120 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
121 static int lorunningspace, hirunningspace, runningbufreq;
122 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
123 int dirtybufcount, dirtybufcounthw;
124 int runningbufspace, runningbufcount;
125 static int getnewbufcalls;
126 static int getnewbufrestarts;
127 static int recoverbufcalls;
128 static int needsbuffer; /* locked by needsbuffer_spin */
129 static int bd_request; /* locked by needsbuffer_spin */
130 static int bd_request_hw; /* locked by needsbuffer_spin */
131 static u_int bd_wake_ary[BD_WAKE_SIZE];
132 static u_int bd_wake_index;
133 static struct spinlock needsbuffer_spin;
135 static struct thread *bufdaemon_td;
136 static struct thread *bufdaemonhw_td;
140 * Sysctls for operational control of the buffer cache.
142 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
143 "Number of dirty buffers to flush before bufdaemon becomes inactive");
144 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
145 "High watermark used to trigger explicit flushing of dirty buffers");
146 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147 "Minimum amount of buffer space required for active I/O");
148 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
149 "Maximum amount of buffer space to usable for active I/O");
151 * Sysctls determining current state of the buffer cache.
153 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
154 "Total number of buffers in buffer cache");
155 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
156 "Pending bytes of dirty buffers (all)");
157 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
158 "Pending bytes of dirty buffers (heavy weight)");
159 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
160 "Pending number of dirty buffers");
161 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
162 "Pending number of dirty buffers (heavy weight)");
163 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
164 "I/O bytes currently in progress due to asynchronous writes");
165 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
166 "I/O buffers currently in progress due to asynchronous writes");
167 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
168 "Hard limit on maximum amount of memory usable for buffer space");
169 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
170 "Soft limit on maximum amount of memory usable for buffer space");
171 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
172 "Minimum amount of memory to reserve for system buffer space");
173 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
174 "Amount of memory available for buffers");
175 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
176 0, "Maximum amount of memory reserved for buffers using malloc");
177 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
178 "Amount of memory left for buffers using malloc-scheme");
179 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
180 "New buffer header acquisition requests");
181 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
182 0, "New buffer header acquisition restarts");
183 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
184 "Recover VM space in an emergency");
185 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
186 "Buffer acquisition restarts due to fragmented buffer map");
187 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
188 "Amount of time KVA space was deallocated in an arbitrary buffer");
189 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
190 "Amount of time buffer re-use operations were successful");
191 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
192 "sizeof(struct buf)");
194 char *buf_wmesg = BUF_WMESG;
196 extern int vm_swap_size;
198 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
199 #define VFS_BIO_NEED_UNUSED02 0x02
200 #define VFS_BIO_NEED_UNUSED04 0x04
201 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
204 * bufspacewakeup:
206 * Called when buffer space is potentially available for recovery.
207 * getnewbuf() will block on this flag when it is unable to free
208 * sufficient buffer space. Buffer space becomes recoverable when
209 * bp's get placed back in the queues.
212 static __inline void
213 bufspacewakeup(void)
216 * If someone is waiting for BUF space, wake them up. Even
217 * though we haven't freed the kva space yet, the waiting
218 * process will be able to now.
220 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
221 spin_lock_wr(&needsbuffer_spin);
222 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
223 spin_unlock_wr(&needsbuffer_spin);
224 wakeup(&needsbuffer);
229 * runningbufwakeup:
231 * Accounting for I/O in progress.
234 static __inline void
235 runningbufwakeup(struct buf *bp)
237 int totalspace;
239 if ((totalspace = bp->b_runningbufspace) != 0) {
240 runningbufspace -= totalspace;
241 --runningbufcount;
242 bp->b_runningbufspace = 0;
243 if (runningbufreq && runningbufspace <= lorunningspace) {
244 runningbufreq = 0;
245 wakeup(&runningbufreq);
247 bd_signal(totalspace);
252 * bufcountwakeup:
254 * Called when a buffer has been added to one of the free queues to
255 * account for the buffer and to wakeup anyone waiting for free buffers.
256 * This typically occurs when large amounts of metadata are being handled
257 * by the buffer cache ( else buffer space runs out first, usually ).
260 static __inline void
261 bufcountwakeup(void)
263 if (needsbuffer) {
264 spin_lock_wr(&needsbuffer_spin);
265 needsbuffer &= ~VFS_BIO_NEED_ANY;
266 spin_unlock_wr(&needsbuffer_spin);
267 wakeup(&needsbuffer);
272 * waitrunningbufspace()
274 * Wait for the amount of running I/O to drop to a reasonable level.
276 * The caller may be using this function to block in a tight loop, we
277 * must block of runningbufspace is greater then the passed limit.
278 * And even with that it may not be enough, due to the presence of
279 * B_LOCKED dirty buffers, so also wait for at least one running buffer
280 * to complete.
282 static __inline void
283 waitrunningbufspace(int limit)
285 int lorun;
287 if (lorunningspace < limit)
288 lorun = lorunningspace;
289 else
290 lorun = limit;
292 crit_enter();
293 if (runningbufspace > lorun) {
294 while (runningbufspace > lorun) {
295 ++runningbufreq;
296 tsleep(&runningbufreq, 0, "wdrain", 0);
298 } else if (runningbufspace) {
299 ++runningbufreq;
300 tsleep(&runningbufreq, 0, "wdrain2", 1);
302 crit_exit();
306 * vfs_buf_test_cache:
308 * Called when a buffer is extended. This function clears the B_CACHE
309 * bit if the newly extended portion of the buffer does not contain
310 * valid data.
312 static __inline__
313 void
314 vfs_buf_test_cache(struct buf *bp,
315 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
316 vm_page_t m)
318 if (bp->b_flags & B_CACHE) {
319 int base = (foff + off) & PAGE_MASK;
320 if (vm_page_is_valid(m, base, size) == 0)
321 bp->b_flags &= ~B_CACHE;
326 * bd_speedup()
328 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
329 * low water mark.
331 static __inline__
332 void
333 bd_speedup(void)
335 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
336 return;
338 if (bd_request == 0 &&
339 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
340 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
341 spin_lock_wr(&needsbuffer_spin);
342 bd_request = 1;
343 spin_unlock_wr(&needsbuffer_spin);
344 wakeup(&bd_request);
346 if (bd_request_hw == 0 &&
347 (dirtybufspacehw > lodirtybufspace / 2 ||
348 dirtybufcounthw >= nbuf / 2)) {
349 spin_lock_wr(&needsbuffer_spin);
350 bd_request_hw = 1;
351 spin_unlock_wr(&needsbuffer_spin);
352 wakeup(&bd_request_hw);
357 * bd_heatup()
359 * Get the buf_daemon heated up when the number of running and dirty
360 * buffers exceeds the mid-point.
363 bd_heatup(void)
365 int mid1;
366 int mid2;
367 int totalspace;
369 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
371 totalspace = runningbufspace + dirtybufspace;
372 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
373 bd_speedup();
374 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
375 if (totalspace >= mid2)
376 return(totalspace - mid2);
378 return(0);
382 * bd_wait()
384 * Wait for the buffer cache to flush (totalspace) bytes worth of
385 * buffers, then return.
387 * Regardless this function blocks while the number of dirty buffers
388 * exceeds hidirtybufspace.
390 void
391 bd_wait(int totalspace)
393 u_int i;
394 int count;
396 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
397 return;
399 while (totalspace > 0) {
400 bd_heatup();
401 crit_enter();
402 if (totalspace > runningbufspace + dirtybufspace)
403 totalspace = runningbufspace + dirtybufspace;
404 count = totalspace / BKVASIZE;
405 if (count >= BD_WAKE_SIZE)
406 count = BD_WAKE_SIZE - 1;
407 i = (bd_wake_index + count) & BD_WAKE_MASK;
408 ++bd_wake_ary[i];
409 tsleep(&bd_wake_ary[i], 0, "flstik", hz);
410 crit_exit();
412 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
417 * bd_signal()
419 * This function is called whenever runningbufspace or dirtybufspace
420 * is reduced. Track threads waiting for run+dirty buffer I/O
421 * complete.
423 static void
424 bd_signal(int totalspace)
426 u_int i;
428 while (totalspace > 0) {
429 i = atomic_fetchadd_int(&bd_wake_index, 1);
430 i &= BD_WAKE_MASK;
431 if (bd_wake_ary[i]) {
432 bd_wake_ary[i] = 0;
433 wakeup(&bd_wake_ary[i]);
435 totalspace -= BKVASIZE;
440 * bufinit:
442 * Load time initialisation of the buffer cache, called from machine
443 * dependant initialization code.
445 void
446 bufinit(void)
448 struct buf *bp;
449 vm_offset_t bogus_offset;
450 int i;
452 spin_init(&needsbuffer_spin);
454 /* next, make a null set of free lists */
455 for (i = 0; i < BUFFER_QUEUES; i++)
456 TAILQ_INIT(&bufqueues[i]);
458 /* finally, initialize each buffer header and stick on empty q */
459 for (i = 0; i < nbuf; i++) {
460 bp = &buf[i];
461 bzero(bp, sizeof *bp);
462 bp->b_flags = B_INVAL; /* we're just an empty header */
463 bp->b_cmd = BUF_CMD_DONE;
464 bp->b_qindex = BQUEUE_EMPTY;
465 initbufbio(bp);
466 xio_init(&bp->b_xio);
467 buf_dep_init(bp);
468 BUF_LOCKINIT(bp);
469 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
473 * maxbufspace is the absolute maximum amount of buffer space we are
474 * allowed to reserve in KVM and in real terms. The absolute maximum
475 * is nominally used by buf_daemon. hibufspace is the nominal maximum
476 * used by most other processes. The differential is required to
477 * ensure that buf_daemon is able to run when other processes might
478 * be blocked waiting for buffer space.
480 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
481 * this may result in KVM fragmentation which is not handled optimally
482 * by the system.
484 maxbufspace = nbuf * BKVASIZE;
485 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
486 lobufspace = hibufspace - MAXBSIZE;
488 lorunningspace = 512 * 1024;
489 hirunningspace = 1024 * 1024;
492 * Limit the amount of malloc memory since it is wired permanently
493 * into the kernel space. Even though this is accounted for in
494 * the buffer allocation, we don't want the malloced region to grow
495 * uncontrolled. The malloc scheme improves memory utilization
496 * significantly on average (small) directories.
498 maxbufmallocspace = hibufspace / 20;
501 * Reduce the chance of a deadlock occuring by limiting the number
502 * of delayed-write dirty buffers we allow to stack up.
504 hidirtybufspace = hibufspace / 2;
505 dirtybufspace = 0;
506 dirtybufspacehw = 0;
508 lodirtybufspace = hidirtybufspace / 2;
511 * Maximum number of async ops initiated per buf_daemon loop. This is
512 * somewhat of a hack at the moment, we really need to limit ourselves
513 * based on the number of bytes of I/O in-transit that were initiated
514 * from buf_daemon.
517 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
518 bogus_page = vm_page_alloc(&kernel_object,
519 (bogus_offset >> PAGE_SHIFT),
520 VM_ALLOC_NORMAL);
521 vmstats.v_wire_count++;
526 * Initialize the embedded bio structures
528 void
529 initbufbio(struct buf *bp)
531 bp->b_bio1.bio_buf = bp;
532 bp->b_bio1.bio_prev = NULL;
533 bp->b_bio1.bio_offset = NOOFFSET;
534 bp->b_bio1.bio_next = &bp->b_bio2;
535 bp->b_bio1.bio_done = NULL;
537 bp->b_bio2.bio_buf = bp;
538 bp->b_bio2.bio_prev = &bp->b_bio1;
539 bp->b_bio2.bio_offset = NOOFFSET;
540 bp->b_bio2.bio_next = NULL;
541 bp->b_bio2.bio_done = NULL;
545 * Reinitialize the embedded bio structures as well as any additional
546 * translation cache layers.
548 void
549 reinitbufbio(struct buf *bp)
551 struct bio *bio;
553 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
554 bio->bio_done = NULL;
555 bio->bio_offset = NOOFFSET;
560 * Push another BIO layer onto an existing BIO and return it. The new
561 * BIO layer may already exist, holding cached translation data.
563 struct bio *
564 push_bio(struct bio *bio)
566 struct bio *nbio;
568 if ((nbio = bio->bio_next) == NULL) {
569 int index = bio - &bio->bio_buf->b_bio_array[0];
570 if (index >= NBUF_BIO - 1) {
571 panic("push_bio: too many layers bp %p\n",
572 bio->bio_buf);
574 nbio = &bio->bio_buf->b_bio_array[index + 1];
575 bio->bio_next = nbio;
576 nbio->bio_prev = bio;
577 nbio->bio_buf = bio->bio_buf;
578 nbio->bio_offset = NOOFFSET;
579 nbio->bio_done = NULL;
580 nbio->bio_next = NULL;
582 KKASSERT(nbio->bio_done == NULL);
583 return(nbio);
587 * Pop a BIO translation layer, returning the previous layer. The
588 * must have been previously pushed.
590 struct bio *
591 pop_bio(struct bio *bio)
593 return(bio->bio_prev);
596 void
597 clearbiocache(struct bio *bio)
599 while (bio) {
600 bio->bio_offset = NOOFFSET;
601 bio = bio->bio_next;
606 * bfreekva:
608 * Free the KVA allocation for buffer 'bp'.
610 * Must be called from a critical section as this is the only locking for
611 * buffer_map.
613 * Since this call frees up buffer space, we call bufspacewakeup().
615 static void
616 bfreekva(struct buf *bp)
618 int count;
620 if (bp->b_kvasize) {
621 ++buffreekvacnt;
622 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
623 vm_map_lock(&buffer_map);
624 bufspace -= bp->b_kvasize;
625 vm_map_delete(&buffer_map,
626 (vm_offset_t) bp->b_kvabase,
627 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
628 &count
630 vm_map_unlock(&buffer_map);
631 vm_map_entry_release(count);
632 bp->b_kvasize = 0;
633 bufspacewakeup();
638 * bremfree:
640 * Remove the buffer from the appropriate free list.
642 void
643 bremfree(struct buf *bp)
645 crit_enter();
647 if (bp->b_qindex != BQUEUE_NONE) {
648 KASSERT(BUF_REFCNTNB(bp) == 1,
649 ("bremfree: bp %p not locked",bp));
650 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
651 bp->b_qindex = BQUEUE_NONE;
652 } else {
653 if (BUF_REFCNTNB(bp) <= 1)
654 panic("bremfree: removing a buffer not on a queue");
657 crit_exit();
662 * bread:
664 * Get a buffer with the specified data. Look in the cache first. We
665 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
666 * is set, the buffer is valid and we do not have to do anything ( see
667 * getblk() ).
670 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
672 struct buf *bp;
674 bp = getblk(vp, loffset, size, 0, 0);
675 *bpp = bp;
677 /* if not found in cache, do some I/O */
678 if ((bp->b_flags & B_CACHE) == 0) {
679 KASSERT(!(bp->b_flags & B_ASYNC),
680 ("bread: illegal async bp %p", bp));
681 bp->b_flags &= ~(B_ERROR | B_INVAL);
682 bp->b_cmd = BUF_CMD_READ;
683 vfs_busy_pages(vp, bp);
684 vn_strategy(vp, &bp->b_bio1);
685 return (biowait(bp));
687 return (0);
691 * breadn:
693 * Operates like bread, but also starts asynchronous I/O on
694 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
695 * to initiating I/O . If B_CACHE is set, the buffer is valid
696 * and we do not have to do anything.
699 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
700 int *rabsize, int cnt, struct buf **bpp)
702 struct buf *bp, *rabp;
703 int i;
704 int rv = 0, readwait = 0;
706 *bpp = bp = getblk(vp, loffset, size, 0, 0);
708 /* if not found in cache, do some I/O */
709 if ((bp->b_flags & B_CACHE) == 0) {
710 bp->b_flags &= ~(B_ERROR | B_INVAL);
711 bp->b_cmd = BUF_CMD_READ;
712 vfs_busy_pages(vp, bp);
713 vn_strategy(vp, &bp->b_bio1);
714 ++readwait;
717 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
718 if (inmem(vp, *raoffset))
719 continue;
720 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
722 if ((rabp->b_flags & B_CACHE) == 0) {
723 rabp->b_flags |= B_ASYNC;
724 rabp->b_flags &= ~(B_ERROR | B_INVAL);
725 rabp->b_cmd = BUF_CMD_READ;
726 vfs_busy_pages(vp, rabp);
727 BUF_KERNPROC(rabp);
728 vn_strategy(vp, &rabp->b_bio1);
729 } else {
730 brelse(rabp);
734 if (readwait) {
735 rv = biowait(bp);
737 return (rv);
741 * bwrite:
743 * Write, release buffer on completion. (Done by iodone
744 * if async). Do not bother writing anything if the buffer
745 * is invalid.
747 * Note that we set B_CACHE here, indicating that buffer is
748 * fully valid and thus cacheable. This is true even of NFS
749 * now so we set it generally. This could be set either here
750 * or in biodone() since the I/O is synchronous. We put it
751 * here.
754 bwrite(struct buf *bp)
756 int oldflags;
758 if (bp->b_flags & B_INVAL) {
759 brelse(bp);
760 return (0);
763 oldflags = bp->b_flags;
765 if (BUF_REFCNTNB(bp) == 0)
766 panic("bwrite: buffer is not busy???");
767 crit_enter();
769 /* Mark the buffer clean */
770 bundirty(bp);
772 bp->b_flags &= ~B_ERROR;
773 bp->b_flags |= B_CACHE;
774 bp->b_cmd = BUF_CMD_WRITE;
775 vfs_busy_pages(bp->b_vp, bp);
778 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
779 * valid for vnode-backed buffers.
781 bp->b_runningbufspace = bp->b_bufsize;
782 if (bp->b_runningbufspace) {
783 runningbufspace += bp->b_runningbufspace;
784 ++runningbufcount;
787 crit_exit();
788 if (oldflags & B_ASYNC)
789 BUF_KERNPROC(bp);
790 vn_strategy(bp->b_vp, &bp->b_bio1);
792 if ((oldflags & B_ASYNC) == 0) {
793 int rtval = biowait(bp);
794 brelse(bp);
795 return (rtval);
797 return (0);
801 * bdwrite:
803 * Delayed write. (Buffer is marked dirty). Do not bother writing
804 * anything if the buffer is marked invalid.
806 * Note that since the buffer must be completely valid, we can safely
807 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
808 * biodone() in order to prevent getblk from writing the buffer
809 * out synchronously.
811 void
812 bdwrite(struct buf *bp)
814 if (BUF_REFCNTNB(bp) == 0)
815 panic("bdwrite: buffer is not busy");
817 if (bp->b_flags & B_INVAL) {
818 brelse(bp);
819 return;
821 bdirty(bp);
824 * Set B_CACHE, indicating that the buffer is fully valid. This is
825 * true even of NFS now.
827 bp->b_flags |= B_CACHE;
830 * This bmap keeps the system from needing to do the bmap later,
831 * perhaps when the system is attempting to do a sync. Since it
832 * is likely that the indirect block -- or whatever other datastructure
833 * that the filesystem needs is still in memory now, it is a good
834 * thing to do this. Note also, that if the pageout daemon is
835 * requesting a sync -- there might not be enough memory to do
836 * the bmap then... So, this is important to do.
838 if (bp->b_bio2.bio_offset == NOOFFSET) {
839 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
840 NULL, NULL, BUF_CMD_WRITE);
844 * Set the *dirty* buffer range based upon the VM system dirty pages.
846 vfs_setdirty(bp);
849 * We need to do this here to satisfy the vnode_pager and the
850 * pageout daemon, so that it thinks that the pages have been
851 * "cleaned". Note that since the pages are in a delayed write
852 * buffer -- the VFS layer "will" see that the pages get written
853 * out on the next sync, or perhaps the cluster will be completed.
855 vfs_clean_pages(bp);
856 bqrelse(bp);
859 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
860 * due to the softdep code.
865 * bdirty:
867 * Turn buffer into delayed write request by marking it B_DELWRI.
868 * B_RELBUF and B_NOCACHE must be cleared.
870 * We reassign the buffer to itself to properly update it in the
871 * dirty/clean lists.
873 * Must be called from a critical section.
874 * The buffer must be on BQUEUE_NONE.
876 void
877 bdirty(struct buf *bp)
879 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
880 if (bp->b_flags & B_NOCACHE) {
881 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
882 bp->b_flags &= ~B_NOCACHE;
884 if (bp->b_flags & B_INVAL) {
885 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
887 bp->b_flags &= ~B_RELBUF;
889 if ((bp->b_flags & B_DELWRI) == 0) {
890 bp->b_flags |= B_DELWRI;
891 reassignbuf(bp);
892 ++dirtybufcount;
893 dirtybufspace += bp->b_bufsize;
894 if (bp->b_flags & B_HEAVY) {
895 ++dirtybufcounthw;
896 dirtybufspacehw += bp->b_bufsize;
898 bd_heatup();
903 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
904 * needs to be flushed with a different buf_daemon thread to avoid
905 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
907 void
908 bheavy(struct buf *bp)
910 if ((bp->b_flags & B_HEAVY) == 0) {
911 bp->b_flags |= B_HEAVY;
912 if (bp->b_flags & B_DELWRI) {
913 ++dirtybufcounthw;
914 dirtybufspacehw += bp->b_bufsize;
920 * bundirty:
922 * Clear B_DELWRI for buffer.
924 * Must be called from a critical section.
926 * The buffer is typically on BQUEUE_NONE but there is one case in
927 * brelse() that calls this function after placing the buffer on
928 * a different queue.
931 void
932 bundirty(struct buf *bp)
934 if (bp->b_flags & B_DELWRI) {
935 bp->b_flags &= ~B_DELWRI;
936 reassignbuf(bp);
937 --dirtybufcount;
938 dirtybufspace -= bp->b_bufsize;
939 if (bp->b_flags & B_HEAVY) {
940 --dirtybufcounthw;
941 dirtybufspacehw -= bp->b_bufsize;
943 bd_signal(bp->b_bufsize);
946 * Since it is now being written, we can clear its deferred write flag.
948 bp->b_flags &= ~B_DEFERRED;
952 * bawrite:
954 * Asynchronous write. Start output on a buffer, but do not wait for
955 * it to complete. The buffer is released when the output completes.
957 * bwrite() ( or the VOP routine anyway ) is responsible for handling
958 * B_INVAL buffers. Not us.
960 void
961 bawrite(struct buf *bp)
963 bp->b_flags |= B_ASYNC;
964 bwrite(bp);
968 * bowrite:
970 * Ordered write. Start output on a buffer, and flag it so that the
971 * device will write it in the order it was queued. The buffer is
972 * released when the output completes. bwrite() ( or the VOP routine
973 * anyway ) is responsible for handling B_INVAL buffers.
976 bowrite(struct buf *bp)
978 bp->b_flags |= B_ORDERED | B_ASYNC;
979 return (bwrite(bp));
983 * buf_dirty_count_severe:
985 * Return true if we have too many dirty buffers.
988 buf_dirty_count_severe(void)
990 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
991 dirtybufcount >= nbuf / 2);
995 * brelse:
997 * Release a busy buffer and, if requested, free its resources. The
998 * buffer will be stashed in the appropriate bufqueue[] allowing it
999 * to be accessed later as a cache entity or reused for other purposes.
1001 void
1002 brelse(struct buf *bp)
1004 #ifdef INVARIANTS
1005 int saved_flags = bp->b_flags;
1006 #endif
1008 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1010 crit_enter();
1013 * If B_NOCACHE is set we are being asked to destroy the buffer and
1014 * its backing store. Clear B_DELWRI.
1016 * B_NOCACHE is set in two cases: (1) when the caller really wants
1017 * to destroy the buffer and backing store and (2) when the caller
1018 * wants to destroy the buffer and backing store after a write
1019 * completes.
1021 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1022 bundirty(bp);
1025 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1027 * A re-dirtied buffer is only subject to destruction
1028 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1030 /* leave buffer intact */
1031 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1032 (bp->b_bufsize <= 0)) {
1034 * Either a failed read or we were asked to free or not
1035 * cache the buffer. This path is reached with B_DELWRI
1036 * set only if B_INVAL is already set. B_NOCACHE governs
1037 * backing store destruction.
1039 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1040 * buffer cannot be immediately freed.
1042 bp->b_flags |= B_INVAL;
1043 if (LIST_FIRST(&bp->b_dep) != NULL)
1044 buf_deallocate(bp);
1045 if (bp->b_flags & B_DELWRI) {
1046 --dirtybufcount;
1047 dirtybufspace -= bp->b_bufsize;
1048 if (bp->b_flags & B_HEAVY) {
1049 --dirtybufcounthw;
1050 dirtybufspacehw -= bp->b_bufsize;
1052 bd_signal(bp->b_bufsize);
1054 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1058 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1059 * If vfs_vmio_release() is called with either bit set, the
1060 * underlying pages may wind up getting freed causing a previous
1061 * write (bdwrite()) to get 'lost' because pages associated with
1062 * a B_DELWRI bp are marked clean. Pages associated with a
1063 * B_LOCKED buffer may be mapped by the filesystem.
1065 * If we want to release the buffer ourselves (rather then the
1066 * originator asking us to release it), give the originator a
1067 * chance to countermand the release by setting B_LOCKED.
1069 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1070 * if B_DELWRI is set.
1072 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1073 * on pages to return pages to the VM page queues.
1075 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1076 bp->b_flags &= ~B_RELBUF;
1077 } else if (vm_page_count_severe()) {
1078 if (LIST_FIRST(&bp->b_dep) != NULL)
1079 buf_deallocate(bp); /* can set B_LOCKED */
1080 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1081 bp->b_flags &= ~B_RELBUF;
1082 else
1083 bp->b_flags |= B_RELBUF;
1087 * Make sure b_cmd is clear. It may have already been cleared by
1088 * biodone().
1090 * At this point destroying the buffer is governed by the B_INVAL
1091 * or B_RELBUF flags.
1093 bp->b_cmd = BUF_CMD_DONE;
1096 * VMIO buffer rundown. Make sure the VM page array is restored
1097 * after an I/O may have replaces some of the pages with bogus pages
1098 * in order to not destroy dirty pages in a fill-in read.
1100 * Note that due to the code above, if a buffer is marked B_DELWRI
1101 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1102 * B_INVAL may still be set, however.
1104 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1105 * but not the backing store. B_NOCACHE will destroy the backing
1106 * store.
1108 * Note that dirty NFS buffers contain byte-granular write ranges
1109 * and should not be destroyed w/ B_INVAL even if the backing store
1110 * is left intact.
1112 if (bp->b_flags & B_VMIO) {
1114 * Rundown for VMIO buffers which are not dirty NFS buffers.
1116 int i, j, resid;
1117 vm_page_t m;
1118 off_t foff;
1119 vm_pindex_t poff;
1120 vm_object_t obj;
1121 struct vnode *vp;
1123 vp = bp->b_vp;
1126 * Get the base offset and length of the buffer. Note that
1127 * in the VMIO case if the buffer block size is not
1128 * page-aligned then b_data pointer may not be page-aligned.
1129 * But our b_xio.xio_pages array *IS* page aligned.
1131 * block sizes less then DEV_BSIZE (usually 512) are not
1132 * supported due to the page granularity bits (m->valid,
1133 * m->dirty, etc...).
1135 * See man buf(9) for more information
1138 resid = bp->b_bufsize;
1139 foff = bp->b_loffset;
1141 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1142 m = bp->b_xio.xio_pages[i];
1143 vm_page_flag_clear(m, PG_ZERO);
1145 * If we hit a bogus page, fixup *all* of them
1146 * now. Note that we left these pages wired
1147 * when we removed them so they had better exist,
1148 * and they cannot be ripped out from under us so
1149 * no critical section protection is necessary.
1151 if (m == bogus_page) {
1152 obj = vp->v_object;
1153 poff = OFF_TO_IDX(bp->b_loffset);
1155 for (j = i; j < bp->b_xio.xio_npages; j++) {
1156 vm_page_t mtmp;
1158 mtmp = bp->b_xio.xio_pages[j];
1159 if (mtmp == bogus_page) {
1160 mtmp = vm_page_lookup(obj, poff + j);
1161 if (!mtmp) {
1162 panic("brelse: page missing");
1164 bp->b_xio.xio_pages[j] = mtmp;
1168 if ((bp->b_flags & B_INVAL) == 0) {
1169 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1170 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1172 m = bp->b_xio.xio_pages[i];
1176 * Invalidate the backing store if B_NOCACHE is set
1177 * (e.g. used with vinvalbuf()). If this is NFS
1178 * we impose a requirement that the block size be
1179 * a multiple of PAGE_SIZE and create a temporary
1180 * hack to basically invalidate the whole page. The
1181 * problem is that NFS uses really odd buffer sizes
1182 * especially when tracking piecemeal writes and
1183 * it also vinvalbuf()'s a lot, which would result
1184 * in only partial page validation and invalidation
1185 * here. If the file page is mmap()'d, however,
1186 * all the valid bits get set so after we invalidate
1187 * here we would end up with weird m->valid values
1188 * like 0xfc. nfs_getpages() can't handle this so
1189 * we clear all the valid bits for the NFS case
1190 * instead of just some of them.
1192 * The real bug is the VM system having to set m->valid
1193 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1194 * itself is an artifact of the whole 512-byte
1195 * granular mess that exists to support odd block
1196 * sizes and UFS meta-data block sizes (e.g. 6144).
1197 * A complete rewrite is required.
1199 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1200 int poffset = foff & PAGE_MASK;
1201 int presid;
1203 presid = PAGE_SIZE - poffset;
1204 if (bp->b_vp->v_tag == VT_NFS &&
1205 bp->b_vp->v_type == VREG) {
1206 ; /* entire page */
1207 } else if (presid > resid) {
1208 presid = resid;
1210 KASSERT(presid >= 0, ("brelse: extra page"));
1211 vm_page_set_invalid(m, poffset, presid);
1213 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1214 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1216 if (bp->b_flags & (B_INVAL | B_RELBUF))
1217 vfs_vmio_release(bp);
1218 } else {
1220 * Rundown for non-VMIO buffers.
1222 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1223 #if 0
1224 if (bp->b_vp)
1225 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1226 #endif
1227 if (bp->b_bufsize)
1228 allocbuf(bp, 0);
1229 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1230 if (bp->b_vp)
1231 brelvp(bp);
1235 if (bp->b_qindex != BQUEUE_NONE)
1236 panic("brelse: free buffer onto another queue???");
1237 if (BUF_REFCNTNB(bp) > 1) {
1238 /* Temporary panic to verify exclusive locking */
1239 /* This panic goes away when we allow shared refs */
1240 panic("brelse: multiple refs");
1241 /* do not release to free list */
1242 BUF_UNLOCK(bp);
1243 crit_exit();
1244 return;
1248 * Figure out the correct queue to place the cleaned up buffer on.
1249 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1250 * disassociated from their vnode.
1252 if (bp->b_flags & B_LOCKED) {
1254 * Buffers that are locked are placed in the locked queue
1255 * immediately, regardless of their state.
1257 bp->b_qindex = BQUEUE_LOCKED;
1258 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1259 } else if (bp->b_bufsize == 0) {
1261 * Buffers with no memory. Due to conditionals near the top
1262 * of brelse() such buffers should probably already be
1263 * marked B_INVAL and disassociated from their vnode.
1265 bp->b_flags |= B_INVAL;
1266 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1267 KKASSERT((bp->b_flags & B_HASHED) == 0);
1268 if (bp->b_kvasize) {
1269 bp->b_qindex = BQUEUE_EMPTYKVA;
1270 } else {
1271 bp->b_qindex = BQUEUE_EMPTY;
1273 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1274 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1276 * Buffers with junk contents. Again these buffers had better
1277 * already be disassociated from their vnode.
1279 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1280 KKASSERT((bp->b_flags & B_HASHED) == 0);
1281 bp->b_flags |= B_INVAL;
1282 bp->b_qindex = BQUEUE_CLEAN;
1283 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1284 } else {
1286 * Remaining buffers. These buffers are still associated with
1287 * their vnode.
1289 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1290 case B_DELWRI:
1291 bp->b_qindex = BQUEUE_DIRTY;
1292 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1293 break;
1294 case B_DELWRI | B_HEAVY:
1295 bp->b_qindex = BQUEUE_DIRTY_HW;
1296 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1297 b_freelist);
1298 break;
1299 default:
1301 * NOTE: Buffers are always placed at the end of the
1302 * queue. If B_AGE is not set the buffer will cycle
1303 * through the queue twice.
1305 bp->b_qindex = BQUEUE_CLEAN;
1306 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1307 break;
1312 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1313 * on the correct queue.
1315 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1316 bundirty(bp);
1319 * The bp is on an appropriate queue unless locked. If it is not
1320 * locked or dirty we can wakeup threads waiting for buffer space.
1322 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1323 * if B_INVAL is set ).
1325 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1326 bufcountwakeup();
1329 * Something we can maybe free or reuse
1331 if (bp->b_bufsize || bp->b_kvasize)
1332 bufspacewakeup();
1335 * Clean up temporary flags and unlock the buffer.
1337 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
1338 BUF_UNLOCK(bp);
1339 crit_exit();
1343 * bqrelse:
1345 * Release a buffer back to the appropriate queue but do not try to free
1346 * it. The buffer is expected to be used again soon.
1348 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1349 * biodone() to requeue an async I/O on completion. It is also used when
1350 * known good buffers need to be requeued but we think we may need the data
1351 * again soon.
1353 * XXX we should be able to leave the B_RELBUF hint set on completion.
1355 void
1356 bqrelse(struct buf *bp)
1358 crit_enter();
1360 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1362 if (bp->b_qindex != BQUEUE_NONE)
1363 panic("bqrelse: free buffer onto another queue???");
1364 if (BUF_REFCNTNB(bp) > 1) {
1365 /* do not release to free list */
1366 panic("bqrelse: multiple refs");
1367 BUF_UNLOCK(bp);
1368 crit_exit();
1369 return;
1371 if (bp->b_flags & B_LOCKED) {
1373 * Locked buffers are released to the locked queue. However,
1374 * if the buffer is dirty it will first go into the dirty
1375 * queue and later on after the I/O completes successfully it
1376 * will be released to the locked queue.
1378 bp->b_qindex = BQUEUE_LOCKED;
1379 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1380 } else if (bp->b_flags & B_DELWRI) {
1381 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1382 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1383 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1384 } else if (vm_page_count_severe()) {
1386 * We are too low on memory, we have to try to free the
1387 * buffer (most importantly: the wired pages making up its
1388 * backing store) *now*.
1390 crit_exit();
1391 brelse(bp);
1392 return;
1393 } else {
1394 bp->b_qindex = BQUEUE_CLEAN;
1395 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1398 if ((bp->b_flags & B_LOCKED) == 0 &&
1399 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1400 bufcountwakeup();
1404 * Something we can maybe free or reuse.
1406 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1407 bufspacewakeup();
1410 * Final cleanup and unlock. Clear bits that are only used while a
1411 * buffer is actively locked.
1413 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF);
1414 BUF_UNLOCK(bp);
1415 crit_exit();
1419 * vfs_vmio_release:
1421 * Return backing pages held by the buffer 'bp' back to the VM system
1422 * if possible. The pages are freed if they are no longer valid or
1423 * attempt to free if it was used for direct I/O otherwise they are
1424 * sent to the page cache.
1426 * Pages that were marked busy are left alone and skipped.
1428 * The KVA mapping (b_data) for the underlying pages is removed by
1429 * this function.
1431 static void
1432 vfs_vmio_release(struct buf *bp)
1434 int i;
1435 vm_page_t m;
1437 crit_enter();
1438 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1439 m = bp->b_xio.xio_pages[i];
1440 bp->b_xio.xio_pages[i] = NULL;
1442 * In order to keep page LRU ordering consistent, put
1443 * everything on the inactive queue.
1445 vm_page_unwire(m, 0);
1447 * We don't mess with busy pages, it is
1448 * the responsibility of the process that
1449 * busied the pages to deal with them.
1451 if ((m->flags & PG_BUSY) || (m->busy != 0))
1452 continue;
1454 if (m->wire_count == 0) {
1455 vm_page_flag_clear(m, PG_ZERO);
1457 * Might as well free the page if we can and it has
1458 * no valid data. We also free the page if the
1459 * buffer was used for direct I/O.
1461 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1462 m->hold_count == 0) {
1463 vm_page_busy(m);
1464 vm_page_protect(m, VM_PROT_NONE);
1465 vm_page_free(m);
1466 } else if (bp->b_flags & B_DIRECT) {
1467 vm_page_try_to_free(m);
1468 } else if (vm_page_count_severe()) {
1469 vm_page_try_to_cache(m);
1473 crit_exit();
1474 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1475 if (bp->b_bufsize) {
1476 bufspacewakeup();
1477 bp->b_bufsize = 0;
1479 bp->b_xio.xio_npages = 0;
1480 bp->b_flags &= ~B_VMIO;
1481 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1482 if (bp->b_vp)
1483 brelvp(bp);
1487 * vfs_bio_awrite:
1489 * Implement clustered async writes for clearing out B_DELWRI buffers.
1490 * This is much better then the old way of writing only one buffer at
1491 * a time. Note that we may not be presented with the buffers in the
1492 * correct order, so we search for the cluster in both directions.
1494 * The buffer is locked on call.
1497 vfs_bio_awrite(struct buf *bp)
1499 int i;
1500 int j;
1501 off_t loffset = bp->b_loffset;
1502 struct vnode *vp = bp->b_vp;
1503 int nbytes;
1504 struct buf *bpa;
1505 int nwritten;
1506 int size;
1508 crit_enter();
1510 * right now we support clustered writing only to regular files. If
1511 * we find a clusterable block we could be in the middle of a cluster
1512 * rather then at the beginning.
1514 * NOTE: b_bio1 contains the logical loffset and is aliased
1515 * to b_loffset. b_bio2 contains the translated block number.
1517 if ((vp->v_type == VREG) &&
1518 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1519 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1521 size = vp->v_mount->mnt_stat.f_iosize;
1523 for (i = size; i < MAXPHYS; i += size) {
1524 if ((bpa = findblk(vp, loffset + i)) &&
1525 BUF_REFCNT(bpa) == 0 &&
1526 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1527 (B_DELWRI | B_CLUSTEROK)) &&
1528 (bpa->b_bufsize == size)) {
1529 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1530 (bpa->b_bio2.bio_offset !=
1531 bp->b_bio2.bio_offset + i))
1532 break;
1533 } else {
1534 break;
1537 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1538 if ((bpa = findblk(vp, loffset - j)) &&
1539 BUF_REFCNT(bpa) == 0 &&
1540 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1541 (B_DELWRI | B_CLUSTEROK)) &&
1542 (bpa->b_bufsize == size)) {
1543 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1544 (bpa->b_bio2.bio_offset !=
1545 bp->b_bio2.bio_offset - j))
1546 break;
1547 } else {
1548 break;
1551 j -= size;
1552 nbytes = (i + j);
1554 * this is a possible cluster write
1556 if (nbytes != size) {
1557 BUF_UNLOCK(bp);
1558 nwritten = cluster_wbuild(vp, size,
1559 loffset - j, nbytes);
1560 crit_exit();
1561 return nwritten;
1565 bremfree(bp);
1566 bp->b_flags |= B_ASYNC;
1568 crit_exit();
1570 * default (old) behavior, writing out only one block
1572 * XXX returns b_bufsize instead of b_bcount for nwritten?
1574 nwritten = bp->b_bufsize;
1575 bwrite(bp);
1577 return nwritten;
1581 * getnewbuf:
1583 * Find and initialize a new buffer header, freeing up existing buffers
1584 * in the bufqueues as necessary. The new buffer is returned locked.
1586 * Important: B_INVAL is not set. If the caller wishes to throw the
1587 * buffer away, the caller must set B_INVAL prior to calling brelse().
1589 * We block if:
1590 * We have insufficient buffer headers
1591 * We have insufficient buffer space
1592 * buffer_map is too fragmented ( space reservation fails )
1593 * If we have to flush dirty buffers ( but we try to avoid this )
1595 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1596 * Instead we ask the buf daemon to do it for us. We attempt to
1597 * avoid piecemeal wakeups of the pageout daemon.
1600 static struct buf *
1601 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1603 struct buf *bp;
1604 struct buf *nbp;
1605 int defrag = 0;
1606 int nqindex;
1607 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1608 static int flushingbufs;
1611 * We can't afford to block since we might be holding a vnode lock,
1612 * which may prevent system daemons from running. We deal with
1613 * low-memory situations by proactively returning memory and running
1614 * async I/O rather then sync I/O.
1617 ++getnewbufcalls;
1618 --getnewbufrestarts;
1619 restart:
1620 ++getnewbufrestarts;
1623 * Setup for scan. If we do not have enough free buffers,
1624 * we setup a degenerate case that immediately fails. Note
1625 * that if we are specially marked process, we are allowed to
1626 * dip into our reserves.
1628 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1630 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1631 * However, there are a number of cases (defragging, reusing, ...)
1632 * where we cannot backup.
1634 nqindex = BQUEUE_EMPTYKVA;
1635 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1637 if (nbp == NULL) {
1639 * If no EMPTYKVA buffers and we are either
1640 * defragging or reusing, locate a CLEAN buffer
1641 * to free or reuse. If bufspace useage is low
1642 * skip this step so we can allocate a new buffer.
1644 if (defrag || bufspace >= lobufspace) {
1645 nqindex = BQUEUE_CLEAN;
1646 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1650 * If we could not find or were not allowed to reuse a
1651 * CLEAN buffer, check to see if it is ok to use an EMPTY
1652 * buffer. We can only use an EMPTY buffer if allocating
1653 * its KVA would not otherwise run us out of buffer space.
1655 if (nbp == NULL && defrag == 0 &&
1656 bufspace + maxsize < hibufspace) {
1657 nqindex = BQUEUE_EMPTY;
1658 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1663 * Run scan, possibly freeing data and/or kva mappings on the fly
1664 * depending.
1667 while ((bp = nbp) != NULL) {
1668 int qindex = nqindex;
1670 nbp = TAILQ_NEXT(bp, b_freelist);
1673 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1674 * cycles through the queue twice before being selected.
1676 if (qindex == BQUEUE_CLEAN &&
1677 (bp->b_flags & B_AGE) == 0 && nbp) {
1678 bp->b_flags |= B_AGE;
1679 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1680 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1681 continue;
1685 * Calculate next bp ( we can only use it if we do not block
1686 * or do other fancy things ).
1688 if (nbp == NULL) {
1689 switch(qindex) {
1690 case BQUEUE_EMPTY:
1691 nqindex = BQUEUE_EMPTYKVA;
1692 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1693 break;
1694 /* fall through */
1695 case BQUEUE_EMPTYKVA:
1696 nqindex = BQUEUE_CLEAN;
1697 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1698 break;
1699 /* fall through */
1700 case BQUEUE_CLEAN:
1702 * nbp is NULL.
1704 break;
1709 * Sanity Checks
1711 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1714 * Note: we no longer distinguish between VMIO and non-VMIO
1715 * buffers.
1718 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1721 * If we are defragging then we need a buffer with
1722 * b_kvasize != 0. XXX this situation should no longer
1723 * occur, if defrag is non-zero the buffer's b_kvasize
1724 * should also be non-zero at this point. XXX
1726 if (defrag && bp->b_kvasize == 0) {
1727 kprintf("Warning: defrag empty buffer %p\n", bp);
1728 continue;
1732 * Start freeing the bp. This is somewhat involved. nbp
1733 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1734 * on the clean list must be disassociated from their
1735 * current vnode. Buffers on the empty[kva] lists have
1736 * already been disassociated.
1739 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1740 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1741 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1742 goto restart;
1744 if (bp->b_qindex != qindex) {
1745 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1746 BUF_UNLOCK(bp);
1747 goto restart;
1749 bremfree(bp);
1752 * Dependancies must be handled before we disassociate the
1753 * vnode.
1755 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1756 * be immediately disassociated. HAMMER then becomes
1757 * responsible for releasing the buffer.
1759 if (LIST_FIRST(&bp->b_dep) != NULL) {
1760 buf_deallocate(bp);
1761 if (bp->b_flags & B_LOCKED) {
1762 bqrelse(bp);
1763 goto restart;
1765 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1768 if (qindex == BQUEUE_CLEAN) {
1769 if (bp->b_flags & B_VMIO) {
1770 bp->b_flags &= ~B_ASYNC;
1771 vfs_vmio_release(bp);
1773 if (bp->b_vp)
1774 brelvp(bp);
1778 * NOTE: nbp is now entirely invalid. We can only restart
1779 * the scan from this point on.
1781 * Get the rest of the buffer freed up. b_kva* is still
1782 * valid after this operation.
1785 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1786 KKASSERT((bp->b_flags & B_HASHED) == 0);
1789 * critical section protection is not required when
1790 * scrapping a buffer's contents because it is already
1791 * wired.
1793 if (bp->b_bufsize)
1794 allocbuf(bp, 0);
1796 bp->b_flags = B_BNOCLIP;
1797 bp->b_cmd = BUF_CMD_DONE;
1798 bp->b_vp = NULL;
1799 bp->b_error = 0;
1800 bp->b_resid = 0;
1801 bp->b_bcount = 0;
1802 bp->b_xio.xio_npages = 0;
1803 bp->b_dirtyoff = bp->b_dirtyend = 0;
1804 reinitbufbio(bp);
1805 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1806 buf_dep_init(bp);
1807 if (blkflags & GETBLK_BHEAVY)
1808 bp->b_flags |= B_HEAVY;
1811 * If we are defragging then free the buffer.
1813 if (defrag) {
1814 bp->b_flags |= B_INVAL;
1815 bfreekva(bp);
1816 brelse(bp);
1817 defrag = 0;
1818 goto restart;
1822 * If we are overcomitted then recover the buffer and its
1823 * KVM space. This occurs in rare situations when multiple
1824 * processes are blocked in getnewbuf() or allocbuf().
1826 if (bufspace >= hibufspace)
1827 flushingbufs = 1;
1828 if (flushingbufs && bp->b_kvasize != 0) {
1829 bp->b_flags |= B_INVAL;
1830 bfreekva(bp);
1831 brelse(bp);
1832 goto restart;
1834 if (bufspace < lobufspace)
1835 flushingbufs = 0;
1836 break;
1840 * If we exhausted our list, sleep as appropriate. We may have to
1841 * wakeup various daemons and write out some dirty buffers.
1843 * Generally we are sleeping due to insufficient buffer space.
1846 if (bp == NULL) {
1847 int flags;
1848 char *waitmsg;
1850 if (defrag) {
1851 flags = VFS_BIO_NEED_BUFSPACE;
1852 waitmsg = "nbufkv";
1853 } else if (bufspace >= hibufspace) {
1854 waitmsg = "nbufbs";
1855 flags = VFS_BIO_NEED_BUFSPACE;
1856 } else {
1857 waitmsg = "newbuf";
1858 flags = VFS_BIO_NEED_ANY;
1861 needsbuffer |= flags;
1862 bd_speedup(); /* heeeelp */
1863 while (needsbuffer & flags) {
1864 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1865 return (NULL);
1867 } else {
1869 * We finally have a valid bp. We aren't quite out of the
1870 * woods, we still have to reserve kva space. In order
1871 * to keep fragmentation sane we only allocate kva in
1872 * BKVASIZE chunks.
1874 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1876 if (maxsize != bp->b_kvasize) {
1877 vm_offset_t addr = 0;
1878 int count;
1880 bfreekva(bp);
1882 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1883 vm_map_lock(&buffer_map);
1885 if (vm_map_findspace(&buffer_map,
1886 vm_map_min(&buffer_map), maxsize,
1887 maxsize, &addr)) {
1889 * Uh oh. Buffer map is too fragmented. We
1890 * must defragment the map.
1892 vm_map_unlock(&buffer_map);
1893 vm_map_entry_release(count);
1894 ++bufdefragcnt;
1895 defrag = 1;
1896 bp->b_flags |= B_INVAL;
1897 brelse(bp);
1898 goto restart;
1900 if (addr) {
1901 vm_map_insert(&buffer_map, &count,
1902 NULL, 0,
1903 addr, addr + maxsize,
1904 VM_MAPTYPE_NORMAL,
1905 VM_PROT_ALL, VM_PROT_ALL,
1906 MAP_NOFAULT);
1908 bp->b_kvabase = (caddr_t) addr;
1909 bp->b_kvasize = maxsize;
1910 bufspace += bp->b_kvasize;
1911 ++bufreusecnt;
1913 vm_map_unlock(&buffer_map);
1914 vm_map_entry_release(count);
1916 bp->b_data = bp->b_kvabase;
1918 return(bp);
1922 * This routine is called in an emergency to recover VM pages from the
1923 * buffer cache by cashing in clean buffers. The idea is to recover
1924 * enough pages to be able to satisfy a stuck bio_page_alloc().
1926 static int
1927 recoverbufpages(void)
1929 struct buf *bp;
1930 int bytes = 0;
1932 ++recoverbufcalls;
1934 while (bytes < MAXBSIZE) {
1935 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1936 if (bp == NULL)
1937 break;
1940 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1941 * cycles through the queue twice before being selected.
1943 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
1944 bp->b_flags |= B_AGE;
1945 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1946 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
1947 bp, b_freelist);
1948 continue;
1952 * Sanity Checks
1954 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
1955 KKASSERT((bp->b_flags & B_DELWRI) == 0);
1958 * Start freeing the bp. This is somewhat involved.
1960 * Buffers on the clean list must be disassociated from
1961 * their current vnode
1964 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1965 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
1966 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1967 continue;
1969 if (bp->b_qindex != BQUEUE_CLEAN) {
1970 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
1971 BUF_UNLOCK(bp);
1972 continue;
1974 bremfree(bp);
1977 * Dependancies must be handled before we disassociate the
1978 * vnode.
1980 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1981 * be immediately disassociated. HAMMER then becomes
1982 * responsible for releasing the buffer.
1984 if (LIST_FIRST(&bp->b_dep) != NULL) {
1985 buf_deallocate(bp);
1986 if (bp->b_flags & B_LOCKED) {
1987 bqrelse(bp);
1988 continue;
1990 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1993 bytes += bp->b_bufsize;
1995 if (bp->b_flags & B_VMIO) {
1996 bp->b_flags &= ~B_ASYNC;
1997 bp->b_flags |= B_DIRECT; /* try to free pages */
1998 vfs_vmio_release(bp);
2000 if (bp->b_vp)
2001 brelvp(bp);
2003 KKASSERT(bp->b_vp == NULL);
2004 KKASSERT((bp->b_flags & B_HASHED) == 0);
2007 * critical section protection is not required when
2008 * scrapping a buffer's contents because it is already
2009 * wired.
2011 if (bp->b_bufsize)
2012 allocbuf(bp, 0);
2014 bp->b_flags = B_BNOCLIP;
2015 bp->b_cmd = BUF_CMD_DONE;
2016 bp->b_vp = NULL;
2017 bp->b_error = 0;
2018 bp->b_resid = 0;
2019 bp->b_bcount = 0;
2020 bp->b_xio.xio_npages = 0;
2021 bp->b_dirtyoff = bp->b_dirtyend = 0;
2022 reinitbufbio(bp);
2023 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2024 buf_dep_init(bp);
2025 bp->b_flags |= B_INVAL;
2026 /* bfreekva(bp); */
2027 brelse(bp);
2029 return(bytes);
2033 * buf_daemon:
2035 * Buffer flushing daemon. Buffers are normally flushed by the
2036 * update daemon but if it cannot keep up this process starts to
2037 * take the load in an attempt to prevent getnewbuf() from blocking.
2039 * Once a flush is initiated it does not stop until the number
2040 * of buffers falls below lodirtybuffers, but we will wake up anyone
2041 * waiting at the mid-point.
2044 static struct kproc_desc buf_kp = {
2045 "bufdaemon",
2046 buf_daemon,
2047 &bufdaemon_td
2049 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2050 kproc_start, &buf_kp)
2052 static struct kproc_desc bufhw_kp = {
2053 "bufdaemon_hw",
2054 buf_daemon_hw,
2055 &bufdaemonhw_td
2057 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2058 kproc_start, &bufhw_kp)
2060 static void
2061 buf_daemon(void)
2063 int limit;
2066 * This process needs to be suspended prior to shutdown sync.
2068 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2069 bufdaemon_td, SHUTDOWN_PRI_LAST);
2070 curthread->td_flags |= TDF_SYSTHREAD;
2073 * This process is allowed to take the buffer cache to the limit
2075 crit_enter();
2077 for (;;) {
2078 kproc_suspend_loop();
2081 * Do the flush. Limit the amount of in-transit I/O we
2082 * allow to build up, otherwise we would completely saturate
2083 * the I/O system. Wakeup any waiting processes before we
2084 * normally would so they can run in parallel with our drain.
2086 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2087 * but because we split the operation into two threads we
2088 * have to cut it in half for each thread.
2090 limit = lodirtybufspace / 2;
2091 waitrunningbufspace(limit);
2092 while (runningbufspace + dirtybufspace > limit ||
2093 dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2094 if (flushbufqueues(BQUEUE_DIRTY) == 0)
2095 break;
2096 waitrunningbufspace(limit);
2100 * We reached our low water mark, reset the
2101 * request and sleep until we are needed again.
2102 * The sleep is just so the suspend code works.
2104 spin_lock_wr(&needsbuffer_spin);
2105 if (bd_request == 0) {
2106 msleep(&bd_request, &needsbuffer_spin, 0,
2107 "psleep", hz);
2109 bd_request = 0;
2110 spin_unlock_wr(&needsbuffer_spin);
2114 static void
2115 buf_daemon_hw(void)
2117 int limit;
2120 * This process needs to be suspended prior to shutdown sync.
2122 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2123 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2124 curthread->td_flags |= TDF_SYSTHREAD;
2127 * This process is allowed to take the buffer cache to the limit
2129 crit_enter();
2131 for (;;) {
2132 kproc_suspend_loop();
2135 * Do the flush. Limit the amount of in-transit I/O we
2136 * allow to build up, otherwise we would completely saturate
2137 * the I/O system. Wakeup any waiting processes before we
2138 * normally would so they can run in parallel with our drain.
2140 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2141 * but because we split the operation into two threads we
2142 * have to cut it in half for each thread.
2144 limit = lodirtybufspace / 2;
2145 waitrunningbufspace(limit);
2146 while (runningbufspace + dirtybufspacehw > limit ||
2147 dirtybufcounthw >= nbuf / 2) {
2148 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2149 break;
2150 waitrunningbufspace(limit);
2154 * We reached our low water mark, reset the
2155 * request and sleep until we are needed again.
2156 * The sleep is just so the suspend code works.
2158 spin_lock_wr(&needsbuffer_spin);
2159 if (bd_request_hw == 0) {
2160 msleep(&bd_request_hw, &needsbuffer_spin, 0,
2161 "psleep", hz);
2163 bd_request_hw = 0;
2164 spin_unlock_wr(&needsbuffer_spin);
2169 * flushbufqueues:
2171 * Try to flush a buffer in the dirty queue. We must be careful to
2172 * free up B_INVAL buffers instead of write them, which NFS is
2173 * particularly sensitive to.
2175 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2176 * that we really want to try to get the buffer out and reuse it
2177 * due to the write load on the machine.
2180 static int
2181 flushbufqueues(bufq_type_t q)
2183 struct buf *bp;
2184 int r = 0;
2186 bp = TAILQ_FIRST(&bufqueues[q]);
2187 while (bp) {
2188 KASSERT((bp->b_flags & B_DELWRI),
2189 ("unexpected clean buffer %p", bp));
2191 if (bp->b_flags & B_DELWRI) {
2192 if (bp->b_flags & B_INVAL) {
2193 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2194 panic("flushbufqueues: locked buf");
2195 bremfree(bp);
2196 brelse(bp);
2197 ++r;
2198 break;
2200 if (LIST_FIRST(&bp->b_dep) != NULL &&
2201 (bp->b_flags & B_DEFERRED) == 0 &&
2202 buf_countdeps(bp, 0)) {
2203 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2204 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2205 b_freelist);
2206 bp->b_flags |= B_DEFERRED;
2207 bp = TAILQ_FIRST(&bufqueues[q]);
2208 continue;
2212 * Only write it out if we can successfully lock
2213 * it. If the buffer has a dependancy,
2214 * buf_checkwrite must also return 0 for us to
2215 * be able to initate the write.
2217 * If the buffer is flagged B_ERROR it may be
2218 * requeued over and over again, we try to
2219 * avoid a live lock.
2221 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2222 if (LIST_FIRST(&bp->b_dep) != NULL &&
2223 buf_checkwrite(bp)) {
2224 bremfree(bp);
2225 brelse(bp);
2226 } else if (bp->b_flags & B_ERROR) {
2227 tsleep(bp, 0, "bioer", 1);
2228 bp->b_flags &= ~B_AGE;
2229 vfs_bio_awrite(bp);
2230 } else {
2231 bp->b_flags |= B_AGE;
2232 vfs_bio_awrite(bp);
2234 ++r;
2235 break;
2238 bp = TAILQ_NEXT(bp, b_freelist);
2240 return (r);
2244 * inmem:
2246 * Returns true if no I/O is needed to access the associated VM object.
2247 * This is like findblk except it also hunts around in the VM system for
2248 * the data.
2250 * Note that we ignore vm_page_free() races from interrupts against our
2251 * lookup, since if the caller is not protected our return value will not
2252 * be any more valid then otherwise once we exit the critical section.
2255 inmem(struct vnode *vp, off_t loffset)
2257 vm_object_t obj;
2258 vm_offset_t toff, tinc, size;
2259 vm_page_t m;
2261 if (findblk(vp, loffset))
2262 return 1;
2263 if (vp->v_mount == NULL)
2264 return 0;
2265 if ((obj = vp->v_object) == NULL)
2266 return 0;
2268 size = PAGE_SIZE;
2269 if (size > vp->v_mount->mnt_stat.f_iosize)
2270 size = vp->v_mount->mnt_stat.f_iosize;
2272 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2273 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2274 if (m == NULL)
2275 return 0;
2276 tinc = size;
2277 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2278 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2279 if (vm_page_is_valid(m,
2280 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2281 return 0;
2283 return 1;
2287 * vfs_setdirty:
2289 * Sets the dirty range for a buffer based on the status of the dirty
2290 * bits in the pages comprising the buffer.
2292 * The range is limited to the size of the buffer.
2294 * This routine is primarily used by NFS, but is generalized for the
2295 * B_VMIO case.
2297 static void
2298 vfs_setdirty(struct buf *bp)
2300 int i;
2301 vm_object_t object;
2304 * Degenerate case - empty buffer
2307 if (bp->b_bufsize == 0)
2308 return;
2311 * We qualify the scan for modified pages on whether the
2312 * object has been flushed yet. The OBJ_WRITEABLE flag
2313 * is not cleared simply by protecting pages off.
2316 if ((bp->b_flags & B_VMIO) == 0)
2317 return;
2319 object = bp->b_xio.xio_pages[0]->object;
2321 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2322 kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2323 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2324 kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2326 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2327 vm_offset_t boffset;
2328 vm_offset_t eoffset;
2331 * test the pages to see if they have been modified directly
2332 * by users through the VM system.
2334 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2335 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2336 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2340 * Calculate the encompassing dirty range, boffset and eoffset,
2341 * (eoffset - boffset) bytes.
2344 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2345 if (bp->b_xio.xio_pages[i]->dirty)
2346 break;
2348 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2350 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2351 if (bp->b_xio.xio_pages[i]->dirty) {
2352 break;
2355 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2358 * Fit it to the buffer.
2361 if (eoffset > bp->b_bcount)
2362 eoffset = bp->b_bcount;
2365 * If we have a good dirty range, merge with the existing
2366 * dirty range.
2369 if (boffset < eoffset) {
2370 if (bp->b_dirtyoff > boffset)
2371 bp->b_dirtyoff = boffset;
2372 if (bp->b_dirtyend < eoffset)
2373 bp->b_dirtyend = eoffset;
2379 * findblk:
2381 * Locate and return the specified buffer, or NULL if the buffer does
2382 * not exist. Do not attempt to lock the buffer or manipulate it in
2383 * any way. The caller must validate that the correct buffer has been
2384 * obtain after locking it.
2386 struct buf *
2387 findblk(struct vnode *vp, off_t loffset)
2389 struct buf *bp;
2391 crit_enter();
2392 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2393 crit_exit();
2394 return(bp);
2398 * getblk:
2400 * Get a block given a specified block and offset into a file/device.
2401 * B_INVAL may or may not be set on return. The caller should clear
2402 * B_INVAL prior to initiating a READ.
2404 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2405 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2406 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2407 * without doing any of those things the system will likely believe
2408 * the buffer to be valid (especially if it is not B_VMIO), and the
2409 * next getblk() will return the buffer with B_CACHE set.
2411 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2412 * an existing buffer.
2414 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2415 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2416 * and then cleared based on the backing VM. If the previous buffer is
2417 * non-0-sized but invalid, B_CACHE will be cleared.
2419 * If getblk() must create a new buffer, the new buffer is returned with
2420 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2421 * case it is returned with B_INVAL clear and B_CACHE set based on the
2422 * backing VM.
2424 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2425 * B_CACHE bit is clear.
2427 * What this means, basically, is that the caller should use B_CACHE to
2428 * determine whether the buffer is fully valid or not and should clear
2429 * B_INVAL prior to issuing a read. If the caller intends to validate
2430 * the buffer by loading its data area with something, the caller needs
2431 * to clear B_INVAL. If the caller does this without issuing an I/O,
2432 * the caller should set B_CACHE ( as an optimization ), else the caller
2433 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2434 * a write attempt or if it was a successfull read. If the caller
2435 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2436 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2438 * getblk flags:
2440 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2441 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2443 struct buf *
2444 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2446 struct buf *bp;
2447 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2448 int error;
2450 if (size > MAXBSIZE)
2451 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2452 if (vp->v_object == NULL)
2453 panic("getblk: vnode %p has no object!", vp);
2455 crit_enter();
2456 loop:
2457 if ((bp = findblk(vp, loffset))) {
2459 * The buffer was found in the cache, but we need to lock it.
2460 * Even with LK_NOWAIT the lockmgr may break our critical
2461 * section, so double-check the validity of the buffer
2462 * once the lock has been obtained.
2464 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2465 if (blkflags & GETBLK_NOWAIT) {
2466 crit_exit();
2467 return(NULL);
2469 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2470 if (blkflags & GETBLK_PCATCH)
2471 lkflags |= LK_PCATCH;
2472 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2473 if (error) {
2474 if (error == ENOLCK)
2475 goto loop;
2476 crit_exit();
2477 return (NULL);
2482 * Once the buffer has been locked, make sure we didn't race
2483 * a buffer recyclement. Buffers that are no longer hashed
2484 * will have b_vp == NULL, so this takes care of that check
2485 * as well.
2487 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2488 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2489 BUF_UNLOCK(bp);
2490 goto loop;
2494 * If SZMATCH any pre-existing buffer must be of the requested
2495 * size or NULL is returned. The caller absolutely does not
2496 * want getblk() to bwrite() the buffer on a size mismatch.
2498 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2499 BUF_UNLOCK(bp);
2500 crit_exit();
2501 return(NULL);
2505 * All vnode-based buffers must be backed by a VM object.
2507 KKASSERT(bp->b_flags & B_VMIO);
2508 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2509 bp->b_flags &= ~B_AGE;
2512 * Make sure that B_INVAL buffers do not have a cached
2513 * block number translation.
2515 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2516 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2517 clearbiocache(&bp->b_bio2);
2521 * The buffer is locked. B_CACHE is cleared if the buffer is
2522 * invalid.
2524 if (bp->b_flags & B_INVAL)
2525 bp->b_flags &= ~B_CACHE;
2526 bremfree(bp);
2529 * Any size inconsistancy with a dirty buffer or a buffer
2530 * with a softupdates dependancy must be resolved. Resizing
2531 * the buffer in such circumstances can lead to problems.
2533 if (size != bp->b_bcount) {
2534 if (bp->b_flags & B_DELWRI) {
2535 bp->b_flags |= B_NOCACHE;
2536 bwrite(bp);
2537 } else if (LIST_FIRST(&bp->b_dep)) {
2538 bp->b_flags |= B_NOCACHE;
2539 bwrite(bp);
2540 } else {
2541 bp->b_flags |= B_RELBUF;
2542 brelse(bp);
2544 goto loop;
2546 KKASSERT(size <= bp->b_kvasize);
2547 KASSERT(bp->b_loffset != NOOFFSET,
2548 ("getblk: no buffer offset"));
2551 * A buffer with B_DELWRI set and B_CACHE clear must
2552 * be committed before we can return the buffer in
2553 * order to prevent the caller from issuing a read
2554 * ( due to B_CACHE not being set ) and overwriting
2555 * it.
2557 * Most callers, including NFS and FFS, need this to
2558 * operate properly either because they assume they
2559 * can issue a read if B_CACHE is not set, or because
2560 * ( for example ) an uncached B_DELWRI might loop due
2561 * to softupdates re-dirtying the buffer. In the latter
2562 * case, B_CACHE is set after the first write completes,
2563 * preventing further loops.
2565 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2566 * above while extending the buffer, we cannot allow the
2567 * buffer to remain with B_CACHE set after the write
2568 * completes or it will represent a corrupt state. To
2569 * deal with this we set B_NOCACHE to scrap the buffer
2570 * after the write.
2572 * We might be able to do something fancy, like setting
2573 * B_CACHE in bwrite() except if B_DELWRI is already set,
2574 * so the below call doesn't set B_CACHE, but that gets real
2575 * confusing. This is much easier.
2578 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2579 bp->b_flags |= B_NOCACHE;
2580 bwrite(bp);
2581 goto loop;
2583 crit_exit();
2584 } else {
2586 * Buffer is not in-core, create new buffer. The buffer
2587 * returned by getnewbuf() is locked. Note that the returned
2588 * buffer is also considered valid (not marked B_INVAL).
2590 * Calculating the offset for the I/O requires figuring out
2591 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2592 * the mount's f_iosize otherwise. If the vnode does not
2593 * have an associated mount we assume that the passed size is
2594 * the block size.
2596 * Note that vn_isdisk() cannot be used here since it may
2597 * return a failure for numerous reasons. Note that the
2598 * buffer size may be larger then the block size (the caller
2599 * will use block numbers with the proper multiple). Beware
2600 * of using any v_* fields which are part of unions. In
2601 * particular, in DragonFly the mount point overloading
2602 * mechanism uses the namecache only and the underlying
2603 * directory vnode is not a special case.
2605 int bsize, maxsize;
2607 if (vp->v_type == VBLK || vp->v_type == VCHR)
2608 bsize = DEV_BSIZE;
2609 else if (vp->v_mount)
2610 bsize = vp->v_mount->mnt_stat.f_iosize;
2611 else
2612 bsize = size;
2614 maxsize = size + (loffset & PAGE_MASK);
2615 maxsize = imax(maxsize, bsize);
2617 if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2618 if (slpflags || slptimeo) {
2619 crit_exit();
2620 return NULL;
2622 goto loop;
2626 * This code is used to make sure that a buffer is not
2627 * created while the getnewbuf routine is blocked.
2628 * This can be a problem whether the vnode is locked or not.
2629 * If the buffer is created out from under us, we have to
2630 * throw away the one we just created. There is no window
2631 * race because we are safely running in a critical section
2632 * from the point of the duplicate buffer creation through
2633 * to here, and we've locked the buffer.
2635 if (findblk(vp, loffset)) {
2636 bp->b_flags |= B_INVAL;
2637 brelse(bp);
2638 goto loop;
2642 * Insert the buffer into the hash, so that it can
2643 * be found by findblk().
2645 * Make sure the translation layer has been cleared.
2647 bp->b_loffset = loffset;
2648 bp->b_bio2.bio_offset = NOOFFSET;
2649 /* bp->b_bio2.bio_next = NULL; */
2651 bgetvp(vp, bp);
2654 * All vnode-based buffers must be backed by a VM object.
2656 KKASSERT(vp->v_object != NULL);
2657 bp->b_flags |= B_VMIO;
2658 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2660 allocbuf(bp, size);
2662 crit_exit();
2664 return (bp);
2668 * regetblk(bp)
2670 * Reacquire a buffer that was previously released to the locked queue,
2671 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2672 * set B_LOCKED (which handles the acquisition race).
2674 * To this end, either B_LOCKED must be set or the dependancy list must be
2675 * non-empty.
2677 void
2678 regetblk(struct buf *bp)
2680 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2681 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2682 crit_enter();
2683 bremfree(bp);
2684 crit_exit();
2688 * geteblk:
2690 * Get an empty, disassociated buffer of given size. The buffer is
2691 * initially set to B_INVAL.
2693 * critical section protection is not required for the allocbuf()
2694 * call because races are impossible here.
2696 struct buf *
2697 geteblk(int size)
2699 struct buf *bp;
2700 int maxsize;
2702 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2704 crit_enter();
2705 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2707 crit_exit();
2708 allocbuf(bp, size);
2709 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2710 return (bp);
2715 * allocbuf:
2717 * This code constitutes the buffer memory from either anonymous system
2718 * memory (in the case of non-VMIO operations) or from an associated
2719 * VM object (in the case of VMIO operations). This code is able to
2720 * resize a buffer up or down.
2722 * Note that this code is tricky, and has many complications to resolve
2723 * deadlock or inconsistant data situations. Tread lightly!!!
2724 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2725 * the caller. Calling this code willy nilly can result in the loss of data.
2727 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2728 * B_CACHE for the non-VMIO case.
2730 * This routine does not need to be called from a critical section but you
2731 * must own the buffer.
2734 allocbuf(struct buf *bp, int size)
2736 int newbsize, mbsize;
2737 int i;
2739 if (BUF_REFCNT(bp) == 0)
2740 panic("allocbuf: buffer not busy");
2742 if (bp->b_kvasize < size)
2743 panic("allocbuf: buffer too small");
2745 if ((bp->b_flags & B_VMIO) == 0) {
2746 caddr_t origbuf;
2747 int origbufsize;
2749 * Just get anonymous memory from the kernel. Don't
2750 * mess with B_CACHE.
2752 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2753 if (bp->b_flags & B_MALLOC)
2754 newbsize = mbsize;
2755 else
2756 newbsize = round_page(size);
2758 if (newbsize < bp->b_bufsize) {
2760 * Malloced buffers are not shrunk
2762 if (bp->b_flags & B_MALLOC) {
2763 if (newbsize) {
2764 bp->b_bcount = size;
2765 } else {
2766 kfree(bp->b_data, M_BIOBUF);
2767 if (bp->b_bufsize) {
2768 bufmallocspace -= bp->b_bufsize;
2769 bufspacewakeup();
2770 bp->b_bufsize = 0;
2772 bp->b_data = bp->b_kvabase;
2773 bp->b_bcount = 0;
2774 bp->b_flags &= ~B_MALLOC;
2776 return 1;
2778 vm_hold_free_pages(
2780 (vm_offset_t) bp->b_data + newbsize,
2781 (vm_offset_t) bp->b_data + bp->b_bufsize);
2782 } else if (newbsize > bp->b_bufsize) {
2784 * We only use malloced memory on the first allocation.
2785 * and revert to page-allocated memory when the buffer
2786 * grows.
2788 if ((bufmallocspace < maxbufmallocspace) &&
2789 (bp->b_bufsize == 0) &&
2790 (mbsize <= PAGE_SIZE/2)) {
2792 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2793 bp->b_bufsize = mbsize;
2794 bp->b_bcount = size;
2795 bp->b_flags |= B_MALLOC;
2796 bufmallocspace += mbsize;
2797 return 1;
2799 origbuf = NULL;
2800 origbufsize = 0;
2802 * If the buffer is growing on its other-than-first
2803 * allocation, then we revert to the page-allocation
2804 * scheme.
2806 if (bp->b_flags & B_MALLOC) {
2807 origbuf = bp->b_data;
2808 origbufsize = bp->b_bufsize;
2809 bp->b_data = bp->b_kvabase;
2810 if (bp->b_bufsize) {
2811 bufmallocspace -= bp->b_bufsize;
2812 bufspacewakeup();
2813 bp->b_bufsize = 0;
2815 bp->b_flags &= ~B_MALLOC;
2816 newbsize = round_page(newbsize);
2818 vm_hold_load_pages(
2820 (vm_offset_t) bp->b_data + bp->b_bufsize,
2821 (vm_offset_t) bp->b_data + newbsize);
2822 if (origbuf) {
2823 bcopy(origbuf, bp->b_data, origbufsize);
2824 kfree(origbuf, M_BIOBUF);
2827 } else {
2828 vm_page_t m;
2829 int desiredpages;
2831 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2832 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2833 newbsize + PAGE_MASK) >> PAGE_SHIFT;
2834 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2836 if (bp->b_flags & B_MALLOC)
2837 panic("allocbuf: VMIO buffer can't be malloced");
2839 * Set B_CACHE initially if buffer is 0 length or will become
2840 * 0-length.
2842 if (size == 0 || bp->b_bufsize == 0)
2843 bp->b_flags |= B_CACHE;
2845 if (newbsize < bp->b_bufsize) {
2847 * DEV_BSIZE aligned new buffer size is less then the
2848 * DEV_BSIZE aligned existing buffer size. Figure out
2849 * if we have to remove any pages.
2851 if (desiredpages < bp->b_xio.xio_npages) {
2852 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2854 * the page is not freed here -- it
2855 * is the responsibility of
2856 * vnode_pager_setsize
2858 m = bp->b_xio.xio_pages[i];
2859 KASSERT(m != bogus_page,
2860 ("allocbuf: bogus page found"));
2861 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2864 bp->b_xio.xio_pages[i] = NULL;
2865 vm_page_unwire(m, 0);
2867 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2868 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2869 bp->b_xio.xio_npages = desiredpages;
2871 } else if (size > bp->b_bcount) {
2873 * We are growing the buffer, possibly in a
2874 * byte-granular fashion.
2876 struct vnode *vp;
2877 vm_object_t obj;
2878 vm_offset_t toff;
2879 vm_offset_t tinc;
2882 * Step 1, bring in the VM pages from the object,
2883 * allocating them if necessary. We must clear
2884 * B_CACHE if these pages are not valid for the
2885 * range covered by the buffer.
2887 * critical section protection is required to protect
2888 * against interrupts unbusying and freeing pages
2889 * between our vm_page_lookup() and our
2890 * busycheck/wiring call.
2892 vp = bp->b_vp;
2893 obj = vp->v_object;
2895 crit_enter();
2896 while (bp->b_xio.xio_npages < desiredpages) {
2897 vm_page_t m;
2898 vm_pindex_t pi;
2900 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2901 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2903 * note: must allocate system pages
2904 * since blocking here could intefere
2905 * with paging I/O, no matter which
2906 * process we are.
2908 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
2909 if (m) {
2910 vm_page_wire(m);
2911 vm_page_wakeup(m);
2912 bp->b_flags &= ~B_CACHE;
2913 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2914 ++bp->b_xio.xio_npages;
2916 continue;
2920 * We found a page. If we have to sleep on it,
2921 * retry because it might have gotten freed out
2922 * from under us.
2924 * We can only test PG_BUSY here. Blocking on
2925 * m->busy might lead to a deadlock:
2927 * vm_fault->getpages->cluster_read->allocbuf
2931 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2932 continue;
2935 * We have a good page. Should we wakeup the
2936 * page daemon?
2938 if ((curthread != pagethread) &&
2939 ((m->queue - m->pc) == PQ_CACHE) &&
2940 ((vmstats.v_free_count + vmstats.v_cache_count) <
2941 (vmstats.v_free_min + vmstats.v_cache_min))) {
2942 pagedaemon_wakeup();
2944 vm_page_flag_clear(m, PG_ZERO);
2945 vm_page_wire(m);
2946 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2947 ++bp->b_xio.xio_npages;
2949 crit_exit();
2952 * Step 2. We've loaded the pages into the buffer,
2953 * we have to figure out if we can still have B_CACHE
2954 * set. Note that B_CACHE is set according to the
2955 * byte-granular range ( bcount and size ), not the
2956 * aligned range ( newbsize ).
2958 * The VM test is against m->valid, which is DEV_BSIZE
2959 * aligned. Needless to say, the validity of the data
2960 * needs to also be DEV_BSIZE aligned. Note that this
2961 * fails with NFS if the server or some other client
2962 * extends the file's EOF. If our buffer is resized,
2963 * B_CACHE may remain set! XXX
2966 toff = bp->b_bcount;
2967 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2969 while ((bp->b_flags & B_CACHE) && toff < size) {
2970 vm_pindex_t pi;
2972 if (tinc > (size - toff))
2973 tinc = size - toff;
2975 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2976 PAGE_SHIFT;
2978 vfs_buf_test_cache(
2979 bp,
2980 bp->b_loffset,
2981 toff,
2982 tinc,
2983 bp->b_xio.xio_pages[pi]
2985 toff += tinc;
2986 tinc = PAGE_SIZE;
2990 * Step 3, fixup the KVM pmap. Remember that
2991 * bp->b_data is relative to bp->b_loffset, but
2992 * bp->b_loffset may be offset into the first page.
2995 bp->b_data = (caddr_t)
2996 trunc_page((vm_offset_t)bp->b_data);
2997 pmap_qenter(
2998 (vm_offset_t)bp->b_data,
2999 bp->b_xio.xio_pages,
3000 bp->b_xio.xio_npages
3002 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3003 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3007 /* adjust space use on already-dirty buffer */
3008 if (bp->b_flags & B_DELWRI) {
3009 dirtybufspace += newbsize - bp->b_bufsize;
3010 if (bp->b_flags & B_HEAVY)
3011 dirtybufspacehw += newbsize - bp->b_bufsize;
3013 if (newbsize < bp->b_bufsize)
3014 bufspacewakeup();
3015 bp->b_bufsize = newbsize; /* actual buffer allocation */
3016 bp->b_bcount = size; /* requested buffer size */
3017 return 1;
3021 * biowait:
3023 * Wait for buffer I/O completion, returning error status. The buffer
3024 * is left locked on return. B_EINTR is converted into an EINTR error
3025 * and cleared.
3027 * NOTE! The original b_cmd is lost on return, since b_cmd will be
3028 * set to BUF_CMD_DONE.
3031 biowait(struct buf *bp)
3033 crit_enter();
3034 while (bp->b_cmd != BUF_CMD_DONE) {
3035 if (bp->b_cmd == BUF_CMD_READ)
3036 tsleep(bp, 0, "biord", 0);
3037 else
3038 tsleep(bp, 0, "biowr", 0);
3040 crit_exit();
3041 if (bp->b_flags & B_EINTR) {
3042 bp->b_flags &= ~B_EINTR;
3043 return (EINTR);
3045 if (bp->b_flags & B_ERROR) {
3046 return (bp->b_error ? bp->b_error : EIO);
3047 } else {
3048 return (0);
3053 * This associates a tracking count with an I/O. vn_strategy() and
3054 * dev_dstrategy() do this automatically but there are a few cases
3055 * where a vnode or device layer is bypassed when a block translation
3056 * is cached. In such cases bio_start_transaction() may be called on
3057 * the bypassed layers so the system gets an I/O in progress indication
3058 * for those higher layers.
3060 void
3061 bio_start_transaction(struct bio *bio, struct bio_track *track)
3063 bio->bio_track = track;
3064 atomic_add_int(&track->bk_active, 1);
3068 * Initiate I/O on a vnode.
3070 void
3071 vn_strategy(struct vnode *vp, struct bio *bio)
3073 struct bio_track *track;
3075 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3076 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3077 track = &vp->v_track_read;
3078 else
3079 track = &vp->v_track_write;
3080 bio->bio_track = track;
3081 atomic_add_int(&track->bk_active, 1);
3082 vop_strategy(*vp->v_ops, vp, bio);
3087 * biodone:
3089 * Finish I/O on a buffer, optionally calling a completion function.
3090 * This is usually called from an interrupt so process blocking is
3091 * not allowed.
3093 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3094 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3095 * assuming B_INVAL is clear.
3097 * For the VMIO case, we set B_CACHE if the op was a read and no
3098 * read error occured, or if the op was a write. B_CACHE is never
3099 * set if the buffer is invalid or otherwise uncacheable.
3101 * biodone does not mess with B_INVAL, allowing the I/O routine or the
3102 * initiator to leave B_INVAL set to brelse the buffer out of existance
3103 * in the biodone routine.
3105 void
3106 biodone(struct bio *bio)
3108 struct buf *bp = bio->bio_buf;
3109 buf_cmd_t cmd;
3111 crit_enter();
3113 KASSERT(BUF_REFCNTNB(bp) > 0,
3114 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3115 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3116 ("biodone: bp %p already done!", bp));
3118 runningbufwakeup(bp);
3121 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3123 while (bio) {
3124 biodone_t *done_func;
3125 struct bio_track *track;
3128 * BIO tracking. Most but not all BIOs are tracked.
3130 if ((track = bio->bio_track) != NULL) {
3131 atomic_subtract_int(&track->bk_active, 1);
3132 if (track->bk_active < 0) {
3133 panic("biodone: bad active count bio %p\n",
3134 bio);
3136 if (track->bk_waitflag) {
3137 track->bk_waitflag = 0;
3138 wakeup(track);
3140 bio->bio_track = NULL;
3144 * A bio_done function terminates the loop. The function
3145 * will be responsible for any further chaining and/or
3146 * buffer management.
3148 * WARNING! The done function can deallocate the buffer!
3150 if ((done_func = bio->bio_done) != NULL) {
3151 bio->bio_done = NULL;
3152 done_func(bio);
3153 crit_exit();
3154 return;
3156 bio = bio->bio_prev;
3159 cmd = bp->b_cmd;
3160 bp->b_cmd = BUF_CMD_DONE;
3163 * Only reads and writes are processed past this point.
3165 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3166 if (cmd == BUF_CMD_FREEBLKS)
3167 bp->b_flags |= B_NOCACHE;
3168 brelse(bp);
3169 crit_exit();
3170 return;
3174 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3175 * a lot worse. XXX - move this above the clearing of b_cmd
3177 if (LIST_FIRST(&bp->b_dep) != NULL)
3178 buf_complete(bp);
3181 * A failed write must re-dirty the buffer unless B_INVAL
3182 * was set.
3184 if (cmd == BUF_CMD_WRITE &&
3185 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3186 bp->b_flags &= ~B_NOCACHE;
3187 bdirty(bp);
3191 if (bp->b_flags & B_VMIO) {
3192 int i;
3193 vm_ooffset_t foff;
3194 vm_page_t m;
3195 vm_object_t obj;
3196 int iosize;
3197 struct vnode *vp = bp->b_vp;
3199 obj = vp->v_object;
3201 #if defined(VFS_BIO_DEBUG)
3202 if (vp->v_auxrefs == 0)
3203 panic("biodone: zero vnode hold count");
3204 if ((vp->v_flag & VOBJBUF) == 0)
3205 panic("biodone: vnode is not setup for merged cache");
3206 #endif
3208 foff = bp->b_loffset;
3209 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3210 KASSERT(obj != NULL, ("biodone: missing VM object"));
3212 #if defined(VFS_BIO_DEBUG)
3213 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3214 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3215 obj->paging_in_progress, bp->b_xio.xio_npages);
3217 #endif
3220 * Set B_CACHE if the op was a normal read and no error
3221 * occured. B_CACHE is set for writes in the b*write()
3222 * routines.
3224 iosize = bp->b_bcount - bp->b_resid;
3225 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3226 bp->b_flags |= B_CACHE;
3229 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3230 int bogusflag = 0;
3231 int resid;
3233 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3234 if (resid > iosize)
3235 resid = iosize;
3238 * cleanup bogus pages, restoring the originals. Since
3239 * the originals should still be wired, we don't have
3240 * to worry about interrupt/freeing races destroying
3241 * the VM object association.
3243 m = bp->b_xio.xio_pages[i];
3244 if (m == bogus_page) {
3245 bogusflag = 1;
3246 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3247 if (m == NULL)
3248 panic("biodone: page disappeared");
3249 bp->b_xio.xio_pages[i] = m;
3250 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3251 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3253 #if defined(VFS_BIO_DEBUG)
3254 if (OFF_TO_IDX(foff) != m->pindex) {
3255 kprintf(
3256 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3257 (unsigned long)foff, m->pindex);
3259 #endif
3262 * In the write case, the valid and clean bits are
3263 * already changed correctly ( see bdwrite() ), so we
3264 * only need to do this here in the read case.
3266 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3267 vfs_page_set_valid(bp, foff, i, m);
3269 vm_page_flag_clear(m, PG_ZERO);
3272 * when debugging new filesystems or buffer I/O methods, this
3273 * is the most common error that pops up. if you see this, you
3274 * have not set the page busy flag correctly!!!
3276 if (m->busy == 0) {
3277 kprintf("biodone: page busy < 0, "
3278 "pindex: %d, foff: 0x(%x,%x), "
3279 "resid: %d, index: %d\n",
3280 (int) m->pindex, (int)(foff >> 32),
3281 (int) foff & 0xffffffff, resid, i);
3282 if (!vn_isdisk(vp, NULL))
3283 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3284 bp->b_vp->v_mount->mnt_stat.f_iosize,
3285 bp->b_loffset,
3286 bp->b_flags, bp->b_xio.xio_npages);
3287 else
3288 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3289 bp->b_loffset,
3290 bp->b_flags, bp->b_xio.xio_npages);
3291 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3292 m->valid, m->dirty, m->wire_count);
3293 panic("biodone: page busy < 0");
3295 vm_page_io_finish(m);
3296 vm_object_pip_subtract(obj, 1);
3297 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3298 iosize -= resid;
3300 if (obj)
3301 vm_object_pip_wakeupn(obj, 0);
3305 * For asynchronous completions, release the buffer now. The brelse
3306 * will do a wakeup there if necessary - so no need to do a wakeup
3307 * here in the async case. The sync case always needs to do a wakeup.
3310 if (bp->b_flags & B_ASYNC) {
3311 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3312 brelse(bp);
3313 else
3314 bqrelse(bp);
3315 } else {
3316 wakeup(bp);
3318 crit_exit();
3322 * vfs_unbusy_pages:
3324 * This routine is called in lieu of iodone in the case of
3325 * incomplete I/O. This keeps the busy status for pages
3326 * consistant.
3328 void
3329 vfs_unbusy_pages(struct buf *bp)
3331 int i;
3333 runningbufwakeup(bp);
3334 if (bp->b_flags & B_VMIO) {
3335 struct vnode *vp = bp->b_vp;
3336 vm_object_t obj;
3338 obj = vp->v_object;
3340 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3341 vm_page_t m = bp->b_xio.xio_pages[i];
3344 * When restoring bogus changes the original pages
3345 * should still be wired, so we are in no danger of
3346 * losing the object association and do not need
3347 * critical section protection particularly.
3349 if (m == bogus_page) {
3350 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3351 if (!m) {
3352 panic("vfs_unbusy_pages: page missing");
3354 bp->b_xio.xio_pages[i] = m;
3355 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3356 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3358 vm_object_pip_subtract(obj, 1);
3359 vm_page_flag_clear(m, PG_ZERO);
3360 vm_page_io_finish(m);
3362 vm_object_pip_wakeupn(obj, 0);
3367 * vfs_page_set_valid:
3369 * Set the valid bits in a page based on the supplied offset. The
3370 * range is restricted to the buffer's size.
3372 * This routine is typically called after a read completes.
3374 static void
3375 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3377 vm_ooffset_t soff, eoff;
3380 * Start and end offsets in buffer. eoff - soff may not cross a
3381 * page boundry or cross the end of the buffer. The end of the
3382 * buffer, in this case, is our file EOF, not the allocation size
3383 * of the buffer.
3385 soff = off;
3386 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3387 if (eoff > bp->b_loffset + bp->b_bcount)
3388 eoff = bp->b_loffset + bp->b_bcount;
3391 * Set valid range. This is typically the entire buffer and thus the
3392 * entire page.
3394 if (eoff > soff) {
3395 vm_page_set_validclean(
3397 (vm_offset_t) (soff & PAGE_MASK),
3398 (vm_offset_t) (eoff - soff)
3404 * vfs_busy_pages:
3406 * This routine is called before a device strategy routine.
3407 * It is used to tell the VM system that paging I/O is in
3408 * progress, and treat the pages associated with the buffer
3409 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3410 * flag is handled to make sure that the object doesn't become
3411 * inconsistant.
3413 * Since I/O has not been initiated yet, certain buffer flags
3414 * such as B_ERROR or B_INVAL may be in an inconsistant state
3415 * and should be ignored.
3417 void
3418 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3420 int i, bogus;
3421 struct lwp *lp = curthread->td_lwp;
3424 * The buffer's I/O command must already be set. If reading,
3425 * B_CACHE must be 0 (double check against callers only doing
3426 * I/O when B_CACHE is 0).
3428 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3429 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3431 if (bp->b_flags & B_VMIO) {
3432 vm_object_t obj;
3433 vm_ooffset_t foff;
3435 obj = vp->v_object;
3436 foff = bp->b_loffset;
3437 KASSERT(bp->b_loffset != NOOFFSET,
3438 ("vfs_busy_pages: no buffer offset"));
3439 vfs_setdirty(bp);
3442 * Loop until none of the pages are busy.
3444 retry:
3445 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3446 vm_page_t m = bp->b_xio.xio_pages[i];
3448 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3449 goto retry;
3453 * Setup for I/O, soft-busy the page right now because
3454 * the next loop may block.
3456 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3457 vm_page_t m = bp->b_xio.xio_pages[i];
3459 vm_page_flag_clear(m, PG_ZERO);
3460 if ((bp->b_flags & B_CLUSTER) == 0) {
3461 vm_object_pip_add(obj, 1);
3462 vm_page_io_start(m);
3467 * Adjust protections for I/O and do bogus-page mapping.
3468 * Assume that vm_page_protect() can block (it can block
3469 * if VM_PROT_NONE, don't take any chances regardless).
3471 bogus = 0;
3472 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3473 vm_page_t m = bp->b_xio.xio_pages[i];
3476 * When readying a vnode-backed buffer for a write
3477 * we must zero-fill any invalid portions of the
3478 * backing VM pages.
3480 * When readying a vnode-backed buffer for a read
3481 * we must replace any dirty pages with a bogus
3482 * page so we do not destroy dirty data when
3483 * filling in gaps. Dirty pages might not
3484 * necessarily be marked dirty yet, so use m->valid
3485 * as a reasonable test.
3487 * Bogus page replacement is, uh, bogus. We need
3488 * to find a better way.
3490 if (bp->b_cmd == BUF_CMD_WRITE) {
3491 vm_page_protect(m, VM_PROT_READ);
3492 vfs_page_set_valid(bp, foff, i, m);
3493 } else if (m->valid == VM_PAGE_BITS_ALL) {
3494 bp->b_xio.xio_pages[i] = bogus_page;
3495 bogus++;
3496 } else {
3497 vm_page_protect(m, VM_PROT_NONE);
3499 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3501 if (bogus)
3502 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3503 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3507 * This is the easiest place to put the process accounting for the I/O
3508 * for now.
3510 if (lp != NULL) {
3511 if (bp->b_cmd == BUF_CMD_READ)
3512 lp->lwp_ru.ru_inblock++;
3513 else
3514 lp->lwp_ru.ru_oublock++;
3519 * vfs_clean_pages:
3521 * Tell the VM system that the pages associated with this buffer
3522 * are clean. This is used for delayed writes where the data is
3523 * going to go to disk eventually without additional VM intevention.
3525 * Note that while we only really need to clean through to b_bcount, we
3526 * just go ahead and clean through to b_bufsize.
3528 static void
3529 vfs_clean_pages(struct buf *bp)
3531 int i;
3533 if (bp->b_flags & B_VMIO) {
3534 vm_ooffset_t foff;
3536 foff = bp->b_loffset;
3537 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3538 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3539 vm_page_t m = bp->b_xio.xio_pages[i];
3540 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3542 vfs_page_set_valid(bp, foff, i, m);
3543 foff = noff;
3549 * vfs_bio_set_validclean:
3551 * Set the range within the buffer to valid and clean. The range is
3552 * relative to the beginning of the buffer, b_loffset. Note that
3553 * b_loffset itself may be offset from the beginning of the first page.
3556 void
3557 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3559 if (bp->b_flags & B_VMIO) {
3560 int i;
3561 int n;
3564 * Fixup base to be relative to beginning of first page.
3565 * Set initial n to be the maximum number of bytes in the
3566 * first page that can be validated.
3569 base += (bp->b_loffset & PAGE_MASK);
3570 n = PAGE_SIZE - (base & PAGE_MASK);
3572 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3573 vm_page_t m = bp->b_xio.xio_pages[i];
3575 if (n > size)
3576 n = size;
3578 vm_page_set_validclean(m, base & PAGE_MASK, n);
3579 base += n;
3580 size -= n;
3581 n = PAGE_SIZE;
3587 * vfs_bio_clrbuf:
3589 * Clear a buffer. This routine essentially fakes an I/O, so we need
3590 * to clear B_ERROR and B_INVAL.
3592 * Note that while we only theoretically need to clear through b_bcount,
3593 * we go ahead and clear through b_bufsize.
3596 void
3597 vfs_bio_clrbuf(struct buf *bp)
3599 int i, mask = 0;
3600 caddr_t sa, ea;
3601 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3602 bp->b_flags &= ~(B_INVAL|B_ERROR);
3603 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3604 (bp->b_loffset & PAGE_MASK) == 0) {
3605 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3606 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3607 bp->b_resid = 0;
3608 return;
3610 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3611 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3612 bzero(bp->b_data, bp->b_bufsize);
3613 bp->b_xio.xio_pages[0]->valid |= mask;
3614 bp->b_resid = 0;
3615 return;
3618 sa = bp->b_data;
3619 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3620 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3621 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3622 ea = (caddr_t)(vm_offset_t)ulmin(
3623 (u_long)(vm_offset_t)ea,
3624 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3625 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3626 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3627 continue;
3628 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3629 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3630 bzero(sa, ea - sa);
3632 } else {
3633 for (; sa < ea; sa += DEV_BSIZE, j++) {
3634 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3635 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3636 bzero(sa, DEV_BSIZE);
3639 bp->b_xio.xio_pages[i]->valid |= mask;
3640 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3642 bp->b_resid = 0;
3643 } else {
3644 clrbuf(bp);
3649 * vm_hold_load_pages:
3651 * Load pages into the buffer's address space. The pages are
3652 * allocated from the kernel object in order to reduce interference
3653 * with the any VM paging I/O activity. The range of loaded
3654 * pages will be wired.
3656 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3657 * retrieve the full range (to - from) of pages.
3660 void
3661 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3663 vm_offset_t pg;
3664 vm_page_t p;
3665 int index;
3667 to = round_page(to);
3668 from = round_page(from);
3669 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3671 pg = from;
3672 while (pg < to) {
3674 * Note: must allocate system pages since blocking here
3675 * could intefere with paging I/O, no matter which
3676 * process we are.
3678 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
3679 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
3680 if (p) {
3681 vm_page_wire(p);
3682 p->valid = VM_PAGE_BITS_ALL;
3683 vm_page_flag_clear(p, PG_ZERO);
3684 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3685 bp->b_xio.xio_pages[index] = p;
3686 vm_page_wakeup(p);
3688 pg += PAGE_SIZE;
3689 ++index;
3692 bp->b_xio.xio_npages = index;
3696 * Allocate pages for a buffer cache buffer.
3698 * Under extremely severe memory conditions even allocating out of the
3699 * system reserve can fail. If this occurs we must allocate out of the
3700 * interrupt reserve to avoid a deadlock with the pageout daemon.
3702 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
3703 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
3704 * against the pageout daemon if pages are not freed from other sources.
3706 static
3707 vm_page_t
3708 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
3710 vm_page_t p;
3713 * Try a normal allocation, allow use of system reserve.
3715 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3716 if (p)
3717 return(p);
3720 * The normal allocation failed and we clearly have a page
3721 * deficit. Try to reclaim some clean VM pages directly
3722 * from the buffer cache.
3724 vm_pageout_deficit += deficit;
3725 recoverbufpages();
3728 * We may have blocked, the caller will know what to do if the
3729 * page now exists.
3731 if (vm_page_lookup(obj, pg))
3732 return(NULL);
3735 * Allocate and allow use of the interrupt reserve.
3737 * If after all that we still can't allocate a VM page we are
3738 * in real trouble, but we slog on anyway hoping that the system
3739 * won't deadlock.
3741 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
3742 VM_ALLOC_INTERRUPT);
3743 if (p) {
3744 if (vm_page_count_severe()) {
3745 kprintf("bio_page_alloc: WARNING emergency page "
3746 "allocation\n");
3747 vm_wait(hz / 20);
3749 } else {
3750 kprintf("bio_page_alloc: WARNING emergency page "
3751 "allocation failed\n");
3752 vm_wait(hz * 5);
3754 return(p);
3758 * vm_hold_free_pages:
3760 * Return pages associated with the buffer back to the VM system.
3762 * The range of pages underlying the buffer's address space will
3763 * be unmapped and un-wired.
3765 void
3766 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3768 vm_offset_t pg;
3769 vm_page_t p;
3770 int index, newnpages;
3772 from = round_page(from);
3773 to = round_page(to);
3774 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3776 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3777 p = bp->b_xio.xio_pages[index];
3778 if (p && (index < bp->b_xio.xio_npages)) {
3779 if (p->busy) {
3780 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3781 bp->b_bio2.bio_offset, bp->b_loffset);
3783 bp->b_xio.xio_pages[index] = NULL;
3784 pmap_kremove(pg);
3785 vm_page_busy(p);
3786 vm_page_unwire(p, 0);
3787 vm_page_free(p);
3790 bp->b_xio.xio_npages = newnpages;
3794 * vmapbuf:
3796 * Map a user buffer into KVM via a pbuf. On return the buffer's
3797 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3798 * initialized.
3801 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3803 caddr_t addr;
3804 vm_offset_t va;
3805 vm_page_t m;
3806 int vmprot;
3807 int error;
3808 int pidx;
3809 int i;
3812 * bp had better have a command and it better be a pbuf.
3814 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3815 KKASSERT(bp->b_flags & B_PAGING);
3817 if (bytes < 0)
3818 return (-1);
3821 * Map the user data into KVM. Mappings have to be page-aligned.
3823 addr = (caddr_t)trunc_page((vm_offset_t)udata);
3824 pidx = 0;
3826 vmprot = VM_PROT_READ;
3827 if (bp->b_cmd == BUF_CMD_READ)
3828 vmprot |= VM_PROT_WRITE;
3830 while (addr < udata + bytes) {
3832 * Do the vm_fault if needed; do the copy-on-write thing
3833 * when reading stuff off device into memory.
3835 * vm_fault_page*() returns a held VM page.
3837 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3838 va = trunc_page(va);
3840 m = vm_fault_page_quick(va, vmprot, &error);
3841 if (m == NULL) {
3842 for (i = 0; i < pidx; ++i) {
3843 vm_page_unhold(bp->b_xio.xio_pages[i]);
3844 bp->b_xio.xio_pages[i] = NULL;
3846 return(-1);
3848 bp->b_xio.xio_pages[pidx] = m;
3849 addr += PAGE_SIZE;
3850 ++pidx;
3854 * Map the page array and set the buffer fields to point to
3855 * the mapped data buffer.
3857 if (pidx > btoc(MAXPHYS))
3858 panic("vmapbuf: mapped more than MAXPHYS");
3859 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3861 bp->b_xio.xio_npages = pidx;
3862 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3863 bp->b_bcount = bytes;
3864 bp->b_bufsize = bytes;
3865 return(0);
3869 * vunmapbuf:
3871 * Free the io map PTEs associated with this IO operation.
3872 * We also invalidate the TLB entries and restore the original b_addr.
3874 void
3875 vunmapbuf(struct buf *bp)
3877 int pidx;
3878 int npages;
3880 KKASSERT(bp->b_flags & B_PAGING);
3882 npages = bp->b_xio.xio_npages;
3883 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3884 for (pidx = 0; pidx < npages; ++pidx) {
3885 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3886 bp->b_xio.xio_pages[pidx] = NULL;
3888 bp->b_xio.xio_npages = 0;
3889 bp->b_data = bp->b_kvabase;
3893 * Scan all buffers in the system and issue the callback.
3896 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3898 int count = 0;
3899 int error;
3900 int n;
3902 for (n = 0; n < nbuf; ++n) {
3903 if ((error = callback(&buf[n], info)) < 0) {
3904 count = error;
3905 break;
3907 count += error;
3909 return (count);
3913 * print out statistics from the current status of the buffer pool
3914 * this can be toggeled by the system control option debug.syncprt
3916 #ifdef DEBUG
3917 void
3918 vfs_bufstats(void)
3920 int i, j, count;
3921 struct buf *bp;
3922 struct bqueues *dp;
3923 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3924 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3926 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3927 count = 0;
3928 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3929 counts[j] = 0;
3930 crit_enter();
3931 TAILQ_FOREACH(bp, dp, b_freelist) {
3932 counts[bp->b_bufsize/PAGE_SIZE]++;
3933 count++;
3935 crit_exit();
3936 kprintf("%s: total-%d", bname[i], count);
3937 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3938 if (counts[j] != 0)
3939 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3940 kprintf("\n");
3943 #endif
3945 #ifdef DDB
3947 DB_SHOW_COMMAND(buffer, db_show_buffer)
3949 /* get args */
3950 struct buf *bp = (struct buf *)addr;
3952 if (!have_addr) {
3953 db_printf("usage: show buffer <addr>\n");
3954 return;
3957 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3958 db_printf("b_cmd = %d\n", bp->b_cmd);
3959 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3960 "b_resid = %d\n, b_data = %p, "
3961 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3962 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3963 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3964 if (bp->b_xio.xio_npages) {
3965 int i;
3966 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3967 bp->b_xio.xio_npages);
3968 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3969 vm_page_t m;
3970 m = bp->b_xio.xio_pages[i];
3971 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3972 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3973 if ((i + 1) < bp->b_xio.xio_npages)
3974 db_printf(",");
3976 db_printf("\n");
3979 #endif /* DDB */