Import 2.3.18pre1
[davej-history.git] / include / asm-mips / dma.h
blob7f815b733430777d3a95b27eb50c651a403771ba
1 /* $Id: dma.h,v 1.2 1998/10/19 21:29:10 ralf Exp $
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
7 * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
8 * and can only be used for expansion cards. Onboard DMA controllers, such
9 * as the R4030 on Jazz boards behave totally different!
12 #ifndef __ASM_MIPS_DMA_H
13 #define __ASM_MIPS_DMA_H
15 #include <linux/config.h>
16 #include <asm/io.h> /* need byte IO */
17 #include <linux/spinlock.h> /* And spinlocks */
18 #include <linux/delay.h>
19 #include <asm/system.h>
22 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
23 #define dma_outb outb_p
24 #else
25 #define dma_outb outb
26 #endif
28 #define dma_inb inb
31 * NOTES about DMA transfers:
33 * controller 1: channels 0-3, byte operations, ports 00-1F
34 * controller 2: channels 4-7, word operations, ports C0-DF
36 * - ALL registers are 8 bits only, regardless of transfer size
37 * - channel 4 is not used - cascades 1 into 2.
38 * - channels 0-3 are byte - addresses/counts are for physical bytes
39 * - channels 5-7 are word - addresses/counts are for physical words
40 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
41 * - transfer count loaded to registers is 1 less than actual count
42 * - controller 2 offsets are all even (2x offsets for controller 1)
43 * - page registers for 5-7 don't use data bit 0, represent 128K pages
44 * - page registers for 0-3 use bit 0, represent 64K pages
46 * DMA transfers are limited to the lower 16MB of _physical_ memory.
47 * Note that addresses loaded into registers must be _physical_ addresses,
48 * not logical addresses (which may differ if paging is active).
50 * Address mapping for channels 0-3:
52 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
53 * | ... | | ... | | ... |
54 * | ... | | ... | | ... |
55 * | ... | | ... | | ... |
56 * P7 ... P0 A7 ... A0 A7 ... A0
57 * | Page | Addr MSB | Addr LSB | (DMA registers)
59 * Address mapping for channels 5-7:
61 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
62 * | ... | \ \ ... \ \ \ ... \ \
63 * | ... | \ \ ... \ \ \ ... \ (not used)
64 * | ... | \ \ ... \ \ \ ... \
65 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
66 * | Page | Addr MSB | Addr LSB | (DMA registers)
68 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
69 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
70 * the hardware level, so odd-byte transfers aren't possible).
72 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
73 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
74 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
78 #define MAX_DMA_CHANNELS 8
81 * The maximum address in KSEG0 that we can perform a DMA transfer to on this
82 * platform. This describes only the PC style part of the DMA logic like on
83 * Deskstations or Acer PICA but not the much more versatile DMA logic used
84 * for the local devices on Acer PICA or Magnums.
86 #ifndef CONFIG_SGI
87 #define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000)
88 #else
89 #define MAX_DMA_ADDRESS (~0UL)
90 #endif
92 /* 8237 DMA controllers */
93 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
94 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
96 /* DMA controller registers */
97 #define DMA1_CMD_REG 0x08 /* command register (w) */
98 #define DMA1_STAT_REG 0x08 /* status register (r) */
99 #define DMA1_REQ_REG 0x09 /* request register (w) */
100 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
101 #define DMA1_MODE_REG 0x0B /* mode register (w) */
102 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
103 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
104 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
105 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
106 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
108 #define DMA2_CMD_REG 0xD0 /* command register (w) */
109 #define DMA2_STAT_REG 0xD0 /* status register (r) */
110 #define DMA2_REQ_REG 0xD2 /* request register (w) */
111 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
112 #define DMA2_MODE_REG 0xD6 /* mode register (w) */
113 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
114 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
115 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
116 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
117 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
119 #define DMA_ADDR_0 0x00 /* DMA address registers */
120 #define DMA_ADDR_1 0x02
121 #define DMA_ADDR_2 0x04
122 #define DMA_ADDR_3 0x06
123 #define DMA_ADDR_4 0xC0
124 #define DMA_ADDR_5 0xC4
125 #define DMA_ADDR_6 0xC8
126 #define DMA_ADDR_7 0xCC
128 #define DMA_CNT_0 0x01 /* DMA count registers */
129 #define DMA_CNT_1 0x03
130 #define DMA_CNT_2 0x05
131 #define DMA_CNT_3 0x07
132 #define DMA_CNT_4 0xC2
133 #define DMA_CNT_5 0xC6
134 #define DMA_CNT_6 0xCA
135 #define DMA_CNT_7 0xCE
137 #define DMA_PAGE_0 0x87 /* DMA page registers */
138 #define DMA_PAGE_1 0x83
139 #define DMA_PAGE_2 0x81
140 #define DMA_PAGE_3 0x82
141 #define DMA_PAGE_5 0x8B
142 #define DMA_PAGE_6 0x89
143 #define DMA_PAGE_7 0x8A
145 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
146 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
147 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
150 extern spinlock_t dma_spin_lock;
152 static __inline__ unsigned long claim_dma_lock(void)
154 unsigned long flags;
155 spin_lock_irqsave(&dma_spin_lock, flags);
156 return flags;
159 static __inline__ void release_dma_lock(unsigned long flags)
161 spin_unlock_irqrestore(&dma_spin_lock, flags);
164 /* enable/disable a specific DMA channel */
165 static __inline__ void enable_dma(unsigned int dmanr)
167 if (dmanr<=3)
168 dma_outb(dmanr, DMA1_MASK_REG);
169 else
170 dma_outb(dmanr & 3, DMA2_MASK_REG);
173 static __inline__ void disable_dma(unsigned int dmanr)
175 if (dmanr<=3)
176 dma_outb(dmanr | 4, DMA1_MASK_REG);
177 else
178 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
181 /* Clear the 'DMA Pointer Flip Flop'.
182 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
183 * Use this once to initialize the FF to a known state.
184 * After that, keep track of it. :-)
185 * --- In order to do that, the DMA routines below should ---
186 * --- only be used while holding the DMA lock ! ---
188 static __inline__ void clear_dma_ff(unsigned int dmanr)
190 if (dmanr<=3)
191 dma_outb(0, DMA1_CLEAR_FF_REG);
192 else
193 dma_outb(0, DMA2_CLEAR_FF_REG);
196 /* set mode (above) for a specific DMA channel */
197 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
199 if (dmanr<=3)
200 dma_outb(mode | dmanr, DMA1_MODE_REG);
201 else
202 dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
205 /* Set only the page register bits of the transfer address.
206 * This is used for successive transfers when we know the contents of
207 * the lower 16 bits of the DMA current address register, but a 64k boundary
208 * may have been crossed.
210 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
212 switch(dmanr) {
213 case 0:
214 dma_outb(pagenr, DMA_PAGE_0);
215 break;
216 case 1:
217 dma_outb(pagenr, DMA_PAGE_1);
218 break;
219 case 2:
220 dma_outb(pagenr, DMA_PAGE_2);
221 break;
222 case 3:
223 dma_outb(pagenr, DMA_PAGE_3);
224 break;
225 case 5:
226 dma_outb(pagenr & 0xfe, DMA_PAGE_5);
227 break;
228 case 6:
229 dma_outb(pagenr & 0xfe, DMA_PAGE_6);
230 break;
231 case 7:
232 dma_outb(pagenr & 0xfe, DMA_PAGE_7);
233 break;
238 /* Set transfer address & page bits for specific DMA channel.
239 * Assumes dma flipflop is clear.
241 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
243 set_dma_page(dmanr, a>>16);
244 if (dmanr <= 3) {
245 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
246 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
247 } else {
248 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
249 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
254 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
255 * a specific DMA channel.
256 * You must ensure the parameters are valid.
257 * NOTE: from a manual: "the number of transfers is one more
258 * than the initial word count"! This is taken into account.
259 * Assumes dma flip-flop is clear.
260 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
262 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
264 count--;
265 if (dmanr <= 3) {
266 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
267 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
268 } else {
269 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
270 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
275 /* Get DMA residue count. After a DMA transfer, this
276 * should return zero. Reading this while a DMA transfer is
277 * still in progress will return unpredictable results.
278 * If called before the channel has been used, it may return 1.
279 * Otherwise, it returns the number of _bytes_ left to transfer.
281 * Assumes DMA flip-flop is clear.
283 static __inline__ int get_dma_residue(unsigned int dmanr)
285 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
286 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
288 /* using short to get 16-bit wrap around */
289 unsigned short count;
291 count = 1 + dma_inb(io_port);
292 count += dma_inb(io_port) << 8;
294 return (dmanr<=3)? count : (count<<1);
298 /* These are in kernel/dma.c: */
299 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
300 extern void free_dma(unsigned int dmanr); /* release it again */
302 #endif /* __ASM_MIPS_DMA_H */