* elf32-spu.c (build_stub): Fix malloc under-allocation.
[binutils.git] / gas / config / tc-mips.c
blobf23835a3cf642351afb258565c2f67c39be36e46
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
86 #include "ecoff.h"
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
92 #define ZERO 0
93 #define ATREG 1
94 #define S0 16
95 #define S7 23
96 #define TREG 24
97 #define PIC_CALL_REG 25
98 #define KT0 26
99 #define KT1 27
100 #define GP 28
101 #define SP 29
102 #define FP 30
103 #define RA 31
105 #define ILLEGAL_REG (32)
107 #define AT mips_opts.at
109 /* Allow override of standard little-endian ECOFF format. */
111 #ifndef ECOFF_LITTLE_FORMAT
112 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
113 #endif
115 extern int target_big_endian;
117 /* The name of the readonly data section. */
118 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
121 ? ".rdata" \
122 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
123 ? ".rodata" \
124 : (abort (), ""))
126 /* Ways in which an instruction can be "appended" to the output. */
127 enum append_method {
128 /* Just add it normally. */
129 APPEND_ADD,
131 /* Add it normally and then add a nop. */
132 APPEND_ADD_WITH_NOP,
134 /* Turn an instruction with a delay slot into a "compact" version. */
135 APPEND_ADD_COMPACT,
137 /* Insert the instruction before the last one. */
138 APPEND_SWAP
141 /* Information about an instruction, including its format, operands
142 and fixups. */
143 struct mips_cl_insn
145 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
146 const struct mips_opcode *insn_mo;
148 /* True if this is a mips16 instruction and if we want the extended
149 form of INSN_MO. */
150 bfd_boolean use_extend;
152 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
153 unsigned short extend;
155 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
156 a copy of INSN_MO->match with the operands filled in. */
157 unsigned long insn_opcode;
159 /* The frag that contains the instruction. */
160 struct frag *frag;
162 /* The offset into FRAG of the first instruction byte. */
163 long where;
165 /* The relocs associated with the instruction, if any. */
166 fixS *fixp[3];
168 /* True if this entry cannot be moved from its current position. */
169 unsigned int fixed_p : 1;
171 /* True if this instruction occurred in a .set noreorder block. */
172 unsigned int noreorder_p : 1;
174 /* True for mips16 instructions that jump to an absolute address. */
175 unsigned int mips16_absolute_jump_p : 1;
177 /* True if this instruction is complete. */
178 unsigned int complete_p : 1;
181 /* The ABI to use. */
182 enum mips_abi_level
184 NO_ABI = 0,
185 O32_ABI,
186 O64_ABI,
187 N32_ABI,
188 N64_ABI,
189 EABI_ABI
192 /* MIPS ABI we are using for this output file. */
193 static enum mips_abi_level mips_abi = NO_ABI;
195 /* Whether or not we have code that can call pic code. */
196 int mips_abicalls = FALSE;
198 /* Whether or not we have code which can be put into a shared
199 library. */
200 static bfd_boolean mips_in_shared = TRUE;
202 /* This is the set of options which may be modified by the .set
203 pseudo-op. We use a struct so that .set push and .set pop are more
204 reliable. */
206 struct mips_set_options
208 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
209 if it has not been initialized. Changed by `.set mipsN', and the
210 -mipsN command line option, and the default CPU. */
211 int isa;
212 /* Enabled Application Specific Extensions (ASEs). These are set to -1
213 if they have not been initialized. Changed by `.set <asename>', by
214 command line options, and based on the default architecture. */
215 int ase_mips3d;
216 int ase_mdmx;
217 int ase_smartmips;
218 int ase_dsp;
219 int ase_dspr2;
220 int ase_mt;
221 int ase_mcu;
222 /* Whether we are assembling for the mips16 processor. 0 if we are
223 not, 1 if we are, and -1 if the value has not been initialized.
224 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
225 -nomips16 command line options, and the default CPU. */
226 int mips16;
227 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
228 1 if we are, and -1 if the value has not been initialized. Changed
229 by `.set micromips' and `.set nomicromips', and the -mmicromips
230 and -mno-micromips command line options, and the default CPU. */
231 int micromips;
232 /* Non-zero if we should not reorder instructions. Changed by `.set
233 reorder' and `.set noreorder'. */
234 int noreorder;
235 /* Non-zero if we should not permit the register designated "assembler
236 temporary" to be used in instructions. The value is the register
237 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
238 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
239 unsigned int at;
240 /* Non-zero if we should warn when a macro instruction expands into
241 more than one machine instruction. Changed by `.set nomacro' and
242 `.set macro'. */
243 int warn_about_macros;
244 /* Non-zero if we should not move instructions. Changed by `.set
245 move', `.set volatile', `.set nomove', and `.set novolatile'. */
246 int nomove;
247 /* Non-zero if we should not optimize branches by moving the target
248 of the branch into the delay slot. Actually, we don't perform
249 this optimization anyhow. Changed by `.set bopt' and `.set
250 nobopt'. */
251 int nobopt;
252 /* Non-zero if we should not autoextend mips16 instructions.
253 Changed by `.set autoextend' and `.set noautoextend'. */
254 int noautoextend;
255 /* Restrict general purpose registers and floating point registers
256 to 32 bit. This is initially determined when -mgp32 or -mfp32
257 is passed but can changed if the assembler code uses .set mipsN. */
258 int gp32;
259 int fp32;
260 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
261 command line option, and the default CPU. */
262 int arch;
263 /* True if ".set sym32" is in effect. */
264 bfd_boolean sym32;
265 /* True if floating-point operations are not allowed. Changed by .set
266 softfloat or .set hardfloat, by command line options -msoft-float or
267 -mhard-float. The default is false. */
268 bfd_boolean soft_float;
270 /* True if only single-precision floating-point operations are allowed.
271 Changed by .set singlefloat or .set doublefloat, command-line options
272 -msingle-float or -mdouble-float. The default is false. */
273 bfd_boolean single_float;
276 /* This is the struct we use to hold the current set of options. Note
277 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
278 -1 to indicate that they have not been initialized. */
280 /* True if -mgp32 was passed. */
281 static int file_mips_gp32 = -1;
283 /* True if -mfp32 was passed. */
284 static int file_mips_fp32 = -1;
286 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
287 static int file_mips_soft_float = 0;
289 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
290 static int file_mips_single_float = 0;
292 static struct mips_set_options mips_opts =
294 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
295 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
296 /* ase_mcu */ -1, /* mips16 */ -1, /* micromips */ -1, /* noreorder */ 0,
297 /* at */ ATREG, /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
298 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
299 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
302 /* These variables are filled in with the masks of registers used.
303 The object format code reads them and puts them in the appropriate
304 place. */
305 unsigned long mips_gprmask;
306 unsigned long mips_cprmask[4];
308 /* MIPS ISA we are using for this output file. */
309 static int file_mips_isa = ISA_UNKNOWN;
311 /* True if any MIPS16 code was produced. */
312 static int file_ase_mips16;
314 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
315 || mips_opts.isa == ISA_MIPS32R2 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2)
319 /* True if any microMIPS code was produced. */
320 static int file_ase_micromips;
322 /* True if we want to create R_MIPS_JALR for jalr $25. */
323 #ifdef TE_IRIX
324 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
325 #else
326 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
327 because there's no place for any addend, the only acceptable
328 expression is a bare symbol. */
329 #define MIPS_JALR_HINT_P(EXPR) \
330 (!HAVE_IN_PLACE_ADDENDS \
331 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
332 #endif
334 /* True if -mips3d was passed or implied by arguments passed on the
335 command line (e.g., by -march). */
336 static int file_ase_mips3d;
338 /* True if -mdmx was passed or implied by arguments passed on the
339 command line (e.g., by -march). */
340 static int file_ase_mdmx;
342 /* True if -msmartmips was passed or implied by arguments passed on the
343 command line (e.g., by -march). */
344 static int file_ase_smartmips;
346 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
347 || mips_opts.isa == ISA_MIPS32R2)
349 /* True if -mdsp was passed or implied by arguments passed on the
350 command line (e.g., by -march). */
351 static int file_ase_dsp;
353 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
354 || mips_opts.isa == ISA_MIPS64R2)
356 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
358 /* True if -mdspr2 was passed or implied by arguments passed on the
359 command line (e.g., by -march). */
360 static int file_ase_dspr2;
362 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
363 || mips_opts.isa == ISA_MIPS64R2)
365 /* True if -mmt was passed or implied by arguments passed on the
366 command line (e.g., by -march). */
367 static int file_ase_mt;
369 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
370 || mips_opts.isa == ISA_MIPS64R2)
372 #define ISA_SUPPORTS_MCU_ASE (mips_opts.isa == ISA_MIPS32R2 \
373 || mips_opts.isa == ISA_MIPS64R2 \
374 || mips_opts.micromips)
376 /* The argument of the -march= flag. The architecture we are assembling. */
377 static int file_mips_arch = CPU_UNKNOWN;
378 static const char *mips_arch_string;
380 /* The argument of the -mtune= flag. The architecture for which we
381 are optimizing. */
382 static int mips_tune = CPU_UNKNOWN;
383 static const char *mips_tune_string;
385 /* True when generating 32-bit code for a 64-bit processor. */
386 static int mips_32bitmode = 0;
388 /* True if the given ABI requires 32-bit registers. */
389 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
391 /* Likewise 64-bit registers. */
392 #define ABI_NEEDS_64BIT_REGS(ABI) \
393 ((ABI) == N32_ABI \
394 || (ABI) == N64_ABI \
395 || (ABI) == O64_ABI)
397 /* Return true if ISA supports 64 bit wide gp registers. */
398 #define ISA_HAS_64BIT_REGS(ISA) \
399 ((ISA) == ISA_MIPS3 \
400 || (ISA) == ISA_MIPS4 \
401 || (ISA) == ISA_MIPS5 \
402 || (ISA) == ISA_MIPS64 \
403 || (ISA) == ISA_MIPS64R2)
405 /* Return true if ISA supports 64 bit wide float registers. */
406 #define ISA_HAS_64BIT_FPRS(ISA) \
407 ((ISA) == ISA_MIPS3 \
408 || (ISA) == ISA_MIPS4 \
409 || (ISA) == ISA_MIPS5 \
410 || (ISA) == ISA_MIPS32R2 \
411 || (ISA) == ISA_MIPS64 \
412 || (ISA) == ISA_MIPS64R2)
414 /* Return true if ISA supports 64-bit right rotate (dror et al.)
415 instructions. */
416 #define ISA_HAS_DROR(ISA) \
417 ((ISA) == ISA_MIPS64R2 \
418 || (mips_opts.micromips \
419 && ISA_HAS_64BIT_REGS (ISA)) \
422 /* Return true if ISA supports 32-bit right rotate (ror et al.)
423 instructions. */
424 #define ISA_HAS_ROR(ISA) \
425 ((ISA) == ISA_MIPS32R2 \
426 || (ISA) == ISA_MIPS64R2 \
427 || mips_opts.ase_smartmips \
428 || mips_opts.micromips \
431 /* Return true if ISA supports single-precision floats in odd registers. */
432 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
433 ((ISA) == ISA_MIPS32 \
434 || (ISA) == ISA_MIPS32R2 \
435 || (ISA) == ISA_MIPS64 \
436 || (ISA) == ISA_MIPS64R2)
438 /* Return true if ISA supports move to/from high part of a 64-bit
439 floating-point register. */
440 #define ISA_HAS_MXHC1(ISA) \
441 ((ISA) == ISA_MIPS32R2 \
442 || (ISA) == ISA_MIPS64R2)
444 #define HAVE_32BIT_GPRS \
445 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
447 #define HAVE_32BIT_FPRS \
448 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
450 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
451 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
453 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
455 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
457 /* True if relocations are stored in-place. */
458 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
460 /* The ABI-derived address size. */
461 #define HAVE_64BIT_ADDRESSES \
462 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
463 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
465 /* The size of symbolic constants (i.e., expressions of the form
466 "SYMBOL" or "SYMBOL + OFFSET"). */
467 #define HAVE_32BIT_SYMBOLS \
468 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
469 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
471 /* Addresses are loaded in different ways, depending on the address size
472 in use. The n32 ABI Documentation also mandates the use of additions
473 with overflow checking, but existing implementations don't follow it. */
474 #define ADDRESS_ADD_INSN \
475 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
477 #define ADDRESS_ADDI_INSN \
478 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
480 #define ADDRESS_LOAD_INSN \
481 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
483 #define ADDRESS_STORE_INSN \
484 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
486 /* Return true if the given CPU supports the MIPS16 ASE. */
487 #define CPU_HAS_MIPS16(cpu) \
488 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
489 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
491 /* Return true if the given CPU supports the microMIPS ASE. */
492 #define CPU_HAS_MICROMIPS(cpu) 0
494 /* True if CPU has a dror instruction. */
495 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
497 /* True if CPU has a ror instruction. */
498 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
500 /* True if CPU is in the Octeon family */
501 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
503 /* True if CPU has seq/sne and seqi/snei instructions. */
504 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
506 /* True if CPU does not implement the all the coprocessor insns. For these
507 CPUs only those COP insns are accepted that are explicitly marked to be
508 available on the CPU. ISA membership for COP insns is ignored. */
509 #define NO_ISA_COP(CPU) (CPU_IS_OCTEON (CPU))
511 /* True if mflo and mfhi can be immediately followed by instructions
512 which write to the HI and LO registers.
514 According to MIPS specifications, MIPS ISAs I, II, and III need
515 (at least) two instructions between the reads of HI/LO and
516 instructions which write them, and later ISAs do not. Contradicting
517 the MIPS specifications, some MIPS IV processor user manuals (e.g.
518 the UM for the NEC Vr5000) document needing the instructions between
519 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
520 MIPS64 and later ISAs to have the interlocks, plus any specific
521 earlier-ISA CPUs for which CPU documentation declares that the
522 instructions are really interlocked. */
523 #define hilo_interlocks \
524 (mips_opts.isa == ISA_MIPS32 \
525 || mips_opts.isa == ISA_MIPS32R2 \
526 || mips_opts.isa == ISA_MIPS64 \
527 || mips_opts.isa == ISA_MIPS64R2 \
528 || mips_opts.arch == CPU_R4010 \
529 || mips_opts.arch == CPU_R10000 \
530 || mips_opts.arch == CPU_R12000 \
531 || mips_opts.arch == CPU_R14000 \
532 || mips_opts.arch == CPU_R16000 \
533 || mips_opts.arch == CPU_RM7000 \
534 || mips_opts.arch == CPU_VR5500 \
535 || mips_opts.micromips \
538 /* Whether the processor uses hardware interlocks to protect reads
539 from the GPRs after they are loaded from memory, and thus does not
540 require nops to be inserted. This applies to instructions marked
541 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
542 level I and microMIPS mode instructions are always interlocked. */
543 #define gpr_interlocks \
544 (mips_opts.isa != ISA_MIPS1 \
545 || mips_opts.arch == CPU_R3900 \
546 || mips_opts.micromips \
549 /* Whether the processor uses hardware interlocks to avoid delays
550 required by coprocessor instructions, and thus does not require
551 nops to be inserted. This applies to instructions marked
552 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
553 between instructions marked INSN_WRITE_COND_CODE and ones marked
554 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
555 levels I, II, and III and microMIPS mode instructions are always
556 interlocked. */
557 /* Itbl support may require additional care here. */
558 #define cop_interlocks \
559 ((mips_opts.isa != ISA_MIPS1 \
560 && mips_opts.isa != ISA_MIPS2 \
561 && mips_opts.isa != ISA_MIPS3) \
562 || mips_opts.arch == CPU_R4300 \
563 || mips_opts.micromips \
566 /* Whether the processor uses hardware interlocks to protect reads
567 from coprocessor registers after they are loaded from memory, and
568 thus does not require nops to be inserted. This applies to
569 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
570 requires at MIPS ISA level I and microMIPS mode instructions are
571 always interlocked. */
572 #define cop_mem_interlocks \
573 (mips_opts.isa != ISA_MIPS1 \
574 || mips_opts.micromips \
577 /* Is this a mfhi or mflo instruction? */
578 #define MF_HILO_INSN(PINFO) \
579 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
581 /* Returns true for a (non floating-point) coprocessor instruction. Reading
582 or writing the condition code is only possible on the coprocessors and
583 these insns are not marked with INSN_COP. Thus for these insns use the
584 condition-code flags. */
585 #define COP_INSN(PINFO) \
586 (PINFO != INSN_MACRO \
587 && ((PINFO) & (FP_S | FP_D)) == 0 \
588 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
590 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
591 has been selected. This implies, in particular, that addresses of text
592 labels have their LSB set. */
593 #define HAVE_CODE_COMPRESSION \
594 ((mips_opts.mips16 | mips_opts.micromips) != 0)
596 /* MIPS PIC level. */
598 enum mips_pic_level mips_pic;
600 /* 1 if we should generate 32 bit offsets from the $gp register in
601 SVR4_PIC mode. Currently has no meaning in other modes. */
602 static int mips_big_got = 0;
604 /* 1 if trap instructions should used for overflow rather than break
605 instructions. */
606 static int mips_trap = 0;
608 /* 1 if double width floating point constants should not be constructed
609 by assembling two single width halves into two single width floating
610 point registers which just happen to alias the double width destination
611 register. On some architectures this aliasing can be disabled by a bit
612 in the status register, and the setting of this bit cannot be determined
613 automatically at assemble time. */
614 static int mips_disable_float_construction;
616 /* Non-zero if any .set noreorder directives were used. */
618 static int mips_any_noreorder;
620 /* Non-zero if nops should be inserted when the register referenced in
621 an mfhi/mflo instruction is read in the next two instructions. */
622 static int mips_7000_hilo_fix;
624 /* The size of objects in the small data section. */
625 static unsigned int g_switch_value = 8;
626 /* Whether the -G option was used. */
627 static int g_switch_seen = 0;
629 #define N_RMASK 0xc4
630 #define N_VFP 0xd4
632 /* If we can determine in advance that GP optimization won't be
633 possible, we can skip the relaxation stuff that tries to produce
634 GP-relative references. This makes delay slot optimization work
635 better.
637 This function can only provide a guess, but it seems to work for
638 gcc output. It needs to guess right for gcc, otherwise gcc
639 will put what it thinks is a GP-relative instruction in a branch
640 delay slot.
642 I don't know if a fix is needed for the SVR4_PIC mode. I've only
643 fixed it for the non-PIC mode. KR 95/04/07 */
644 static int nopic_need_relax (symbolS *, int);
646 /* handle of the OPCODE hash table */
647 static struct hash_control *op_hash = NULL;
649 /* The opcode hash table we use for the mips16. */
650 static struct hash_control *mips16_op_hash = NULL;
652 /* The opcode hash table we use for the microMIPS ASE. */
653 static struct hash_control *micromips_op_hash = NULL;
655 /* This array holds the chars that always start a comment. If the
656 pre-processor is disabled, these aren't very useful */
657 const char comment_chars[] = "#";
659 /* This array holds the chars that only start a comment at the beginning of
660 a line. If the line seems to have the form '# 123 filename'
661 .line and .file directives will appear in the pre-processed output */
662 /* Note that input_file.c hand checks for '#' at the beginning of the
663 first line of the input file. This is because the compiler outputs
664 #NO_APP at the beginning of its output. */
665 /* Also note that C style comments are always supported. */
666 const char line_comment_chars[] = "#";
668 /* This array holds machine specific line separator characters. */
669 const char line_separator_chars[] = ";";
671 /* Chars that can be used to separate mant from exp in floating point nums */
672 const char EXP_CHARS[] = "eE";
674 /* Chars that mean this number is a floating point constant */
675 /* As in 0f12.456 */
676 /* or 0d1.2345e12 */
677 const char FLT_CHARS[] = "rRsSfFdDxXpP";
679 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
680 changed in read.c . Ideally it shouldn't have to know about it at all,
681 but nothing is ideal around here.
684 static char *insn_error;
686 static int auto_align = 1;
688 /* When outputting SVR4 PIC code, the assembler needs to know the
689 offset in the stack frame from which to restore the $gp register.
690 This is set by the .cprestore pseudo-op, and saved in this
691 variable. */
692 static offsetT mips_cprestore_offset = -1;
694 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
695 more optimizations, it can use a register value instead of a memory-saved
696 offset and even an other register than $gp as global pointer. */
697 static offsetT mips_cpreturn_offset = -1;
698 static int mips_cpreturn_register = -1;
699 static int mips_gp_register = GP;
700 static int mips_gprel_offset = 0;
702 /* Whether mips_cprestore_offset has been set in the current function
703 (or whether it has already been warned about, if not). */
704 static int mips_cprestore_valid = 0;
706 /* This is the register which holds the stack frame, as set by the
707 .frame pseudo-op. This is needed to implement .cprestore. */
708 static int mips_frame_reg = SP;
710 /* Whether mips_frame_reg has been set in the current function
711 (or whether it has already been warned about, if not). */
712 static int mips_frame_reg_valid = 0;
714 /* To output NOP instructions correctly, we need to keep information
715 about the previous two instructions. */
717 /* Whether we are optimizing. The default value of 2 means to remove
718 unneeded NOPs and swap branch instructions when possible. A value
719 of 1 means to not swap branches. A value of 0 means to always
720 insert NOPs. */
721 static int mips_optimize = 2;
723 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
724 equivalent to seeing no -g option at all. */
725 static int mips_debug = 0;
727 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
728 #define MAX_VR4130_NOPS 4
730 /* The maximum number of NOPs needed to fill delay slots. */
731 #define MAX_DELAY_NOPS 2
733 /* The maximum number of NOPs needed for any purpose. */
734 #define MAX_NOPS 4
736 /* A list of previous instructions, with index 0 being the most recent.
737 We need to look back MAX_NOPS instructions when filling delay slots
738 or working around processor errata. We need to look back one
739 instruction further if we're thinking about using history[0] to
740 fill a branch delay slot. */
741 static struct mips_cl_insn history[1 + MAX_NOPS];
743 /* Nop instructions used by emit_nop. */
744 static struct mips_cl_insn nop_insn;
745 static struct mips_cl_insn mips16_nop_insn;
746 static struct mips_cl_insn micromips_nop16_insn;
747 static struct mips_cl_insn micromips_nop32_insn;
749 /* The appropriate nop for the current mode. */
750 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
751 : (mips_opts.micromips ? &micromips_nop16_insn : &nop_insn))
753 /* The size of NOP_INSN in bytes. */
754 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
756 /* If this is set, it points to a frag holding nop instructions which
757 were inserted before the start of a noreorder section. If those
758 nops turn out to be unnecessary, the size of the frag can be
759 decreased. */
760 static fragS *prev_nop_frag;
762 /* The number of nop instructions we created in prev_nop_frag. */
763 static int prev_nop_frag_holds;
765 /* The number of nop instructions that we know we need in
766 prev_nop_frag. */
767 static int prev_nop_frag_required;
769 /* The number of instructions we've seen since prev_nop_frag. */
770 static int prev_nop_frag_since;
772 /* For ECOFF and ELF, relocations against symbols are done in two
773 parts, with a HI relocation and a LO relocation. Each relocation
774 has only 16 bits of space to store an addend. This means that in
775 order for the linker to handle carries correctly, it must be able
776 to locate both the HI and the LO relocation. This means that the
777 relocations must appear in order in the relocation table.
779 In order to implement this, we keep track of each unmatched HI
780 relocation. We then sort them so that they immediately precede the
781 corresponding LO relocation. */
783 struct mips_hi_fixup
785 /* Next HI fixup. */
786 struct mips_hi_fixup *next;
787 /* This fixup. */
788 fixS *fixp;
789 /* The section this fixup is in. */
790 segT seg;
793 /* The list of unmatched HI relocs. */
795 static struct mips_hi_fixup *mips_hi_fixup_list;
797 /* The frag containing the last explicit relocation operator.
798 Null if explicit relocations have not been used. */
800 static fragS *prev_reloc_op_frag;
802 /* Map normal MIPS register numbers to mips16 register numbers. */
804 #define X ILLEGAL_REG
805 static const int mips32_to_16_reg_map[] =
807 X, X, 2, 3, 4, 5, 6, 7,
808 X, X, X, X, X, X, X, X,
809 0, 1, X, X, X, X, X, X,
810 X, X, X, X, X, X, X, X
812 #undef X
814 /* Map mips16 register numbers to normal MIPS register numbers. */
816 static const unsigned int mips16_to_32_reg_map[] =
818 16, 17, 2, 3, 4, 5, 6, 7
821 /* Map normal MIPS register numbers to microMIPS register numbers. */
823 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
824 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
825 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
826 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
827 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
828 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
829 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
831 #define X ILLEGAL_REG
832 /* reg type h: 4, 5, 6. */
833 static const int mips32_to_micromips_reg_h_map[] =
835 X, X, X, X, 4, 5, 6, X,
836 X, X, X, X, X, X, X, X,
837 X, X, X, X, X, X, X, X,
838 X, X, X, X, X, X, X, X
841 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
842 static const int mips32_to_micromips_reg_m_map[] =
844 0, X, 2, 3, X, X, X, X,
845 X, X, X, X, X, X, X, X,
846 4, 1, 5, 6, 7, X, X, X,
847 X, X, X, X, X, X, X, X
850 /* reg type q: 0, 2-7. 17. */
851 static const int mips32_to_micromips_reg_q_map[] =
853 0, X, 2, 3, 4, 5, 6, 7,
854 X, X, X, X, X, X, X, X,
855 X, 1, X, X, X, X, X, X,
856 X, X, X, X, X, X, X, X
859 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
860 #undef X
862 /* Map microMIPS register numbers to normal MIPS register numbers. */
864 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
865 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
866 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
867 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
868 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
869 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
871 /* The microMIPS registers with type h. */
872 static const unsigned int micromips_to_32_reg_h_map[] =
874 5, 5, 6, 4, 4, 4, 4, 4
877 /* The microMIPS registers with type i. */
878 static const unsigned int micromips_to_32_reg_i_map[] =
880 6, 7, 7, 21, 22, 5, 6, 7
883 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
885 /* The microMIPS registers with type m. */
886 static const unsigned int micromips_to_32_reg_m_map[] =
888 0, 17, 2, 3, 16, 18, 19, 20
891 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
893 /* The microMIPS registers with type q. */
894 static const unsigned int micromips_to_32_reg_q_map[] =
896 0, 17, 2, 3, 4, 5, 6, 7
899 /* microMIPS imm type B. */
900 static const int micromips_imm_b_map[] =
902 1, 4, 8, 12, 16, 20, 24, -1
905 /* microMIPS imm type C. */
906 static const int micromips_imm_c_map[] =
908 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
911 /* Classifies the kind of instructions we're interested in when
912 implementing -mfix-vr4120. */
913 enum fix_vr4120_class
915 FIX_VR4120_MACC,
916 FIX_VR4120_DMACC,
917 FIX_VR4120_MULT,
918 FIX_VR4120_DMULT,
919 FIX_VR4120_DIV,
920 FIX_VR4120_MTHILO,
921 NUM_FIX_VR4120_CLASSES
924 /* ...likewise -mfix-loongson2f-jump. */
925 static bfd_boolean mips_fix_loongson2f_jump;
927 /* ...likewise -mfix-loongson2f-nop. */
928 static bfd_boolean mips_fix_loongson2f_nop;
930 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
931 static bfd_boolean mips_fix_loongson2f;
933 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
934 there must be at least one other instruction between an instruction
935 of type X and an instruction of type Y. */
936 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
938 /* True if -mfix-vr4120 is in force. */
939 static int mips_fix_vr4120;
941 /* ...likewise -mfix-vr4130. */
942 static int mips_fix_vr4130;
944 /* ...likewise -mfix-24k. */
945 static int mips_fix_24k;
947 /* ...likewise -mfix-cn63xxp1 */
948 static bfd_boolean mips_fix_cn63xxp1;
950 /* We don't relax branches by default, since this causes us to expand
951 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
952 fail to compute the offset before expanding the macro to the most
953 efficient expansion. */
955 static int mips_relax_branch;
957 /* The expansion of many macros depends on the type of symbol that
958 they refer to. For example, when generating position-dependent code,
959 a macro that refers to a symbol may have two different expansions,
960 one which uses GP-relative addresses and one which uses absolute
961 addresses. When generating SVR4-style PIC, a macro may have
962 different expansions for local and global symbols.
964 We handle these situations by generating both sequences and putting
965 them in variant frags. In position-dependent code, the first sequence
966 will be the GP-relative one and the second sequence will be the
967 absolute one. In SVR4 PIC, the first sequence will be for global
968 symbols and the second will be for local symbols.
970 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
971 SECOND are the lengths of the two sequences in bytes. These fields
972 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
973 the subtype has the following flags:
975 RELAX_USE_SECOND
976 Set if it has been decided that we should use the second
977 sequence instead of the first.
979 RELAX_SECOND_LONGER
980 Set in the first variant frag if the macro's second implementation
981 is longer than its first. This refers to the macro as a whole,
982 not an individual relaxation.
984 RELAX_NOMACRO
985 Set in the first variant frag if the macro appeared in a .set nomacro
986 block and if one alternative requires a warning but the other does not.
988 RELAX_DELAY_SLOT
989 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
990 delay slot.
992 RELAX_DELAY_SLOT_16BIT
993 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
994 16-bit instruction.
996 RELAX_DELAY_SLOT_SIZE_FIRST
997 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
998 the macro is of the wrong size for the branch delay slot.
1000 RELAX_DELAY_SLOT_SIZE_SECOND
1001 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1002 the macro is of the wrong size for the branch delay slot.
1004 The frag's "opcode" points to the first fixup for relaxable code.
1006 Relaxable macros are generated using a sequence such as:
1008 relax_start (SYMBOL);
1009 ... generate first expansion ...
1010 relax_switch ();
1011 ... generate second expansion ...
1012 relax_end ();
1014 The code and fixups for the unwanted alternative are discarded
1015 by md_convert_frag. */
1016 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1018 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1019 #define RELAX_SECOND(X) ((X) & 0xff)
1020 #define RELAX_USE_SECOND 0x10000
1021 #define RELAX_SECOND_LONGER 0x20000
1022 #define RELAX_NOMACRO 0x40000
1023 #define RELAX_DELAY_SLOT 0x80000
1024 #define RELAX_DELAY_SLOT_16BIT 0x100000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1028 /* Branch without likely bit. If label is out of range, we turn:
1030 beq reg1, reg2, label
1031 delay slot
1033 into
1035 bne reg1, reg2, 0f
1037 j label
1038 0: delay slot
1040 with the following opcode replacements:
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1047 bltzal <-> bgezal (with jal label instead of j label)
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1057 Branch likely. If label is out of range, we turn:
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1062 into
1064 beql reg1, reg2, 1f
1066 beql $0, $0, 2f
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1075 bne reg1, reg2, 0f
1077 j[al] label
1078 delay slot (executed only if branch taken)
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1096 ((relax_substateT) \
1097 (0xc0000000 \
1098 | ((at) & 0x1f) \
1099 | ((toofar) ? 0x20 : 0) \
1100 | ((link) ? 0x40 : 0) \
1101 | ((likely) ? 0x80 : 0) \
1102 | ((uncond) ? 0x100 : 0)))
1103 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1104 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1105 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1106 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1107 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1108 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1110 /* For mips16 code, we use an entirely different form of relaxation.
1111 mips16 supports two versions of most instructions which take
1112 immediate values: a small one which takes some small value, and a
1113 larger one which takes a 16 bit value. Since branches also follow
1114 this pattern, relaxing these values is required.
1116 We can assemble both mips16 and normal MIPS code in a single
1117 object. Therefore, we need to support this type of relaxation at
1118 the same time that we support the relaxation described above. We
1119 use the high bit of the subtype field to distinguish these cases.
1121 The information we store for this type of relaxation is the
1122 argument code found in the opcode file for this relocation, whether
1123 the user explicitly requested a small or extended form, and whether
1124 the relocation is in a jump or jal delay slot. That tells us the
1125 size of the value, and how it should be stored. We also store
1126 whether the fragment is considered to be extended or not. We also
1127 store whether this is known to be a branch to a different section,
1128 whether we have tried to relax this frag yet, and whether we have
1129 ever extended a PC relative fragment because of a shift count. */
1130 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1131 (0x80000000 \
1132 | ((type) & 0xff) \
1133 | ((small) ? 0x100 : 0) \
1134 | ((ext) ? 0x200 : 0) \
1135 | ((dslot) ? 0x400 : 0) \
1136 | ((jal_dslot) ? 0x800 : 0))
1137 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1138 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1139 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1140 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1141 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1142 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1143 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1144 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1145 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1146 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1147 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1148 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1150 /* For microMIPS code, we use relaxation similar to one we use for
1151 MIPS16 code. Some instructions that take immediate values support
1152 two encodings: a small one which takes some small value, and a
1153 larger one which takes a 16 bit value. As some branches also follow
1154 this pattern, relaxing these values is required.
1156 We can assemble both microMIPS and normal MIPS code in a single
1157 object. Therefore, we need to support this type of relaxation at
1158 the same time that we support the relaxation described above. We
1159 use one of the high bits of the subtype field to distinguish these
1160 cases.
1162 The information we store for this type of relaxation is the argument
1163 code found in the opcode file for this relocation, the register
1164 selected as the assembler temporary, whether the branch is
1165 unconditional, whether it is compact, whether it stores the link
1166 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1167 branches to a sequence of instructions is enabled, and whether the
1168 displacement of a branch is too large to fit as an immediate argument
1169 of a 16-bit and a 32-bit branch, respectively. */
1170 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1171 relax32, toofar16, toofar32) \
1172 (0x40000000 \
1173 | ((type) & 0xff) \
1174 | (((at) & 0x1f) << 8) \
1175 | ((uncond) ? 0x2000 : 0) \
1176 | ((compact) ? 0x4000 : 0) \
1177 | ((link) ? 0x8000 : 0) \
1178 | ((relax32) ? 0x10000 : 0) \
1179 | ((toofar16) ? 0x20000 : 0) \
1180 | ((toofar32) ? 0x40000 : 0))
1181 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1182 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1183 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1184 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1185 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1186 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1187 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1189 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1192 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1193 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1194 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1210 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1211 #define IS_ZEXT_32BIT_NUM(x) \
1212 (((x) &~ (offsetT) 0xffffffff) == 0 \
1213 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1215 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1216 VALUE << SHIFT. VALUE is evaluated exactly once. */
1217 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1218 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1219 | (((VALUE) & (MASK)) << (SHIFT)))
1221 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1222 SHIFT places. */
1223 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1224 (((STRUCT) >> (SHIFT)) & (MASK))
1226 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1227 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1229 include/opcode/mips.h specifies operand fields using the macros
1230 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1231 with "MIPS16OP" instead of "OP". */
1232 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1233 do \
1234 if (!(MICROMIPS)) \
1235 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1236 OP_MASK_##FIELD, OP_SH_##FIELD); \
1237 else \
1238 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1239 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1240 while (0)
1241 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1242 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1243 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1245 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1246 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1247 (!(MICROMIPS) \
1248 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1249 : EXTRACT_BITS ((INSN).insn_opcode, \
1250 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1251 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1252 EXTRACT_BITS ((INSN).insn_opcode, \
1253 MIPS16OP_MASK_##FIELD, \
1254 MIPS16OP_SH_##FIELD)
1256 /* Whether or not we are emitting a branch-likely macro. */
1257 static bfd_boolean emit_branch_likely_macro = FALSE;
1259 /* Global variables used when generating relaxable macros. See the
1260 comment above RELAX_ENCODE for more details about how relaxation
1261 is used. */
1262 static struct {
1263 /* 0 if we're not emitting a relaxable macro.
1264 1 if we're emitting the first of the two relaxation alternatives.
1265 2 if we're emitting the second alternative. */
1266 int sequence;
1268 /* The first relaxable fixup in the current frag. (In other words,
1269 the first fixup that refers to relaxable code.) */
1270 fixS *first_fixup;
1272 /* sizes[0] says how many bytes of the first alternative are stored in
1273 the current frag. Likewise sizes[1] for the second alternative. */
1274 unsigned int sizes[2];
1276 /* The symbol on which the choice of sequence depends. */
1277 symbolS *symbol;
1278 } mips_relax;
1280 /* Global variables used to decide whether a macro needs a warning. */
1281 static struct {
1282 /* True if the macro is in a branch delay slot. */
1283 bfd_boolean delay_slot_p;
1285 /* Set to the length in bytes required if the macro is in a delay slot
1286 that requires a specific length of instruction, otherwise zero. */
1287 unsigned int delay_slot_length;
1289 /* For relaxable macros, sizes[0] is the length of the first alternative
1290 in bytes and sizes[1] is the length of the second alternative.
1291 For non-relaxable macros, both elements give the length of the
1292 macro in bytes. */
1293 unsigned int sizes[2];
1295 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1296 instruction of the first alternative in bytes and first_insn_sizes[1]
1297 is the length of the first instruction of the second alternative.
1298 For non-relaxable macros, both elements give the length of the first
1299 instruction in bytes.
1301 Set to zero if we haven't yet seen the first instruction. */
1302 unsigned int first_insn_sizes[2];
1304 /* For relaxable macros, insns[0] is the number of instructions for the
1305 first alternative and insns[1] is the number of instructions for the
1306 second alternative.
1308 For non-relaxable macros, both elements give the number of
1309 instructions for the macro. */
1310 unsigned int insns[2];
1312 /* The first variant frag for this macro. */
1313 fragS *first_frag;
1314 } mips_macro_warning;
1316 /* Prototypes for static functions. */
1318 #define internalError() \
1319 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1321 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1323 static void append_insn
1324 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1325 bfd_boolean expansionp);
1326 static void mips_no_prev_insn (void);
1327 static void macro_build (expressionS *, const char *, const char *, ...);
1328 static void mips16_macro_build
1329 (expressionS *, const char *, const char *, va_list *);
1330 static void load_register (int, expressionS *, int);
1331 static void macro_start (void);
1332 static void macro_end (void);
1333 static void macro (struct mips_cl_insn * ip);
1334 static void mips16_macro (struct mips_cl_insn * ip);
1335 static void mips_ip (char *str, struct mips_cl_insn * ip);
1336 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1337 static void mips16_immed
1338 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1339 unsigned long *, bfd_boolean *, unsigned short *);
1340 static size_t my_getSmallExpression
1341 (expressionS *, bfd_reloc_code_real_type *, char *);
1342 static void my_getExpression (expressionS *, char *);
1343 static void s_align (int);
1344 static void s_change_sec (int);
1345 static void s_change_section (int);
1346 static void s_cons (int);
1347 static void s_float_cons (int);
1348 static void s_mips_globl (int);
1349 static void s_option (int);
1350 static void s_mipsset (int);
1351 static void s_abicalls (int);
1352 static void s_cpload (int);
1353 static void s_cpsetup (int);
1354 static void s_cplocal (int);
1355 static void s_cprestore (int);
1356 static void s_cpreturn (int);
1357 static void s_dtprelword (int);
1358 static void s_dtpreldword (int);
1359 static void s_tprelword (int);
1360 static void s_tpreldword (int);
1361 static void s_gpvalue (int);
1362 static void s_gpword (int);
1363 static void s_gpdword (int);
1364 static void s_cpadd (int);
1365 static void s_insn (int);
1366 static void md_obj_begin (void);
1367 static void md_obj_end (void);
1368 static void s_mips_ent (int);
1369 static void s_mips_end (int);
1370 static void s_mips_frame (int);
1371 static void s_mips_mask (int reg_type);
1372 static void s_mips_stab (int);
1373 static void s_mips_weakext (int);
1374 static void s_mips_file (int);
1375 static void s_mips_loc (int);
1376 static bfd_boolean pic_need_relax (symbolS *, asection *);
1377 static int relaxed_branch_length (fragS *, asection *, int);
1378 static int validate_mips_insn (const struct mips_opcode *);
1379 static int validate_micromips_insn (const struct mips_opcode *);
1380 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1381 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1383 /* Table and functions used to map between CPU/ISA names, and
1384 ISA levels, and CPU numbers. */
1386 struct mips_cpu_info
1388 const char *name; /* CPU or ISA name. */
1389 int flags; /* ASEs available, or ISA flag. */
1390 int isa; /* ISA level. */
1391 int cpu; /* CPU number (default CPU if ISA). */
1394 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1395 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1396 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1397 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1398 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1399 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1400 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1401 #define MIPS_CPU_ASE_MCU 0x0080 /* CPU implements MCU ASE */
1403 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1404 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1405 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1407 /* Pseudo-op table.
1409 The following pseudo-ops from the Kane and Heinrich MIPS book
1410 should be defined here, but are currently unsupported: .alias,
1411 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1413 The following pseudo-ops from the Kane and Heinrich MIPS book are
1414 specific to the type of debugging information being generated, and
1415 should be defined by the object format: .aent, .begin, .bend,
1416 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1417 .vreg.
1419 The following pseudo-ops from the Kane and Heinrich MIPS book are
1420 not MIPS CPU specific, but are also not specific to the object file
1421 format. This file is probably the best place to define them, but
1422 they are not currently supported: .asm0, .endr, .lab, .struct. */
1424 static const pseudo_typeS mips_pseudo_table[] =
1426 /* MIPS specific pseudo-ops. */
1427 {"option", s_option, 0},
1428 {"set", s_mipsset, 0},
1429 {"rdata", s_change_sec, 'r'},
1430 {"sdata", s_change_sec, 's'},
1431 {"livereg", s_ignore, 0},
1432 {"abicalls", s_abicalls, 0},
1433 {"cpload", s_cpload, 0},
1434 {"cpsetup", s_cpsetup, 0},
1435 {"cplocal", s_cplocal, 0},
1436 {"cprestore", s_cprestore, 0},
1437 {"cpreturn", s_cpreturn, 0},
1438 {"dtprelword", s_dtprelword, 0},
1439 {"dtpreldword", s_dtpreldword, 0},
1440 {"tprelword", s_tprelword, 0},
1441 {"tpreldword", s_tpreldword, 0},
1442 {"gpvalue", s_gpvalue, 0},
1443 {"gpword", s_gpword, 0},
1444 {"gpdword", s_gpdword, 0},
1445 {"cpadd", s_cpadd, 0},
1446 {"insn", s_insn, 0},
1448 /* Relatively generic pseudo-ops that happen to be used on MIPS
1449 chips. */
1450 {"asciiz", stringer, 8 + 1},
1451 {"bss", s_change_sec, 'b'},
1452 {"err", s_err, 0},
1453 {"half", s_cons, 1},
1454 {"dword", s_cons, 3},
1455 {"weakext", s_mips_weakext, 0},
1456 {"origin", s_org, 0},
1457 {"repeat", s_rept, 0},
1459 /* For MIPS this is non-standard, but we define it for consistency. */
1460 {"sbss", s_change_sec, 'B'},
1462 /* These pseudo-ops are defined in read.c, but must be overridden
1463 here for one reason or another. */
1464 {"align", s_align, 0},
1465 {"byte", s_cons, 0},
1466 {"data", s_change_sec, 'd'},
1467 {"double", s_float_cons, 'd'},
1468 {"float", s_float_cons, 'f'},
1469 {"globl", s_mips_globl, 0},
1470 {"global", s_mips_globl, 0},
1471 {"hword", s_cons, 1},
1472 {"int", s_cons, 2},
1473 {"long", s_cons, 2},
1474 {"octa", s_cons, 4},
1475 {"quad", s_cons, 3},
1476 {"section", s_change_section, 0},
1477 {"short", s_cons, 1},
1478 {"single", s_float_cons, 'f'},
1479 {"stabn", s_mips_stab, 'n'},
1480 {"text", s_change_sec, 't'},
1481 {"word", s_cons, 2},
1483 { "extern", ecoff_directive_extern, 0},
1485 { NULL, NULL, 0 },
1488 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1490 /* These pseudo-ops should be defined by the object file format.
1491 However, a.out doesn't support them, so we have versions here. */
1492 {"aent", s_mips_ent, 1},
1493 {"bgnb", s_ignore, 0},
1494 {"end", s_mips_end, 0},
1495 {"endb", s_ignore, 0},
1496 {"ent", s_mips_ent, 0},
1497 {"file", s_mips_file, 0},
1498 {"fmask", s_mips_mask, 'F'},
1499 {"frame", s_mips_frame, 0},
1500 {"loc", s_mips_loc, 0},
1501 {"mask", s_mips_mask, 'R'},
1502 {"verstamp", s_ignore, 0},
1503 { NULL, NULL, 0 },
1506 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1507 purpose of the `.dc.a' internal pseudo-op. */
1510 mips_address_bytes (void)
1512 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1515 extern void pop_insert (const pseudo_typeS *);
1517 void
1518 mips_pop_insert (void)
1520 pop_insert (mips_pseudo_table);
1521 if (! ECOFF_DEBUGGING)
1522 pop_insert (mips_nonecoff_pseudo_table);
1525 /* Symbols labelling the current insn. */
1527 struct insn_label_list
1529 struct insn_label_list *next;
1530 symbolS *label;
1533 static struct insn_label_list *free_insn_labels;
1534 #define label_list tc_segment_info_data.labels
1536 static void mips_clear_insn_labels (void);
1537 static void mips_mark_labels (void);
1538 static void mips_compressed_mark_labels (void);
1540 static inline void
1541 mips_clear_insn_labels (void)
1543 register struct insn_label_list **pl;
1544 segment_info_type *si;
1546 if (now_seg)
1548 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1551 si = seg_info (now_seg);
1552 *pl = si->label_list;
1553 si->label_list = NULL;
1557 /* Mark instruction labels in MIPS16/microMIPS mode. */
1559 static inline void
1560 mips_mark_labels (void)
1562 if (HAVE_CODE_COMPRESSION)
1563 mips_compressed_mark_labels ();
1566 static char *expr_end;
1568 /* Expressions which appear in instructions. These are set by
1569 mips_ip. */
1571 static expressionS imm_expr;
1572 static expressionS imm2_expr;
1573 static expressionS offset_expr;
1575 /* Relocs associated with imm_expr and offset_expr. */
1577 static bfd_reloc_code_real_type imm_reloc[3]
1578 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1579 static bfd_reloc_code_real_type offset_reloc[3]
1580 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1582 /* This is set to the resulting size of the instruction to be produced
1583 by mips16_ip if an explicit extension is used or by mips_ip if an
1584 explicit size is supplied. */
1586 static unsigned int forced_insn_length;
1588 #ifdef OBJ_ELF
1589 /* The pdr segment for per procedure frame/regmask info. Not used for
1590 ECOFF debugging. */
1592 static segT pdr_seg;
1593 #endif
1595 /* The default target format to use. */
1597 #if defined (TE_FreeBSD)
1598 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1599 #elif defined (TE_TMIPS)
1600 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1601 #else
1602 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1603 #endif
1605 const char *
1606 mips_target_format (void)
1608 switch (OUTPUT_FLAVOR)
1610 case bfd_target_ecoff_flavour:
1611 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1612 case bfd_target_coff_flavour:
1613 return "pe-mips";
1614 case bfd_target_elf_flavour:
1615 #ifdef TE_VXWORKS
1616 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1617 return (target_big_endian
1618 ? "elf32-bigmips-vxworks"
1619 : "elf32-littlemips-vxworks");
1620 #endif
1621 return (target_big_endian
1622 ? (HAVE_64BIT_OBJECTS
1623 ? ELF_TARGET ("elf64-", "big")
1624 : (HAVE_NEWABI
1625 ? ELF_TARGET ("elf32-n", "big")
1626 : ELF_TARGET ("elf32-", "big")))
1627 : (HAVE_64BIT_OBJECTS
1628 ? ELF_TARGET ("elf64-", "little")
1629 : (HAVE_NEWABI
1630 ? ELF_TARGET ("elf32-n", "little")
1631 : ELF_TARGET ("elf32-", "little"))));
1632 default:
1633 abort ();
1634 return NULL;
1638 /* Return the length of a microMIPS instruction in bytes. If bits of
1639 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1640 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1641 major opcode) will require further modifications to the opcode
1642 table. */
1644 static inline unsigned int
1645 micromips_insn_length (const struct mips_opcode *mo)
1647 return (mo->mask >> 16) == 0 ? 2 : 4;
1650 /* Return the length of instruction INSN. */
1652 static inline unsigned int
1653 insn_length (const struct mips_cl_insn *insn)
1655 if (mips_opts.micromips)
1656 return micromips_insn_length (insn->insn_mo);
1657 else if (mips_opts.mips16)
1658 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1659 else
1660 return 4;
1663 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1665 static void
1666 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1668 size_t i;
1670 insn->insn_mo = mo;
1671 insn->use_extend = FALSE;
1672 insn->extend = 0;
1673 insn->insn_opcode = mo->match;
1674 insn->frag = NULL;
1675 insn->where = 0;
1676 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1677 insn->fixp[i] = NULL;
1678 insn->fixed_p = (mips_opts.noreorder > 0);
1679 insn->noreorder_p = (mips_opts.noreorder > 0);
1680 insn->mips16_absolute_jump_p = 0;
1681 insn->complete_p = 0;
1684 /* Record the current MIPS16/microMIPS mode in now_seg. */
1686 static void
1687 mips_record_compressed_mode (void)
1689 segment_info_type *si;
1691 si = seg_info (now_seg);
1692 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1693 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1694 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1695 si->tc_segment_info_data.micromips = mips_opts.micromips;
1698 /* Install INSN at the location specified by its "frag" and "where" fields. */
1700 static void
1701 install_insn (const struct mips_cl_insn *insn)
1703 char *f = insn->frag->fr_literal + insn->where;
1704 if (!HAVE_CODE_COMPRESSION)
1705 md_number_to_chars (f, insn->insn_opcode, 4);
1706 else if (mips_opts.micromips)
1708 unsigned int length = insn_length (insn);
1709 if (length == 2)
1710 md_number_to_chars (f, insn->insn_opcode, 2);
1711 else if (length == 4)
1713 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1714 f += 2;
1715 md_number_to_chars (f, insn->insn_opcode & 0xffff, 2);
1717 else
1718 as_bad (_("48-bit microMIPS instructions are not supported"));
1720 else if (insn->mips16_absolute_jump_p)
1722 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1723 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1725 else
1727 if (insn->use_extend)
1729 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1730 f += 2;
1732 md_number_to_chars (f, insn->insn_opcode, 2);
1734 mips_record_compressed_mode ();
1737 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1738 and install the opcode in the new location. */
1740 static void
1741 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1743 size_t i;
1745 insn->frag = frag;
1746 insn->where = where;
1747 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1748 if (insn->fixp[i] != NULL)
1750 insn->fixp[i]->fx_frag = frag;
1751 insn->fixp[i]->fx_where = where;
1753 install_insn (insn);
1756 /* Add INSN to the end of the output. */
1758 static void
1759 add_fixed_insn (struct mips_cl_insn *insn)
1761 char *f = frag_more (insn_length (insn));
1762 move_insn (insn, frag_now, f - frag_now->fr_literal);
1765 /* Start a variant frag and move INSN to the start of the variant part,
1766 marking it as fixed. The other arguments are as for frag_var. */
1768 static void
1769 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1770 relax_substateT subtype, symbolS *symbol, offsetT offset)
1772 frag_grow (max_chars);
1773 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1774 insn->fixed_p = 1;
1775 frag_var (rs_machine_dependent, max_chars, var,
1776 subtype, symbol, offset, NULL);
1779 /* Insert N copies of INSN into the history buffer, starting at
1780 position FIRST. Neither FIRST nor N need to be clipped. */
1782 static void
1783 insert_into_history (unsigned int first, unsigned int n,
1784 const struct mips_cl_insn *insn)
1786 if (mips_relax.sequence != 2)
1788 unsigned int i;
1790 for (i = ARRAY_SIZE (history); i-- > first;)
1791 if (i >= first + n)
1792 history[i] = history[i - n];
1793 else
1794 history[i] = *insn;
1798 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1799 the idea is to make it obvious at a glance that each errata is
1800 included. */
1802 static void
1803 init_vr4120_conflicts (void)
1805 #define CONFLICT(FIRST, SECOND) \
1806 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1808 /* Errata 21 - [D]DIV[U] after [D]MACC */
1809 CONFLICT (MACC, DIV);
1810 CONFLICT (DMACC, DIV);
1812 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1813 CONFLICT (DMULT, DMULT);
1814 CONFLICT (DMULT, DMACC);
1815 CONFLICT (DMACC, DMULT);
1816 CONFLICT (DMACC, DMACC);
1818 /* Errata 24 - MT{LO,HI} after [D]MACC */
1819 CONFLICT (MACC, MTHILO);
1820 CONFLICT (DMACC, MTHILO);
1822 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1823 instruction is executed immediately after a MACC or DMACC
1824 instruction, the result of [either instruction] is incorrect." */
1825 CONFLICT (MACC, MULT);
1826 CONFLICT (MACC, DMULT);
1827 CONFLICT (DMACC, MULT);
1828 CONFLICT (DMACC, DMULT);
1830 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1831 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1832 DDIV or DDIVU instruction, the result of the MACC or
1833 DMACC instruction is incorrect.". */
1834 CONFLICT (DMULT, MACC);
1835 CONFLICT (DMULT, DMACC);
1836 CONFLICT (DIV, MACC);
1837 CONFLICT (DIV, DMACC);
1839 #undef CONFLICT
1842 struct regname {
1843 const char *name;
1844 unsigned int num;
1847 #define RTYPE_MASK 0x1ff00
1848 #define RTYPE_NUM 0x00100
1849 #define RTYPE_FPU 0x00200
1850 #define RTYPE_FCC 0x00400
1851 #define RTYPE_VEC 0x00800
1852 #define RTYPE_GP 0x01000
1853 #define RTYPE_CP0 0x02000
1854 #define RTYPE_PC 0x04000
1855 #define RTYPE_ACC 0x08000
1856 #define RTYPE_CCC 0x10000
1857 #define RNUM_MASK 0x000ff
1858 #define RWARN 0x80000
1860 #define GENERIC_REGISTER_NUMBERS \
1861 {"$0", RTYPE_NUM | 0}, \
1862 {"$1", RTYPE_NUM | 1}, \
1863 {"$2", RTYPE_NUM | 2}, \
1864 {"$3", RTYPE_NUM | 3}, \
1865 {"$4", RTYPE_NUM | 4}, \
1866 {"$5", RTYPE_NUM | 5}, \
1867 {"$6", RTYPE_NUM | 6}, \
1868 {"$7", RTYPE_NUM | 7}, \
1869 {"$8", RTYPE_NUM | 8}, \
1870 {"$9", RTYPE_NUM | 9}, \
1871 {"$10", RTYPE_NUM | 10}, \
1872 {"$11", RTYPE_NUM | 11}, \
1873 {"$12", RTYPE_NUM | 12}, \
1874 {"$13", RTYPE_NUM | 13}, \
1875 {"$14", RTYPE_NUM | 14}, \
1876 {"$15", RTYPE_NUM | 15}, \
1877 {"$16", RTYPE_NUM | 16}, \
1878 {"$17", RTYPE_NUM | 17}, \
1879 {"$18", RTYPE_NUM | 18}, \
1880 {"$19", RTYPE_NUM | 19}, \
1881 {"$20", RTYPE_NUM | 20}, \
1882 {"$21", RTYPE_NUM | 21}, \
1883 {"$22", RTYPE_NUM | 22}, \
1884 {"$23", RTYPE_NUM | 23}, \
1885 {"$24", RTYPE_NUM | 24}, \
1886 {"$25", RTYPE_NUM | 25}, \
1887 {"$26", RTYPE_NUM | 26}, \
1888 {"$27", RTYPE_NUM | 27}, \
1889 {"$28", RTYPE_NUM | 28}, \
1890 {"$29", RTYPE_NUM | 29}, \
1891 {"$30", RTYPE_NUM | 30}, \
1892 {"$31", RTYPE_NUM | 31}
1894 #define FPU_REGISTER_NAMES \
1895 {"$f0", RTYPE_FPU | 0}, \
1896 {"$f1", RTYPE_FPU | 1}, \
1897 {"$f2", RTYPE_FPU | 2}, \
1898 {"$f3", RTYPE_FPU | 3}, \
1899 {"$f4", RTYPE_FPU | 4}, \
1900 {"$f5", RTYPE_FPU | 5}, \
1901 {"$f6", RTYPE_FPU | 6}, \
1902 {"$f7", RTYPE_FPU | 7}, \
1903 {"$f8", RTYPE_FPU | 8}, \
1904 {"$f9", RTYPE_FPU | 9}, \
1905 {"$f10", RTYPE_FPU | 10}, \
1906 {"$f11", RTYPE_FPU | 11}, \
1907 {"$f12", RTYPE_FPU | 12}, \
1908 {"$f13", RTYPE_FPU | 13}, \
1909 {"$f14", RTYPE_FPU | 14}, \
1910 {"$f15", RTYPE_FPU | 15}, \
1911 {"$f16", RTYPE_FPU | 16}, \
1912 {"$f17", RTYPE_FPU | 17}, \
1913 {"$f18", RTYPE_FPU | 18}, \
1914 {"$f19", RTYPE_FPU | 19}, \
1915 {"$f20", RTYPE_FPU | 20}, \
1916 {"$f21", RTYPE_FPU | 21}, \
1917 {"$f22", RTYPE_FPU | 22}, \
1918 {"$f23", RTYPE_FPU | 23}, \
1919 {"$f24", RTYPE_FPU | 24}, \
1920 {"$f25", RTYPE_FPU | 25}, \
1921 {"$f26", RTYPE_FPU | 26}, \
1922 {"$f27", RTYPE_FPU | 27}, \
1923 {"$f28", RTYPE_FPU | 28}, \
1924 {"$f29", RTYPE_FPU | 29}, \
1925 {"$f30", RTYPE_FPU | 30}, \
1926 {"$f31", RTYPE_FPU | 31}
1928 #define FPU_CONDITION_CODE_NAMES \
1929 {"$fcc0", RTYPE_FCC | 0}, \
1930 {"$fcc1", RTYPE_FCC | 1}, \
1931 {"$fcc2", RTYPE_FCC | 2}, \
1932 {"$fcc3", RTYPE_FCC | 3}, \
1933 {"$fcc4", RTYPE_FCC | 4}, \
1934 {"$fcc5", RTYPE_FCC | 5}, \
1935 {"$fcc6", RTYPE_FCC | 6}, \
1936 {"$fcc7", RTYPE_FCC | 7}
1938 #define COPROC_CONDITION_CODE_NAMES \
1939 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1940 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1941 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1942 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1943 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1944 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1945 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1946 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1948 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1949 {"$a4", RTYPE_GP | 8}, \
1950 {"$a5", RTYPE_GP | 9}, \
1951 {"$a6", RTYPE_GP | 10}, \
1952 {"$a7", RTYPE_GP | 11}, \
1953 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1954 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1955 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1956 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1957 {"$t0", RTYPE_GP | 12}, \
1958 {"$t1", RTYPE_GP | 13}, \
1959 {"$t2", RTYPE_GP | 14}, \
1960 {"$t3", RTYPE_GP | 15}
1962 #define O32_SYMBOLIC_REGISTER_NAMES \
1963 {"$t0", RTYPE_GP | 8}, \
1964 {"$t1", RTYPE_GP | 9}, \
1965 {"$t2", RTYPE_GP | 10}, \
1966 {"$t3", RTYPE_GP | 11}, \
1967 {"$t4", RTYPE_GP | 12}, \
1968 {"$t5", RTYPE_GP | 13}, \
1969 {"$t6", RTYPE_GP | 14}, \
1970 {"$t7", RTYPE_GP | 15}, \
1971 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1972 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1973 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1974 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1976 /* Remaining symbolic register names */
1977 #define SYMBOLIC_REGISTER_NAMES \
1978 {"$zero", RTYPE_GP | 0}, \
1979 {"$at", RTYPE_GP | 1}, \
1980 {"$AT", RTYPE_GP | 1}, \
1981 {"$v0", RTYPE_GP | 2}, \
1982 {"$v1", RTYPE_GP | 3}, \
1983 {"$a0", RTYPE_GP | 4}, \
1984 {"$a1", RTYPE_GP | 5}, \
1985 {"$a2", RTYPE_GP | 6}, \
1986 {"$a3", RTYPE_GP | 7}, \
1987 {"$s0", RTYPE_GP | 16}, \
1988 {"$s1", RTYPE_GP | 17}, \
1989 {"$s2", RTYPE_GP | 18}, \
1990 {"$s3", RTYPE_GP | 19}, \
1991 {"$s4", RTYPE_GP | 20}, \
1992 {"$s5", RTYPE_GP | 21}, \
1993 {"$s6", RTYPE_GP | 22}, \
1994 {"$s7", RTYPE_GP | 23}, \
1995 {"$t8", RTYPE_GP | 24}, \
1996 {"$t9", RTYPE_GP | 25}, \
1997 {"$k0", RTYPE_GP | 26}, \
1998 {"$kt0", RTYPE_GP | 26}, \
1999 {"$k1", RTYPE_GP | 27}, \
2000 {"$kt1", RTYPE_GP | 27}, \
2001 {"$gp", RTYPE_GP | 28}, \
2002 {"$sp", RTYPE_GP | 29}, \
2003 {"$s8", RTYPE_GP | 30}, \
2004 {"$fp", RTYPE_GP | 30}, \
2005 {"$ra", RTYPE_GP | 31}
2007 #define MIPS16_SPECIAL_REGISTER_NAMES \
2008 {"$pc", RTYPE_PC | 0}
2010 #define MDMX_VECTOR_REGISTER_NAMES \
2011 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2012 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2013 {"$v2", RTYPE_VEC | 2}, \
2014 {"$v3", RTYPE_VEC | 3}, \
2015 {"$v4", RTYPE_VEC | 4}, \
2016 {"$v5", RTYPE_VEC | 5}, \
2017 {"$v6", RTYPE_VEC | 6}, \
2018 {"$v7", RTYPE_VEC | 7}, \
2019 {"$v8", RTYPE_VEC | 8}, \
2020 {"$v9", RTYPE_VEC | 9}, \
2021 {"$v10", RTYPE_VEC | 10}, \
2022 {"$v11", RTYPE_VEC | 11}, \
2023 {"$v12", RTYPE_VEC | 12}, \
2024 {"$v13", RTYPE_VEC | 13}, \
2025 {"$v14", RTYPE_VEC | 14}, \
2026 {"$v15", RTYPE_VEC | 15}, \
2027 {"$v16", RTYPE_VEC | 16}, \
2028 {"$v17", RTYPE_VEC | 17}, \
2029 {"$v18", RTYPE_VEC | 18}, \
2030 {"$v19", RTYPE_VEC | 19}, \
2031 {"$v20", RTYPE_VEC | 20}, \
2032 {"$v21", RTYPE_VEC | 21}, \
2033 {"$v22", RTYPE_VEC | 22}, \
2034 {"$v23", RTYPE_VEC | 23}, \
2035 {"$v24", RTYPE_VEC | 24}, \
2036 {"$v25", RTYPE_VEC | 25}, \
2037 {"$v26", RTYPE_VEC | 26}, \
2038 {"$v27", RTYPE_VEC | 27}, \
2039 {"$v28", RTYPE_VEC | 28}, \
2040 {"$v29", RTYPE_VEC | 29}, \
2041 {"$v30", RTYPE_VEC | 30}, \
2042 {"$v31", RTYPE_VEC | 31}
2044 #define MIPS_DSP_ACCUMULATOR_NAMES \
2045 {"$ac0", RTYPE_ACC | 0}, \
2046 {"$ac1", RTYPE_ACC | 1}, \
2047 {"$ac2", RTYPE_ACC | 2}, \
2048 {"$ac3", RTYPE_ACC | 3}
2050 static const struct regname reg_names[] = {
2051 GENERIC_REGISTER_NUMBERS,
2052 FPU_REGISTER_NAMES,
2053 FPU_CONDITION_CODE_NAMES,
2054 COPROC_CONDITION_CODE_NAMES,
2056 /* The $txx registers depends on the abi,
2057 these will be added later into the symbol table from
2058 one of the tables below once mips_abi is set after
2059 parsing of arguments from the command line. */
2060 SYMBOLIC_REGISTER_NAMES,
2062 MIPS16_SPECIAL_REGISTER_NAMES,
2063 MDMX_VECTOR_REGISTER_NAMES,
2064 MIPS_DSP_ACCUMULATOR_NAMES,
2065 {0, 0}
2068 static const struct regname reg_names_o32[] = {
2069 O32_SYMBOLIC_REGISTER_NAMES,
2070 {0, 0}
2073 static const struct regname reg_names_n32n64[] = {
2074 N32N64_SYMBOLIC_REGISTER_NAMES,
2075 {0, 0}
2078 /* Check if S points at a valid register specifier according to TYPES.
2079 If so, then return 1, advance S to consume the specifier and store
2080 the register's number in REGNOP, otherwise return 0. */
2082 static int
2083 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2085 symbolS *symbolP;
2086 char *e;
2087 char save_c;
2088 int reg = -1;
2090 /* Find end of name. */
2091 e = *s;
2092 if (is_name_beginner (*e))
2093 ++e;
2094 while (is_part_of_name (*e))
2095 ++e;
2097 /* Terminate name. */
2098 save_c = *e;
2099 *e = '\0';
2101 /* Look for a register symbol. */
2102 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2104 int r = S_GET_VALUE (symbolP);
2105 if (r & types)
2106 reg = r & RNUM_MASK;
2107 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2108 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2109 reg = (r & RNUM_MASK) - 2;
2111 /* Else see if this is a register defined in an itbl entry. */
2112 else if ((types & RTYPE_GP) && itbl_have_entries)
2114 char *n = *s;
2115 unsigned long r;
2117 if (*n == '$')
2118 ++n;
2119 if (itbl_get_reg_val (n, &r))
2120 reg = r & RNUM_MASK;
2123 /* Advance to next token if a register was recognised. */
2124 if (reg >= 0)
2125 *s = e;
2126 else if (types & RWARN)
2127 as_warn (_("Unrecognized register name `%s'"), *s);
2129 *e = save_c;
2130 if (regnop)
2131 *regnop = reg;
2132 return reg >= 0;
2135 /* Check if S points at a valid register list according to TYPES.
2136 If so, then return 1, advance S to consume the list and store
2137 the registers present on the list as a bitmask of ones in REGLISTP,
2138 otherwise return 0. A valid list comprises a comma-separated
2139 enumeration of valid single registers and/or dash-separated
2140 contiguous register ranges as determined by their numbers.
2142 As a special exception if one of s0-s7 registers is specified as
2143 the range's lower delimiter and s8 (fp) is its upper one, then no
2144 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2145 are selected; they have to be listed separately if needed. */
2147 static int
2148 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2150 unsigned int reglist = 0;
2151 unsigned int lastregno;
2152 bfd_boolean ok = TRUE;
2153 unsigned int regmask;
2154 char *s_endlist = *s;
2155 char *s_reset = *s;
2156 unsigned int regno;
2158 while (reg_lookup (s, types, &regno))
2160 lastregno = regno;
2161 if (**s == '-')
2163 (*s)++;
2164 ok = reg_lookup (s, types, &lastregno);
2165 if (ok && lastregno < regno)
2166 ok = FALSE;
2167 if (!ok)
2168 break;
2171 if (lastregno == FP && regno >= S0 && regno <= S7)
2173 lastregno = S7;
2174 reglist |= 1 << FP;
2176 regmask = 1 << lastregno;
2177 regmask = (regmask << 1) - 1;
2178 regmask ^= (1 << regno) - 1;
2179 reglist |= regmask;
2181 s_endlist = *s;
2182 if (**s != ',')
2183 break;
2184 (*s)++;
2187 if (ok)
2188 *s = s_endlist;
2189 else
2190 *s = s_reset;
2191 if (reglistp)
2192 *reglistp = reglist;
2193 return ok && reglist != 0;
2196 /* Return TRUE if opcode MO is valid on the currently selected ISA and
2197 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2199 static bfd_boolean
2200 is_opcode_valid (const struct mips_opcode *mo)
2202 int isa = mips_opts.isa;
2203 int fp_s, fp_d;
2205 if (mips_opts.ase_mdmx)
2206 isa |= INSN_MDMX;
2207 if (mips_opts.ase_dsp)
2208 isa |= INSN_DSP;
2209 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
2210 isa |= INSN_DSP64;
2211 if (mips_opts.ase_dspr2)
2212 isa |= INSN_DSPR2;
2213 if (mips_opts.ase_mt)
2214 isa |= INSN_MT;
2215 if (mips_opts.ase_mips3d)
2216 isa |= INSN_MIPS3D;
2217 if (mips_opts.ase_smartmips)
2218 isa |= INSN_SMARTMIPS;
2219 if (mips_opts.ase_mcu)
2220 isa |= INSN_MCU;
2222 /* Don't accept instructions based on the ISA if the CPU does not implement
2223 all the coprocessor insns. */
2224 if (NO_ISA_COP (mips_opts.arch)
2225 && COP_INSN (mo->pinfo))
2226 isa = 0;
2228 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
2229 return FALSE;
2231 /* Check whether the instruction or macro requires single-precision or
2232 double-precision floating-point support. Note that this information is
2233 stored differently in the opcode table for insns and macros. */
2234 if (mo->pinfo == INSN_MACRO)
2236 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2237 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2239 else
2241 fp_s = mo->pinfo & FP_S;
2242 fp_d = mo->pinfo & FP_D;
2245 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2246 return FALSE;
2248 if (fp_s && mips_opts.soft_float)
2249 return FALSE;
2251 return TRUE;
2254 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2255 selected ISA and architecture. */
2257 static bfd_boolean
2258 is_opcode_valid_16 (const struct mips_opcode *mo)
2260 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
2263 /* Return TRUE if the size of the microMIPS opcode MO matches one
2264 explicitly requested. Always TRUE in the standard MIPS mode. */
2266 static bfd_boolean
2267 is_size_valid (const struct mips_opcode *mo)
2269 if (!mips_opts.micromips)
2270 return TRUE;
2272 if (!forced_insn_length)
2273 return TRUE;
2274 if (mo->pinfo == INSN_MACRO)
2275 return FALSE;
2276 return forced_insn_length == micromips_insn_length (mo);
2279 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2280 of the preceding instruction. Always TRUE in the standard MIPS mode. */
2282 static bfd_boolean
2283 is_delay_slot_valid (const struct mips_opcode *mo)
2285 if (!mips_opts.micromips)
2286 return TRUE;
2288 if (mo->pinfo == INSN_MACRO)
2289 return TRUE;
2290 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2291 && micromips_insn_length (mo) != 4)
2292 return FALSE;
2293 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2294 && micromips_insn_length (mo) != 2)
2295 return FALSE;
2297 return TRUE;
2300 /* This function is called once, at assembler startup time. It should set up
2301 all the tables, etc. that the MD part of the assembler will need. */
2303 void
2304 md_begin (void)
2306 const char *retval = NULL;
2307 int i = 0;
2308 int broken = 0;
2310 if (mips_pic != NO_PIC)
2312 if (g_switch_seen && g_switch_value != 0)
2313 as_bad (_("-G may not be used in position-independent code"));
2314 g_switch_value = 0;
2317 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2318 as_warn (_("Could not set architecture and machine"));
2320 op_hash = hash_new ();
2322 for (i = 0; i < NUMOPCODES;)
2324 const char *name = mips_opcodes[i].name;
2326 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2327 if (retval != NULL)
2329 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2330 mips_opcodes[i].name, retval);
2331 /* Probably a memory allocation problem? Give up now. */
2332 as_fatal (_("Broken assembler. No assembly attempted."));
2336 if (mips_opcodes[i].pinfo != INSN_MACRO)
2338 if (!validate_mips_insn (&mips_opcodes[i]))
2339 broken = 1;
2340 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2342 create_insn (&nop_insn, mips_opcodes + i);
2343 if (mips_fix_loongson2f_nop)
2344 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2345 nop_insn.fixed_p = 1;
2348 ++i;
2350 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2353 mips16_op_hash = hash_new ();
2355 i = 0;
2356 while (i < bfd_mips16_num_opcodes)
2358 const char *name = mips16_opcodes[i].name;
2360 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2361 if (retval != NULL)
2362 as_fatal (_("internal: can't hash `%s': %s"),
2363 mips16_opcodes[i].name, retval);
2366 if (mips16_opcodes[i].pinfo != INSN_MACRO
2367 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2368 != mips16_opcodes[i].match))
2370 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2371 mips16_opcodes[i].name, mips16_opcodes[i].args);
2372 broken = 1;
2374 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2376 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2377 mips16_nop_insn.fixed_p = 1;
2379 ++i;
2381 while (i < bfd_mips16_num_opcodes
2382 && strcmp (mips16_opcodes[i].name, name) == 0);
2385 micromips_op_hash = hash_new ();
2387 i = 0;
2388 while (i < bfd_micromips_num_opcodes)
2390 const char *name = micromips_opcodes[i].name;
2392 retval = hash_insert (micromips_op_hash, name,
2393 (void *) &micromips_opcodes[i]);
2394 if (retval != NULL)
2395 as_fatal (_("internal: can't hash `%s': %s"),
2396 micromips_opcodes[i].name, retval);
2398 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2400 struct mips_cl_insn *micromips_nop_insn;
2402 if (!validate_micromips_insn (&micromips_opcodes[i]))
2403 broken = 1;
2405 if (micromips_insn_length (micromips_opcodes + i) == 2)
2406 micromips_nop_insn = &micromips_nop16_insn;
2407 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2408 micromips_nop_insn = &micromips_nop32_insn;
2409 else
2410 continue;
2412 if (micromips_nop_insn->insn_mo == NULL
2413 && strcmp (name, "nop") == 0)
2415 create_insn (micromips_nop_insn, micromips_opcodes + i);
2416 micromips_nop_insn->fixed_p = 1;
2419 while (++i < bfd_micromips_num_opcodes
2420 && strcmp (micromips_opcodes[i].name, name) == 0);
2423 if (broken)
2424 as_fatal (_("Broken assembler. No assembly attempted."));
2426 /* We add all the general register names to the symbol table. This
2427 helps us detect invalid uses of them. */
2428 for (i = 0; reg_names[i].name; i++)
2429 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2430 reg_names[i].num, /* & RNUM_MASK, */
2431 &zero_address_frag));
2432 if (HAVE_NEWABI)
2433 for (i = 0; reg_names_n32n64[i].name; i++)
2434 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2435 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2436 &zero_address_frag));
2437 else
2438 for (i = 0; reg_names_o32[i].name; i++)
2439 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2440 reg_names_o32[i].num, /* & RNUM_MASK, */
2441 &zero_address_frag));
2443 mips_no_prev_insn ();
2445 mips_gprmask = 0;
2446 mips_cprmask[0] = 0;
2447 mips_cprmask[1] = 0;
2448 mips_cprmask[2] = 0;
2449 mips_cprmask[3] = 0;
2451 /* set the default alignment for the text section (2**2) */
2452 record_alignment (text_section, 2);
2454 bfd_set_gp_size (stdoutput, g_switch_value);
2456 #ifdef OBJ_ELF
2457 if (IS_ELF)
2459 /* On a native system other than VxWorks, sections must be aligned
2460 to 16 byte boundaries. When configured for an embedded ELF
2461 target, we don't bother. */
2462 if (strncmp (TARGET_OS, "elf", 3) != 0
2463 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2465 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2466 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2467 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2470 /* Create a .reginfo section for register masks and a .mdebug
2471 section for debugging information. */
2473 segT seg;
2474 subsegT subseg;
2475 flagword flags;
2476 segT sec;
2478 seg = now_seg;
2479 subseg = now_subseg;
2481 /* The ABI says this section should be loaded so that the
2482 running program can access it. However, we don't load it
2483 if we are configured for an embedded target */
2484 flags = SEC_READONLY | SEC_DATA;
2485 if (strncmp (TARGET_OS, "elf", 3) != 0)
2486 flags |= SEC_ALLOC | SEC_LOAD;
2488 if (mips_abi != N64_ABI)
2490 sec = subseg_new (".reginfo", (subsegT) 0);
2492 bfd_set_section_flags (stdoutput, sec, flags);
2493 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2495 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2497 else
2499 /* The 64-bit ABI uses a .MIPS.options section rather than
2500 .reginfo section. */
2501 sec = subseg_new (".MIPS.options", (subsegT) 0);
2502 bfd_set_section_flags (stdoutput, sec, flags);
2503 bfd_set_section_alignment (stdoutput, sec, 3);
2505 /* Set up the option header. */
2507 Elf_Internal_Options opthdr;
2508 char *f;
2510 opthdr.kind = ODK_REGINFO;
2511 opthdr.size = (sizeof (Elf_External_Options)
2512 + sizeof (Elf64_External_RegInfo));
2513 opthdr.section = 0;
2514 opthdr.info = 0;
2515 f = frag_more (sizeof (Elf_External_Options));
2516 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2517 (Elf_External_Options *) f);
2519 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2523 if (ECOFF_DEBUGGING)
2525 sec = subseg_new (".mdebug", (subsegT) 0);
2526 (void) bfd_set_section_flags (stdoutput, sec,
2527 SEC_HAS_CONTENTS | SEC_READONLY);
2528 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2530 else if (mips_flag_pdr)
2532 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2533 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2534 SEC_READONLY | SEC_RELOC
2535 | SEC_DEBUGGING);
2536 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2539 subseg_set (seg, subseg);
2542 #endif /* OBJ_ELF */
2544 if (! ECOFF_DEBUGGING)
2545 md_obj_begin ();
2547 if (mips_fix_vr4120)
2548 init_vr4120_conflicts ();
2551 void
2552 md_mips_end (void)
2554 mips_emit_delays ();
2555 if (! ECOFF_DEBUGGING)
2556 md_obj_end ();
2559 void
2560 md_assemble (char *str)
2562 struct mips_cl_insn insn;
2563 bfd_reloc_code_real_type unused_reloc[3]
2564 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2566 imm_expr.X_op = O_absent;
2567 imm2_expr.X_op = O_absent;
2568 offset_expr.X_op = O_absent;
2569 imm_reloc[0] = BFD_RELOC_UNUSED;
2570 imm_reloc[1] = BFD_RELOC_UNUSED;
2571 imm_reloc[2] = BFD_RELOC_UNUSED;
2572 offset_reloc[0] = BFD_RELOC_UNUSED;
2573 offset_reloc[1] = BFD_RELOC_UNUSED;
2574 offset_reloc[2] = BFD_RELOC_UNUSED;
2576 if (mips_opts.mips16)
2577 mips16_ip (str, &insn);
2578 else
2580 mips_ip (str, &insn);
2581 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2582 str, insn.insn_opcode));
2585 if (insn_error)
2587 as_bad ("%s `%s'", insn_error, str);
2588 return;
2591 if (insn.insn_mo->pinfo == INSN_MACRO)
2593 macro_start ();
2594 if (mips_opts.mips16)
2595 mips16_macro (&insn);
2596 else
2597 macro (&insn);
2598 macro_end ();
2600 else
2602 if (imm_expr.X_op != O_absent)
2603 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2604 else if (offset_expr.X_op != O_absent)
2605 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2606 else
2607 append_insn (&insn, NULL, unused_reloc, FALSE);
2611 /* Convenience functions for abstracting away the differences between
2612 MIPS16 and non-MIPS16 relocations. */
2614 static inline bfd_boolean
2615 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2617 switch (reloc)
2619 case BFD_RELOC_MIPS16_JMP:
2620 case BFD_RELOC_MIPS16_GPREL:
2621 case BFD_RELOC_MIPS16_GOT16:
2622 case BFD_RELOC_MIPS16_CALL16:
2623 case BFD_RELOC_MIPS16_HI16_S:
2624 case BFD_RELOC_MIPS16_HI16:
2625 case BFD_RELOC_MIPS16_LO16:
2626 return TRUE;
2628 default:
2629 return FALSE;
2633 static inline bfd_boolean
2634 micromips_reloc_p (bfd_reloc_code_real_type reloc)
2636 switch (reloc)
2638 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2639 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2640 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2641 case BFD_RELOC_MICROMIPS_GPREL16:
2642 case BFD_RELOC_MICROMIPS_JMP:
2643 case BFD_RELOC_MICROMIPS_HI16:
2644 case BFD_RELOC_MICROMIPS_HI16_S:
2645 case BFD_RELOC_MICROMIPS_LO16:
2646 case BFD_RELOC_MICROMIPS_LITERAL:
2647 case BFD_RELOC_MICROMIPS_GOT16:
2648 case BFD_RELOC_MICROMIPS_CALL16:
2649 case BFD_RELOC_MICROMIPS_GOT_HI16:
2650 case BFD_RELOC_MICROMIPS_GOT_LO16:
2651 case BFD_RELOC_MICROMIPS_CALL_HI16:
2652 case BFD_RELOC_MICROMIPS_CALL_LO16:
2653 case BFD_RELOC_MICROMIPS_SUB:
2654 case BFD_RELOC_MICROMIPS_GOT_PAGE:
2655 case BFD_RELOC_MICROMIPS_GOT_OFST:
2656 case BFD_RELOC_MICROMIPS_GOT_DISP:
2657 case BFD_RELOC_MICROMIPS_HIGHEST:
2658 case BFD_RELOC_MICROMIPS_HIGHER:
2659 case BFD_RELOC_MICROMIPS_SCN_DISP:
2660 case BFD_RELOC_MICROMIPS_JALR:
2661 return TRUE;
2663 default:
2664 return FALSE;
2668 static inline bfd_boolean
2669 jmp_reloc_p (bfd_reloc_code_real_type reloc)
2671 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
2674 static inline bfd_boolean
2675 got16_reloc_p (bfd_reloc_code_real_type reloc)
2677 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
2678 || reloc == BFD_RELOC_MICROMIPS_GOT16);
2681 static inline bfd_boolean
2682 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2684 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
2685 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
2688 static inline bfd_boolean
2689 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2691 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
2692 || reloc == BFD_RELOC_MICROMIPS_LO16);
2695 static inline bfd_boolean
2696 jalr_reloc_p (bfd_reloc_code_real_type reloc)
2698 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
2701 /* Return true if the given relocation might need a matching %lo().
2702 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2703 need a matching %lo() when applied to local symbols. */
2705 static inline bfd_boolean
2706 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2708 return (HAVE_IN_PLACE_ADDENDS
2709 && (hi16_reloc_p (reloc)
2710 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2711 all GOT16 relocations evaluate to "G". */
2712 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2715 /* Return the type of %lo() reloc needed by RELOC, given that
2716 reloc_needs_lo_p. */
2718 static inline bfd_reloc_code_real_type
2719 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2721 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
2722 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
2723 : BFD_RELOC_LO16));
2726 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2727 relocation. */
2729 static inline bfd_boolean
2730 fixup_has_matching_lo_p (fixS *fixp)
2732 return (fixp->fx_next != NULL
2733 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2734 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2735 && fixp->fx_offset == fixp->fx_next->fx_offset);
2738 /* This function returns true if modifying a register requires a
2739 delay. */
2741 static int
2742 reg_needs_delay (unsigned int reg)
2744 unsigned long prev_pinfo;
2746 prev_pinfo = history[0].insn_mo->pinfo;
2747 if (! mips_opts.noreorder
2748 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2749 && ! gpr_interlocks)
2750 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2751 && ! cop_interlocks)))
2753 /* A load from a coprocessor or from memory. All load delays
2754 delay the use of general register rt for one instruction. */
2755 /* Itbl support may require additional care here. */
2756 know (prev_pinfo & INSN_WRITE_GPR_T);
2757 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
2758 return 1;
2761 return 0;
2764 /* Move all labels in LABELS to the current insertion point. TEXT_P
2765 says whether the labels refer to text or data. */
2767 static void
2768 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
2770 struct insn_label_list *l;
2771 valueT val;
2773 for (l = labels; l != NULL; l = l->next)
2775 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2776 symbol_set_frag (l->label, frag_now);
2777 val = (valueT) frag_now_fix ();
2778 /* MIPS16/microMIPS text labels are stored as odd. */
2779 if (text_p && HAVE_CODE_COMPRESSION)
2780 ++val;
2781 S_SET_VALUE (l->label, val);
2785 /* Move all labels in insn_labels to the current insertion point
2786 and treat them as text labels. */
2788 static void
2789 mips_move_text_labels (void)
2791 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
2794 static bfd_boolean
2795 s_is_linkonce (symbolS *sym, segT from_seg)
2797 bfd_boolean linkonce = FALSE;
2798 segT symseg = S_GET_SEGMENT (sym);
2800 if (symseg != from_seg && !S_IS_LOCAL (sym))
2802 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2803 linkonce = TRUE;
2804 #ifdef OBJ_ELF
2805 /* The GNU toolchain uses an extension for ELF: a section
2806 beginning with the magic string .gnu.linkonce is a
2807 linkonce section. */
2808 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2809 sizeof ".gnu.linkonce" - 1) == 0)
2810 linkonce = TRUE;
2811 #endif
2813 return linkonce;
2816 /* Mark instruction labels in MIPS16/microMIPS mode. This permits the
2817 linker to handle them specially, such as generating jalx instructions
2818 when needed. We also make them odd for the duration of the assembly,
2819 in order to generate the right sort of code. We will make them even
2820 in the adjust_symtab routine, while leaving them marked. This is
2821 convenient for the debugger and the disassembler. The linker knows
2822 to make them odd again. */
2824 static void
2825 mips_compressed_mark_labels (void)
2827 segment_info_type *si = seg_info (now_seg);
2828 struct insn_label_list *l;
2830 gas_assert (HAVE_CODE_COMPRESSION);
2832 for (l = si->label_list; l != NULL; l = l->next)
2834 symbolS *label = l->label;
2836 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2837 if (IS_ELF)
2839 if (mips_opts.mips16)
2840 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2841 else
2842 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
2844 #endif
2845 if ((S_GET_VALUE (label) & 1) == 0
2846 /* Don't adjust the address if the label is global or weak, or
2847 in a link-once section, since we'll be emitting symbol reloc
2848 references to it which will be patched up by the linker, and
2849 the final value of the symbol may or may not be MIPS16/microMIPS. */
2850 && ! S_IS_WEAK (label)
2851 && ! S_IS_EXTERNAL (label)
2852 && ! s_is_linkonce (label, now_seg))
2853 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2857 /* End the current frag. Make it a variant frag and record the
2858 relaxation info. */
2860 static void
2861 relax_close_frag (void)
2863 mips_macro_warning.first_frag = frag_now;
2864 frag_var (rs_machine_dependent, 0, 0,
2865 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2866 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2868 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2869 mips_relax.first_fixup = 0;
2872 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2873 See the comment above RELAX_ENCODE for more details. */
2875 static void
2876 relax_start (symbolS *symbol)
2878 gas_assert (mips_relax.sequence == 0);
2879 mips_relax.sequence = 1;
2880 mips_relax.symbol = symbol;
2883 /* Start generating the second version of a relaxable sequence.
2884 See the comment above RELAX_ENCODE for more details. */
2886 static void
2887 relax_switch (void)
2889 gas_assert (mips_relax.sequence == 1);
2890 mips_relax.sequence = 2;
2893 /* End the current relaxable sequence. */
2895 static void
2896 relax_end (void)
2898 gas_assert (mips_relax.sequence == 2);
2899 relax_close_frag ();
2900 mips_relax.sequence = 0;
2903 /* Return true if IP is a delayed branch or jump. */
2905 static inline bfd_boolean
2906 delayed_branch_p (const struct mips_cl_insn *ip)
2908 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2909 | INSN_COND_BRANCH_DELAY
2910 | INSN_COND_BRANCH_LIKELY)) != 0;
2913 /* Return true if IP is a compact branch or jump. */
2915 static inline bfd_boolean
2916 compact_branch_p (const struct mips_cl_insn *ip)
2918 if (mips_opts.mips16)
2919 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2920 | MIPS16_INSN_COND_BRANCH)) != 0;
2921 else
2922 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
2923 | INSN2_COND_BRANCH)) != 0;
2926 /* Return true if IP is an unconditional branch or jump. */
2928 static inline bfd_boolean
2929 uncond_branch_p (const struct mips_cl_insn *ip)
2931 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
2932 || (mips_opts.mips16
2933 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
2934 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
2937 /* Return true if IP is a branch-likely instruction. */
2939 static inline bfd_boolean
2940 branch_likely_p (const struct mips_cl_insn *ip)
2942 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
2945 /* Return the type of nop that should be used to fill the delay slot
2946 of delayed branch IP. */
2948 static struct mips_cl_insn *
2949 get_delay_slot_nop (const struct mips_cl_insn *ip)
2951 if (mips_opts.micromips
2952 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
2953 return &micromips_nop32_insn;
2954 return NOP_INSN;
2957 /* Return the mask of core registers that IP reads or writes. */
2959 static unsigned int
2960 gpr_mod_mask (const struct mips_cl_insn *ip)
2962 unsigned long pinfo2;
2963 unsigned int mask;
2965 mask = 0;
2966 pinfo2 = ip->insn_mo->pinfo2;
2967 if (mips_opts.micromips)
2969 if (pinfo2 & INSN2_MOD_GPR_MD)
2970 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
2971 if (pinfo2 & INSN2_MOD_GPR_MF)
2972 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
2973 if (pinfo2 & INSN2_MOD_SP)
2974 mask |= 1 << SP;
2976 return mask;
2979 /* Return the mask of core registers that IP reads. */
2981 static unsigned int
2982 gpr_read_mask (const struct mips_cl_insn *ip)
2984 unsigned long pinfo, pinfo2;
2985 unsigned int mask;
2987 mask = gpr_mod_mask (ip);
2988 pinfo = ip->insn_mo->pinfo;
2989 pinfo2 = ip->insn_mo->pinfo2;
2990 if (mips_opts.mips16)
2992 if (pinfo & MIPS16_INSN_READ_X)
2993 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
2994 if (pinfo & MIPS16_INSN_READ_Y)
2995 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
2996 if (pinfo & MIPS16_INSN_READ_T)
2997 mask |= 1 << TREG;
2998 if (pinfo & MIPS16_INSN_READ_SP)
2999 mask |= 1 << SP;
3000 if (pinfo & MIPS16_INSN_READ_31)
3001 mask |= 1 << RA;
3002 if (pinfo & MIPS16_INSN_READ_Z)
3003 mask |= 1 << (mips16_to_32_reg_map
3004 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3005 if (pinfo & MIPS16_INSN_READ_GPR_X)
3006 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3008 else
3010 if (pinfo2 & INSN2_READ_GPR_D)
3011 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3012 if (pinfo & INSN_READ_GPR_T)
3013 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3014 if (pinfo & INSN_READ_GPR_S)
3015 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3016 if (pinfo2 & INSN2_READ_GP)
3017 mask |= 1 << GP;
3018 if (pinfo2 & INSN2_READ_GPR_31)
3019 mask |= 1 << RA;
3020 if (pinfo2 & INSN2_READ_GPR_Z)
3021 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3023 if (mips_opts.micromips)
3025 if (pinfo2 & INSN2_READ_GPR_MC)
3026 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3027 if (pinfo2 & INSN2_READ_GPR_ME)
3028 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3029 if (pinfo2 & INSN2_READ_GPR_MG)
3030 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3031 if (pinfo2 & INSN2_READ_GPR_MJ)
3032 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3033 if (pinfo2 & INSN2_READ_GPR_MMN)
3035 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3036 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3038 if (pinfo2 & INSN2_READ_GPR_MP)
3039 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3040 if (pinfo2 & INSN2_READ_GPR_MQ)
3041 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3043 /* Don't include register 0. */
3044 return mask & ~1;
3047 /* Return the mask of core registers that IP writes. */
3049 static unsigned int
3050 gpr_write_mask (const struct mips_cl_insn *ip)
3052 unsigned long pinfo, pinfo2;
3053 unsigned int mask;
3055 mask = gpr_mod_mask (ip);
3056 pinfo = ip->insn_mo->pinfo;
3057 pinfo2 = ip->insn_mo->pinfo2;
3058 if (mips_opts.mips16)
3060 if (pinfo & MIPS16_INSN_WRITE_X)
3061 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3062 if (pinfo & MIPS16_INSN_WRITE_Y)
3063 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3064 if (pinfo & MIPS16_INSN_WRITE_Z)
3065 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3066 if (pinfo & MIPS16_INSN_WRITE_T)
3067 mask |= 1 << TREG;
3068 if (pinfo & MIPS16_INSN_WRITE_SP)
3069 mask |= 1 << SP;
3070 if (pinfo & MIPS16_INSN_WRITE_31)
3071 mask |= 1 << RA;
3072 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3073 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3075 else
3077 if (pinfo & INSN_WRITE_GPR_D)
3078 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3079 if (pinfo & INSN_WRITE_GPR_T)
3080 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3081 if (pinfo & INSN_WRITE_GPR_S)
3082 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3083 if (pinfo & INSN_WRITE_GPR_31)
3084 mask |= 1 << RA;
3085 if (pinfo2 & INSN2_WRITE_GPR_Z)
3086 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3088 if (mips_opts.micromips)
3090 if (pinfo2 & INSN2_WRITE_GPR_MB)
3091 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3092 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3094 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3095 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3097 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3098 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3099 if (pinfo2 & INSN2_WRITE_GPR_MP)
3100 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3102 /* Don't include register 0. */
3103 return mask & ~1;
3106 /* Return the mask of floating-point registers that IP reads. */
3108 static unsigned int
3109 fpr_read_mask (const struct mips_cl_insn *ip)
3111 unsigned long pinfo, pinfo2;
3112 unsigned int mask;
3114 mask = 0;
3115 pinfo = ip->insn_mo->pinfo;
3116 pinfo2 = ip->insn_mo->pinfo2;
3117 if (!mips_opts.mips16)
3119 if (pinfo2 & INSN2_READ_FPR_D)
3120 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3121 if (pinfo & INSN_READ_FPR_S)
3122 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3123 if (pinfo & INSN_READ_FPR_T)
3124 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3125 if (pinfo & INSN_READ_FPR_R)
3126 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3127 if (pinfo2 & INSN2_READ_FPR_Z)
3128 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3130 /* Conservatively treat all operands to an FP_D instruction are doubles.
3131 (This is overly pessimistic for things like cvt.d.s.) */
3132 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3133 mask |= mask << 1;
3134 return mask;
3137 /* Return the mask of floating-point registers that IP writes. */
3139 static unsigned int
3140 fpr_write_mask (const struct mips_cl_insn *ip)
3142 unsigned long pinfo, pinfo2;
3143 unsigned int mask;
3145 mask = 0;
3146 pinfo = ip->insn_mo->pinfo;
3147 pinfo2 = ip->insn_mo->pinfo2;
3148 if (!mips_opts.mips16)
3150 if (pinfo & INSN_WRITE_FPR_D)
3151 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3152 if (pinfo & INSN_WRITE_FPR_S)
3153 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3154 if (pinfo & INSN_WRITE_FPR_T)
3155 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3156 if (pinfo2 & INSN2_WRITE_FPR_Z)
3157 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3159 /* Conservatively treat all operands to an FP_D instruction are doubles.
3160 (This is overly pessimistic for things like cvt.s.d.) */
3161 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3162 mask |= mask << 1;
3163 return mask;
3166 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3167 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3168 by VR4120 errata. */
3170 static unsigned int
3171 classify_vr4120_insn (const char *name)
3173 if (strncmp (name, "macc", 4) == 0)
3174 return FIX_VR4120_MACC;
3175 if (strncmp (name, "dmacc", 5) == 0)
3176 return FIX_VR4120_DMACC;
3177 if (strncmp (name, "mult", 4) == 0)
3178 return FIX_VR4120_MULT;
3179 if (strncmp (name, "dmult", 5) == 0)
3180 return FIX_VR4120_DMULT;
3181 if (strstr (name, "div"))
3182 return FIX_VR4120_DIV;
3183 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3184 return FIX_VR4120_MTHILO;
3185 return NUM_FIX_VR4120_CLASSES;
3188 #define INSN_ERET 0x42000018
3189 #define INSN_DERET 0x4200001f
3191 /* Return the number of instructions that must separate INSN1 and INSN2,
3192 where INSN1 is the earlier instruction. Return the worst-case value
3193 for any INSN2 if INSN2 is null. */
3195 static unsigned int
3196 insns_between (const struct mips_cl_insn *insn1,
3197 const struct mips_cl_insn *insn2)
3199 unsigned long pinfo1, pinfo2;
3200 unsigned int mask;
3202 /* This function needs to know which pinfo flags are set for INSN2
3203 and which registers INSN2 uses. The former is stored in PINFO2 and
3204 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3205 will have every flag set and INSN2_USES_GPR will always return true. */
3206 pinfo1 = insn1->insn_mo->pinfo;
3207 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3209 #define INSN2_USES_GPR(REG) \
3210 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3212 /* For most targets, write-after-read dependencies on the HI and LO
3213 registers must be separated by at least two instructions. */
3214 if (!hilo_interlocks)
3216 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3217 return 2;
3218 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3219 return 2;
3222 /* If we're working around r7000 errata, there must be two instructions
3223 between an mfhi or mflo and any instruction that uses the result. */
3224 if (mips_7000_hilo_fix
3225 && !mips_opts.micromips
3226 && MF_HILO_INSN (pinfo1)
3227 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3228 return 2;
3230 /* If we're working around 24K errata, one instruction is required
3231 if an ERET or DERET is followed by a branch instruction. */
3232 if (mips_fix_24k && !mips_opts.micromips)
3234 if (insn1->insn_opcode == INSN_ERET
3235 || insn1->insn_opcode == INSN_DERET)
3237 if (insn2 == NULL
3238 || insn2->insn_opcode == INSN_ERET
3239 || insn2->insn_opcode == INSN_DERET
3240 || delayed_branch_p (insn2))
3241 return 1;
3245 /* If working around VR4120 errata, check for combinations that need
3246 a single intervening instruction. */
3247 if (mips_fix_vr4120 && !mips_opts.micromips)
3249 unsigned int class1, class2;
3251 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3252 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3254 if (insn2 == NULL)
3255 return 1;
3256 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3257 if (vr4120_conflicts[class1] & (1 << class2))
3258 return 1;
3262 if (!HAVE_CODE_COMPRESSION)
3264 /* Check for GPR or coprocessor load delays. All such delays
3265 are on the RT register. */
3266 /* Itbl support may require additional care here. */
3267 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3268 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3270 know (pinfo1 & INSN_WRITE_GPR_T);
3271 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3272 return 1;
3275 /* Check for generic coprocessor hazards.
3277 This case is not handled very well. There is no special
3278 knowledge of CP0 handling, and the coprocessors other than
3279 the floating point unit are not distinguished at all. */
3280 /* Itbl support may require additional care here. FIXME!
3281 Need to modify this to include knowledge about
3282 user specified delays! */
3283 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3284 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3286 /* Handle cases where INSN1 writes to a known general coprocessor
3287 register. There must be a one instruction delay before INSN2
3288 if INSN2 reads that register, otherwise no delay is needed. */
3289 mask = fpr_write_mask (insn1);
3290 if (mask != 0)
3292 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3293 return 1;
3295 else
3297 /* Read-after-write dependencies on the control registers
3298 require a two-instruction gap. */
3299 if ((pinfo1 & INSN_WRITE_COND_CODE)
3300 && (pinfo2 & INSN_READ_COND_CODE))
3301 return 2;
3303 /* We don't know exactly what INSN1 does. If INSN2 is
3304 also a coprocessor instruction, assume there must be
3305 a one instruction gap. */
3306 if (pinfo2 & INSN_COP)
3307 return 1;
3311 /* Check for read-after-write dependencies on the coprocessor
3312 control registers in cases where INSN1 does not need a general
3313 coprocessor delay. This means that INSN1 is a floating point
3314 comparison instruction. */
3315 /* Itbl support may require additional care here. */
3316 else if (!cop_interlocks
3317 && (pinfo1 & INSN_WRITE_COND_CODE)
3318 && (pinfo2 & INSN_READ_COND_CODE))
3319 return 1;
3322 #undef INSN2_USES_GPR
3324 return 0;
3327 /* Return the number of nops that would be needed to work around the
3328 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3329 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3330 that are contained within the first IGNORE instructions of HIST. */
3332 static int
3333 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3334 const struct mips_cl_insn *insn)
3336 int i, j;
3337 unsigned int mask;
3339 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3340 are not affected by the errata. */
3341 if (insn != 0
3342 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3343 || strcmp (insn->insn_mo->name, "mtlo") == 0
3344 || strcmp (insn->insn_mo->name, "mthi") == 0))
3345 return 0;
3347 /* Search for the first MFLO or MFHI. */
3348 for (i = 0; i < MAX_VR4130_NOPS; i++)
3349 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3351 /* Extract the destination register. */
3352 mask = gpr_write_mask (&hist[i]);
3354 /* No nops are needed if INSN reads that register. */
3355 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3356 return 0;
3358 /* ...or if any of the intervening instructions do. */
3359 for (j = 0; j < i; j++)
3360 if (gpr_read_mask (&hist[j]) & mask)
3361 return 0;
3363 if (i >= ignore)
3364 return MAX_VR4130_NOPS - i;
3366 return 0;
3369 #define BASE_REG_EQ(INSN1, INSN2) \
3370 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3371 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3373 /* Return the minimum alignment for this store instruction. */
3375 static int
3376 fix_24k_align_to (const struct mips_opcode *mo)
3378 if (strcmp (mo->name, "sh") == 0)
3379 return 2;
3381 if (strcmp (mo->name, "swc1") == 0
3382 || strcmp (mo->name, "swc2") == 0
3383 || strcmp (mo->name, "sw") == 0
3384 || strcmp (mo->name, "sc") == 0
3385 || strcmp (mo->name, "s.s") == 0)
3386 return 4;
3388 if (strcmp (mo->name, "sdc1") == 0
3389 || strcmp (mo->name, "sdc2") == 0
3390 || strcmp (mo->name, "s.d") == 0)
3391 return 8;
3393 /* sb, swl, swr */
3394 return 1;
3397 struct fix_24k_store_info
3399 /* Immediate offset, if any, for this store instruction. */
3400 short off;
3401 /* Alignment required by this store instruction. */
3402 int align_to;
3403 /* True for register offsets. */
3404 int register_offset;
3407 /* Comparison function used by qsort. */
3409 static int
3410 fix_24k_sort (const void *a, const void *b)
3412 const struct fix_24k_store_info *pos1 = a;
3413 const struct fix_24k_store_info *pos2 = b;
3415 return (pos1->off - pos2->off);
3418 /* INSN is a store instruction. Try to record the store information
3419 in STINFO. Return false if the information isn't known. */
3421 static bfd_boolean
3422 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3423 const struct mips_cl_insn *insn)
3425 /* The instruction must have a known offset. */
3426 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3427 return FALSE;
3429 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3430 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3431 return TRUE;
3434 /* Return the number of nops that would be needed to work around the 24k
3435 "lost data on stores during refill" errata if instruction INSN
3436 immediately followed the 2 instructions described by HIST.
3437 Ignore hazards that are contained within the first IGNORE
3438 instructions of HIST.
3440 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3441 for the data cache refills and store data. The following describes
3442 the scenario where the store data could be lost.
3444 * A data cache miss, due to either a load or a store, causing fill
3445 data to be supplied by the memory subsystem
3446 * The first three doublewords of fill data are returned and written
3447 into the cache
3448 * A sequence of four stores occurs in consecutive cycles around the
3449 final doubleword of the fill:
3450 * Store A
3451 * Store B
3452 * Store C
3453 * Zero, One or more instructions
3454 * Store D
3456 The four stores A-D must be to different doublewords of the line that
3457 is being filled. The fourth instruction in the sequence above permits
3458 the fill of the final doubleword to be transferred from the FSB into
3459 the cache. In the sequence above, the stores may be either integer
3460 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3461 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3462 different doublewords on the line. If the floating point unit is
3463 running in 1:2 mode, it is not possible to create the sequence above
3464 using only floating point store instructions.
3466 In this case, the cache line being filled is incorrectly marked
3467 invalid, thereby losing the data from any store to the line that
3468 occurs between the original miss and the completion of the five
3469 cycle sequence shown above.
3471 The workarounds are:
3473 * Run the data cache in write-through mode.
3474 * Insert a non-store instruction between
3475 Store A and Store B or Store B and Store C. */
3477 static int
3478 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3479 const struct mips_cl_insn *insn)
3481 struct fix_24k_store_info pos[3];
3482 int align, i, base_offset;
3484 if (ignore >= 2)
3485 return 0;
3487 /* If the previous instruction wasn't a store, there's nothing to
3488 worry about. */
3489 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3490 return 0;
3492 /* If the instructions after the previous one are unknown, we have
3493 to assume the worst. */
3494 if (!insn)
3495 return 1;
3497 /* Check whether we are dealing with three consecutive stores. */
3498 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3499 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3500 return 0;
3502 /* If we don't know the relationship between the store addresses,
3503 assume the worst. */
3504 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3505 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3506 return 1;
3508 if (!fix_24k_record_store_info (&pos[0], insn)
3509 || !fix_24k_record_store_info (&pos[1], &hist[0])
3510 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3511 return 1;
3513 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3515 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3516 X bytes and such that the base register + X is known to be aligned
3517 to align bytes. */
3519 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3520 align = 8;
3521 else
3523 align = pos[0].align_to;
3524 base_offset = pos[0].off;
3525 for (i = 1; i < 3; i++)
3526 if (align < pos[i].align_to)
3528 align = pos[i].align_to;
3529 base_offset = pos[i].off;
3531 for (i = 0; i < 3; i++)
3532 pos[i].off -= base_offset;
3535 pos[0].off &= ~align + 1;
3536 pos[1].off &= ~align + 1;
3537 pos[2].off &= ~align + 1;
3539 /* If any two stores write to the same chunk, they also write to the
3540 same doubleword. The offsets are still sorted at this point. */
3541 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3542 return 0;
3544 /* A range of at least 9 bytes is needed for the stores to be in
3545 non-overlapping doublewords. */
3546 if (pos[2].off - pos[0].off <= 8)
3547 return 0;
3549 if (pos[2].off - pos[1].off >= 24
3550 || pos[1].off - pos[0].off >= 24
3551 || pos[2].off - pos[0].off >= 32)
3552 return 0;
3554 return 1;
3557 /* Return the number of nops that would be needed if instruction INSN
3558 immediately followed the MAX_NOPS instructions given by HIST,
3559 where HIST[0] is the most recent instruction. Ignore hazards
3560 between INSN and the first IGNORE instructions in HIST.
3562 If INSN is null, return the worse-case number of nops for any
3563 instruction. */
3565 static int
3566 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3567 const struct mips_cl_insn *insn)
3569 int i, nops, tmp_nops;
3571 nops = 0;
3572 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3574 tmp_nops = insns_between (hist + i, insn) - i;
3575 if (tmp_nops > nops)
3576 nops = tmp_nops;
3579 if (mips_fix_vr4130 && !mips_opts.micromips)
3581 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3582 if (tmp_nops > nops)
3583 nops = tmp_nops;
3586 if (mips_fix_24k && !mips_opts.micromips)
3588 tmp_nops = nops_for_24k (ignore, hist, insn);
3589 if (tmp_nops > nops)
3590 nops = tmp_nops;
3593 return nops;
3596 /* The variable arguments provide NUM_INSNS extra instructions that
3597 might be added to HIST. Return the largest number of nops that
3598 would be needed after the extended sequence, ignoring hazards
3599 in the first IGNORE instructions. */
3601 static int
3602 nops_for_sequence (int num_insns, int ignore,
3603 const struct mips_cl_insn *hist, ...)
3605 va_list args;
3606 struct mips_cl_insn buffer[MAX_NOPS];
3607 struct mips_cl_insn *cursor;
3608 int nops;
3610 va_start (args, hist);
3611 cursor = buffer + num_insns;
3612 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3613 while (cursor > buffer)
3614 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3616 nops = nops_for_insn (ignore, buffer, NULL);
3617 va_end (args);
3618 return nops;
3621 /* Like nops_for_insn, but if INSN is a branch, take into account the
3622 worst-case delay for the branch target. */
3624 static int
3625 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3626 const struct mips_cl_insn *insn)
3628 int nops, tmp_nops;
3630 nops = nops_for_insn (ignore, hist, insn);
3631 if (delayed_branch_p (insn))
3633 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3634 hist, insn, get_delay_slot_nop (insn));
3635 if (tmp_nops > nops)
3636 nops = tmp_nops;
3638 else if (compact_branch_p (insn))
3640 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3641 if (tmp_nops > nops)
3642 nops = tmp_nops;
3644 return nops;
3647 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3649 static void
3650 fix_loongson2f_nop (struct mips_cl_insn * ip)
3652 gas_assert (!HAVE_CODE_COMPRESSION);
3653 if (strcmp (ip->insn_mo->name, "nop") == 0)
3654 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3657 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3658 jr target pc &= 'hffff_ffff_cfff_ffff. */
3660 static void
3661 fix_loongson2f_jump (struct mips_cl_insn * ip)
3663 gas_assert (!HAVE_CODE_COMPRESSION);
3664 if (strcmp (ip->insn_mo->name, "j") == 0
3665 || strcmp (ip->insn_mo->name, "jr") == 0
3666 || strcmp (ip->insn_mo->name, "jalr") == 0)
3668 int sreg;
3669 expressionS ep;
3671 if (! mips_opts.at)
3672 return;
3674 sreg = EXTRACT_OPERAND (0, RS, *ip);
3675 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3676 return;
3678 ep.X_op = O_constant;
3679 ep.X_add_number = 0xcfff0000;
3680 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3681 ep.X_add_number = 0xffff;
3682 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3683 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3687 static void
3688 fix_loongson2f (struct mips_cl_insn * ip)
3690 if (mips_fix_loongson2f_nop)
3691 fix_loongson2f_nop (ip);
3693 if (mips_fix_loongson2f_jump)
3694 fix_loongson2f_jump (ip);
3697 /* IP is a branch that has a delay slot, and we need to fill it
3698 automatically. Return true if we can do that by swapping IP
3699 with the previous instruction. */
3701 static bfd_boolean
3702 can_swap_branch_p (struct mips_cl_insn *ip)
3704 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
3705 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
3707 /* -O2 and above is required for this optimization. */
3708 if (mips_optimize < 2)
3709 return FALSE;
3711 /* If we have seen .set volatile or .set nomove, don't optimize. */
3712 if (mips_opts.nomove)
3713 return FALSE;
3715 /* We can't swap if the previous instruction's position is fixed. */
3716 if (history[0].fixed_p)
3717 return FALSE;
3719 /* If the previous previous insn was in a .set noreorder, we can't
3720 swap. Actually, the MIPS assembler will swap in this situation.
3721 However, gcc configured -with-gnu-as will generate code like
3723 .set noreorder
3724 lw $4,XXX
3725 .set reorder
3726 INSN
3727 bne $4,$0,foo
3729 in which we can not swap the bne and INSN. If gcc is not configured
3730 -with-gnu-as, it does not output the .set pseudo-ops. */
3731 if (history[1].noreorder_p)
3732 return FALSE;
3734 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
3735 This means that the previous instruction was a 4-byte one anyhow. */
3736 if (mips_opts.mips16 && history[0].fixp[0])
3737 return FALSE;
3739 /* If the branch is itself the target of a branch, we can not swap.
3740 We cheat on this; all we check for is whether there is a label on
3741 this instruction. If there are any branches to anything other than
3742 a label, users must use .set noreorder. */
3743 if (seg_info (now_seg)->label_list)
3744 return FALSE;
3746 /* If the previous instruction is in a variant frag other than this
3747 branch's one, we cannot do the swap. This does not apply to
3748 MIPS16 code, which uses variant frags for different purposes. */
3749 if (!mips_opts.mips16
3750 && history[0].frag
3751 && history[0].frag->fr_type == rs_machine_dependent)
3752 return FALSE;
3754 /* We do not swap with instructions that cannot architecturally
3755 be placed in a branch delay slot, such as SYNC or ERET. We
3756 also refrain from swapping with a trap instruction, since it
3757 complicates trap handlers to have the trap instruction be in
3758 a delay slot. */
3759 prev_pinfo = history[0].insn_mo->pinfo;
3760 if (prev_pinfo & INSN_NO_DELAY_SLOT)
3761 return FALSE;
3763 /* Check for conflicts between the branch and the instructions
3764 before the candidate delay slot. */
3765 if (nops_for_insn (0, history + 1, ip) > 0)
3766 return FALSE;
3768 /* Check for conflicts between the swapped sequence and the
3769 target of the branch. */
3770 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
3771 return FALSE;
3773 /* If the branch reads a register that the previous
3774 instruction sets, we can not swap. */
3775 gpr_read = gpr_read_mask (ip);
3776 prev_gpr_write = gpr_write_mask (&history[0]);
3777 if (gpr_read & prev_gpr_write)
3778 return FALSE;
3780 /* If the branch writes a register that the previous
3781 instruction sets, we can not swap. */
3782 gpr_write = gpr_write_mask (ip);
3783 if (gpr_write & prev_gpr_write)
3784 return FALSE;
3786 /* If the branch writes a register that the previous
3787 instruction reads, we can not swap. */
3788 prev_gpr_read = gpr_read_mask (&history[0]);
3789 if (gpr_write & prev_gpr_read)
3790 return FALSE;
3792 /* If one instruction sets a condition code and the
3793 other one uses a condition code, we can not swap. */
3794 pinfo = ip->insn_mo->pinfo;
3795 if ((pinfo & INSN_READ_COND_CODE)
3796 && (prev_pinfo & INSN_WRITE_COND_CODE))
3797 return FALSE;
3798 if ((pinfo & INSN_WRITE_COND_CODE)
3799 && (prev_pinfo & INSN_READ_COND_CODE))
3800 return FALSE;
3802 /* If the previous instruction uses the PC, we can not swap. */
3803 prev_pinfo2 = history[0].insn_mo->pinfo2;
3804 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
3805 return FALSE;
3806 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
3807 return FALSE;
3809 /* If the previous instruction has an incorrect size for a fixed
3810 branch delay slot in microMIPS mode, we cannot swap. */
3811 pinfo2 = ip->insn_mo->pinfo2;
3812 if (mips_opts.micromips
3813 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
3814 && insn_length (history) != 2)
3815 return FALSE;
3816 if (mips_opts.micromips
3817 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
3818 && insn_length (history) != 4)
3819 return FALSE;
3821 return TRUE;
3824 /* Decide how we should add IP to the instruction stream. */
3826 static enum append_method
3827 get_append_method (struct mips_cl_insn *ip)
3829 unsigned long pinfo;
3831 /* The relaxed version of a macro sequence must be inherently
3832 hazard-free. */
3833 if (mips_relax.sequence == 2)
3834 return APPEND_ADD;
3836 /* We must not dabble with instructions in a ".set norerorder" block. */
3837 if (mips_opts.noreorder)
3838 return APPEND_ADD;
3840 /* Otherwise, it's our responsibility to fill branch delay slots. */
3841 if (delayed_branch_p (ip))
3843 if (!branch_likely_p (ip) && can_swap_branch_p (ip))
3844 return APPEND_SWAP;
3846 pinfo = ip->insn_mo->pinfo;
3847 if (mips_opts.mips16
3848 && ISA_SUPPORTS_MIPS16E
3849 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
3850 return APPEND_ADD_COMPACT;
3852 return APPEND_ADD_WITH_NOP;
3855 return APPEND_ADD;
3858 /* IP is a MIPS16 instruction whose opcode we have just changed.
3859 Point IP->insn_mo to the new opcode's definition. */
3861 static void
3862 find_altered_mips16_opcode (struct mips_cl_insn *ip)
3864 const struct mips_opcode *mo, *end;
3866 end = &mips16_opcodes[bfd_mips16_num_opcodes];
3867 for (mo = ip->insn_mo; mo < end; mo++)
3868 if ((ip->insn_opcode & mo->mask) == mo->match)
3870 ip->insn_mo = mo;
3871 return;
3873 abort ();
3876 /* For microMIPS macros, we need to generate a local number label
3877 as the target of branches. */
3878 #define MICROMIPS_LABEL_CHAR '\037'
3879 static unsigned long micromips_target_label;
3880 static char micromips_target_name[32];
3882 static char *
3883 micromips_label_name (void)
3885 char *p = micromips_target_name;
3886 char symbol_name_temporary[24];
3887 unsigned long l;
3888 int i;
3890 if (*p)
3891 return p;
3893 i = 0;
3894 l = micromips_target_label;
3895 #ifdef LOCAL_LABEL_PREFIX
3896 *p++ = LOCAL_LABEL_PREFIX;
3897 #endif
3898 *p++ = 'L';
3899 *p++ = MICROMIPS_LABEL_CHAR;
3902 symbol_name_temporary[i++] = l % 10 + '0';
3903 l /= 10;
3905 while (l != 0);
3906 while (i > 0)
3907 *p++ = symbol_name_temporary[--i];
3908 *p = '\0';
3910 return micromips_target_name;
3913 static void
3914 micromips_label_expr (expressionS *label_expr)
3916 label_expr->X_op = O_symbol;
3917 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
3918 label_expr->X_add_number = 0;
3921 static void
3922 micromips_label_inc (void)
3924 micromips_target_label++;
3925 *micromips_target_name = '\0';
3928 static void
3929 micromips_add_label (void)
3931 symbolS *s;
3933 s = colon (micromips_label_name ());
3934 micromips_label_inc ();
3935 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
3936 if (IS_ELF)
3937 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
3938 #else
3939 (void) s;
3940 #endif
3943 /* If assembling microMIPS code, then return the microMIPS reloc
3944 corresponding to the requested one if any. Otherwise return
3945 the reloc unchanged. */
3947 static bfd_reloc_code_real_type
3948 micromips_map_reloc (bfd_reloc_code_real_type reloc)
3950 static const bfd_reloc_code_real_type relocs[][2] =
3952 /* Keep sorted incrementally by the left-hand key. */
3953 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
3954 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
3955 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
3956 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
3957 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
3958 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
3959 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
3960 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
3961 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
3962 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
3963 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
3964 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
3965 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
3966 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
3967 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
3968 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
3969 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
3970 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
3971 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
3972 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
3973 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
3974 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
3975 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
3976 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
3977 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
3978 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
3979 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
3981 bfd_reloc_code_real_type r;
3982 size_t i;
3984 if (!mips_opts.micromips)
3985 return reloc;
3986 for (i = 0; i < ARRAY_SIZE (relocs); i++)
3988 r = relocs[i][0];
3989 if (r > reloc)
3990 return reloc;
3991 if (r == reloc)
3992 return relocs[i][1];
3994 return reloc;
3997 /* Output an instruction. IP is the instruction information.
3998 ADDRESS_EXPR is an operand of the instruction to be used with
3999 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4000 a macro expansion. */
4002 static void
4003 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4004 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4006 unsigned long prev_pinfo2, pinfo;
4007 bfd_boolean relaxed_branch = FALSE;
4008 enum append_method method;
4009 bfd_boolean relax32;
4010 int branch_disp;
4012 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4013 fix_loongson2f (ip);
4015 mips_mark_labels ();
4017 file_ase_mips16 |= mips_opts.mips16;
4018 file_ase_micromips |= mips_opts.micromips;
4020 prev_pinfo2 = history[0].insn_mo->pinfo2;
4021 pinfo = ip->insn_mo->pinfo;
4023 if (mips_opts.micromips
4024 && !expansionp
4025 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4026 && micromips_insn_length (ip->insn_mo) != 2)
4027 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4028 && micromips_insn_length (ip->insn_mo) != 4)))
4029 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4030 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4032 if (address_expr == NULL)
4033 ip->complete_p = 1;
4034 else if (*reloc_type <= BFD_RELOC_UNUSED
4035 && address_expr->X_op == O_constant)
4037 unsigned int tmp;
4039 ip->complete_p = 1;
4040 switch (*reloc_type)
4042 case BFD_RELOC_32:
4043 ip->insn_opcode |= address_expr->X_add_number;
4044 break;
4046 case BFD_RELOC_MIPS_HIGHEST:
4047 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
4048 ip->insn_opcode |= tmp & 0xffff;
4049 break;
4051 case BFD_RELOC_MIPS_HIGHER:
4052 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
4053 ip->insn_opcode |= tmp & 0xffff;
4054 break;
4056 case BFD_RELOC_HI16_S:
4057 tmp = (address_expr->X_add_number + 0x8000) >> 16;
4058 ip->insn_opcode |= tmp & 0xffff;
4059 break;
4061 case BFD_RELOC_HI16:
4062 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
4063 break;
4065 case BFD_RELOC_UNUSED:
4066 case BFD_RELOC_LO16:
4067 case BFD_RELOC_MIPS_GOT_DISP:
4068 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
4069 break;
4071 case BFD_RELOC_MIPS_JMP:
4073 int shift;
4075 shift = mips_opts.micromips ? 1 : 2;
4076 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4077 as_bad (_("jump to misaligned address (0x%lx)"),
4078 (unsigned long) address_expr->X_add_number);
4079 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4080 & 0x3ffffff);
4081 ip->complete_p = 0;
4083 break;
4085 case BFD_RELOC_MIPS16_JMP:
4086 if ((address_expr->X_add_number & 3) != 0)
4087 as_bad (_("jump to misaligned address (0x%lx)"),
4088 (unsigned long) address_expr->X_add_number);
4089 ip->insn_opcode |=
4090 (((address_expr->X_add_number & 0x7c0000) << 3)
4091 | ((address_expr->X_add_number & 0xf800000) >> 7)
4092 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4093 ip->complete_p = 0;
4094 break;
4096 case BFD_RELOC_16_PCREL_S2:
4098 int shift;
4100 shift = mips_opts.micromips ? 1 : 2;
4101 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4102 as_bad (_("branch to misaligned address (0x%lx)"),
4103 (unsigned long) address_expr->X_add_number);
4104 if (!mips_relax_branch)
4106 if ((address_expr->X_add_number + (1 << (shift + 15)))
4107 & ~((1 << (shift + 16)) - 1))
4108 as_bad (_("branch address range overflow (0x%lx)"),
4109 (unsigned long) address_expr->X_add_number);
4110 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4111 & 0xffff);
4113 ip->complete_p = 0;
4115 break;
4117 default:
4118 internalError ();
4122 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4124 /* There are a lot of optimizations we could do that we don't.
4125 In particular, we do not, in general, reorder instructions.
4126 If you use gcc with optimization, it will reorder
4127 instructions and generally do much more optimization then we
4128 do here; repeating all that work in the assembler would only
4129 benefit hand written assembly code, and does not seem worth
4130 it. */
4131 int nops = (mips_optimize == 0
4132 ? nops_for_insn (0, history, NULL)
4133 : nops_for_insn_or_target (0, history, ip));
4134 if (nops > 0)
4136 fragS *old_frag;
4137 unsigned long old_frag_offset;
4138 int i;
4140 old_frag = frag_now;
4141 old_frag_offset = frag_now_fix ();
4143 for (i = 0; i < nops; i++)
4144 add_fixed_insn (NOP_INSN);
4145 insert_into_history (0, nops, NOP_INSN);
4147 if (listing)
4149 listing_prev_line ();
4150 /* We may be at the start of a variant frag. In case we
4151 are, make sure there is enough space for the frag
4152 after the frags created by listing_prev_line. The
4153 argument to frag_grow here must be at least as large
4154 as the argument to all other calls to frag_grow in
4155 this file. We don't have to worry about being in the
4156 middle of a variant frag, because the variants insert
4157 all needed nop instructions themselves. */
4158 frag_grow (40);
4161 mips_move_text_labels ();
4163 #ifndef NO_ECOFF_DEBUGGING
4164 if (ECOFF_DEBUGGING)
4165 ecoff_fix_loc (old_frag, old_frag_offset);
4166 #endif
4169 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4171 int nops;
4173 /* Work out how many nops in prev_nop_frag are needed by IP,
4174 ignoring hazards generated by the first prev_nop_frag_since
4175 instructions. */
4176 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4177 gas_assert (nops <= prev_nop_frag_holds);
4179 /* Enforce NOPS as a minimum. */
4180 if (nops > prev_nop_frag_required)
4181 prev_nop_frag_required = nops;
4183 if (prev_nop_frag_holds == prev_nop_frag_required)
4185 /* Settle for the current number of nops. Update the history
4186 accordingly (for the benefit of any future .set reorder code). */
4187 prev_nop_frag = NULL;
4188 insert_into_history (prev_nop_frag_since,
4189 prev_nop_frag_holds, NOP_INSN);
4191 else
4193 /* Allow this instruction to replace one of the nops that was
4194 tentatively added to prev_nop_frag. */
4195 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4196 prev_nop_frag_holds--;
4197 prev_nop_frag_since++;
4201 method = get_append_method (ip);
4202 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4204 #ifdef OBJ_ELF
4205 /* The value passed to dwarf2_emit_insn is the distance between
4206 the beginning of the current instruction and the address that
4207 should be recorded in the debug tables. This is normally the
4208 current address.
4210 For MIPS16/microMIPS debug info we want to use ISA-encoded
4211 addresses, so we use -1 for an address higher by one than the
4212 current one.
4214 If the instruction produced is a branch that we will swap with
4215 the preceding instruction, then we add the displacement by which
4216 the branch will be moved backwards. This is more appropriate
4217 and for MIPS16/microMIPS code also prevents a debugger from
4218 placing a breakpoint in the middle of the branch (and corrupting
4219 code if software breakpoints are used). */
4220 dwarf2_emit_insn ((HAVE_CODE_COMPRESSION ? -1 : 0) + branch_disp);
4221 #endif
4223 relax32 = (mips_relax_branch
4224 /* Don't try branch relaxation within .set nomacro, or within
4225 .set noat if we use $at for PIC computations. If it turns
4226 out that the branch was out-of-range, we'll get an error. */
4227 && !mips_opts.warn_about_macros
4228 && (mips_opts.at || mips_pic == NO_PIC)
4229 /* Don't relax BPOSGE32/64 as they have no complementing
4230 branches. */
4231 && !(ip->insn_mo->membership & (INSN_DSP64 | INSN_DSP)));
4233 if (!HAVE_CODE_COMPRESSION
4234 && address_expr
4235 && relax32
4236 && *reloc_type == BFD_RELOC_16_PCREL_S2
4237 && delayed_branch_p (ip))
4239 relaxed_branch = TRUE;
4240 add_relaxed_insn (ip, (relaxed_branch_length
4241 (NULL, NULL,
4242 uncond_branch_p (ip) ? -1
4243 : branch_likely_p (ip) ? 1
4244 : 0)), 4,
4245 RELAX_BRANCH_ENCODE
4246 (AT,
4247 uncond_branch_p (ip),
4248 branch_likely_p (ip),
4249 pinfo & INSN_WRITE_GPR_31,
4251 address_expr->X_add_symbol,
4252 address_expr->X_add_number);
4253 *reloc_type = BFD_RELOC_UNUSED;
4255 else if (mips_opts.micromips
4256 && address_expr
4257 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4258 || *reloc_type > BFD_RELOC_UNUSED)
4259 && (delayed_branch_p (ip) || compact_branch_p (ip))
4260 /* Don't try branch relaxation when users specify
4261 16-bit/32-bit instructions. */
4262 && !forced_insn_length)
4264 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4265 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4266 int uncond = uncond_branch_p (ip) ? -1 : 0;
4267 int compact = compact_branch_p (ip);
4268 int al = pinfo & INSN_WRITE_GPR_31;
4269 int length32;
4271 gas_assert (address_expr != NULL);
4272 gas_assert (!mips_relax.sequence);
4274 relaxed_branch = TRUE;
4275 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4276 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4277 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4278 relax32, 0, 0),
4279 address_expr->X_add_symbol,
4280 address_expr->X_add_number);
4281 *reloc_type = BFD_RELOC_UNUSED;
4283 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4285 /* We need to set up a variant frag. */
4286 gas_assert (address_expr != NULL);
4287 add_relaxed_insn (ip, 4, 0,
4288 RELAX_MIPS16_ENCODE
4289 (*reloc_type - BFD_RELOC_UNUSED,
4290 forced_insn_length == 2, forced_insn_length == 4,
4291 delayed_branch_p (&history[0]),
4292 history[0].mips16_absolute_jump_p),
4293 make_expr_symbol (address_expr), 0);
4295 else if (mips_opts.mips16
4296 && ! ip->use_extend
4297 && *reloc_type != BFD_RELOC_MIPS16_JMP)
4299 if (!delayed_branch_p (ip))
4300 /* Make sure there is enough room to swap this instruction with
4301 a following jump instruction. */
4302 frag_grow (6);
4303 add_fixed_insn (ip);
4305 else
4307 if (mips_opts.mips16
4308 && mips_opts.noreorder
4309 && delayed_branch_p (&history[0]))
4310 as_warn (_("extended instruction in delay slot"));
4312 if (mips_relax.sequence)
4314 /* If we've reached the end of this frag, turn it into a variant
4315 frag and record the information for the instructions we've
4316 written so far. */
4317 if (frag_room () < 4)
4318 relax_close_frag ();
4319 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4322 if (mips_relax.sequence != 2)
4324 if (mips_macro_warning.first_insn_sizes[0] == 0)
4325 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4326 mips_macro_warning.sizes[0] += insn_length (ip);
4327 mips_macro_warning.insns[0]++;
4329 if (mips_relax.sequence != 1)
4331 if (mips_macro_warning.first_insn_sizes[1] == 0)
4332 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4333 mips_macro_warning.sizes[1] += insn_length (ip);
4334 mips_macro_warning.insns[1]++;
4337 if (mips_opts.mips16)
4339 ip->fixed_p = 1;
4340 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4342 add_fixed_insn (ip);
4345 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4347 bfd_reloc_code_real_type final_type[3];
4348 reloc_howto_type *howto0;
4349 reloc_howto_type *howto;
4350 int i;
4352 /* Perform any necessary conversion to microMIPS relocations
4353 and find out how many relocations there actually are. */
4354 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4355 final_type[i] = micromips_map_reloc (reloc_type[i]);
4357 /* In a compound relocation, it is the final (outermost)
4358 operator that determines the relocated field. */
4359 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4361 if (howto == NULL)
4363 /* To reproduce this failure try assembling gas/testsuites/
4364 gas/mips/mips16-intermix.s with a mips-ecoff targeted
4365 assembler. */
4366 as_bad (_("Unsupported MIPS relocation number %d"),
4367 final_type[i - 1]);
4368 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
4371 if (i > 1)
4372 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4373 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4374 bfd_get_reloc_size (howto),
4375 address_expr,
4376 howto0 && howto0->pc_relative,
4377 final_type[0]);
4379 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4380 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4381 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4383 /* These relocations can have an addend that won't fit in
4384 4 octets for 64bit assembly. */
4385 if (HAVE_64BIT_GPRS
4386 && ! howto->partial_inplace
4387 && (reloc_type[0] == BFD_RELOC_16
4388 || reloc_type[0] == BFD_RELOC_32
4389 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4390 || reloc_type[0] == BFD_RELOC_GPREL16
4391 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4392 || reloc_type[0] == BFD_RELOC_GPREL32
4393 || reloc_type[0] == BFD_RELOC_64
4394 || reloc_type[0] == BFD_RELOC_CTOR
4395 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4396 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4397 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4398 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4399 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4400 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4401 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4402 || hi16_reloc_p (reloc_type[0])
4403 || lo16_reloc_p (reloc_type[0])))
4404 ip->fixp[0]->fx_no_overflow = 1;
4406 if (mips_relax.sequence)
4408 if (mips_relax.first_fixup == 0)
4409 mips_relax.first_fixup = ip->fixp[0];
4411 else if (reloc_needs_lo_p (*reloc_type))
4413 struct mips_hi_fixup *hi_fixup;
4415 /* Reuse the last entry if it already has a matching %lo. */
4416 hi_fixup = mips_hi_fixup_list;
4417 if (hi_fixup == 0
4418 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4420 hi_fixup = ((struct mips_hi_fixup *)
4421 xmalloc (sizeof (struct mips_hi_fixup)));
4422 hi_fixup->next = mips_hi_fixup_list;
4423 mips_hi_fixup_list = hi_fixup;
4425 hi_fixup->fixp = ip->fixp[0];
4426 hi_fixup->seg = now_seg;
4429 /* Add fixups for the second and third relocations, if given.
4430 Note that the ABI allows the second relocation to be
4431 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4432 moment we only use RSS_UNDEF, but we could add support
4433 for the others if it ever becomes necessary. */
4434 for (i = 1; i < 3; i++)
4435 if (reloc_type[i] != BFD_RELOC_UNUSED)
4437 ip->fixp[i] = fix_new (ip->frag, ip->where,
4438 ip->fixp[0]->fx_size, NULL, 0,
4439 FALSE, final_type[i]);
4441 /* Use fx_tcbit to mark compound relocs. */
4442 ip->fixp[0]->fx_tcbit = 1;
4443 ip->fixp[i]->fx_tcbit = 1;
4446 install_insn (ip);
4448 /* Update the register mask information. */
4449 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4450 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4452 switch (method)
4454 case APPEND_ADD:
4455 insert_into_history (0, 1, ip);
4456 break;
4458 case APPEND_ADD_WITH_NOP:
4460 struct mips_cl_insn *nop;
4462 insert_into_history (0, 1, ip);
4463 nop = get_delay_slot_nop (ip);
4464 add_fixed_insn (nop);
4465 insert_into_history (0, 1, nop);
4466 if (mips_relax.sequence)
4467 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4469 break;
4471 case APPEND_ADD_COMPACT:
4472 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4473 gas_assert (mips_opts.mips16);
4474 ip->insn_opcode |= 0x0080;
4475 find_altered_mips16_opcode (ip);
4476 install_insn (ip);
4477 insert_into_history (0, 1, ip);
4478 break;
4480 case APPEND_SWAP:
4482 struct mips_cl_insn delay = history[0];
4483 if (mips_opts.mips16)
4485 know (delay.frag == ip->frag);
4486 move_insn (ip, delay.frag, delay.where);
4487 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4489 else if (relaxed_branch)
4491 /* Add the delay slot instruction to the end of the
4492 current frag and shrink the fixed part of the
4493 original frag. If the branch occupies the tail of
4494 the latter, move it backwards to cover the gap. */
4495 delay.frag->fr_fix -= branch_disp;
4496 if (delay.frag == ip->frag)
4497 move_insn (ip, ip->frag, ip->where - branch_disp);
4498 add_fixed_insn (&delay);
4500 else
4502 move_insn (&delay, ip->frag,
4503 ip->where - branch_disp + insn_length (ip));
4504 move_insn (ip, history[0].frag, history[0].where);
4506 history[0] = *ip;
4507 delay.fixed_p = 1;
4508 insert_into_history (0, 1, &delay);
4510 break;
4513 /* If we have just completed an unconditional branch, clear the history. */
4514 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4515 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4516 mips_no_prev_insn ();
4518 /* We need to emit a label at the end of branch-likely macros. */
4519 if (emit_branch_likely_macro)
4521 emit_branch_likely_macro = FALSE;
4522 micromips_add_label ();
4525 /* We just output an insn, so the next one doesn't have a label. */
4526 mips_clear_insn_labels ();
4529 /* Forget that there was any previous instruction or label. */
4531 static void
4532 mips_no_prev_insn (void)
4534 prev_nop_frag = NULL;
4535 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4536 mips_clear_insn_labels ();
4539 /* This function must be called before we emit something other than
4540 instructions. It is like mips_no_prev_insn except that it inserts
4541 any NOPS that might be needed by previous instructions. */
4543 void
4544 mips_emit_delays (void)
4546 if (! mips_opts.noreorder)
4548 int nops = nops_for_insn (0, history, NULL);
4549 if (nops > 0)
4551 while (nops-- > 0)
4552 add_fixed_insn (NOP_INSN);
4553 mips_move_text_labels ();
4556 mips_no_prev_insn ();
4559 /* Start a (possibly nested) noreorder block. */
4561 static void
4562 start_noreorder (void)
4564 if (mips_opts.noreorder == 0)
4566 unsigned int i;
4567 int nops;
4569 /* None of the instructions before the .set noreorder can be moved. */
4570 for (i = 0; i < ARRAY_SIZE (history); i++)
4571 history[i].fixed_p = 1;
4573 /* Insert any nops that might be needed between the .set noreorder
4574 block and the previous instructions. We will later remove any
4575 nops that turn out not to be needed. */
4576 nops = nops_for_insn (0, history, NULL);
4577 if (nops > 0)
4579 if (mips_optimize != 0)
4581 /* Record the frag which holds the nop instructions, so
4582 that we can remove them if we don't need them. */
4583 frag_grow (nops * NOP_INSN_SIZE);
4584 prev_nop_frag = frag_now;
4585 prev_nop_frag_holds = nops;
4586 prev_nop_frag_required = 0;
4587 prev_nop_frag_since = 0;
4590 for (; nops > 0; --nops)
4591 add_fixed_insn (NOP_INSN);
4593 /* Move on to a new frag, so that it is safe to simply
4594 decrease the size of prev_nop_frag. */
4595 frag_wane (frag_now);
4596 frag_new (0);
4597 mips_move_text_labels ();
4599 mips_mark_labels ();
4600 mips_clear_insn_labels ();
4602 mips_opts.noreorder++;
4603 mips_any_noreorder = 1;
4606 /* End a nested noreorder block. */
4608 static void
4609 end_noreorder (void)
4611 mips_opts.noreorder--;
4612 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
4614 /* Commit to inserting prev_nop_frag_required nops and go back to
4615 handling nop insertion the .set reorder way. */
4616 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
4617 * NOP_INSN_SIZE);
4618 insert_into_history (prev_nop_frag_since,
4619 prev_nop_frag_required, NOP_INSN);
4620 prev_nop_frag = NULL;
4624 /* Set up global variables for the start of a new macro. */
4626 static void
4627 macro_start (void)
4629 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
4630 memset (&mips_macro_warning.first_insn_sizes, 0,
4631 sizeof (mips_macro_warning.first_insn_sizes));
4632 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
4633 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
4634 && delayed_branch_p (&history[0]));
4635 switch (history[0].insn_mo->pinfo2
4636 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
4638 case INSN2_BRANCH_DELAY_32BIT:
4639 mips_macro_warning.delay_slot_length = 4;
4640 break;
4641 case INSN2_BRANCH_DELAY_16BIT:
4642 mips_macro_warning.delay_slot_length = 2;
4643 break;
4644 default:
4645 mips_macro_warning.delay_slot_length = 0;
4646 break;
4648 mips_macro_warning.first_frag = NULL;
4651 /* Given that a macro is longer than one instruction or of the wrong size,
4652 return the appropriate warning for it. Return null if no warning is
4653 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
4654 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
4655 and RELAX_NOMACRO. */
4657 static const char *
4658 macro_warning (relax_substateT subtype)
4660 if (subtype & RELAX_DELAY_SLOT)
4661 return _("Macro instruction expanded into multiple instructions"
4662 " in a branch delay slot");
4663 else if (subtype & RELAX_NOMACRO)
4664 return _("Macro instruction expanded into multiple instructions");
4665 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
4666 | RELAX_DELAY_SLOT_SIZE_SECOND))
4667 return ((subtype & RELAX_DELAY_SLOT_16BIT)
4668 ? _("Macro instruction expanded into a wrong size instruction"
4669 " in a 16-bit branch delay slot")
4670 : _("Macro instruction expanded into a wrong size instruction"
4671 " in a 32-bit branch delay slot"));
4672 else
4673 return 0;
4676 /* Finish up a macro. Emit warnings as appropriate. */
4678 static void
4679 macro_end (void)
4681 /* Relaxation warning flags. */
4682 relax_substateT subtype = 0;
4684 /* Check delay slot size requirements. */
4685 if (mips_macro_warning.delay_slot_length == 2)
4686 subtype |= RELAX_DELAY_SLOT_16BIT;
4687 if (mips_macro_warning.delay_slot_length != 0)
4689 if (mips_macro_warning.delay_slot_length
4690 != mips_macro_warning.first_insn_sizes[0])
4691 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
4692 if (mips_macro_warning.delay_slot_length
4693 != mips_macro_warning.first_insn_sizes[1])
4694 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
4697 /* Check instruction count requirements. */
4698 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
4700 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
4701 subtype |= RELAX_SECOND_LONGER;
4702 if (mips_opts.warn_about_macros)
4703 subtype |= RELAX_NOMACRO;
4704 if (mips_macro_warning.delay_slot_p)
4705 subtype |= RELAX_DELAY_SLOT;
4708 /* If both alternatives fail to fill a delay slot correctly,
4709 emit the warning now. */
4710 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
4711 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
4713 relax_substateT s;
4714 const char *msg;
4716 s = subtype & (RELAX_DELAY_SLOT_16BIT
4717 | RELAX_DELAY_SLOT_SIZE_FIRST
4718 | RELAX_DELAY_SLOT_SIZE_SECOND);
4719 msg = macro_warning (s);
4720 if (msg != NULL)
4721 as_warn ("%s", msg);
4722 subtype &= ~s;
4725 /* If both implementations are longer than 1 instruction, then emit the
4726 warning now. */
4727 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
4729 relax_substateT s;
4730 const char *msg;
4732 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
4733 msg = macro_warning (s);
4734 if (msg != NULL)
4735 as_warn ("%s", msg);
4736 subtype &= ~s;
4739 /* If any flags still set, then one implementation might need a warning
4740 and the other either will need one of a different kind or none at all.
4741 Pass any remaining flags over to relaxation. */
4742 if (mips_macro_warning.first_frag != NULL)
4743 mips_macro_warning.first_frag->fr_subtype |= subtype;
4746 /* Instruction operand formats used in macros that vary between
4747 standard MIPS and microMIPS code. */
4749 static const char * const brk_fmt[2] = { "c", "mF" };
4750 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
4751 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
4752 static const char * const lui_fmt[2] = { "t,u", "s,u" };
4753 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
4754 static const char * const mfhl_fmt[2] = { "d", "mj" };
4755 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
4756 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
4758 #define BRK_FMT (brk_fmt[mips_opts.micromips])
4759 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
4760 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
4761 #define LUI_FMT (lui_fmt[mips_opts.micromips])
4762 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
4763 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
4764 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
4765 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
4767 /* Read a macro's relocation codes from *ARGS and store them in *R.
4768 The first argument in *ARGS will be either the code for a single
4769 relocation or -1 followed by the three codes that make up a
4770 composite relocation. */
4772 static void
4773 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
4775 int i, next;
4777 next = va_arg (*args, int);
4778 if (next >= 0)
4779 r[0] = (bfd_reloc_code_real_type) next;
4780 else
4781 for (i = 0; i < 3; i++)
4782 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
4785 /* Build an instruction created by a macro expansion. This is passed
4786 a pointer to the count of instructions created so far, an
4787 expression, the name of the instruction to build, an operand format
4788 string, and corresponding arguments. */
4790 static void
4791 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
4793 const struct mips_opcode *mo = NULL;
4794 bfd_reloc_code_real_type r[3];
4795 const struct mips_opcode *amo;
4796 struct hash_control *hash;
4797 struct mips_cl_insn insn;
4798 va_list args;
4800 va_start (args, fmt);
4802 if (mips_opts.mips16)
4804 mips16_macro_build (ep, name, fmt, &args);
4805 va_end (args);
4806 return;
4809 r[0] = BFD_RELOC_UNUSED;
4810 r[1] = BFD_RELOC_UNUSED;
4811 r[2] = BFD_RELOC_UNUSED;
4812 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
4813 amo = (struct mips_opcode *) hash_find (hash, name);
4814 gas_assert (amo);
4815 gas_assert (strcmp (name, amo->name) == 0);
4819 /* Search until we get a match for NAME. It is assumed here that
4820 macros will never generate MDMX, MIPS-3D, or MT instructions.
4821 We try to match an instruction that fulfils the branch delay
4822 slot instruction length requirement (if any) of the previous
4823 instruction. While doing this we record the first instruction
4824 seen that matches all the other conditions and use it anyway
4825 if the requirement cannot be met; we will issue an appropriate
4826 warning later on. */
4827 if (strcmp (fmt, amo->args) == 0
4828 && amo->pinfo != INSN_MACRO
4829 && is_opcode_valid (amo)
4830 && is_size_valid (amo))
4832 if (is_delay_slot_valid (amo))
4834 mo = amo;
4835 break;
4837 else if (!mo)
4838 mo = amo;
4841 ++amo;
4842 gas_assert (amo->name);
4844 while (strcmp (name, amo->name) == 0);
4846 gas_assert (mo);
4847 create_insn (&insn, mo);
4848 for (;;)
4850 switch (*fmt++)
4852 case '\0':
4853 break;
4855 case ',':
4856 case '(':
4857 case ')':
4858 continue;
4860 case '+':
4861 switch (*fmt++)
4863 case 'A':
4864 case 'E':
4865 INSERT_OPERAND (mips_opts.micromips,
4866 EXTLSB, insn, va_arg (args, int));
4867 continue;
4869 case 'B':
4870 case 'F':
4871 /* Note that in the macro case, these arguments are already
4872 in MSB form. (When handling the instruction in the
4873 non-macro case, these arguments are sizes from which
4874 MSB values must be calculated.) */
4875 INSERT_OPERAND (mips_opts.micromips,
4876 INSMSB, insn, va_arg (args, int));
4877 continue;
4879 case 'C':
4880 case 'G':
4881 case 'H':
4882 /* Note that in the macro case, these arguments are already
4883 in MSBD form. (When handling the instruction in the
4884 non-macro case, these arguments are sizes from which
4885 MSBD values must be calculated.) */
4886 INSERT_OPERAND (mips_opts.micromips,
4887 EXTMSBD, insn, va_arg (args, int));
4888 continue;
4890 case 'Q':
4891 gas_assert (!mips_opts.micromips);
4892 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
4893 continue;
4895 default:
4896 internalError ();
4898 continue;
4900 case '2':
4901 gas_assert (!mips_opts.micromips);
4902 INSERT_OPERAND (0, BP, insn, va_arg (args, int));
4903 continue;
4905 case 'n':
4906 gas_assert (mips_opts.micromips);
4907 case 't':
4908 case 'w':
4909 case 'E':
4910 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
4911 continue;
4913 case 'c':
4914 gas_assert (!mips_opts.micromips);
4915 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
4916 continue;
4918 case 'W':
4919 gas_assert (!mips_opts.micromips);
4920 case 'T':
4921 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
4922 continue;
4924 case 'G':
4925 if (mips_opts.micromips)
4926 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
4927 else
4928 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
4929 continue;
4931 case 'K':
4932 gas_assert (!mips_opts.micromips);
4933 case 'd':
4934 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
4935 continue;
4937 case 'U':
4938 gas_assert (!mips_opts.micromips);
4940 int tmp = va_arg (args, int);
4942 INSERT_OPERAND (0, RT, insn, tmp);
4943 INSERT_OPERAND (0, RD, insn, tmp);
4945 continue;
4947 case 'V':
4948 case 'S':
4949 gas_assert (!mips_opts.micromips);
4950 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
4951 continue;
4953 case 'z':
4954 continue;
4956 case '<':
4957 INSERT_OPERAND (mips_opts.micromips,
4958 SHAMT, insn, va_arg (args, int));
4959 continue;
4961 case 'D':
4962 gas_assert (!mips_opts.micromips);
4963 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
4964 continue;
4966 case 'B':
4967 gas_assert (!mips_opts.micromips);
4968 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
4969 continue;
4971 case 'J':
4972 gas_assert (!mips_opts.micromips);
4973 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
4974 continue;
4976 case 'q':
4977 gas_assert (!mips_opts.micromips);
4978 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
4979 continue;
4981 case 'b':
4982 case 's':
4983 case 'r':
4984 case 'v':
4985 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
4986 continue;
4988 case 'i':
4989 case 'j':
4990 macro_read_relocs (&args, r);
4991 gas_assert (*r == BFD_RELOC_GPREL16
4992 || *r == BFD_RELOC_MIPS_HIGHER
4993 || *r == BFD_RELOC_HI16_S
4994 || *r == BFD_RELOC_LO16
4995 || *r == BFD_RELOC_MIPS_GOT_OFST);
4996 continue;
4998 case 'o':
4999 macro_read_relocs (&args, r);
5000 continue;
5002 case 'u':
5003 macro_read_relocs (&args, r);
5004 gas_assert (ep != NULL
5005 && (ep->X_op == O_constant
5006 || (ep->X_op == O_symbol
5007 && (*r == BFD_RELOC_MIPS_HIGHEST
5008 || *r == BFD_RELOC_HI16_S
5009 || *r == BFD_RELOC_HI16
5010 || *r == BFD_RELOC_GPREL16
5011 || *r == BFD_RELOC_MIPS_GOT_HI16
5012 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5013 continue;
5015 case 'p':
5016 gas_assert (ep != NULL);
5019 * This allows macro() to pass an immediate expression for
5020 * creating short branches without creating a symbol.
5022 * We don't allow branch relaxation for these branches, as
5023 * they should only appear in ".set nomacro" anyway.
5025 if (ep->X_op == O_constant)
5027 /* For microMIPS we always use relocations for branches.
5028 So we should not resolve immediate values. */
5029 gas_assert (!mips_opts.micromips);
5031 if ((ep->X_add_number & 3) != 0)
5032 as_bad (_("branch to misaligned address (0x%lx)"),
5033 (unsigned long) ep->X_add_number);
5034 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5035 as_bad (_("branch address range overflow (0x%lx)"),
5036 (unsigned long) ep->X_add_number);
5037 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5038 ep = NULL;
5040 else
5041 *r = BFD_RELOC_16_PCREL_S2;
5042 continue;
5044 case 'a':
5045 gas_assert (ep != NULL);
5046 *r = BFD_RELOC_MIPS_JMP;
5047 continue;
5049 case 'C':
5050 gas_assert (!mips_opts.micromips);
5051 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5052 continue;
5054 case 'k':
5055 INSERT_OPERAND (mips_opts.micromips,
5056 CACHE, insn, va_arg (args, unsigned long));
5057 continue;
5059 case '|':
5060 gas_assert (mips_opts.micromips);
5061 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5062 continue;
5064 case '.':
5065 gas_assert (mips_opts.micromips);
5066 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5067 continue;
5069 case '\\':
5070 INSERT_OPERAND (mips_opts.micromips,
5071 3BITPOS, insn, va_arg (args, unsigned int));
5072 continue;
5074 case '~':
5075 INSERT_OPERAND (mips_opts.micromips,
5076 OFFSET12, insn, va_arg (args, unsigned long));
5077 continue;
5079 case 'N':
5080 gas_assert (mips_opts.micromips);
5081 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5082 continue;
5084 case 'm': /* Opcode extension character. */
5085 gas_assert (mips_opts.micromips);
5086 switch (*fmt++)
5088 case 'j':
5089 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5090 break;
5092 case 'p':
5093 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5094 break;
5096 case 'F':
5097 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5098 break;
5100 default:
5101 internalError ();
5103 continue;
5105 default:
5106 internalError ();
5108 break;
5110 va_end (args);
5111 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5113 append_insn (&insn, ep, r, TRUE);
5116 static void
5117 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5118 va_list *args)
5120 struct mips_opcode *mo;
5121 struct mips_cl_insn insn;
5122 bfd_reloc_code_real_type r[3]
5123 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5125 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5126 gas_assert (mo);
5127 gas_assert (strcmp (name, mo->name) == 0);
5129 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5131 ++mo;
5132 gas_assert (mo->name);
5133 gas_assert (strcmp (name, mo->name) == 0);
5136 create_insn (&insn, mo);
5137 for (;;)
5139 int c;
5141 c = *fmt++;
5142 switch (c)
5144 case '\0':
5145 break;
5147 case ',':
5148 case '(':
5149 case ')':
5150 continue;
5152 case 'y':
5153 case 'w':
5154 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5155 continue;
5157 case 'x':
5158 case 'v':
5159 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5160 continue;
5162 case 'z':
5163 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5164 continue;
5166 case 'Z':
5167 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5168 continue;
5170 case '0':
5171 case 'S':
5172 case 'P':
5173 case 'R':
5174 continue;
5176 case 'X':
5177 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5178 continue;
5180 case 'Y':
5182 int regno;
5184 regno = va_arg (*args, int);
5185 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5186 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5188 continue;
5190 case '<':
5191 case '>':
5192 case '4':
5193 case '5':
5194 case 'H':
5195 case 'W':
5196 case 'D':
5197 case 'j':
5198 case '8':
5199 case 'V':
5200 case 'C':
5201 case 'U':
5202 case 'k':
5203 case 'K':
5204 case 'p':
5205 case 'q':
5207 gas_assert (ep != NULL);
5209 if (ep->X_op != O_constant)
5210 *r = (int) BFD_RELOC_UNUSED + c;
5211 else
5213 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
5214 FALSE, &insn.insn_opcode, &insn.use_extend,
5215 &insn.extend);
5216 ep = NULL;
5217 *r = BFD_RELOC_UNUSED;
5220 continue;
5222 case '6':
5223 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5224 continue;
5227 break;
5230 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5232 append_insn (&insn, ep, r, TRUE);
5236 * Sign-extend 32-bit mode constants that have bit 31 set and all
5237 * higher bits unset.
5239 static void
5240 normalize_constant_expr (expressionS *ex)
5242 if (ex->X_op == O_constant
5243 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5244 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5245 - 0x80000000);
5249 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5250 * all higher bits unset.
5252 static void
5253 normalize_address_expr (expressionS *ex)
5255 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5256 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5257 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5258 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5259 - 0x80000000);
5263 * Generate a "jalr" instruction with a relocation hint to the called
5264 * function. This occurs in NewABI PIC code.
5266 static void
5267 macro_build_jalr (expressionS *ep, int cprestore)
5269 static const bfd_reloc_code_real_type jalr_relocs[2]
5270 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5271 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5272 const char *jalr;
5273 char *f = NULL;
5275 if (MIPS_JALR_HINT_P (ep))
5277 frag_grow (8);
5278 f = frag_more (0);
5280 if (mips_opts.micromips)
5282 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5283 if (MIPS_JALR_HINT_P (ep))
5284 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5285 else
5286 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5288 else
5289 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5290 if (MIPS_JALR_HINT_P (ep))
5291 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5295 * Generate a "lui" instruction.
5297 static void
5298 macro_build_lui (expressionS *ep, int regnum)
5300 gas_assert (! mips_opts.mips16);
5302 if (ep->X_op != O_constant)
5304 gas_assert (ep->X_op == O_symbol);
5305 /* _gp_disp is a special case, used from s_cpload.
5306 __gnu_local_gp is used if mips_no_shared. */
5307 gas_assert (mips_pic == NO_PIC
5308 || (! HAVE_NEWABI
5309 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5310 || (! mips_in_shared
5311 && strcmp (S_GET_NAME (ep->X_add_symbol),
5312 "__gnu_local_gp") == 0));
5315 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5318 /* Generate a sequence of instructions to do a load or store from a constant
5319 offset off of a base register (breg) into/from a target register (treg),
5320 using AT if necessary. */
5321 static void
5322 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5323 int treg, int breg, int dbl)
5325 gas_assert (ep->X_op == O_constant);
5327 /* Sign-extending 32-bit constants makes their handling easier. */
5328 if (!dbl)
5329 normalize_constant_expr (ep);
5331 /* Right now, this routine can only handle signed 32-bit constants. */
5332 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5333 as_warn (_("operand overflow"));
5335 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5337 /* Signed 16-bit offset will fit in the op. Easy! */
5338 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5340 else
5342 /* 32-bit offset, need multiple instructions and AT, like:
5343 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5344 addu $tempreg,$tempreg,$breg
5345 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5346 to handle the complete offset. */
5347 macro_build_lui (ep, AT);
5348 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5349 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5351 if (!mips_opts.at)
5352 as_bad (_("Macro used $at after \".set noat\""));
5356 /* set_at()
5357 * Generates code to set the $at register to true (one)
5358 * if reg is less than the immediate expression.
5360 static void
5361 set_at (int reg, int unsignedp)
5363 if (imm_expr.X_op == O_constant
5364 && imm_expr.X_add_number >= -0x8000
5365 && imm_expr.X_add_number < 0x8000)
5366 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5367 AT, reg, BFD_RELOC_LO16);
5368 else
5370 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5371 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5375 /* Warn if an expression is not a constant. */
5377 static void
5378 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5380 if (ex->X_op == O_big)
5381 as_bad (_("unsupported large constant"));
5382 else if (ex->X_op != O_constant)
5383 as_bad (_("Instruction %s requires absolute expression"),
5384 ip->insn_mo->name);
5386 if (HAVE_32BIT_GPRS)
5387 normalize_constant_expr (ex);
5390 /* Count the leading zeroes by performing a binary chop. This is a
5391 bulky bit of source, but performance is a LOT better for the
5392 majority of values than a simple loop to count the bits:
5393 for (lcnt = 0; (lcnt < 32); lcnt++)
5394 if ((v) & (1 << (31 - lcnt)))
5395 break;
5396 However it is not code size friendly, and the gain will drop a bit
5397 on certain cached systems.
5399 #define COUNT_TOP_ZEROES(v) \
5400 (((v) & ~0xffff) == 0 \
5401 ? ((v) & ~0xff) == 0 \
5402 ? ((v) & ~0xf) == 0 \
5403 ? ((v) & ~0x3) == 0 \
5404 ? ((v) & ~0x1) == 0 \
5405 ? !(v) \
5406 ? 32 \
5407 : 31 \
5408 : 30 \
5409 : ((v) & ~0x7) == 0 \
5410 ? 29 \
5411 : 28 \
5412 : ((v) & ~0x3f) == 0 \
5413 ? ((v) & ~0x1f) == 0 \
5414 ? 27 \
5415 : 26 \
5416 : ((v) & ~0x7f) == 0 \
5417 ? 25 \
5418 : 24 \
5419 : ((v) & ~0xfff) == 0 \
5420 ? ((v) & ~0x3ff) == 0 \
5421 ? ((v) & ~0x1ff) == 0 \
5422 ? 23 \
5423 : 22 \
5424 : ((v) & ~0x7ff) == 0 \
5425 ? 21 \
5426 : 20 \
5427 : ((v) & ~0x3fff) == 0 \
5428 ? ((v) & ~0x1fff) == 0 \
5429 ? 19 \
5430 : 18 \
5431 : ((v) & ~0x7fff) == 0 \
5432 ? 17 \
5433 : 16 \
5434 : ((v) & ~0xffffff) == 0 \
5435 ? ((v) & ~0xfffff) == 0 \
5436 ? ((v) & ~0x3ffff) == 0 \
5437 ? ((v) & ~0x1ffff) == 0 \
5438 ? 15 \
5439 : 14 \
5440 : ((v) & ~0x7ffff) == 0 \
5441 ? 13 \
5442 : 12 \
5443 : ((v) & ~0x3fffff) == 0 \
5444 ? ((v) & ~0x1fffff) == 0 \
5445 ? 11 \
5446 : 10 \
5447 : ((v) & ~0x7fffff) == 0 \
5448 ? 9 \
5449 : 8 \
5450 : ((v) & ~0xfffffff) == 0 \
5451 ? ((v) & ~0x3ffffff) == 0 \
5452 ? ((v) & ~0x1ffffff) == 0 \
5453 ? 7 \
5454 : 6 \
5455 : ((v) & ~0x7ffffff) == 0 \
5456 ? 5 \
5457 : 4 \
5458 : ((v) & ~0x3fffffff) == 0 \
5459 ? ((v) & ~0x1fffffff) == 0 \
5460 ? 3 \
5461 : 2 \
5462 : ((v) & ~0x7fffffff) == 0 \
5463 ? 1 \
5464 : 0)
5466 /* load_register()
5467 * This routine generates the least number of instructions necessary to load
5468 * an absolute expression value into a register.
5470 static void
5471 load_register (int reg, expressionS *ep, int dbl)
5473 int freg;
5474 expressionS hi32, lo32;
5476 if (ep->X_op != O_big)
5478 gas_assert (ep->X_op == O_constant);
5480 /* Sign-extending 32-bit constants makes their handling easier. */
5481 if (!dbl)
5482 normalize_constant_expr (ep);
5484 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5486 /* We can handle 16 bit signed values with an addiu to
5487 $zero. No need to ever use daddiu here, since $zero and
5488 the result are always correct in 32 bit mode. */
5489 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5490 return;
5492 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5494 /* We can handle 16 bit unsigned values with an ori to
5495 $zero. */
5496 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5497 return;
5499 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5501 /* 32 bit values require an lui. */
5502 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5503 if ((ep->X_add_number & 0xffff) != 0)
5504 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5505 return;
5509 /* The value is larger than 32 bits. */
5511 if (!dbl || HAVE_32BIT_GPRS)
5513 char value[32];
5515 sprintf_vma (value, ep->X_add_number);
5516 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5517 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5518 return;
5521 if (ep->X_op != O_big)
5523 hi32 = *ep;
5524 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5525 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5526 hi32.X_add_number &= 0xffffffff;
5527 lo32 = *ep;
5528 lo32.X_add_number &= 0xffffffff;
5530 else
5532 gas_assert (ep->X_add_number > 2);
5533 if (ep->X_add_number == 3)
5534 generic_bignum[3] = 0;
5535 else if (ep->X_add_number > 4)
5536 as_bad (_("Number larger than 64 bits"));
5537 lo32.X_op = O_constant;
5538 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
5539 hi32.X_op = O_constant;
5540 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
5543 if (hi32.X_add_number == 0)
5544 freg = 0;
5545 else
5547 int shift, bit;
5548 unsigned long hi, lo;
5550 if (hi32.X_add_number == (offsetT) 0xffffffff)
5552 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
5554 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5555 return;
5557 if (lo32.X_add_number & 0x80000000)
5559 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5560 if (lo32.X_add_number & 0xffff)
5561 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5562 return;
5566 /* Check for 16bit shifted constant. We know that hi32 is
5567 non-zero, so start the mask on the first bit of the hi32
5568 value. */
5569 shift = 17;
5572 unsigned long himask, lomask;
5574 if (shift < 32)
5576 himask = 0xffff >> (32 - shift);
5577 lomask = (0xffff << shift) & 0xffffffff;
5579 else
5581 himask = 0xffff << (shift - 32);
5582 lomask = 0;
5584 if ((hi32.X_add_number & ~(offsetT) himask) == 0
5585 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
5587 expressionS tmp;
5589 tmp.X_op = O_constant;
5590 if (shift < 32)
5591 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
5592 | (lo32.X_add_number >> shift));
5593 else
5594 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
5595 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5596 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5597 reg, reg, (shift >= 32) ? shift - 32 : shift);
5598 return;
5600 ++shift;
5602 while (shift <= (64 - 16));
5604 /* Find the bit number of the lowest one bit, and store the
5605 shifted value in hi/lo. */
5606 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
5607 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
5608 if (lo != 0)
5610 bit = 0;
5611 while ((lo & 1) == 0)
5613 lo >>= 1;
5614 ++bit;
5616 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
5617 hi >>= bit;
5619 else
5621 bit = 32;
5622 while ((hi & 1) == 0)
5624 hi >>= 1;
5625 ++bit;
5627 lo = hi;
5628 hi = 0;
5631 /* Optimize if the shifted value is a (power of 2) - 1. */
5632 if ((hi == 0 && ((lo + 1) & lo) == 0)
5633 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
5635 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
5636 if (shift != 0)
5638 expressionS tmp;
5640 /* This instruction will set the register to be all
5641 ones. */
5642 tmp.X_op = O_constant;
5643 tmp.X_add_number = (offsetT) -1;
5644 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5645 if (bit != 0)
5647 bit += shift;
5648 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5649 reg, reg, (bit >= 32) ? bit - 32 : bit);
5651 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
5652 reg, reg, (shift >= 32) ? shift - 32 : shift);
5653 return;
5657 /* Sign extend hi32 before calling load_register, because we can
5658 generally get better code when we load a sign extended value. */
5659 if ((hi32.X_add_number & 0x80000000) != 0)
5660 hi32.X_add_number |= ~(offsetT) 0xffffffff;
5661 load_register (reg, &hi32, 0);
5662 freg = reg;
5664 if ((lo32.X_add_number & 0xffff0000) == 0)
5666 if (freg != 0)
5668 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
5669 freg = reg;
5672 else
5674 expressionS mid16;
5676 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
5678 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5679 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
5680 return;
5683 if (freg != 0)
5685 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
5686 freg = reg;
5688 mid16 = lo32;
5689 mid16.X_add_number >>= 16;
5690 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5691 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5692 freg = reg;
5694 if ((lo32.X_add_number & 0xffff) != 0)
5695 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5698 static inline void
5699 load_delay_nop (void)
5701 if (!gpr_interlocks)
5702 macro_build (NULL, "nop", "");
5705 /* Load an address into a register. */
5707 static void
5708 load_address (int reg, expressionS *ep, int *used_at)
5710 if (ep->X_op != O_constant
5711 && ep->X_op != O_symbol)
5713 as_bad (_("expression too complex"));
5714 ep->X_op = O_constant;
5717 if (ep->X_op == O_constant)
5719 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
5720 return;
5723 if (mips_pic == NO_PIC)
5725 /* If this is a reference to a GP relative symbol, we want
5726 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
5727 Otherwise we want
5728 lui $reg,<sym> (BFD_RELOC_HI16_S)
5729 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5730 If we have an addend, we always use the latter form.
5732 With 64bit address space and a usable $at we want
5733 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5734 lui $at,<sym> (BFD_RELOC_HI16_S)
5735 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5736 daddiu $at,<sym> (BFD_RELOC_LO16)
5737 dsll32 $reg,0
5738 daddu $reg,$reg,$at
5740 If $at is already in use, we use a path which is suboptimal
5741 on superscalar processors.
5742 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5743 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5744 dsll $reg,16
5745 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
5746 dsll $reg,16
5747 daddiu $reg,<sym> (BFD_RELOC_LO16)
5749 For GP relative symbols in 64bit address space we can use
5750 the same sequence as in 32bit address space. */
5751 if (HAVE_64BIT_SYMBOLS)
5753 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5754 && !nopic_need_relax (ep->X_add_symbol, 1))
5756 relax_start (ep->X_add_symbol);
5757 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5758 mips_gp_register, BFD_RELOC_GPREL16);
5759 relax_switch ();
5762 if (*used_at == 0 && mips_opts.at)
5764 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5765 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
5766 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5767 BFD_RELOC_MIPS_HIGHER);
5768 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
5769 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
5770 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
5771 *used_at = 1;
5773 else
5775 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5776 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5777 BFD_RELOC_MIPS_HIGHER);
5778 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5779 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
5780 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5781 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
5784 if (mips_relax.sequence)
5785 relax_end ();
5787 else
5789 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5790 && !nopic_need_relax (ep->X_add_symbol, 1))
5792 relax_start (ep->X_add_symbol);
5793 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5794 mips_gp_register, BFD_RELOC_GPREL16);
5795 relax_switch ();
5797 macro_build_lui (ep, reg);
5798 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
5799 reg, reg, BFD_RELOC_LO16);
5800 if (mips_relax.sequence)
5801 relax_end ();
5804 else if (!mips_big_got)
5806 expressionS ex;
5808 /* If this is a reference to an external symbol, we want
5809 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5810 Otherwise we want
5811 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5813 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5814 If there is a constant, it must be added in after.
5816 If we have NewABI, we want
5817 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5818 unless we're referencing a global symbol with a non-zero
5819 offset, in which case cst must be added separately. */
5820 if (HAVE_NEWABI)
5822 if (ep->X_add_number)
5824 ex.X_add_number = ep->X_add_number;
5825 ep->X_add_number = 0;
5826 relax_start (ep->X_add_symbol);
5827 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5828 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5829 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5830 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5831 ex.X_op = O_constant;
5832 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5833 reg, reg, BFD_RELOC_LO16);
5834 ep->X_add_number = ex.X_add_number;
5835 relax_switch ();
5837 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5838 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5839 if (mips_relax.sequence)
5840 relax_end ();
5842 else
5844 ex.X_add_number = ep->X_add_number;
5845 ep->X_add_number = 0;
5846 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5847 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5848 load_delay_nop ();
5849 relax_start (ep->X_add_symbol);
5850 relax_switch ();
5851 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5852 BFD_RELOC_LO16);
5853 relax_end ();
5855 if (ex.X_add_number != 0)
5857 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5858 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5859 ex.X_op = O_constant;
5860 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5861 reg, reg, BFD_RELOC_LO16);
5865 else if (mips_big_got)
5867 expressionS ex;
5869 /* This is the large GOT case. If this is a reference to an
5870 external symbol, we want
5871 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5872 addu $reg,$reg,$gp
5873 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
5875 Otherwise, for a reference to a local symbol in old ABI, we want
5876 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5878 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5879 If there is a constant, it must be added in after.
5881 In the NewABI, for local symbols, with or without offsets, we want:
5882 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5883 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5885 if (HAVE_NEWABI)
5887 ex.X_add_number = ep->X_add_number;
5888 ep->X_add_number = 0;
5889 relax_start (ep->X_add_symbol);
5890 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
5891 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5892 reg, reg, mips_gp_register);
5893 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
5894 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
5895 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5896 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5897 else if (ex.X_add_number)
5899 ex.X_op = O_constant;
5900 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5901 BFD_RELOC_LO16);
5904 ep->X_add_number = ex.X_add_number;
5905 relax_switch ();
5906 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5907 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5908 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5909 BFD_RELOC_MIPS_GOT_OFST);
5910 relax_end ();
5912 else
5914 ex.X_add_number = ep->X_add_number;
5915 ep->X_add_number = 0;
5916 relax_start (ep->X_add_symbol);
5917 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
5918 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5919 reg, reg, mips_gp_register);
5920 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
5921 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
5922 relax_switch ();
5923 if (reg_needs_delay (mips_gp_register))
5925 /* We need a nop before loading from $gp. This special
5926 check is required because the lui which starts the main
5927 instruction stream does not refer to $gp, and so will not
5928 insert the nop which may be required. */
5929 macro_build (NULL, "nop", "");
5931 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5932 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5933 load_delay_nop ();
5934 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5935 BFD_RELOC_LO16);
5936 relax_end ();
5938 if (ex.X_add_number != 0)
5940 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5941 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5942 ex.X_op = O_constant;
5943 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5944 BFD_RELOC_LO16);
5948 else
5949 abort ();
5951 if (!mips_opts.at && *used_at == 1)
5952 as_bad (_("Macro used $at after \".set noat\""));
5955 /* Move the contents of register SOURCE into register DEST. */
5957 static void
5958 move_register (int dest, int source)
5960 /* Prefer to use a 16-bit microMIPS instruction unless the previous
5961 instruction specifically requires a 32-bit one. */
5962 if (mips_opts.micromips
5963 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5964 macro_build (NULL, "move", "mp,mj", dest, source);
5965 else
5966 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
5967 dest, source, 0);
5970 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
5971 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
5972 The two alternatives are:
5974 Global symbol Local sybmol
5975 ------------- ------------
5976 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
5977 ... ...
5978 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
5980 load_got_offset emits the first instruction and add_got_offset
5981 emits the second for a 16-bit offset or add_got_offset_hilo emits
5982 a sequence to add a 32-bit offset using a scratch register. */
5984 static void
5985 load_got_offset (int dest, expressionS *local)
5987 expressionS global;
5989 global = *local;
5990 global.X_add_number = 0;
5992 relax_start (local->X_add_symbol);
5993 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
5994 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5995 relax_switch ();
5996 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
5997 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5998 relax_end ();
6001 static void
6002 add_got_offset (int dest, expressionS *local)
6004 expressionS global;
6006 global.X_op = O_constant;
6007 global.X_op_symbol = NULL;
6008 global.X_add_symbol = NULL;
6009 global.X_add_number = local->X_add_number;
6011 relax_start (local->X_add_symbol);
6012 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6013 dest, dest, BFD_RELOC_LO16);
6014 relax_switch ();
6015 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6016 relax_end ();
6019 static void
6020 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6022 expressionS global;
6023 int hold_mips_optimize;
6025 global.X_op = O_constant;
6026 global.X_op_symbol = NULL;
6027 global.X_add_symbol = NULL;
6028 global.X_add_number = local->X_add_number;
6030 relax_start (local->X_add_symbol);
6031 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6032 relax_switch ();
6033 /* Set mips_optimize around the lui instruction to avoid
6034 inserting an unnecessary nop after the lw. */
6035 hold_mips_optimize = mips_optimize;
6036 mips_optimize = 2;
6037 macro_build_lui (&global, tmp);
6038 mips_optimize = hold_mips_optimize;
6039 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6040 relax_end ();
6042 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6045 /* Emit a sequence of instructions to emulate a branch likely operation.
6046 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6047 is its complementing branch with the original condition negated.
6048 CALL is set if the original branch specified the link operation.
6049 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6051 Code like this is produced in the noreorder mode:
6053 BRNEG <args>, 1f
6055 b <sym>
6056 delay slot (executed only if branch taken)
6059 or, if CALL is set:
6061 BRNEG <args>, 1f
6063 bal <sym>
6064 delay slot (executed only if branch taken)
6067 In the reorder mode the delay slot would be filled with a nop anyway,
6068 so code produced is simply:
6070 BR <args>, <sym>
6073 This function is used when producing code for the microMIPS ASE that
6074 does not implement branch likely instructions in hardware. */
6076 static void
6077 macro_build_branch_likely (const char *br, const char *brneg,
6078 int call, expressionS *ep, const char *fmt,
6079 unsigned int sreg, unsigned int treg)
6081 int noreorder = mips_opts.noreorder;
6082 expressionS expr1;
6084 gas_assert (mips_opts.micromips);
6085 start_noreorder ();
6086 if (noreorder)
6088 micromips_label_expr (&expr1);
6089 macro_build (&expr1, brneg, fmt, sreg, treg);
6090 macro_build (NULL, "nop", "");
6091 macro_build (ep, call ? "bal" : "b", "p");
6093 /* Set to true so that append_insn adds a label. */
6094 emit_branch_likely_macro = TRUE;
6096 else
6098 macro_build (ep, br, fmt, sreg, treg);
6099 macro_build (NULL, "nop", "");
6101 end_noreorder ();
6104 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6105 the condition code tested. EP specifies the branch target. */
6107 static void
6108 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6110 const int call = 0;
6111 const char *brneg;
6112 const char *br;
6114 switch (type)
6116 case M_BC1FL:
6117 br = "bc1f";
6118 brneg = "bc1t";
6119 break;
6120 case M_BC1TL:
6121 br = "bc1t";
6122 brneg = "bc1f";
6123 break;
6124 case M_BC2FL:
6125 br = "bc2f";
6126 brneg = "bc2t";
6127 break;
6128 case M_BC2TL:
6129 br = "bc2t";
6130 brneg = "bc2f";
6131 break;
6132 default:
6133 abort ();
6135 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6138 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6139 the register tested. EP specifies the branch target. */
6141 static void
6142 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6144 const char *brneg = NULL;
6145 const char *br;
6146 int call = 0;
6148 switch (type)
6150 case M_BGEZ:
6151 br = "bgez";
6152 break;
6153 case M_BGEZL:
6154 br = mips_opts.micromips ? "bgez" : "bgezl";
6155 brneg = "bltz";
6156 break;
6157 case M_BGEZALL:
6158 gas_assert (mips_opts.micromips);
6159 br = "bgezals";
6160 brneg = "bltz";
6161 call = 1;
6162 break;
6163 case M_BGTZ:
6164 br = "bgtz";
6165 break;
6166 case M_BGTZL:
6167 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6168 brneg = "blez";
6169 break;
6170 case M_BLEZ:
6171 br = "blez";
6172 break;
6173 case M_BLEZL:
6174 br = mips_opts.micromips ? "blez" : "blezl";
6175 brneg = "bgtz";
6176 break;
6177 case M_BLTZ:
6178 br = "bltz";
6179 break;
6180 case M_BLTZL:
6181 br = mips_opts.micromips ? "bltz" : "bltzl";
6182 brneg = "bgez";
6183 break;
6184 case M_BLTZALL:
6185 gas_assert (mips_opts.micromips);
6186 br = "bltzals";
6187 brneg = "bgez";
6188 call = 1;
6189 break;
6190 default:
6191 abort ();
6193 if (mips_opts.micromips && brneg)
6194 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6195 else
6196 macro_build (ep, br, "s,p", sreg);
6199 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6200 TREG as the registers tested. EP specifies the branch target. */
6202 static void
6203 macro_build_branch_rsrt (int type, expressionS *ep,
6204 unsigned int sreg, unsigned int treg)
6206 const char *brneg = NULL;
6207 const int call = 0;
6208 const char *br;
6210 switch (type)
6212 case M_BEQ:
6213 case M_BEQ_I:
6214 br = "beq";
6215 break;
6216 case M_BEQL:
6217 case M_BEQL_I:
6218 br = mips_opts.micromips ? "beq" : "beql";
6219 brneg = "bne";
6220 break;
6221 case M_BNE:
6222 case M_BNE_I:
6223 br = "bne";
6224 break;
6225 case M_BNEL:
6226 case M_BNEL_I:
6227 br = mips_opts.micromips ? "bne" : "bnel";
6228 brneg = "beq";
6229 break;
6230 default:
6231 abort ();
6233 if (mips_opts.micromips && brneg)
6234 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6235 else
6236 macro_build (ep, br, "s,t,p", sreg, treg);
6240 * Build macros
6241 * This routine implements the seemingly endless macro or synthesized
6242 * instructions and addressing modes in the mips assembly language. Many
6243 * of these macros are simple and are similar to each other. These could
6244 * probably be handled by some kind of table or grammar approach instead of
6245 * this verbose method. Others are not simple macros but are more like
6246 * optimizing code generation.
6247 * One interesting optimization is when several store macros appear
6248 * consecutively that would load AT with the upper half of the same address.
6249 * The ensuing load upper instructions are ommited. This implies some kind
6250 * of global optimization. We currently only optimize within a single macro.
6251 * For many of the load and store macros if the address is specified as a
6252 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6253 * first load register 'at' with zero and use it as the base register. The
6254 * mips assembler simply uses register $zero. Just one tiny optimization
6255 * we're missing.
6257 static void
6258 macro (struct mips_cl_insn *ip)
6260 unsigned int treg, sreg, dreg, breg;
6261 unsigned int tempreg;
6262 int mask;
6263 int used_at = 0;
6264 expressionS label_expr;
6265 expressionS expr1;
6266 expressionS *ep;
6267 const char *s;
6268 const char *s2;
6269 const char *fmt;
6270 int likely = 0;
6271 int coproc = 0;
6272 int off12 = 0;
6273 int call = 0;
6274 int jals = 0;
6275 int dbl = 0;
6276 int imm = 0;
6277 int ust = 0;
6278 int lp = 0;
6279 int ab = 0;
6280 int off0 = 0;
6281 int off;
6282 offsetT maxnum;
6283 bfd_reloc_code_real_type r;
6284 int hold_mips_optimize;
6286 gas_assert (! mips_opts.mips16);
6288 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6289 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6290 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6291 mask = ip->insn_mo->mask;
6293 label_expr.X_op = O_constant;
6294 label_expr.X_op_symbol = NULL;
6295 label_expr.X_add_symbol = NULL;
6296 label_expr.X_add_number = 0;
6298 expr1.X_op = O_constant;
6299 expr1.X_op_symbol = NULL;
6300 expr1.X_add_symbol = NULL;
6301 expr1.X_add_number = 1;
6303 switch (mask)
6305 case M_DABS:
6306 dbl = 1;
6307 case M_ABS:
6308 /* bgez $a0,1f
6309 move v0,$a0
6310 sub v0,$zero,$a0
6314 start_noreorder ();
6316 if (mips_opts.micromips)
6317 micromips_label_expr (&label_expr);
6318 else
6319 label_expr.X_add_number = 8;
6320 macro_build (&label_expr, "bgez", "s,p", sreg);
6321 if (dreg == sreg)
6322 macro_build (NULL, "nop", "");
6323 else
6324 move_register (dreg, sreg);
6325 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6326 if (mips_opts.micromips)
6327 micromips_add_label ();
6329 end_noreorder ();
6330 break;
6332 case M_ADD_I:
6333 s = "addi";
6334 s2 = "add";
6335 goto do_addi;
6336 case M_ADDU_I:
6337 s = "addiu";
6338 s2 = "addu";
6339 goto do_addi;
6340 case M_DADD_I:
6341 dbl = 1;
6342 s = "daddi";
6343 s2 = "dadd";
6344 if (!mips_opts.micromips)
6345 goto do_addi;
6346 if (imm_expr.X_op == O_constant
6347 && imm_expr.X_add_number >= -0x200
6348 && imm_expr.X_add_number < 0x200)
6350 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6351 break;
6353 goto do_addi_i;
6354 case M_DADDU_I:
6355 dbl = 1;
6356 s = "daddiu";
6357 s2 = "daddu";
6358 do_addi:
6359 if (imm_expr.X_op == O_constant
6360 && imm_expr.X_add_number >= -0x8000
6361 && imm_expr.X_add_number < 0x8000)
6363 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6364 break;
6366 do_addi_i:
6367 used_at = 1;
6368 load_register (AT, &imm_expr, dbl);
6369 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6370 break;
6372 case M_AND_I:
6373 s = "andi";
6374 s2 = "and";
6375 goto do_bit;
6376 case M_OR_I:
6377 s = "ori";
6378 s2 = "or";
6379 goto do_bit;
6380 case M_NOR_I:
6381 s = "";
6382 s2 = "nor";
6383 goto do_bit;
6384 case M_XOR_I:
6385 s = "xori";
6386 s2 = "xor";
6387 do_bit:
6388 if (imm_expr.X_op == O_constant
6389 && imm_expr.X_add_number >= 0
6390 && imm_expr.X_add_number < 0x10000)
6392 if (mask != M_NOR_I)
6393 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6394 else
6396 macro_build (&imm_expr, "ori", "t,r,i",
6397 treg, sreg, BFD_RELOC_LO16);
6398 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6400 break;
6403 used_at = 1;
6404 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6405 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6406 break;
6408 case M_BALIGN:
6409 switch (imm_expr.X_add_number)
6411 case 0:
6412 macro_build (NULL, "nop", "");
6413 break;
6414 case 2:
6415 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6416 break;
6417 default:
6418 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6419 (int) imm_expr.X_add_number);
6420 break;
6422 break;
6424 case M_BC1FL:
6425 case M_BC1TL:
6426 case M_BC2FL:
6427 case M_BC2TL:
6428 gas_assert (mips_opts.micromips);
6429 macro_build_branch_ccl (mask, &offset_expr,
6430 EXTRACT_OPERAND (1, BCC, *ip));
6431 break;
6433 case M_BEQ_I:
6434 case M_BEQL_I:
6435 case M_BNE_I:
6436 case M_BNEL_I:
6437 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6438 treg = 0;
6439 else
6441 treg = AT;
6442 used_at = 1;
6443 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6445 /* Fall through. */
6446 case M_BEQL:
6447 case M_BNEL:
6448 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6449 break;
6451 case M_BGEL:
6452 likely = 1;
6453 case M_BGE:
6454 if (treg == 0)
6455 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6456 else if (sreg == 0)
6457 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6458 else
6460 used_at = 1;
6461 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6462 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6463 &offset_expr, AT, ZERO);
6465 break;
6467 case M_BGEZL:
6468 case M_BGEZALL:
6469 case M_BGTZL:
6470 case M_BLEZL:
6471 case M_BLTZL:
6472 case M_BLTZALL:
6473 macro_build_branch_rs (mask, &offset_expr, sreg);
6474 break;
6476 case M_BGTL_I:
6477 likely = 1;
6478 case M_BGT_I:
6479 /* Check for > max integer. */
6480 maxnum = 0x7fffffff;
6481 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6483 maxnum <<= 16;
6484 maxnum |= 0xffff;
6485 maxnum <<= 16;
6486 maxnum |= 0xffff;
6488 if (imm_expr.X_op == O_constant
6489 && imm_expr.X_add_number >= maxnum
6490 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6492 do_false:
6493 /* Result is always false. */
6494 if (! likely)
6495 macro_build (NULL, "nop", "");
6496 else
6497 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6498 break;
6500 if (imm_expr.X_op != O_constant)
6501 as_bad (_("Unsupported large constant"));
6502 ++imm_expr.X_add_number;
6503 /* FALLTHROUGH */
6504 case M_BGE_I:
6505 case M_BGEL_I:
6506 if (mask == M_BGEL_I)
6507 likely = 1;
6508 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6510 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6511 &offset_expr, sreg);
6512 break;
6514 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6516 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6517 &offset_expr, sreg);
6518 break;
6520 maxnum = 0x7fffffff;
6521 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6523 maxnum <<= 16;
6524 maxnum |= 0xffff;
6525 maxnum <<= 16;
6526 maxnum |= 0xffff;
6528 maxnum = - maxnum - 1;
6529 if (imm_expr.X_op == O_constant
6530 && imm_expr.X_add_number <= maxnum
6531 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6533 do_true:
6534 /* result is always true */
6535 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
6536 macro_build (&offset_expr, "b", "p");
6537 break;
6539 used_at = 1;
6540 set_at (sreg, 0);
6541 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6542 &offset_expr, AT, ZERO);
6543 break;
6545 case M_BGEUL:
6546 likely = 1;
6547 case M_BGEU:
6548 if (treg == 0)
6549 goto do_true;
6550 else if (sreg == 0)
6551 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6552 &offset_expr, ZERO, treg);
6553 else
6555 used_at = 1;
6556 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6557 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6558 &offset_expr, AT, ZERO);
6560 break;
6562 case M_BGTUL_I:
6563 likely = 1;
6564 case M_BGTU_I:
6565 if (sreg == 0
6566 || (HAVE_32BIT_GPRS
6567 && imm_expr.X_op == O_constant
6568 && imm_expr.X_add_number == -1))
6569 goto do_false;
6570 if (imm_expr.X_op != O_constant)
6571 as_bad (_("Unsupported large constant"));
6572 ++imm_expr.X_add_number;
6573 /* FALLTHROUGH */
6574 case M_BGEU_I:
6575 case M_BGEUL_I:
6576 if (mask == M_BGEUL_I)
6577 likely = 1;
6578 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6579 goto do_true;
6580 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6581 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6582 &offset_expr, sreg, ZERO);
6583 else
6585 used_at = 1;
6586 set_at (sreg, 1);
6587 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6588 &offset_expr, AT, ZERO);
6590 break;
6592 case M_BGTL:
6593 likely = 1;
6594 case M_BGT:
6595 if (treg == 0)
6596 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
6597 else if (sreg == 0)
6598 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
6599 else
6601 used_at = 1;
6602 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6603 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6604 &offset_expr, AT, ZERO);
6606 break;
6608 case M_BGTUL:
6609 likely = 1;
6610 case M_BGTU:
6611 if (treg == 0)
6612 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6613 &offset_expr, sreg, ZERO);
6614 else if (sreg == 0)
6615 goto do_false;
6616 else
6618 used_at = 1;
6619 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6620 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6621 &offset_expr, AT, ZERO);
6623 break;
6625 case M_BLEL:
6626 likely = 1;
6627 case M_BLE:
6628 if (treg == 0)
6629 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6630 else if (sreg == 0)
6631 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
6632 else
6634 used_at = 1;
6635 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6636 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6637 &offset_expr, AT, ZERO);
6639 break;
6641 case M_BLEL_I:
6642 likely = 1;
6643 case M_BLE_I:
6644 maxnum = 0x7fffffff;
6645 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6647 maxnum <<= 16;
6648 maxnum |= 0xffff;
6649 maxnum <<= 16;
6650 maxnum |= 0xffff;
6652 if (imm_expr.X_op == O_constant
6653 && imm_expr.X_add_number >= maxnum
6654 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6655 goto do_true;
6656 if (imm_expr.X_op != O_constant)
6657 as_bad (_("Unsupported large constant"));
6658 ++imm_expr.X_add_number;
6659 /* FALLTHROUGH */
6660 case M_BLT_I:
6661 case M_BLTL_I:
6662 if (mask == M_BLTL_I)
6663 likely = 1;
6664 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6665 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6666 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6667 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6668 else
6670 used_at = 1;
6671 set_at (sreg, 0);
6672 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6673 &offset_expr, AT, ZERO);
6675 break;
6677 case M_BLEUL:
6678 likely = 1;
6679 case M_BLEU:
6680 if (treg == 0)
6681 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6682 &offset_expr, sreg, ZERO);
6683 else if (sreg == 0)
6684 goto do_true;
6685 else
6687 used_at = 1;
6688 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6689 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6690 &offset_expr, AT, ZERO);
6692 break;
6694 case M_BLEUL_I:
6695 likely = 1;
6696 case M_BLEU_I:
6697 if (sreg == 0
6698 || (HAVE_32BIT_GPRS
6699 && imm_expr.X_op == O_constant
6700 && imm_expr.X_add_number == -1))
6701 goto do_true;
6702 if (imm_expr.X_op != O_constant)
6703 as_bad (_("Unsupported large constant"));
6704 ++imm_expr.X_add_number;
6705 /* FALLTHROUGH */
6706 case M_BLTU_I:
6707 case M_BLTUL_I:
6708 if (mask == M_BLTUL_I)
6709 likely = 1;
6710 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6711 goto do_false;
6712 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6713 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6714 &offset_expr, sreg, ZERO);
6715 else
6717 used_at = 1;
6718 set_at (sreg, 1);
6719 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6720 &offset_expr, AT, ZERO);
6722 break;
6724 case M_BLTL:
6725 likely = 1;
6726 case M_BLT:
6727 if (treg == 0)
6728 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6729 else if (sreg == 0)
6730 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
6731 else
6733 used_at = 1;
6734 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6735 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6736 &offset_expr, AT, ZERO);
6738 break;
6740 case M_BLTUL:
6741 likely = 1;
6742 case M_BLTU:
6743 if (treg == 0)
6744 goto do_false;
6745 else if (sreg == 0)
6746 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6747 &offset_expr, ZERO, treg);
6748 else
6750 used_at = 1;
6751 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6752 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6753 &offset_expr, AT, ZERO);
6755 break;
6757 case M_DEXT:
6759 /* Use unsigned arithmetic. */
6760 addressT pos;
6761 addressT size;
6763 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6765 as_bad (_("Unsupported large constant"));
6766 pos = size = 1;
6768 else
6770 pos = imm_expr.X_add_number;
6771 size = imm2_expr.X_add_number;
6774 if (pos > 63)
6776 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6777 pos = 1;
6779 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6781 as_bad (_("Improper extract size (%lu, position %lu)"),
6782 (unsigned long) size, (unsigned long) pos);
6783 size = 1;
6786 if (size <= 32 && pos < 32)
6788 s = "dext";
6789 fmt = "t,r,+A,+C";
6791 else if (size <= 32)
6793 s = "dextu";
6794 fmt = "t,r,+E,+H";
6796 else
6798 s = "dextm";
6799 fmt = "t,r,+A,+G";
6801 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6802 (int) (size - 1));
6804 break;
6806 case M_DINS:
6808 /* Use unsigned arithmetic. */
6809 addressT pos;
6810 addressT size;
6812 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6814 as_bad (_("Unsupported large constant"));
6815 pos = size = 1;
6817 else
6819 pos = imm_expr.X_add_number;
6820 size = imm2_expr.X_add_number;
6823 if (pos > 63)
6825 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6826 pos = 1;
6828 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6830 as_bad (_("Improper insert size (%lu, position %lu)"),
6831 (unsigned long) size, (unsigned long) pos);
6832 size = 1;
6835 if (pos < 32 && (pos + size - 1) < 32)
6837 s = "dins";
6838 fmt = "t,r,+A,+B";
6840 else if (pos >= 32)
6842 s = "dinsu";
6843 fmt = "t,r,+E,+F";
6845 else
6847 s = "dinsm";
6848 fmt = "t,r,+A,+F";
6850 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6851 (int) (pos + size - 1));
6853 break;
6855 case M_DDIV_3:
6856 dbl = 1;
6857 case M_DIV_3:
6858 s = "mflo";
6859 goto do_div3;
6860 case M_DREM_3:
6861 dbl = 1;
6862 case M_REM_3:
6863 s = "mfhi";
6864 do_div3:
6865 if (treg == 0)
6867 as_warn (_("Divide by zero."));
6868 if (mips_trap)
6869 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
6870 else
6871 macro_build (NULL, "break", BRK_FMT, 7);
6872 break;
6875 start_noreorder ();
6876 if (mips_trap)
6878 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
6879 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
6881 else
6883 if (mips_opts.micromips)
6884 micromips_label_expr (&label_expr);
6885 else
6886 label_expr.X_add_number = 8;
6887 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
6888 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
6889 macro_build (NULL, "break", BRK_FMT, 7);
6890 if (mips_opts.micromips)
6891 micromips_add_label ();
6893 expr1.X_add_number = -1;
6894 used_at = 1;
6895 load_register (AT, &expr1, dbl);
6896 if (mips_opts.micromips)
6897 micromips_label_expr (&label_expr);
6898 else
6899 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
6900 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
6901 if (dbl)
6903 expr1.X_add_number = 1;
6904 load_register (AT, &expr1, dbl);
6905 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
6907 else
6909 expr1.X_add_number = 0x80000000;
6910 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
6912 if (mips_trap)
6914 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
6915 /* We want to close the noreorder block as soon as possible, so
6916 that later insns are available for delay slot filling. */
6917 end_noreorder ();
6919 else
6921 if (mips_opts.micromips)
6922 micromips_label_expr (&label_expr);
6923 else
6924 label_expr.X_add_number = 8;
6925 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
6926 macro_build (NULL, "nop", "");
6928 /* We want to close the noreorder block as soon as possible, so
6929 that later insns are available for delay slot filling. */
6930 end_noreorder ();
6932 macro_build (NULL, "break", BRK_FMT, 6);
6934 if (mips_opts.micromips)
6935 micromips_add_label ();
6936 macro_build (NULL, s, MFHL_FMT, dreg);
6937 break;
6939 case M_DIV_3I:
6940 s = "div";
6941 s2 = "mflo";
6942 goto do_divi;
6943 case M_DIVU_3I:
6944 s = "divu";
6945 s2 = "mflo";
6946 goto do_divi;
6947 case M_REM_3I:
6948 s = "div";
6949 s2 = "mfhi";
6950 goto do_divi;
6951 case M_REMU_3I:
6952 s = "divu";
6953 s2 = "mfhi";
6954 goto do_divi;
6955 case M_DDIV_3I:
6956 dbl = 1;
6957 s = "ddiv";
6958 s2 = "mflo";
6959 goto do_divi;
6960 case M_DDIVU_3I:
6961 dbl = 1;
6962 s = "ddivu";
6963 s2 = "mflo";
6964 goto do_divi;
6965 case M_DREM_3I:
6966 dbl = 1;
6967 s = "ddiv";
6968 s2 = "mfhi";
6969 goto do_divi;
6970 case M_DREMU_3I:
6971 dbl = 1;
6972 s = "ddivu";
6973 s2 = "mfhi";
6974 do_divi:
6975 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6977 as_warn (_("Divide by zero."));
6978 if (mips_trap)
6979 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
6980 else
6981 macro_build (NULL, "break", BRK_FMT, 7);
6982 break;
6984 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6986 if (strcmp (s2, "mflo") == 0)
6987 move_register (dreg, sreg);
6988 else
6989 move_register (dreg, ZERO);
6990 break;
6992 if (imm_expr.X_op == O_constant
6993 && imm_expr.X_add_number == -1
6994 && s[strlen (s) - 1] != 'u')
6996 if (strcmp (s2, "mflo") == 0)
6998 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7000 else
7001 move_register (dreg, ZERO);
7002 break;
7005 used_at = 1;
7006 load_register (AT, &imm_expr, dbl);
7007 macro_build (NULL, s, "z,s,t", sreg, AT);
7008 macro_build (NULL, s2, MFHL_FMT, dreg);
7009 break;
7011 case M_DIVU_3:
7012 s = "divu";
7013 s2 = "mflo";
7014 goto do_divu3;
7015 case M_REMU_3:
7016 s = "divu";
7017 s2 = "mfhi";
7018 goto do_divu3;
7019 case M_DDIVU_3:
7020 s = "ddivu";
7021 s2 = "mflo";
7022 goto do_divu3;
7023 case M_DREMU_3:
7024 s = "ddivu";
7025 s2 = "mfhi";
7026 do_divu3:
7027 start_noreorder ();
7028 if (mips_trap)
7030 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7031 macro_build (NULL, s, "z,s,t", sreg, treg);
7032 /* We want to close the noreorder block as soon as possible, so
7033 that later insns are available for delay slot filling. */
7034 end_noreorder ();
7036 else
7038 if (mips_opts.micromips)
7039 micromips_label_expr (&label_expr);
7040 else
7041 label_expr.X_add_number = 8;
7042 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7043 macro_build (NULL, s, "z,s,t", sreg, treg);
7045 /* We want to close the noreorder block as soon as possible, so
7046 that later insns are available for delay slot filling. */
7047 end_noreorder ();
7048 macro_build (NULL, "break", BRK_FMT, 7);
7049 if (mips_opts.micromips)
7050 micromips_add_label ();
7052 macro_build (NULL, s2, MFHL_FMT, dreg);
7053 break;
7055 case M_DLCA_AB:
7056 dbl = 1;
7057 case M_LCA_AB:
7058 call = 1;
7059 goto do_la;
7060 case M_DLA_AB:
7061 dbl = 1;
7062 case M_LA_AB:
7063 do_la:
7064 /* Load the address of a symbol into a register. If breg is not
7065 zero, we then add a base register to it. */
7067 if (dbl && HAVE_32BIT_GPRS)
7068 as_warn (_("dla used to load 32-bit register"));
7070 if (!dbl && HAVE_64BIT_OBJECTS)
7071 as_warn (_("la used to load 64-bit address"));
7073 if (offset_expr.X_op == O_constant
7074 && offset_expr.X_add_number >= -0x8000
7075 && offset_expr.X_add_number < 0x8000)
7077 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7078 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7079 break;
7082 if (mips_opts.at && (treg == breg))
7084 tempreg = AT;
7085 used_at = 1;
7087 else
7089 tempreg = treg;
7092 if (offset_expr.X_op != O_symbol
7093 && offset_expr.X_op != O_constant)
7095 as_bad (_("Expression too complex"));
7096 offset_expr.X_op = O_constant;
7099 if (offset_expr.X_op == O_constant)
7100 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7101 else if (mips_pic == NO_PIC)
7103 /* If this is a reference to a GP relative symbol, we want
7104 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7105 Otherwise we want
7106 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7107 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7108 If we have a constant, we need two instructions anyhow,
7109 so we may as well always use the latter form.
7111 With 64bit address space and a usable $at we want
7112 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7113 lui $at,<sym> (BFD_RELOC_HI16_S)
7114 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7115 daddiu $at,<sym> (BFD_RELOC_LO16)
7116 dsll32 $tempreg,0
7117 daddu $tempreg,$tempreg,$at
7119 If $at is already in use, we use a path which is suboptimal
7120 on superscalar processors.
7121 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7122 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7123 dsll $tempreg,16
7124 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7125 dsll $tempreg,16
7126 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7128 For GP relative symbols in 64bit address space we can use
7129 the same sequence as in 32bit address space. */
7130 if (HAVE_64BIT_SYMBOLS)
7132 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7133 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7135 relax_start (offset_expr.X_add_symbol);
7136 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7137 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7138 relax_switch ();
7141 if (used_at == 0 && mips_opts.at)
7143 macro_build (&offset_expr, "lui", LUI_FMT,
7144 tempreg, BFD_RELOC_MIPS_HIGHEST);
7145 macro_build (&offset_expr, "lui", LUI_FMT,
7146 AT, BFD_RELOC_HI16_S);
7147 macro_build (&offset_expr, "daddiu", "t,r,j",
7148 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7149 macro_build (&offset_expr, "daddiu", "t,r,j",
7150 AT, AT, BFD_RELOC_LO16);
7151 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7152 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7153 used_at = 1;
7155 else
7157 macro_build (&offset_expr, "lui", LUI_FMT,
7158 tempreg, BFD_RELOC_MIPS_HIGHEST);
7159 macro_build (&offset_expr, "daddiu", "t,r,j",
7160 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7161 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7162 macro_build (&offset_expr, "daddiu", "t,r,j",
7163 tempreg, tempreg, BFD_RELOC_HI16_S);
7164 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7165 macro_build (&offset_expr, "daddiu", "t,r,j",
7166 tempreg, tempreg, BFD_RELOC_LO16);
7169 if (mips_relax.sequence)
7170 relax_end ();
7172 else
7174 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7175 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7177 relax_start (offset_expr.X_add_symbol);
7178 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7179 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7180 relax_switch ();
7182 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7183 as_bad (_("Offset too large"));
7184 macro_build_lui (&offset_expr, tempreg);
7185 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7186 tempreg, tempreg, BFD_RELOC_LO16);
7187 if (mips_relax.sequence)
7188 relax_end ();
7191 else if (!mips_big_got && !HAVE_NEWABI)
7193 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7195 /* If this is a reference to an external symbol, and there
7196 is no constant, we want
7197 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7198 or for lca or if tempreg is PIC_CALL_REG
7199 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7200 For a local symbol, we want
7201 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7203 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7205 If we have a small constant, and this is a reference to
7206 an external symbol, we want
7207 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7209 addiu $tempreg,$tempreg,<constant>
7210 For a local symbol, we want the same instruction
7211 sequence, but we output a BFD_RELOC_LO16 reloc on the
7212 addiu instruction.
7214 If we have a large constant, and this is a reference to
7215 an external symbol, we want
7216 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7217 lui $at,<hiconstant>
7218 addiu $at,$at,<loconstant>
7219 addu $tempreg,$tempreg,$at
7220 For a local symbol, we want the same instruction
7221 sequence, but we output a BFD_RELOC_LO16 reloc on the
7222 addiu instruction.
7225 if (offset_expr.X_add_number == 0)
7227 if (mips_pic == SVR4_PIC
7228 && breg == 0
7229 && (call || tempreg == PIC_CALL_REG))
7230 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7232 relax_start (offset_expr.X_add_symbol);
7233 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7234 lw_reloc_type, mips_gp_register);
7235 if (breg != 0)
7237 /* We're going to put in an addu instruction using
7238 tempreg, so we may as well insert the nop right
7239 now. */
7240 load_delay_nop ();
7242 relax_switch ();
7243 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7244 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7245 load_delay_nop ();
7246 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7247 tempreg, tempreg, BFD_RELOC_LO16);
7248 relax_end ();
7249 /* FIXME: If breg == 0, and the next instruction uses
7250 $tempreg, then if this variant case is used an extra
7251 nop will be generated. */
7253 else if (offset_expr.X_add_number >= -0x8000
7254 && offset_expr.X_add_number < 0x8000)
7256 load_got_offset (tempreg, &offset_expr);
7257 load_delay_nop ();
7258 add_got_offset (tempreg, &offset_expr);
7260 else
7262 expr1.X_add_number = offset_expr.X_add_number;
7263 offset_expr.X_add_number =
7264 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
7265 load_got_offset (tempreg, &offset_expr);
7266 offset_expr.X_add_number = expr1.X_add_number;
7267 /* If we are going to add in a base register, and the
7268 target register and the base register are the same,
7269 then we are using AT as a temporary register. Since
7270 we want to load the constant into AT, we add our
7271 current AT (from the global offset table) and the
7272 register into the register now, and pretend we were
7273 not using a base register. */
7274 if (breg == treg)
7276 load_delay_nop ();
7277 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7278 treg, AT, breg);
7279 breg = 0;
7280 tempreg = treg;
7282 add_got_offset_hilo (tempreg, &offset_expr, AT);
7283 used_at = 1;
7286 else if (!mips_big_got && HAVE_NEWABI)
7288 int add_breg_early = 0;
7290 /* If this is a reference to an external, and there is no
7291 constant, or local symbol (*), with or without a
7292 constant, we want
7293 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7294 or for lca or if tempreg is PIC_CALL_REG
7295 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7297 If we have a small constant, and this is a reference to
7298 an external symbol, we want
7299 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7300 addiu $tempreg,$tempreg,<constant>
7302 If we have a large constant, and this is a reference to
7303 an external symbol, we want
7304 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7305 lui $at,<hiconstant>
7306 addiu $at,$at,<loconstant>
7307 addu $tempreg,$tempreg,$at
7309 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7310 local symbols, even though it introduces an additional
7311 instruction. */
7313 if (offset_expr.X_add_number)
7315 expr1.X_add_number = offset_expr.X_add_number;
7316 offset_expr.X_add_number = 0;
7318 relax_start (offset_expr.X_add_symbol);
7319 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7320 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7322 if (expr1.X_add_number >= -0x8000
7323 && expr1.X_add_number < 0x8000)
7325 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7326 tempreg, tempreg, BFD_RELOC_LO16);
7328 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7330 /* If we are going to add in a base register, and the
7331 target register and the base register are the same,
7332 then we are using AT as a temporary register. Since
7333 we want to load the constant into AT, we add our
7334 current AT (from the global offset table) and the
7335 register into the register now, and pretend we were
7336 not using a base register. */
7337 if (breg != treg)
7338 dreg = tempreg;
7339 else
7341 gas_assert (tempreg == AT);
7342 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7343 treg, AT, breg);
7344 dreg = treg;
7345 add_breg_early = 1;
7348 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7349 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7350 dreg, dreg, AT);
7352 used_at = 1;
7354 else
7355 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7357 relax_switch ();
7358 offset_expr.X_add_number = expr1.X_add_number;
7360 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7361 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7362 if (add_breg_early)
7364 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7365 treg, tempreg, breg);
7366 breg = 0;
7367 tempreg = treg;
7369 relax_end ();
7371 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7373 relax_start (offset_expr.X_add_symbol);
7374 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7375 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7376 relax_switch ();
7377 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7378 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7379 relax_end ();
7381 else
7383 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7384 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7387 else if (mips_big_got && !HAVE_NEWABI)
7389 int gpdelay;
7390 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7391 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7392 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7394 /* This is the large GOT case. If this is a reference to an
7395 external symbol, and there is no constant, we want
7396 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7397 addu $tempreg,$tempreg,$gp
7398 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7399 or for lca or if tempreg is PIC_CALL_REG
7400 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7401 addu $tempreg,$tempreg,$gp
7402 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7403 For a local symbol, we want
7404 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7406 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7408 If we have a small constant, and this is a reference to
7409 an external symbol, we want
7410 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7411 addu $tempreg,$tempreg,$gp
7412 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7414 addiu $tempreg,$tempreg,<constant>
7415 For a local symbol, we want
7416 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7418 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7420 If we have a large constant, and this is a reference to
7421 an external symbol, we want
7422 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7423 addu $tempreg,$tempreg,$gp
7424 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7425 lui $at,<hiconstant>
7426 addiu $at,$at,<loconstant>
7427 addu $tempreg,$tempreg,$at
7428 For a local symbol, we want
7429 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7430 lui $at,<hiconstant>
7431 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7432 addu $tempreg,$tempreg,$at
7435 expr1.X_add_number = offset_expr.X_add_number;
7436 offset_expr.X_add_number = 0;
7437 relax_start (offset_expr.X_add_symbol);
7438 gpdelay = reg_needs_delay (mips_gp_register);
7439 if (expr1.X_add_number == 0 && breg == 0
7440 && (call || tempreg == PIC_CALL_REG))
7442 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7443 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7445 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7446 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7447 tempreg, tempreg, mips_gp_register);
7448 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7449 tempreg, lw_reloc_type, tempreg);
7450 if (expr1.X_add_number == 0)
7452 if (breg != 0)
7454 /* We're going to put in an addu instruction using
7455 tempreg, so we may as well insert the nop right
7456 now. */
7457 load_delay_nop ();
7460 else if (expr1.X_add_number >= -0x8000
7461 && expr1.X_add_number < 0x8000)
7463 load_delay_nop ();
7464 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7465 tempreg, tempreg, BFD_RELOC_LO16);
7467 else
7469 /* If we are going to add in a base register, and the
7470 target register and the base register are the same,
7471 then we are using AT as a temporary register. Since
7472 we want to load the constant into AT, we add our
7473 current AT (from the global offset table) and the
7474 register into the register now, and pretend we were
7475 not using a base register. */
7476 if (breg != treg)
7477 dreg = tempreg;
7478 else
7480 gas_assert (tempreg == AT);
7481 load_delay_nop ();
7482 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7483 treg, AT, breg);
7484 dreg = treg;
7487 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7488 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7490 used_at = 1;
7492 offset_expr.X_add_number =
7493 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
7494 relax_switch ();
7496 if (gpdelay)
7498 /* This is needed because this instruction uses $gp, but
7499 the first instruction on the main stream does not. */
7500 macro_build (NULL, "nop", "");
7503 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7504 local_reloc_type, mips_gp_register);
7505 if (expr1.X_add_number >= -0x8000
7506 && expr1.X_add_number < 0x8000)
7508 load_delay_nop ();
7509 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7510 tempreg, tempreg, BFD_RELOC_LO16);
7511 /* FIXME: If add_number is 0, and there was no base
7512 register, the external symbol case ended with a load,
7513 so if the symbol turns out to not be external, and
7514 the next instruction uses tempreg, an unnecessary nop
7515 will be inserted. */
7517 else
7519 if (breg == treg)
7521 /* We must add in the base register now, as in the
7522 external symbol case. */
7523 gas_assert (tempreg == AT);
7524 load_delay_nop ();
7525 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7526 treg, AT, breg);
7527 tempreg = treg;
7528 /* We set breg to 0 because we have arranged to add
7529 it in in both cases. */
7530 breg = 0;
7533 macro_build_lui (&expr1, AT);
7534 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7535 AT, AT, BFD_RELOC_LO16);
7536 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7537 tempreg, tempreg, AT);
7538 used_at = 1;
7540 relax_end ();
7542 else if (mips_big_got && HAVE_NEWABI)
7544 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7545 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7546 int add_breg_early = 0;
7548 /* This is the large GOT case. If this is a reference to an
7549 external symbol, and there is no constant, we want
7550 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7551 add $tempreg,$tempreg,$gp
7552 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7553 or for lca or if tempreg is PIC_CALL_REG
7554 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7555 add $tempreg,$tempreg,$gp
7556 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7558 If we have a small constant, and this is a reference to
7559 an external symbol, we want
7560 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7561 add $tempreg,$tempreg,$gp
7562 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7563 addi $tempreg,$tempreg,<constant>
7565 If we have a large constant, and this is a reference to
7566 an external symbol, we want
7567 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7568 addu $tempreg,$tempreg,$gp
7569 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7570 lui $at,<hiconstant>
7571 addi $at,$at,<loconstant>
7572 add $tempreg,$tempreg,$at
7574 If we have NewABI, and we know it's a local symbol, we want
7575 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7576 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7577 otherwise we have to resort to GOT_HI16/GOT_LO16. */
7579 relax_start (offset_expr.X_add_symbol);
7581 expr1.X_add_number = offset_expr.X_add_number;
7582 offset_expr.X_add_number = 0;
7584 if (expr1.X_add_number == 0 && breg == 0
7585 && (call || tempreg == PIC_CALL_REG))
7587 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7588 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7590 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7591 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7592 tempreg, tempreg, mips_gp_register);
7593 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7594 tempreg, lw_reloc_type, tempreg);
7596 if (expr1.X_add_number == 0)
7598 else if (expr1.X_add_number >= -0x8000
7599 && expr1.X_add_number < 0x8000)
7601 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7602 tempreg, tempreg, BFD_RELOC_LO16);
7604 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7606 /* If we are going to add in a base register, and the
7607 target register and the base register are the same,
7608 then we are using AT as a temporary register. Since
7609 we want to load the constant into AT, we add our
7610 current AT (from the global offset table) and the
7611 register into the register now, and pretend we were
7612 not using a base register. */
7613 if (breg != treg)
7614 dreg = tempreg;
7615 else
7617 gas_assert (tempreg == AT);
7618 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7619 treg, AT, breg);
7620 dreg = treg;
7621 add_breg_early = 1;
7624 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7625 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7627 used_at = 1;
7629 else
7630 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7632 relax_switch ();
7633 offset_expr.X_add_number = expr1.X_add_number;
7634 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7635 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7636 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7637 tempreg, BFD_RELOC_MIPS_GOT_OFST);
7638 if (add_breg_early)
7640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7641 treg, tempreg, breg);
7642 breg = 0;
7643 tempreg = treg;
7645 relax_end ();
7647 else
7648 abort ();
7650 if (breg != 0)
7651 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
7652 break;
7654 case M_MSGSND:
7655 gas_assert (!mips_opts.micromips);
7657 unsigned long temp = (treg << 16) | (0x01);
7658 macro_build (NULL, "c2", "C", temp);
7660 break;
7662 case M_MSGLD:
7663 gas_assert (!mips_opts.micromips);
7665 unsigned long temp = (0x02);
7666 macro_build (NULL, "c2", "C", temp);
7668 break;
7670 case M_MSGLD_T:
7671 gas_assert (!mips_opts.micromips);
7673 unsigned long temp = (treg << 16) | (0x02);
7674 macro_build (NULL, "c2", "C", temp);
7676 break;
7678 case M_MSGWAIT:
7679 gas_assert (!mips_opts.micromips);
7680 macro_build (NULL, "c2", "C", 3);
7681 break;
7683 case M_MSGWAIT_T:
7684 gas_assert (!mips_opts.micromips);
7686 unsigned long temp = (treg << 16) | 0x03;
7687 macro_build (NULL, "c2", "C", temp);
7689 break;
7691 case M_J_A:
7692 /* The j instruction may not be used in PIC code, since it
7693 requires an absolute address. We convert it to a b
7694 instruction. */
7695 if (mips_pic == NO_PIC)
7696 macro_build (&offset_expr, "j", "a");
7697 else
7698 macro_build (&offset_expr, "b", "p");
7699 break;
7701 /* The jal instructions must be handled as macros because when
7702 generating PIC code they expand to multi-instruction
7703 sequences. Normally they are simple instructions. */
7704 case M_JALS_1:
7705 dreg = RA;
7706 /* Fall through. */
7707 case M_JALS_2:
7708 gas_assert (mips_opts.micromips);
7709 jals = 1;
7710 goto jal;
7711 case M_JAL_1:
7712 dreg = RA;
7713 /* Fall through. */
7714 case M_JAL_2:
7715 jal:
7716 if (mips_pic == NO_PIC)
7718 s = jals ? "jalrs" : "jalr";
7719 if (mips_opts.micromips && dreg == RA)
7720 macro_build (NULL, s, "mj", sreg);
7721 else
7722 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7724 else
7726 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
7727 && mips_cprestore_offset >= 0);
7729 if (sreg != PIC_CALL_REG)
7730 as_warn (_("MIPS PIC call to register other than $25"));
7732 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
7733 ? "jalrs" : "jalr");
7734 if (mips_opts.micromips && dreg == RA)
7735 macro_build (NULL, s, "mj", sreg);
7736 else
7737 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7738 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
7740 if (mips_cprestore_offset < 0)
7741 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7742 else
7744 if (!mips_frame_reg_valid)
7746 as_warn (_("No .frame pseudo-op used in PIC code"));
7747 /* Quiet this warning. */
7748 mips_frame_reg_valid = 1;
7750 if (!mips_cprestore_valid)
7752 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7753 /* Quiet this warning. */
7754 mips_cprestore_valid = 1;
7756 if (mips_opts.noreorder)
7757 macro_build (NULL, "nop", "");
7758 expr1.X_add_number = mips_cprestore_offset;
7759 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7760 mips_gp_register,
7761 mips_frame_reg,
7762 HAVE_64BIT_ADDRESSES);
7767 break;
7769 case M_JALS_A:
7770 gas_assert (mips_opts.micromips);
7771 jals = 1;
7772 /* Fall through. */
7773 case M_JAL_A:
7774 if (mips_pic == NO_PIC)
7775 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
7776 else if (mips_pic == SVR4_PIC)
7778 /* If this is a reference to an external symbol, and we are
7779 using a small GOT, we want
7780 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7782 jalr $ra,$25
7784 lw $gp,cprestore($sp)
7785 The cprestore value is set using the .cprestore
7786 pseudo-op. If we are using a big GOT, we want
7787 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7788 addu $25,$25,$gp
7789 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
7791 jalr $ra,$25
7793 lw $gp,cprestore($sp)
7794 If the symbol is not external, we want
7795 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7797 addiu $25,$25,<sym> (BFD_RELOC_LO16)
7798 jalr $ra,$25
7800 lw $gp,cprestore($sp)
7802 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
7803 sequences above, minus nops, unless the symbol is local,
7804 which enables us to use GOT_PAGE/GOT_OFST (big got) or
7805 GOT_DISP. */
7806 if (HAVE_NEWABI)
7808 if (!mips_big_got)
7810 relax_start (offset_expr.X_add_symbol);
7811 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7812 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
7813 mips_gp_register);
7814 relax_switch ();
7815 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7816 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
7817 mips_gp_register);
7818 relax_end ();
7820 else
7822 relax_start (offset_expr.X_add_symbol);
7823 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
7824 BFD_RELOC_MIPS_CALL_HI16);
7825 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
7826 PIC_CALL_REG, mips_gp_register);
7827 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7828 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
7829 PIC_CALL_REG);
7830 relax_switch ();
7831 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7832 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
7833 mips_gp_register);
7834 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7835 PIC_CALL_REG, PIC_CALL_REG,
7836 BFD_RELOC_MIPS_GOT_OFST);
7837 relax_end ();
7840 macro_build_jalr (&offset_expr, 0);
7842 else
7844 relax_start (offset_expr.X_add_symbol);
7845 if (!mips_big_got)
7847 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7848 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
7849 mips_gp_register);
7850 load_delay_nop ();
7851 relax_switch ();
7853 else
7855 int gpdelay;
7857 gpdelay = reg_needs_delay (mips_gp_register);
7858 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
7859 BFD_RELOC_MIPS_CALL_HI16);
7860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
7861 PIC_CALL_REG, mips_gp_register);
7862 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7863 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
7864 PIC_CALL_REG);
7865 load_delay_nop ();
7866 relax_switch ();
7867 if (gpdelay)
7868 macro_build (NULL, "nop", "");
7870 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7871 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
7872 mips_gp_register);
7873 load_delay_nop ();
7874 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7875 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
7876 relax_end ();
7877 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
7879 if (mips_cprestore_offset < 0)
7880 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7881 else
7883 if (!mips_frame_reg_valid)
7885 as_warn (_("No .frame pseudo-op used in PIC code"));
7886 /* Quiet this warning. */
7887 mips_frame_reg_valid = 1;
7889 if (!mips_cprestore_valid)
7891 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7892 /* Quiet this warning. */
7893 mips_cprestore_valid = 1;
7895 if (mips_opts.noreorder)
7896 macro_build (NULL, "nop", "");
7897 expr1.X_add_number = mips_cprestore_offset;
7898 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7899 mips_gp_register,
7900 mips_frame_reg,
7901 HAVE_64BIT_ADDRESSES);
7905 else if (mips_pic == VXWORKS_PIC)
7906 as_bad (_("Non-PIC jump used in PIC library"));
7907 else
7908 abort ();
7910 break;
7912 case M_ACLR_AB:
7913 ab = 1;
7914 case M_ACLR_OB:
7915 s = "aclr";
7916 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
7917 fmt = "\\,~(b)";
7918 off12 = 1;
7919 goto ld_st;
7920 case M_ASET_AB:
7921 ab = 1;
7922 case M_ASET_OB:
7923 s = "aset";
7924 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
7925 fmt = "\\,~(b)";
7926 off12 = 1;
7927 goto ld_st;
7928 case M_LB_AB:
7929 ab = 1;
7930 s = "lb";
7931 fmt = "t,o(b)";
7932 goto ld;
7933 case M_LBU_AB:
7934 ab = 1;
7935 s = "lbu";
7936 fmt = "t,o(b)";
7937 goto ld;
7938 case M_LH_AB:
7939 ab = 1;
7940 s = "lh";
7941 fmt = "t,o(b)";
7942 goto ld;
7943 case M_LHU_AB:
7944 ab = 1;
7945 s = "lhu";
7946 fmt = "t,o(b)";
7947 goto ld;
7948 case M_LW_AB:
7949 ab = 1;
7950 s = "lw";
7951 fmt = "t,o(b)";
7952 goto ld;
7953 case M_LWC0_AB:
7954 ab = 1;
7955 gas_assert (!mips_opts.micromips);
7956 s = "lwc0";
7957 fmt = "E,o(b)";
7958 /* Itbl support may require additional care here. */
7959 coproc = 1;
7960 goto ld_st;
7961 case M_LWC1_AB:
7962 ab = 1;
7963 s = "lwc1";
7964 fmt = "T,o(b)";
7965 /* Itbl support may require additional care here. */
7966 coproc = 1;
7967 goto ld_st;
7968 case M_LWC2_AB:
7969 ab = 1;
7970 case M_LWC2_OB:
7971 s = "lwc2";
7972 fmt = COP12_FMT;
7973 off12 = mips_opts.micromips;
7974 /* Itbl support may require additional care here. */
7975 coproc = 1;
7976 goto ld_st;
7977 case M_LWC3_AB:
7978 ab = 1;
7979 gas_assert (!mips_opts.micromips);
7980 s = "lwc3";
7981 fmt = "E,o(b)";
7982 /* Itbl support may require additional care here. */
7983 coproc = 1;
7984 goto ld_st;
7985 case M_LWL_AB:
7986 ab = 1;
7987 case M_LWL_OB:
7988 s = "lwl";
7989 fmt = MEM12_FMT;
7990 off12 = mips_opts.micromips;
7991 goto ld_st;
7992 case M_LWR_AB:
7993 ab = 1;
7994 case M_LWR_OB:
7995 s = "lwr";
7996 fmt = MEM12_FMT;
7997 off12 = mips_opts.micromips;
7998 goto ld_st;
7999 case M_LDC1_AB:
8000 ab = 1;
8001 s = "ldc1";
8002 fmt = "T,o(b)";
8003 /* Itbl support may require additional care here. */
8004 coproc = 1;
8005 goto ld_st;
8006 case M_LDC2_AB:
8007 ab = 1;
8008 case M_LDC2_OB:
8009 s = "ldc2";
8010 fmt = COP12_FMT;
8011 off12 = mips_opts.micromips;
8012 /* Itbl support may require additional care here. */
8013 coproc = 1;
8014 goto ld_st;
8015 case M_LDC3_AB:
8016 ab = 1;
8017 s = "ldc3";
8018 fmt = "E,o(b)";
8019 /* Itbl support may require additional care here. */
8020 coproc = 1;
8021 goto ld_st;
8022 case M_LDL_AB:
8023 ab = 1;
8024 case M_LDL_OB:
8025 s = "ldl";
8026 fmt = MEM12_FMT;
8027 off12 = mips_opts.micromips;
8028 goto ld_st;
8029 case M_LDR_AB:
8030 ab = 1;
8031 case M_LDR_OB:
8032 s = "ldr";
8033 fmt = MEM12_FMT;
8034 off12 = mips_opts.micromips;
8035 goto ld_st;
8036 case M_LL_AB:
8037 ab = 1;
8038 case M_LL_OB:
8039 s = "ll";
8040 fmt = MEM12_FMT;
8041 off12 = mips_opts.micromips;
8042 goto ld;
8043 case M_LLD_AB:
8044 ab = 1;
8045 case M_LLD_OB:
8046 s = "lld";
8047 fmt = MEM12_FMT;
8048 off12 = mips_opts.micromips;
8049 goto ld;
8050 case M_LWU_AB:
8051 ab = 1;
8052 case M_LWU_OB:
8053 s = "lwu";
8054 fmt = MEM12_FMT;
8055 off12 = mips_opts.micromips;
8056 goto ld;
8057 case M_LWP_AB:
8058 ab = 1;
8059 case M_LWP_OB:
8060 gas_assert (mips_opts.micromips);
8061 s = "lwp";
8062 fmt = "t,~(b)";
8063 off12 = 1;
8064 lp = 1;
8065 goto ld;
8066 case M_LDP_AB:
8067 ab = 1;
8068 case M_LDP_OB:
8069 gas_assert (mips_opts.micromips);
8070 s = "ldp";
8071 fmt = "t,~(b)";
8072 off12 = 1;
8073 lp = 1;
8074 goto ld;
8075 case M_LWM_AB:
8076 ab = 1;
8077 case M_LWM_OB:
8078 gas_assert (mips_opts.micromips);
8079 s = "lwm";
8080 fmt = "n,~(b)";
8081 off12 = 1;
8082 goto ld_st;
8083 case M_LDM_AB:
8084 ab = 1;
8085 case M_LDM_OB:
8086 gas_assert (mips_opts.micromips);
8087 s = "ldm";
8088 fmt = "n,~(b)";
8089 off12 = 1;
8090 goto ld_st;
8093 if (breg == treg + lp)
8094 goto ld_st;
8095 else
8096 tempreg = treg + lp;
8097 goto ld_noat;
8099 case M_SB_AB:
8100 ab = 1;
8101 s = "sb";
8102 fmt = "t,o(b)";
8103 goto ld_st;
8104 case M_SH_AB:
8105 ab = 1;
8106 s = "sh";
8107 fmt = "t,o(b)";
8108 goto ld_st;
8109 case M_SW_AB:
8110 ab = 1;
8111 s = "sw";
8112 fmt = "t,o(b)";
8113 goto ld_st;
8114 case M_SWC0_AB:
8115 ab = 1;
8116 gas_assert (!mips_opts.micromips);
8117 s = "swc0";
8118 fmt = "E,o(b)";
8119 /* Itbl support may require additional care here. */
8120 coproc = 1;
8121 goto ld_st;
8122 case M_SWC1_AB:
8123 ab = 1;
8124 s = "swc1";
8125 fmt = "T,o(b)";
8126 /* Itbl support may require additional care here. */
8127 coproc = 1;
8128 goto ld_st;
8129 case M_SWC2_AB:
8130 ab = 1;
8131 case M_SWC2_OB:
8132 s = "swc2";
8133 fmt = COP12_FMT;
8134 off12 = mips_opts.micromips;
8135 /* Itbl support may require additional care here. */
8136 coproc = 1;
8137 goto ld_st;
8138 case M_SWC3_AB:
8139 ab = 1;
8140 gas_assert (!mips_opts.micromips);
8141 s = "swc3";
8142 fmt = "E,o(b)";
8143 /* Itbl support may require additional care here. */
8144 coproc = 1;
8145 goto ld_st;
8146 case M_SWL_AB:
8147 ab = 1;
8148 case M_SWL_OB:
8149 s = "swl";
8150 fmt = MEM12_FMT;
8151 off12 = mips_opts.micromips;
8152 goto ld_st;
8153 case M_SWR_AB:
8154 ab = 1;
8155 case M_SWR_OB:
8156 s = "swr";
8157 fmt = MEM12_FMT;
8158 off12 = mips_opts.micromips;
8159 goto ld_st;
8160 case M_SC_AB:
8161 ab = 1;
8162 case M_SC_OB:
8163 s = "sc";
8164 fmt = MEM12_FMT;
8165 off12 = mips_opts.micromips;
8166 goto ld_st;
8167 case M_SCD_AB:
8168 ab = 1;
8169 case M_SCD_OB:
8170 s = "scd";
8171 fmt = MEM12_FMT;
8172 off12 = mips_opts.micromips;
8173 goto ld_st;
8174 case M_CACHE_AB:
8175 ab = 1;
8176 case M_CACHE_OB:
8177 s = "cache";
8178 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8179 off12 = mips_opts.micromips;
8180 goto ld_st;
8181 case M_PREF_AB:
8182 ab = 1;
8183 case M_PREF_OB:
8184 s = "pref";
8185 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8186 off12 = mips_opts.micromips;
8187 goto ld_st;
8188 case M_SDC1_AB:
8189 ab = 1;
8190 s = "sdc1";
8191 fmt = "T,o(b)";
8192 coproc = 1;
8193 /* Itbl support may require additional care here. */
8194 goto ld_st;
8195 case M_SDC2_AB:
8196 ab = 1;
8197 case M_SDC2_OB:
8198 s = "sdc2";
8199 fmt = COP12_FMT;
8200 off12 = mips_opts.micromips;
8201 /* Itbl support may require additional care here. */
8202 coproc = 1;
8203 goto ld_st;
8204 case M_SDC3_AB:
8205 ab = 1;
8206 gas_assert (!mips_opts.micromips);
8207 s = "sdc3";
8208 fmt = "E,o(b)";
8209 /* Itbl support may require additional care here. */
8210 coproc = 1;
8211 goto ld_st;
8212 case M_SDL_AB:
8213 ab = 1;
8214 case M_SDL_OB:
8215 s = "sdl";
8216 fmt = MEM12_FMT;
8217 off12 = mips_opts.micromips;
8218 goto ld_st;
8219 case M_SDR_AB:
8220 ab = 1;
8221 case M_SDR_OB:
8222 s = "sdr";
8223 fmt = MEM12_FMT;
8224 off12 = mips_opts.micromips;
8225 goto ld_st;
8226 case M_SWP_AB:
8227 ab = 1;
8228 case M_SWP_OB:
8229 gas_assert (mips_opts.micromips);
8230 s = "swp";
8231 fmt = "t,~(b)";
8232 off12 = 1;
8233 goto ld_st;
8234 case M_SDP_AB:
8235 ab = 1;
8236 case M_SDP_OB:
8237 gas_assert (mips_opts.micromips);
8238 s = "sdp";
8239 fmt = "t,~(b)";
8240 off12 = 1;
8241 goto ld_st;
8242 case M_SWM_AB:
8243 ab = 1;
8244 case M_SWM_OB:
8245 gas_assert (mips_opts.micromips);
8246 s = "swm";
8247 fmt = "n,~(b)";
8248 off12 = 1;
8249 goto ld_st;
8250 case M_SDM_AB:
8251 ab = 1;
8252 case M_SDM_OB:
8253 gas_assert (mips_opts.micromips);
8254 s = "sdm";
8255 fmt = "n,~(b)";
8256 off12 = 1;
8258 ld_st:
8259 tempreg = AT;
8260 used_at = 1;
8261 ld_noat:
8262 if (coproc
8263 && NO_ISA_COP (mips_opts.arch)
8264 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
8266 as_bad (_("Opcode not supported on this processor: %s"),
8267 mips_cpu_info_from_arch (mips_opts.arch)->name);
8268 break;
8271 if (offset_expr.X_op != O_constant
8272 && offset_expr.X_op != O_symbol)
8274 as_bad (_("Expression too complex"));
8275 offset_expr.X_op = O_constant;
8278 if (HAVE_32BIT_ADDRESSES
8279 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8281 char value [32];
8283 sprintf_vma (value, offset_expr.X_add_number);
8284 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8287 /* A constant expression in PIC code can be handled just as it
8288 is in non PIC code. */
8289 if (offset_expr.X_op == O_constant)
8291 int hipart = 0;
8293 expr1.X_add_number = offset_expr.X_add_number;
8294 normalize_address_expr (&expr1);
8295 if (!off12 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8297 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8298 & ~(bfd_vma) 0xffff);
8299 hipart = 1;
8301 else if (off12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8303 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8304 & ~(bfd_vma) 0xfff);
8305 hipart = 1;
8307 if (hipart)
8309 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8310 if (breg != 0)
8311 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8312 tempreg, tempreg, breg);
8313 breg = tempreg;
8315 if (off0)
8317 if (offset_expr.X_add_number == 0)
8318 tempreg = breg;
8319 else
8320 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8321 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8322 macro_build (NULL, s, fmt, treg, tempreg);
8324 else if (!off12)
8325 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8326 else
8327 macro_build (NULL, s, fmt,
8328 treg, (unsigned long) offset_expr.X_add_number, breg);
8330 else if (off12 || off0)
8332 /* A 12-bit or 0-bit offset field is too narrow to be used
8333 for a low-part relocation, so load the whole address into
8334 the auxillary register. In the case of "A(b)" addresses,
8335 we first load absolute address "A" into the register and
8336 then add base register "b". In the case of "o(b)" addresses,
8337 we simply need to add 16-bit offset "o" to base register "b", and
8338 offset_reloc already contains the relocations associated
8339 with "o". */
8340 if (ab)
8342 load_address (tempreg, &offset_expr, &used_at);
8343 if (breg != 0)
8344 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8345 tempreg, tempreg, breg);
8347 else
8348 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8349 tempreg, breg, -1,
8350 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8351 expr1.X_add_number = 0;
8352 if (off0)
8353 macro_build (NULL, s, fmt, treg, tempreg);
8354 else
8355 macro_build (NULL, s, fmt,
8356 treg, (unsigned long) expr1.X_add_number, tempreg);
8358 else if (mips_pic == NO_PIC)
8360 /* If this is a reference to a GP relative symbol, and there
8361 is no base register, we want
8362 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8363 Otherwise, if there is no base register, we want
8364 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8365 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8366 If we have a constant, we need two instructions anyhow,
8367 so we always use the latter form.
8369 If we have a base register, and this is a reference to a
8370 GP relative symbol, we want
8371 addu $tempreg,$breg,$gp
8372 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8373 Otherwise we want
8374 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8375 addu $tempreg,$tempreg,$breg
8376 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8377 With a constant we always use the latter case.
8379 With 64bit address space and no base register and $at usable,
8380 we want
8381 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8382 lui $at,<sym> (BFD_RELOC_HI16_S)
8383 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8384 dsll32 $tempreg,0
8385 daddu $tempreg,$at
8386 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8387 If we have a base register, we want
8388 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8389 lui $at,<sym> (BFD_RELOC_HI16_S)
8390 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8391 daddu $at,$breg
8392 dsll32 $tempreg,0
8393 daddu $tempreg,$at
8394 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8396 Without $at we can't generate the optimal path for superscalar
8397 processors here since this would require two temporary registers.
8398 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8399 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8400 dsll $tempreg,16
8401 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8402 dsll $tempreg,16
8403 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8404 If we have a base register, we want
8405 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8406 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8407 dsll $tempreg,16
8408 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8409 dsll $tempreg,16
8410 daddu $tempreg,$tempreg,$breg
8411 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8413 For GP relative symbols in 64bit address space we can use
8414 the same sequence as in 32bit address space. */
8415 if (HAVE_64BIT_SYMBOLS)
8417 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8418 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8420 relax_start (offset_expr.X_add_symbol);
8421 if (breg == 0)
8423 macro_build (&offset_expr, s, fmt, treg,
8424 BFD_RELOC_GPREL16, mips_gp_register);
8426 else
8428 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8429 tempreg, breg, mips_gp_register);
8430 macro_build (&offset_expr, s, fmt, treg,
8431 BFD_RELOC_GPREL16, tempreg);
8433 relax_switch ();
8436 if (used_at == 0 && mips_opts.at)
8438 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8439 BFD_RELOC_MIPS_HIGHEST);
8440 macro_build (&offset_expr, "lui", LUI_FMT, AT,
8441 BFD_RELOC_HI16_S);
8442 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8443 tempreg, BFD_RELOC_MIPS_HIGHER);
8444 if (breg != 0)
8445 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
8446 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8447 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8448 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
8449 tempreg);
8450 used_at = 1;
8452 else
8454 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8455 BFD_RELOC_MIPS_HIGHEST);
8456 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8457 tempreg, BFD_RELOC_MIPS_HIGHER);
8458 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8459 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8460 tempreg, BFD_RELOC_HI16_S);
8461 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8462 if (breg != 0)
8463 macro_build (NULL, "daddu", "d,v,t",
8464 tempreg, tempreg, breg);
8465 macro_build (&offset_expr, s, fmt, treg,
8466 BFD_RELOC_LO16, tempreg);
8469 if (mips_relax.sequence)
8470 relax_end ();
8471 break;
8474 if (breg == 0)
8476 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8477 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8479 relax_start (offset_expr.X_add_symbol);
8480 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
8481 mips_gp_register);
8482 relax_switch ();
8484 macro_build_lui (&offset_expr, tempreg);
8485 macro_build (&offset_expr, s, fmt, treg,
8486 BFD_RELOC_LO16, tempreg);
8487 if (mips_relax.sequence)
8488 relax_end ();
8490 else
8492 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8493 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8495 relax_start (offset_expr.X_add_symbol);
8496 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8497 tempreg, breg, mips_gp_register);
8498 macro_build (&offset_expr, s, fmt, treg,
8499 BFD_RELOC_GPREL16, tempreg);
8500 relax_switch ();
8502 macro_build_lui (&offset_expr, tempreg);
8503 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8504 tempreg, tempreg, breg);
8505 macro_build (&offset_expr, s, fmt, treg,
8506 BFD_RELOC_LO16, tempreg);
8507 if (mips_relax.sequence)
8508 relax_end ();
8511 else if (!mips_big_got)
8513 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
8515 /* If this is a reference to an external symbol, we want
8516 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8518 <op> $treg,0($tempreg)
8519 Otherwise we want
8520 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8522 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8523 <op> $treg,0($tempreg)
8525 For NewABI, we want
8526 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8527 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
8529 If there is a base register, we add it to $tempreg before
8530 the <op>. If there is a constant, we stick it in the
8531 <op> instruction. We don't handle constants larger than
8532 16 bits, because we have no way to load the upper 16 bits
8533 (actually, we could handle them for the subset of cases
8534 in which we are not using $at). */
8535 gas_assert (offset_expr.X_op == O_symbol);
8536 if (HAVE_NEWABI)
8538 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8539 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8540 if (breg != 0)
8541 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8542 tempreg, tempreg, breg);
8543 macro_build (&offset_expr, s, fmt, treg,
8544 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8545 break;
8547 expr1.X_add_number = offset_expr.X_add_number;
8548 offset_expr.X_add_number = 0;
8549 if (expr1.X_add_number < -0x8000
8550 || expr1.X_add_number >= 0x8000)
8551 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8552 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8553 lw_reloc_type, mips_gp_register);
8554 load_delay_nop ();
8555 relax_start (offset_expr.X_add_symbol);
8556 relax_switch ();
8557 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8558 tempreg, BFD_RELOC_LO16);
8559 relax_end ();
8560 if (breg != 0)
8561 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8562 tempreg, tempreg, breg);
8563 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8565 else if (mips_big_got && !HAVE_NEWABI)
8567 int gpdelay;
8569 /* If this is a reference to an external symbol, we want
8570 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8571 addu $tempreg,$tempreg,$gp
8572 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8573 <op> $treg,0($tempreg)
8574 Otherwise we want
8575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8577 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8578 <op> $treg,0($tempreg)
8579 If there is a base register, we add it to $tempreg before
8580 the <op>. If there is a constant, we stick it in the
8581 <op> instruction. We don't handle constants larger than
8582 16 bits, because we have no way to load the upper 16 bits
8583 (actually, we could handle them for the subset of cases
8584 in which we are not using $at). */
8585 gas_assert (offset_expr.X_op == O_symbol);
8586 expr1.X_add_number = offset_expr.X_add_number;
8587 offset_expr.X_add_number = 0;
8588 if (expr1.X_add_number < -0x8000
8589 || expr1.X_add_number >= 0x8000)
8590 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8591 gpdelay = reg_needs_delay (mips_gp_register);
8592 relax_start (offset_expr.X_add_symbol);
8593 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8594 BFD_RELOC_MIPS_GOT_HI16);
8595 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8596 mips_gp_register);
8597 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8598 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8599 relax_switch ();
8600 if (gpdelay)
8601 macro_build (NULL, "nop", "");
8602 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8603 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8604 load_delay_nop ();
8605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8606 tempreg, BFD_RELOC_LO16);
8607 relax_end ();
8609 if (breg != 0)
8610 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8611 tempreg, tempreg, breg);
8612 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8614 else if (mips_big_got && HAVE_NEWABI)
8616 /* If this is a reference to an external symbol, we want
8617 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8618 add $tempreg,$tempreg,$gp
8619 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8620 <op> $treg,<ofst>($tempreg)
8621 Otherwise, for local symbols, we want:
8622 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8623 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
8624 gas_assert (offset_expr.X_op == O_symbol);
8625 expr1.X_add_number = offset_expr.X_add_number;
8626 offset_expr.X_add_number = 0;
8627 if (expr1.X_add_number < -0x8000
8628 || expr1.X_add_number >= 0x8000)
8629 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8630 relax_start (offset_expr.X_add_symbol);
8631 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8632 BFD_RELOC_MIPS_GOT_HI16);
8633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8634 mips_gp_register);
8635 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8636 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8637 if (breg != 0)
8638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8639 tempreg, tempreg, breg);
8640 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8642 relax_switch ();
8643 offset_expr.X_add_number = expr1.X_add_number;
8644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8645 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8646 if (breg != 0)
8647 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8648 tempreg, tempreg, breg);
8649 macro_build (&offset_expr, s, fmt, treg,
8650 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8651 relax_end ();
8653 else
8654 abort ();
8656 break;
8658 case M_LI:
8659 case M_LI_S:
8660 load_register (treg, &imm_expr, 0);
8661 break;
8663 case M_DLI:
8664 load_register (treg, &imm_expr, 1);
8665 break;
8667 case M_LI_SS:
8668 if (imm_expr.X_op == O_constant)
8670 used_at = 1;
8671 load_register (AT, &imm_expr, 0);
8672 macro_build (NULL, "mtc1", "t,G", AT, treg);
8673 break;
8675 else
8677 gas_assert (offset_expr.X_op == O_symbol
8678 && strcmp (segment_name (S_GET_SEGMENT
8679 (offset_expr.X_add_symbol)),
8680 ".lit4") == 0
8681 && offset_expr.X_add_number == 0);
8682 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
8683 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8684 break;
8687 case M_LI_D:
8688 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
8689 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
8690 order 32 bits of the value and the low order 32 bits are either
8691 zero or in OFFSET_EXPR. */
8692 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8694 if (HAVE_64BIT_GPRS)
8695 load_register (treg, &imm_expr, 1);
8696 else
8698 int hreg, lreg;
8700 if (target_big_endian)
8702 hreg = treg;
8703 lreg = treg + 1;
8705 else
8707 hreg = treg + 1;
8708 lreg = treg;
8711 if (hreg <= 31)
8712 load_register (hreg, &imm_expr, 0);
8713 if (lreg <= 31)
8715 if (offset_expr.X_op == O_absent)
8716 move_register (lreg, 0);
8717 else
8719 gas_assert (offset_expr.X_op == O_constant);
8720 load_register (lreg, &offset_expr, 0);
8724 break;
8727 /* We know that sym is in the .rdata section. First we get the
8728 upper 16 bits of the address. */
8729 if (mips_pic == NO_PIC)
8731 macro_build_lui (&offset_expr, AT);
8732 used_at = 1;
8734 else
8736 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8737 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8738 used_at = 1;
8741 /* Now we load the register(s). */
8742 if (HAVE_64BIT_GPRS)
8744 used_at = 1;
8745 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8747 else
8749 used_at = 1;
8750 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8751 if (treg != RA)
8753 /* FIXME: How in the world do we deal with the possible
8754 overflow here? */
8755 offset_expr.X_add_number += 4;
8756 macro_build (&offset_expr, "lw", "t,o(b)",
8757 treg + 1, BFD_RELOC_LO16, AT);
8760 break;
8762 case M_LI_DD:
8763 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
8764 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
8765 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
8766 the value and the low order 32 bits are either zero or in
8767 OFFSET_EXPR. */
8768 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8770 used_at = 1;
8771 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
8772 if (HAVE_64BIT_FPRS)
8774 gas_assert (HAVE_64BIT_GPRS);
8775 macro_build (NULL, "dmtc1", "t,S", AT, treg);
8777 else
8779 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
8780 if (offset_expr.X_op == O_absent)
8781 macro_build (NULL, "mtc1", "t,G", 0, treg);
8782 else
8784 gas_assert (offset_expr.X_op == O_constant);
8785 load_register (AT, &offset_expr, 0);
8786 macro_build (NULL, "mtc1", "t,G", AT, treg);
8789 break;
8792 gas_assert (offset_expr.X_op == O_symbol
8793 && offset_expr.X_add_number == 0);
8794 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
8795 if (strcmp (s, ".lit8") == 0)
8797 if (mips_opts.isa != ISA_MIPS1 || mips_opts.micromips)
8799 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
8800 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8801 break;
8803 breg = mips_gp_register;
8804 r = BFD_RELOC_MIPS_LITERAL;
8805 goto dob;
8807 else
8809 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8810 used_at = 1;
8811 if (mips_pic != NO_PIC)
8812 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8813 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8814 else
8816 /* FIXME: This won't work for a 64 bit address. */
8817 macro_build_lui (&offset_expr, AT);
8820 if (mips_opts.isa != ISA_MIPS1 || mips_opts.micromips)
8822 macro_build (&offset_expr, "ldc1", "T,o(b)",
8823 treg, BFD_RELOC_LO16, AT);
8824 break;
8826 breg = AT;
8827 r = BFD_RELOC_LO16;
8828 goto dob;
8831 case M_L_DOB:
8832 /* Even on a big endian machine $fn comes before $fn+1. We have
8833 to adjust when loading from memory. */
8834 r = BFD_RELOC_LO16;
8835 dob:
8836 gas_assert (!mips_opts.micromips);
8837 gas_assert (mips_opts.isa == ISA_MIPS1);
8838 macro_build (&offset_expr, "lwc1", "T,o(b)",
8839 target_big_endian ? treg + 1 : treg, r, breg);
8840 /* FIXME: A possible overflow which I don't know how to deal
8841 with. */
8842 offset_expr.X_add_number += 4;
8843 macro_build (&offset_expr, "lwc1", "T,o(b)",
8844 target_big_endian ? treg : treg + 1, r, breg);
8845 break;
8847 case M_S_DOB:
8848 gas_assert (!mips_opts.micromips);
8849 gas_assert (mips_opts.isa == ISA_MIPS1);
8850 /* Even on a big endian machine $fn comes before $fn+1. We have
8851 to adjust when storing to memory. */
8852 macro_build (&offset_expr, "swc1", "T,o(b)",
8853 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
8854 offset_expr.X_add_number += 4;
8855 macro_build (&offset_expr, "swc1", "T,o(b)",
8856 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
8857 break;
8859 case M_L_DAB:
8860 gas_assert (!mips_opts.micromips);
8862 * The MIPS assembler seems to check for X_add_number not
8863 * being double aligned and generating:
8864 * lui at,%hi(foo+1)
8865 * addu at,at,v1
8866 * addiu at,at,%lo(foo+1)
8867 * lwc1 f2,0(at)
8868 * lwc1 f3,4(at)
8869 * But, the resulting address is the same after relocation so why
8870 * generate the extra instruction?
8872 /* Itbl support may require additional care here. */
8873 coproc = 1;
8874 fmt = "T,o(b)";
8875 if (mips_opts.isa != ISA_MIPS1)
8877 s = "ldc1";
8878 goto ld_st;
8880 s = "lwc1";
8881 goto ldd_std;
8883 case M_S_DAB:
8884 gas_assert (!mips_opts.micromips);
8885 /* Itbl support may require additional care here. */
8886 coproc = 1;
8887 fmt = "T,o(b)";
8888 if (mips_opts.isa != ISA_MIPS1)
8890 s = "sdc1";
8891 goto ld_st;
8893 s = "swc1";
8894 goto ldd_std;
8896 case M_LD_AB:
8897 fmt = "t,o(b)";
8898 if (HAVE_64BIT_GPRS)
8900 s = "ld";
8901 goto ld;
8903 s = "lw";
8904 goto ldd_std;
8906 case M_SD_AB:
8907 fmt = "t,o(b)";
8908 if (HAVE_64BIT_GPRS)
8910 s = "sd";
8911 goto ld_st;
8913 s = "sw";
8915 ldd_std:
8916 if (offset_expr.X_op != O_symbol
8917 && offset_expr.X_op != O_constant)
8919 as_bad (_("Expression too complex"));
8920 offset_expr.X_op = O_constant;
8923 if (HAVE_32BIT_ADDRESSES
8924 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8926 char value [32];
8928 sprintf_vma (value, offset_expr.X_add_number);
8929 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8932 /* Even on a big endian machine $fn comes before $fn+1. We have
8933 to adjust when loading from memory. We set coproc if we must
8934 load $fn+1 first. */
8935 /* Itbl support may require additional care here. */
8936 if (!target_big_endian)
8937 coproc = 0;
8939 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
8941 /* If this is a reference to a GP relative symbol, we want
8942 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8943 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
8944 If we have a base register, we use this
8945 addu $at,$breg,$gp
8946 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
8947 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
8948 If this is not a GP relative symbol, we want
8949 lui $at,<sym> (BFD_RELOC_HI16_S)
8950 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
8951 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
8952 If there is a base register, we add it to $at after the
8953 lui instruction. If there is a constant, we always use
8954 the last case. */
8955 if (offset_expr.X_op == O_symbol
8956 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8957 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8959 relax_start (offset_expr.X_add_symbol);
8960 if (breg == 0)
8962 tempreg = mips_gp_register;
8964 else
8966 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8967 AT, breg, mips_gp_register);
8968 tempreg = AT;
8969 used_at = 1;
8972 /* Itbl support may require additional care here. */
8973 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
8974 BFD_RELOC_GPREL16, tempreg);
8975 offset_expr.X_add_number += 4;
8977 /* Set mips_optimize to 2 to avoid inserting an
8978 undesired nop. */
8979 hold_mips_optimize = mips_optimize;
8980 mips_optimize = 2;
8981 /* Itbl support may require additional care here. */
8982 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
8983 BFD_RELOC_GPREL16, tempreg);
8984 mips_optimize = hold_mips_optimize;
8986 relax_switch ();
8988 offset_expr.X_add_number -= 4;
8990 used_at = 1;
8991 macro_build_lui (&offset_expr, AT);
8992 if (breg != 0)
8993 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
8994 /* Itbl support may require additional care here. */
8995 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
8996 BFD_RELOC_LO16, AT);
8997 /* FIXME: How do we handle overflow here? */
8998 offset_expr.X_add_number += 4;
8999 /* Itbl support may require additional care here. */
9000 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9001 BFD_RELOC_LO16, AT);
9002 if (mips_relax.sequence)
9003 relax_end ();
9005 else if (!mips_big_got)
9007 /* If this is a reference to an external symbol, we want
9008 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9010 <op> $treg,0($at)
9011 <op> $treg+1,4($at)
9012 Otherwise we want
9013 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9015 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9016 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9017 If there is a base register we add it to $at before the
9018 lwc1 instructions. If there is a constant we include it
9019 in the lwc1 instructions. */
9020 used_at = 1;
9021 expr1.X_add_number = offset_expr.X_add_number;
9022 if (expr1.X_add_number < -0x8000
9023 || expr1.X_add_number >= 0x8000 - 4)
9024 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9025 load_got_offset (AT, &offset_expr);
9026 load_delay_nop ();
9027 if (breg != 0)
9028 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9030 /* Set mips_optimize to 2 to avoid inserting an undesired
9031 nop. */
9032 hold_mips_optimize = mips_optimize;
9033 mips_optimize = 2;
9035 /* Itbl support may require additional care here. */
9036 relax_start (offset_expr.X_add_symbol);
9037 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9038 BFD_RELOC_LO16, AT);
9039 expr1.X_add_number += 4;
9040 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9041 BFD_RELOC_LO16, AT);
9042 relax_switch ();
9043 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9044 BFD_RELOC_LO16, AT);
9045 offset_expr.X_add_number += 4;
9046 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9047 BFD_RELOC_LO16, AT);
9048 relax_end ();
9050 mips_optimize = hold_mips_optimize;
9052 else if (mips_big_got)
9054 int gpdelay;
9056 /* If this is a reference to an external symbol, we want
9057 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9058 addu $at,$at,$gp
9059 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9061 <op> $treg,0($at)
9062 <op> $treg+1,4($at)
9063 Otherwise we want
9064 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9066 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9067 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9068 If there is a base register we add it to $at before the
9069 lwc1 instructions. If there is a constant we include it
9070 in the lwc1 instructions. */
9071 used_at = 1;
9072 expr1.X_add_number = offset_expr.X_add_number;
9073 offset_expr.X_add_number = 0;
9074 if (expr1.X_add_number < -0x8000
9075 || expr1.X_add_number >= 0x8000 - 4)
9076 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9077 gpdelay = reg_needs_delay (mips_gp_register);
9078 relax_start (offset_expr.X_add_symbol);
9079 macro_build (&offset_expr, "lui", LUI_FMT,
9080 AT, BFD_RELOC_MIPS_GOT_HI16);
9081 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9082 AT, AT, mips_gp_register);
9083 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9084 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9085 load_delay_nop ();
9086 if (breg != 0)
9087 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9088 /* Itbl support may require additional care here. */
9089 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9090 BFD_RELOC_LO16, AT);
9091 expr1.X_add_number += 4;
9093 /* Set mips_optimize to 2 to avoid inserting an undesired
9094 nop. */
9095 hold_mips_optimize = mips_optimize;
9096 mips_optimize = 2;
9097 /* Itbl support may require additional care here. */
9098 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9099 BFD_RELOC_LO16, AT);
9100 mips_optimize = hold_mips_optimize;
9101 expr1.X_add_number -= 4;
9103 relax_switch ();
9104 offset_expr.X_add_number = expr1.X_add_number;
9105 if (gpdelay)
9106 macro_build (NULL, "nop", "");
9107 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9108 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9109 load_delay_nop ();
9110 if (breg != 0)
9111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9112 /* Itbl support may require additional care here. */
9113 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9114 BFD_RELOC_LO16, AT);
9115 offset_expr.X_add_number += 4;
9117 /* Set mips_optimize to 2 to avoid inserting an undesired
9118 nop. */
9119 hold_mips_optimize = mips_optimize;
9120 mips_optimize = 2;
9121 /* Itbl support may require additional care here. */
9122 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9123 BFD_RELOC_LO16, AT);
9124 mips_optimize = hold_mips_optimize;
9125 relax_end ();
9127 else
9128 abort ();
9130 break;
9132 case M_LD_OB:
9133 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9134 goto sd_ob;
9135 case M_SD_OB:
9136 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9137 sd_ob:
9138 macro_build (&offset_expr, s, "t,o(b)", treg,
9139 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9140 breg);
9141 if (!HAVE_64BIT_GPRS)
9143 offset_expr.X_add_number += 4;
9144 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9145 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9146 breg);
9148 break;
9151 case M_SAA_AB:
9152 ab = 1;
9153 case M_SAA_OB:
9154 s = "saa";
9155 off0 = 1;
9156 fmt = "t,(b)";
9157 goto ld_st;
9158 case M_SAAD_AB:
9159 ab = 1;
9160 case M_SAAD_OB:
9161 s = "saad";
9162 off0 = 1;
9163 fmt = "t,(b)";
9164 goto ld_st;
9166 /* New code added to support COPZ instructions.
9167 This code builds table entries out of the macros in mip_opcodes.
9168 R4000 uses interlocks to handle coproc delays.
9169 Other chips (like the R3000) require nops to be inserted for delays.
9171 FIXME: Currently, we require that the user handle delays.
9172 In order to fill delay slots for non-interlocked chips,
9173 we must have a way to specify delays based on the coprocessor.
9174 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9175 What are the side-effects of the cop instruction?
9176 What cache support might we have and what are its effects?
9177 Both coprocessor & memory require delays. how long???
9178 What registers are read/set/modified?
9180 If an itbl is provided to interpret cop instructions,
9181 this knowledge can be encoded in the itbl spec. */
9183 case M_COP0:
9184 s = "c0";
9185 goto copz;
9186 case M_COP1:
9187 s = "c1";
9188 goto copz;
9189 case M_COP2:
9190 s = "c2";
9191 goto copz;
9192 case M_COP3:
9193 s = "c3";
9194 copz:
9195 gas_assert (!mips_opts.micromips);
9196 if (NO_ISA_COP (mips_opts.arch)
9197 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
9199 as_bad (_("Opcode not supported on this processor: %s"),
9200 mips_cpu_info_from_arch (mips_opts.arch)->name);
9201 break;
9204 /* For now we just do C (same as Cz). The parameter will be
9205 stored in insn_opcode by mips_ip. */
9206 macro_build (NULL, s, "C", ip->insn_opcode);
9207 break;
9209 case M_MOVE:
9210 move_register (dreg, sreg);
9211 break;
9213 case M_DMUL:
9214 dbl = 1;
9215 case M_MUL:
9216 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9217 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9218 break;
9220 case M_DMUL_I:
9221 dbl = 1;
9222 case M_MUL_I:
9223 /* The MIPS assembler some times generates shifts and adds. I'm
9224 not trying to be that fancy. GCC should do this for us
9225 anyway. */
9226 used_at = 1;
9227 load_register (AT, &imm_expr, dbl);
9228 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9229 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9230 break;
9232 case M_DMULO_I:
9233 dbl = 1;
9234 case M_MULO_I:
9235 imm = 1;
9236 goto do_mulo;
9238 case M_DMULO:
9239 dbl = 1;
9240 case M_MULO:
9241 do_mulo:
9242 start_noreorder ();
9243 used_at = 1;
9244 if (imm)
9245 load_register (AT, &imm_expr, dbl);
9246 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9247 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9248 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9249 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9250 if (mips_trap)
9251 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9252 else
9254 if (mips_opts.micromips)
9255 micromips_label_expr (&label_expr);
9256 else
9257 label_expr.X_add_number = 8;
9258 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9259 macro_build (NULL, "nop", "");
9260 macro_build (NULL, "break", BRK_FMT, 6);
9261 if (mips_opts.micromips)
9262 micromips_add_label ();
9264 end_noreorder ();
9265 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9266 break;
9268 case M_DMULOU_I:
9269 dbl = 1;
9270 case M_MULOU_I:
9271 imm = 1;
9272 goto do_mulou;
9274 case M_DMULOU:
9275 dbl = 1;
9276 case M_MULOU:
9277 do_mulou:
9278 start_noreorder ();
9279 used_at = 1;
9280 if (imm)
9281 load_register (AT, &imm_expr, dbl);
9282 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9283 sreg, imm ? AT : treg);
9284 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9285 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9286 if (mips_trap)
9287 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9288 else
9290 if (mips_opts.micromips)
9291 micromips_label_expr (&label_expr);
9292 else
9293 label_expr.X_add_number = 8;
9294 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9295 macro_build (NULL, "nop", "");
9296 macro_build (NULL, "break", BRK_FMT, 6);
9297 if (mips_opts.micromips)
9298 micromips_add_label ();
9300 end_noreorder ();
9301 break;
9303 case M_DROL:
9304 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9306 if (dreg == sreg)
9308 tempreg = AT;
9309 used_at = 1;
9311 else
9313 tempreg = dreg;
9315 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9316 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9317 break;
9319 used_at = 1;
9320 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9321 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9322 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9323 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9324 break;
9326 case M_ROL:
9327 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9329 if (dreg == sreg)
9331 tempreg = AT;
9332 used_at = 1;
9334 else
9336 tempreg = dreg;
9338 macro_build (NULL, "negu", "d,w", tempreg, treg);
9339 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9340 break;
9342 used_at = 1;
9343 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9344 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9345 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9346 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9347 break;
9349 case M_DROL_I:
9351 unsigned int rot;
9352 char *l;
9353 char *rr;
9355 if (imm_expr.X_op != O_constant)
9356 as_bad (_("Improper rotate count"));
9357 rot = imm_expr.X_add_number & 0x3f;
9358 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9360 rot = (64 - rot) & 0x3f;
9361 if (rot >= 32)
9362 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9363 else
9364 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9365 break;
9367 if (rot == 0)
9369 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9370 break;
9372 l = (rot < 0x20) ? "dsll" : "dsll32";
9373 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9374 rot &= 0x1f;
9375 used_at = 1;
9376 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9377 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9378 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9380 break;
9382 case M_ROL_I:
9384 unsigned int rot;
9386 if (imm_expr.X_op != O_constant)
9387 as_bad (_("Improper rotate count"));
9388 rot = imm_expr.X_add_number & 0x1f;
9389 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9391 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9392 break;
9394 if (rot == 0)
9396 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9397 break;
9399 used_at = 1;
9400 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
9401 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9402 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9404 break;
9406 case M_DROR:
9407 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9409 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
9410 break;
9412 used_at = 1;
9413 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9414 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
9415 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
9416 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9417 break;
9419 case M_ROR:
9420 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9422 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
9423 break;
9425 used_at = 1;
9426 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9427 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
9428 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
9429 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9430 break;
9432 case M_DROR_I:
9434 unsigned int rot;
9435 char *l;
9436 char *rr;
9438 if (imm_expr.X_op != O_constant)
9439 as_bad (_("Improper rotate count"));
9440 rot = imm_expr.X_add_number & 0x3f;
9441 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9443 if (rot >= 32)
9444 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9445 else
9446 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9447 break;
9449 if (rot == 0)
9451 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9452 break;
9454 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
9455 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
9456 rot &= 0x1f;
9457 used_at = 1;
9458 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
9459 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9460 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9462 break;
9464 case M_ROR_I:
9466 unsigned int rot;
9468 if (imm_expr.X_op != O_constant)
9469 as_bad (_("Improper rotate count"));
9470 rot = imm_expr.X_add_number & 0x1f;
9471 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9473 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
9474 break;
9476 if (rot == 0)
9478 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9479 break;
9481 used_at = 1;
9482 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
9483 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9484 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9486 break;
9488 case M_SEQ:
9489 if (sreg == 0)
9490 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
9491 else if (treg == 0)
9492 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9493 else
9495 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9496 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9498 break;
9500 case M_SEQ_I:
9501 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9503 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9504 break;
9506 if (sreg == 0)
9508 as_warn (_("Instruction %s: result is always false"),
9509 ip->insn_mo->name);
9510 move_register (dreg, 0);
9511 break;
9513 if (CPU_HAS_SEQ (mips_opts.arch)
9514 && -512 <= imm_expr.X_add_number
9515 && imm_expr.X_add_number < 512)
9517 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
9518 (int) imm_expr.X_add_number);
9519 break;
9521 if (imm_expr.X_op == O_constant
9522 && imm_expr.X_add_number >= 0
9523 && imm_expr.X_add_number < 0x10000)
9525 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9527 else if (imm_expr.X_op == O_constant
9528 && imm_expr.X_add_number > -0x8000
9529 && imm_expr.X_add_number < 0)
9531 imm_expr.X_add_number = -imm_expr.X_add_number;
9532 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9533 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9535 else if (CPU_HAS_SEQ (mips_opts.arch))
9537 used_at = 1;
9538 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9539 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
9540 break;
9542 else
9544 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9545 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9546 used_at = 1;
9548 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9549 break;
9551 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
9552 s = "slt";
9553 goto sge;
9554 case M_SGEU:
9555 s = "sltu";
9556 sge:
9557 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
9558 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9559 break;
9561 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
9562 case M_SGEU_I:
9563 if (imm_expr.X_op == O_constant
9564 && imm_expr.X_add_number >= -0x8000
9565 && imm_expr.X_add_number < 0x8000)
9567 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
9568 dreg, sreg, BFD_RELOC_LO16);
9570 else
9572 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9573 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
9574 dreg, sreg, AT);
9575 used_at = 1;
9577 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9578 break;
9580 case M_SGT: /* sreg > treg <==> treg < sreg */
9581 s = "slt";
9582 goto sgt;
9583 case M_SGTU:
9584 s = "sltu";
9585 sgt:
9586 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9587 break;
9589 case M_SGT_I: /* sreg > I <==> I < sreg */
9590 s = "slt";
9591 goto sgti;
9592 case M_SGTU_I:
9593 s = "sltu";
9594 sgti:
9595 used_at = 1;
9596 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9597 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9598 break;
9600 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
9601 s = "slt";
9602 goto sle;
9603 case M_SLEU:
9604 s = "sltu";
9605 sle:
9606 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9607 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9608 break;
9610 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
9611 s = "slt";
9612 goto slei;
9613 case M_SLEU_I:
9614 s = "sltu";
9615 slei:
9616 used_at = 1;
9617 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9618 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9619 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9620 break;
9622 case M_SLT_I:
9623 if (imm_expr.X_op == O_constant
9624 && imm_expr.X_add_number >= -0x8000
9625 && imm_expr.X_add_number < 0x8000)
9627 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9628 break;
9630 used_at = 1;
9631 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9632 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
9633 break;
9635 case M_SLTU_I:
9636 if (imm_expr.X_op == O_constant
9637 && imm_expr.X_add_number >= -0x8000
9638 && imm_expr.X_add_number < 0x8000)
9640 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
9641 BFD_RELOC_LO16);
9642 break;
9644 used_at = 1;
9645 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9646 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
9647 break;
9649 case M_SNE:
9650 if (sreg == 0)
9651 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
9652 else if (treg == 0)
9653 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9654 else
9656 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9657 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9659 break;
9661 case M_SNE_I:
9662 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9664 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9665 break;
9667 if (sreg == 0)
9669 as_warn (_("Instruction %s: result is always true"),
9670 ip->insn_mo->name);
9671 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
9672 dreg, 0, BFD_RELOC_LO16);
9673 break;
9675 if (CPU_HAS_SEQ (mips_opts.arch)
9676 && -512 <= imm_expr.X_add_number
9677 && imm_expr.X_add_number < 512)
9679 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
9680 (int) imm_expr.X_add_number);
9681 break;
9683 if (imm_expr.X_op == O_constant
9684 && imm_expr.X_add_number >= 0
9685 && imm_expr.X_add_number < 0x10000)
9687 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9689 else if (imm_expr.X_op == O_constant
9690 && imm_expr.X_add_number > -0x8000
9691 && imm_expr.X_add_number < 0)
9693 imm_expr.X_add_number = -imm_expr.X_add_number;
9694 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9695 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9697 else if (CPU_HAS_SEQ (mips_opts.arch))
9699 used_at = 1;
9700 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9701 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
9702 break;
9704 else
9706 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9707 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9708 used_at = 1;
9710 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9711 break;
9713 case M_SUB_I:
9714 s = "addi";
9715 s2 = "sub";
9716 goto do_subi;
9717 case M_SUBU_I:
9718 s = "addiu";
9719 s2 = "subu";
9720 goto do_subi;
9721 case M_DSUB_I:
9722 dbl = 1;
9723 s = "daddi";
9724 s2 = "dsub";
9725 if (!mips_opts.micromips)
9726 goto do_subi;
9727 if (imm_expr.X_op == O_constant
9728 && imm_expr.X_add_number > -0x200
9729 && imm_expr.X_add_number <= 0x200)
9731 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
9732 break;
9734 goto do_subi_i;
9735 case M_DSUBU_I:
9736 dbl = 1;
9737 s = "daddiu";
9738 s2 = "dsubu";
9739 do_subi:
9740 if (imm_expr.X_op == O_constant
9741 && imm_expr.X_add_number > -0x8000
9742 && imm_expr.X_add_number <= 0x8000)
9744 imm_expr.X_add_number = -imm_expr.X_add_number;
9745 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9746 break;
9748 do_subi_i:
9749 used_at = 1;
9750 load_register (AT, &imm_expr, dbl);
9751 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
9752 break;
9754 case M_TEQ_I:
9755 s = "teq";
9756 goto trap;
9757 case M_TGE_I:
9758 s = "tge";
9759 goto trap;
9760 case M_TGEU_I:
9761 s = "tgeu";
9762 goto trap;
9763 case M_TLT_I:
9764 s = "tlt";
9765 goto trap;
9766 case M_TLTU_I:
9767 s = "tltu";
9768 goto trap;
9769 case M_TNE_I:
9770 s = "tne";
9771 trap:
9772 used_at = 1;
9773 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9774 macro_build (NULL, s, "s,t", sreg, AT);
9775 break;
9777 case M_TRUNCWS:
9778 case M_TRUNCWD:
9779 gas_assert (!mips_opts.micromips);
9780 gas_assert (mips_opts.isa == ISA_MIPS1);
9781 used_at = 1;
9782 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
9783 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
9786 * Is the double cfc1 instruction a bug in the mips assembler;
9787 * or is there a reason for it?
9789 start_noreorder ();
9790 macro_build (NULL, "cfc1", "t,G", treg, RA);
9791 macro_build (NULL, "cfc1", "t,G", treg, RA);
9792 macro_build (NULL, "nop", "");
9793 expr1.X_add_number = 3;
9794 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
9795 expr1.X_add_number = 2;
9796 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
9797 macro_build (NULL, "ctc1", "t,G", AT, RA);
9798 macro_build (NULL, "nop", "");
9799 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
9800 dreg, sreg);
9801 macro_build (NULL, "ctc1", "t,G", treg, RA);
9802 macro_build (NULL, "nop", "");
9803 end_noreorder ();
9804 break;
9806 case M_ULH_A:
9807 ab = 1;
9808 case M_ULH:
9809 s = "lb";
9810 s2 = "lbu";
9811 off = 1;
9812 goto uld_st;
9813 case M_ULHU_A:
9814 ab = 1;
9815 case M_ULHU:
9816 s = "lbu";
9817 s2 = "lbu";
9818 off = 1;
9819 goto uld_st;
9820 case M_ULW_A:
9821 ab = 1;
9822 case M_ULW:
9823 s = "lwl";
9824 s2 = "lwr";
9825 off12 = mips_opts.micromips;
9826 off = 3;
9827 goto uld_st;
9828 case M_ULD_A:
9829 ab = 1;
9830 case M_ULD:
9831 s = "ldl";
9832 s2 = "ldr";
9833 off12 = mips_opts.micromips;
9834 off = 7;
9835 goto uld_st;
9836 case M_USH_A:
9837 ab = 1;
9838 case M_USH:
9839 s = "sb";
9840 s2 = "sb";
9841 off = 1;
9842 ust = 1;
9843 goto uld_st;
9844 case M_USW_A:
9845 ab = 1;
9846 case M_USW:
9847 s = "swl";
9848 s2 = "swr";
9849 off12 = mips_opts.micromips;
9850 off = 3;
9851 ust = 1;
9852 goto uld_st;
9853 case M_USD_A:
9854 ab = 1;
9855 case M_USD:
9856 s = "sdl";
9857 s2 = "sdr";
9858 off12 = mips_opts.micromips;
9859 off = 7;
9860 ust = 1;
9862 uld_st:
9863 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
9864 as_bad (_("Operand overflow"));
9866 ep = &offset_expr;
9867 expr1.X_add_number = 0;
9868 if (ab)
9870 used_at = 1;
9871 tempreg = AT;
9872 load_address (tempreg, ep, &used_at);
9873 if (breg != 0)
9874 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9875 tempreg, tempreg, breg);
9876 breg = tempreg;
9877 tempreg = treg;
9878 ep = &expr1;
9880 else if (off12
9881 && (offset_expr.X_op != O_constant
9882 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
9883 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
9885 used_at = 1;
9886 tempreg = AT;
9887 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
9888 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
9889 breg = tempreg;
9890 tempreg = treg;
9891 ep = &expr1;
9893 else if (!ust && treg == breg)
9895 used_at = 1;
9896 tempreg = AT;
9898 else
9899 tempreg = treg;
9901 if (off == 1)
9902 goto ulh_sh;
9904 if (!target_big_endian)
9905 ep->X_add_number += off;
9906 if (!off12)
9907 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9908 else
9909 macro_build (NULL, s, "t,~(b)",
9910 tempreg, (unsigned long) ep->X_add_number, breg);
9912 if (!target_big_endian)
9913 ep->X_add_number -= off;
9914 else
9915 ep->X_add_number += off;
9916 if (!off12)
9917 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9918 else
9919 macro_build (NULL, s2, "t,~(b)",
9920 tempreg, (unsigned long) ep->X_add_number, breg);
9922 /* If necessary, move the result in tempreg to the final destination. */
9923 if (!ust && treg != tempreg)
9925 /* Protect second load's delay slot. */
9926 load_delay_nop ();
9927 move_register (treg, tempreg);
9929 break;
9931 ulh_sh:
9932 used_at = 1;
9933 if (target_big_endian == ust)
9934 ep->X_add_number += off;
9935 tempreg = ust || ab ? treg : AT;
9936 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9938 /* For halfword transfers we need a temporary register to shuffle
9939 bytes. Unfortunately for M_USH_A we have none available before
9940 the next store as AT holds the base address. We deal with this
9941 case by clobbering TREG and then restoring it as with ULH. */
9942 tempreg = ust == ab ? treg : AT;
9943 if (ust)
9944 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
9946 if (target_big_endian == ust)
9947 ep->X_add_number -= off;
9948 else
9949 ep->X_add_number += off;
9950 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9952 /* For M_USH_A re-retrieve the LSB. */
9953 if (ust && ab)
9955 if (target_big_endian)
9956 ep->X_add_number += off;
9957 else
9958 ep->X_add_number -= off;
9959 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
9961 /* For ULH and M_USH_A OR the LSB in. */
9962 if (!ust || ab)
9964 tempreg = !ab ? AT : treg;
9965 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
9966 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
9968 break;
9970 default:
9971 /* FIXME: Check if this is one of the itbl macros, since they
9972 are added dynamically. */
9973 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
9974 break;
9976 if (!mips_opts.at && used_at)
9977 as_bad (_("Macro used $at after \".set noat\""));
9980 /* Implement macros in mips16 mode. */
9982 static void
9983 mips16_macro (struct mips_cl_insn *ip)
9985 int mask;
9986 int xreg, yreg, zreg, tmp;
9987 expressionS expr1;
9988 int dbl;
9989 const char *s, *s2, *s3;
9991 mask = ip->insn_mo->mask;
9993 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
9994 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
9995 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
9997 expr1.X_op = O_constant;
9998 expr1.X_op_symbol = NULL;
9999 expr1.X_add_symbol = NULL;
10000 expr1.X_add_number = 1;
10002 dbl = 0;
10004 switch (mask)
10006 default:
10007 internalError ();
10009 case M_DDIV_3:
10010 dbl = 1;
10011 case M_DIV_3:
10012 s = "mflo";
10013 goto do_div3;
10014 case M_DREM_3:
10015 dbl = 1;
10016 case M_REM_3:
10017 s = "mfhi";
10018 do_div3:
10019 start_noreorder ();
10020 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10021 expr1.X_add_number = 2;
10022 macro_build (&expr1, "bnez", "x,p", yreg);
10023 macro_build (NULL, "break", "6", 7);
10025 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10026 since that causes an overflow. We should do that as well,
10027 but I don't see how to do the comparisons without a temporary
10028 register. */
10029 end_noreorder ();
10030 macro_build (NULL, s, "x", zreg);
10031 break;
10033 case M_DIVU_3:
10034 s = "divu";
10035 s2 = "mflo";
10036 goto do_divu3;
10037 case M_REMU_3:
10038 s = "divu";
10039 s2 = "mfhi";
10040 goto do_divu3;
10041 case M_DDIVU_3:
10042 s = "ddivu";
10043 s2 = "mflo";
10044 goto do_divu3;
10045 case M_DREMU_3:
10046 s = "ddivu";
10047 s2 = "mfhi";
10048 do_divu3:
10049 start_noreorder ();
10050 macro_build (NULL, s, "0,x,y", xreg, yreg);
10051 expr1.X_add_number = 2;
10052 macro_build (&expr1, "bnez", "x,p", yreg);
10053 macro_build (NULL, "break", "6", 7);
10054 end_noreorder ();
10055 macro_build (NULL, s2, "x", zreg);
10056 break;
10058 case M_DMUL:
10059 dbl = 1;
10060 case M_MUL:
10061 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10062 macro_build (NULL, "mflo", "x", zreg);
10063 break;
10065 case M_DSUBU_I:
10066 dbl = 1;
10067 goto do_subu;
10068 case M_SUBU_I:
10069 do_subu:
10070 if (imm_expr.X_op != O_constant)
10071 as_bad (_("Unsupported large constant"));
10072 imm_expr.X_add_number = -imm_expr.X_add_number;
10073 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10074 break;
10076 case M_SUBU_I_2:
10077 if (imm_expr.X_op != O_constant)
10078 as_bad (_("Unsupported large constant"));
10079 imm_expr.X_add_number = -imm_expr.X_add_number;
10080 macro_build (&imm_expr, "addiu", "x,k", xreg);
10081 break;
10083 case M_DSUBU_I_2:
10084 if (imm_expr.X_op != O_constant)
10085 as_bad (_("Unsupported large constant"));
10086 imm_expr.X_add_number = -imm_expr.X_add_number;
10087 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10088 break;
10090 case M_BEQ:
10091 s = "cmp";
10092 s2 = "bteqz";
10093 goto do_branch;
10094 case M_BNE:
10095 s = "cmp";
10096 s2 = "btnez";
10097 goto do_branch;
10098 case M_BLT:
10099 s = "slt";
10100 s2 = "btnez";
10101 goto do_branch;
10102 case M_BLTU:
10103 s = "sltu";
10104 s2 = "btnez";
10105 goto do_branch;
10106 case M_BLE:
10107 s = "slt";
10108 s2 = "bteqz";
10109 goto do_reverse_branch;
10110 case M_BLEU:
10111 s = "sltu";
10112 s2 = "bteqz";
10113 goto do_reverse_branch;
10114 case M_BGE:
10115 s = "slt";
10116 s2 = "bteqz";
10117 goto do_branch;
10118 case M_BGEU:
10119 s = "sltu";
10120 s2 = "bteqz";
10121 goto do_branch;
10122 case M_BGT:
10123 s = "slt";
10124 s2 = "btnez";
10125 goto do_reverse_branch;
10126 case M_BGTU:
10127 s = "sltu";
10128 s2 = "btnez";
10130 do_reverse_branch:
10131 tmp = xreg;
10132 xreg = yreg;
10133 yreg = tmp;
10135 do_branch:
10136 macro_build (NULL, s, "x,y", xreg, yreg);
10137 macro_build (&offset_expr, s2, "p");
10138 break;
10140 case M_BEQ_I:
10141 s = "cmpi";
10142 s2 = "bteqz";
10143 s3 = "x,U";
10144 goto do_branch_i;
10145 case M_BNE_I:
10146 s = "cmpi";
10147 s2 = "btnez";
10148 s3 = "x,U";
10149 goto do_branch_i;
10150 case M_BLT_I:
10151 s = "slti";
10152 s2 = "btnez";
10153 s3 = "x,8";
10154 goto do_branch_i;
10155 case M_BLTU_I:
10156 s = "sltiu";
10157 s2 = "btnez";
10158 s3 = "x,8";
10159 goto do_branch_i;
10160 case M_BLE_I:
10161 s = "slti";
10162 s2 = "btnez";
10163 s3 = "x,8";
10164 goto do_addone_branch_i;
10165 case M_BLEU_I:
10166 s = "sltiu";
10167 s2 = "btnez";
10168 s3 = "x,8";
10169 goto do_addone_branch_i;
10170 case M_BGE_I:
10171 s = "slti";
10172 s2 = "bteqz";
10173 s3 = "x,8";
10174 goto do_branch_i;
10175 case M_BGEU_I:
10176 s = "sltiu";
10177 s2 = "bteqz";
10178 s3 = "x,8";
10179 goto do_branch_i;
10180 case M_BGT_I:
10181 s = "slti";
10182 s2 = "bteqz";
10183 s3 = "x,8";
10184 goto do_addone_branch_i;
10185 case M_BGTU_I:
10186 s = "sltiu";
10187 s2 = "bteqz";
10188 s3 = "x,8";
10190 do_addone_branch_i:
10191 if (imm_expr.X_op != O_constant)
10192 as_bad (_("Unsupported large constant"));
10193 ++imm_expr.X_add_number;
10195 do_branch_i:
10196 macro_build (&imm_expr, s, s3, xreg);
10197 macro_build (&offset_expr, s2, "p");
10198 break;
10200 case M_ABS:
10201 expr1.X_add_number = 0;
10202 macro_build (&expr1, "slti", "x,8", yreg);
10203 if (xreg != yreg)
10204 move_register (xreg, yreg);
10205 expr1.X_add_number = 2;
10206 macro_build (&expr1, "bteqz", "p");
10207 macro_build (NULL, "neg", "x,w", xreg, xreg);
10211 /* For consistency checking, verify that all bits are specified either
10212 by the match/mask part of the instruction definition, or by the
10213 operand list. */
10214 static int
10215 validate_mips_insn (const struct mips_opcode *opc)
10217 const char *p = opc->args;
10218 char c;
10219 unsigned long used_bits = opc->mask;
10221 if ((used_bits & opc->match) != opc->match)
10223 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10224 opc->name, opc->args);
10225 return 0;
10227 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10228 while (*p)
10229 switch (c = *p++)
10231 case ',': break;
10232 case '(': break;
10233 case ')': break;
10234 case '+':
10235 switch (c = *p++)
10237 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10238 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10239 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10240 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10241 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10242 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10243 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10244 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10245 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10246 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10247 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10248 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10249 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10250 case 'I': break;
10251 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10252 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10253 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10254 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10255 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10256 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10257 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10258 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10259 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10260 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10261 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10262 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10263 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10264 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10265 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10267 default:
10268 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10269 c, opc->name, opc->args);
10270 return 0;
10272 break;
10273 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10274 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10275 case 'A': break;
10276 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10277 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10278 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10279 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10280 case 'F': break;
10281 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10282 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10283 case 'I': break;
10284 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10285 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10286 case 'L': break;
10287 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10288 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10289 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10290 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10291 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10292 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10293 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10294 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10295 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10296 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10297 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10298 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10299 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10300 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10301 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10302 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10303 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10304 case 'f': break;
10305 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10306 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10307 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10308 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10309 case 'l': break;
10310 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10311 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10312 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10313 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10314 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10315 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10316 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10317 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10318 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10319 case 'x': break;
10320 case 'z': break;
10321 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10322 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10323 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10324 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10325 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10326 case '[': break;
10327 case ']': break;
10328 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10329 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10330 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10331 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10332 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10333 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10334 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10335 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10336 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10337 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10338 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10339 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10340 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10341 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10342 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10343 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10344 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10345 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10346 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10347 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10348 default:
10349 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10350 c, opc->name, opc->args);
10351 return 0;
10353 #undef USE_BITS
10354 if (used_bits != 0xffffffff)
10356 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10357 ~used_bits & 0xffffffff, opc->name, opc->args);
10358 return 0;
10360 return 1;
10363 /* For consistency checking, verify that the length implied matches the
10364 major opcode and that all bits are specified either by the match/mask
10365 part of the instruction definition, or by the operand list. */
10367 static int
10368 validate_micromips_insn (const struct mips_opcode *opc)
10370 unsigned long match = opc->match;
10371 unsigned long mask = opc->mask;
10372 const char *p = opc->args;
10373 unsigned long insn_bits;
10374 unsigned long used_bits;
10375 unsigned long major;
10376 unsigned int length;
10377 char e;
10378 char c;
10380 if ((mask & match) != match)
10382 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10383 opc->name, opc->args);
10384 return 0;
10386 length = micromips_insn_length (opc);
10387 if (length != 2 && length != 4)
10389 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10390 "%s %s"), length, opc->name, opc->args);
10391 return 0;
10393 major = match >> (10 + 8 * (length - 2));
10394 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
10395 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
10397 as_bad (_("Internal error: bad microMIPS opcode "
10398 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
10399 return 0;
10402 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
10403 insn_bits = 1 << 4 * length;
10404 insn_bits <<= 4 * length;
10405 insn_bits -= 1;
10406 used_bits = mask;
10407 #define USE_BITS(field) \
10408 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
10409 while (*p)
10410 switch (c = *p++)
10412 case ',': break;
10413 case '(': break;
10414 case ')': break;
10415 case '+':
10416 e = c;
10417 switch (c = *p++)
10419 case 'A': USE_BITS (EXTLSB); break;
10420 case 'B': USE_BITS (INSMSB); break;
10421 case 'C': USE_BITS (EXTMSBD); break;
10422 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
10423 case 'E': USE_BITS (EXTLSB); break;
10424 case 'F': USE_BITS (INSMSB); break;
10425 case 'G': USE_BITS (EXTMSBD); break;
10426 case 'H': USE_BITS (EXTMSBD); break;
10427 default:
10428 as_bad (_("Internal error: bad mips opcode "
10429 "(unknown extension operand type `%c%c'): %s %s"),
10430 e, c, opc->name, opc->args);
10431 return 0;
10433 break;
10434 case 'm':
10435 e = c;
10436 switch (c = *p++)
10438 case 'A': USE_BITS (IMMA); break;
10439 case 'B': USE_BITS (IMMB); break;
10440 case 'C': USE_BITS (IMMC); break;
10441 case 'D': USE_BITS (IMMD); break;
10442 case 'E': USE_BITS (IMME); break;
10443 case 'F': USE_BITS (IMMF); break;
10444 case 'G': USE_BITS (IMMG); break;
10445 case 'H': USE_BITS (IMMH); break;
10446 case 'I': USE_BITS (IMMI); break;
10447 case 'J': USE_BITS (IMMJ); break;
10448 case 'L': USE_BITS (IMML); break;
10449 case 'M': USE_BITS (IMMM); break;
10450 case 'N': USE_BITS (IMMN); break;
10451 case 'O': USE_BITS (IMMO); break;
10452 case 'P': USE_BITS (IMMP); break;
10453 case 'Q': USE_BITS (IMMQ); break;
10454 case 'U': USE_BITS (IMMU); break;
10455 case 'W': USE_BITS (IMMW); break;
10456 case 'X': USE_BITS (IMMX); break;
10457 case 'Y': USE_BITS (IMMY); break;
10458 case 'Z': break;
10459 case 'a': break;
10460 case 'b': USE_BITS (MB); break;
10461 case 'c': USE_BITS (MC); break;
10462 case 'd': USE_BITS (MD); break;
10463 case 'e': USE_BITS (ME); break;
10464 case 'f': USE_BITS (MF); break;
10465 case 'g': USE_BITS (MG); break;
10466 case 'h': USE_BITS (MH); break;
10467 case 'i': USE_BITS (MI); break;
10468 case 'j': USE_BITS (MJ); break;
10469 case 'l': USE_BITS (ML); break;
10470 case 'm': USE_BITS (MM); break;
10471 case 'n': USE_BITS (MN); break;
10472 case 'p': USE_BITS (MP); break;
10473 case 'q': USE_BITS (MQ); break;
10474 case 'r': break;
10475 case 's': break;
10476 case 't': break;
10477 case 'x': break;
10478 case 'y': break;
10479 case 'z': break;
10480 default:
10481 as_bad (_("Internal error: bad mips opcode "
10482 "(unknown extension operand type `%c%c'): %s %s"),
10483 e, c, opc->name, opc->args);
10484 return 0;
10486 break;
10487 case '.': USE_BITS (OFFSET10); break;
10488 case '1': USE_BITS (STYPE); break;
10489 case '<': USE_BITS (SHAMT); break;
10490 case '>': USE_BITS (SHAMT); break;
10491 case 'B': USE_BITS (CODE10); break;
10492 case 'C': USE_BITS (COPZ); break;
10493 case 'D': USE_BITS (FD); break;
10494 case 'E': USE_BITS (RT); break;
10495 case 'G': USE_BITS (RS); break;
10496 case 'H': USE_BITS (SEL); break;
10497 case 'K': USE_BITS (RS); break;
10498 case 'M': USE_BITS (CCC); break;
10499 case 'N': USE_BITS (BCC); break;
10500 case 'R': USE_BITS (FR); break;
10501 case 'S': USE_BITS (FS); break;
10502 case 'T': USE_BITS (FT); break;
10503 case 'V': USE_BITS (FS); break;
10504 case '\\': USE_BITS (3BITPOS); break;
10505 case 'a': USE_BITS (TARGET); break;
10506 case 'b': USE_BITS (RS); break;
10507 case 'c': USE_BITS (CODE); break;
10508 case 'd': USE_BITS (RD); break;
10509 case 'h': USE_BITS (PREFX); break;
10510 case 'i': USE_BITS (IMMEDIATE); break;
10511 case 'j': USE_BITS (DELTA); break;
10512 case 'k': USE_BITS (CACHE); break;
10513 case 'n': USE_BITS (RT); break;
10514 case 'o': USE_BITS (DELTA); break;
10515 case 'p': USE_BITS (DELTA); break;
10516 case 'q': USE_BITS (CODE2); break;
10517 case 'r': USE_BITS (RS); break;
10518 case 's': USE_BITS (RS); break;
10519 case 't': USE_BITS (RT); break;
10520 case 'u': USE_BITS (IMMEDIATE); break;
10521 case 'v': USE_BITS (RS); break;
10522 case 'w': USE_BITS (RT); break;
10523 case 'y': USE_BITS (RS3); break;
10524 case 'z': break;
10525 case '|': USE_BITS (TRAP); break;
10526 case '~': USE_BITS (OFFSET12); break;
10527 default:
10528 as_bad (_("Internal error: bad microMIPS opcode "
10529 "(unknown operand type `%c'): %s %s"),
10530 c, opc->name, opc->args);
10531 return 0;
10533 #undef USE_BITS
10534 if (used_bits != insn_bits)
10536 if (~used_bits & insn_bits)
10537 as_bad (_("Internal error: bad microMIPS opcode "
10538 "(bits 0x%lx undefined): %s %s"),
10539 ~used_bits & insn_bits, opc->name, opc->args);
10540 if (used_bits & ~insn_bits)
10541 as_bad (_("Internal error: bad microMIPS opcode "
10542 "(bits 0x%lx defined): %s %s"),
10543 used_bits & ~insn_bits, opc->name, opc->args);
10544 return 0;
10546 return 1;
10549 /* UDI immediates. */
10550 struct mips_immed {
10551 char type;
10552 unsigned int shift;
10553 unsigned long mask;
10554 const char * desc;
10557 static const struct mips_immed mips_immed[] = {
10558 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
10559 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
10560 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
10561 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
10562 { 0,0,0,0 }
10565 /* Check whether an odd floating-point register is allowed. */
10566 static int
10567 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
10569 const char *s = insn->name;
10571 if (insn->pinfo == INSN_MACRO)
10572 /* Let a macro pass, we'll catch it later when it is expanded. */
10573 return 1;
10575 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
10577 /* Allow odd registers for single-precision ops. */
10578 switch (insn->pinfo & (FP_S | FP_D))
10580 case FP_S:
10581 case 0:
10582 return 1; /* both single precision - ok */
10583 case FP_D:
10584 return 0; /* both double precision - fail */
10585 default:
10586 break;
10589 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
10590 s = strchr (insn->name, '.');
10591 if (argnum == 2)
10592 s = s != NULL ? strchr (s + 1, '.') : NULL;
10593 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
10596 /* Single-precision coprocessor loads and moves are OK too. */
10597 if ((insn->pinfo & FP_S)
10598 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
10599 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
10600 return 1;
10602 return 0;
10605 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
10606 taking bits from BIT up. */
10607 static int
10608 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
10610 return (ep->X_op == O_constant
10611 && (ep->X_add_number & ((1 << bit) - 1)) == 0
10612 && ep->X_add_number >= min << bit
10613 && ep->X_add_number < max << bit);
10616 /* This routine assembles an instruction into its binary format. As a
10617 side effect, it sets one of the global variables imm_reloc or
10618 offset_reloc to the type of relocation to do if one of the operands
10619 is an address expression. */
10621 static void
10622 mips_ip (char *str, struct mips_cl_insn *ip)
10624 bfd_boolean wrong_delay_slot_insns = FALSE;
10625 bfd_boolean need_delay_slot_ok = TRUE;
10626 struct mips_opcode *firstinsn = NULL;
10627 const struct mips_opcode *past;
10628 struct hash_control *hash;
10629 char *s;
10630 const char *args;
10631 char c = 0;
10632 struct mips_opcode *insn;
10633 char *argsStart;
10634 unsigned int regno;
10635 unsigned int lastregno;
10636 unsigned int destregno = 0;
10637 unsigned int lastpos = 0;
10638 unsigned int limlo, limhi;
10639 char *s_reset;
10640 offsetT min_range, max_range;
10641 long opend;
10642 char *name;
10643 int argnum;
10644 unsigned int rtype;
10645 char *dot;
10646 long end;
10648 insn_error = NULL;
10650 if (mips_opts.micromips)
10652 hash = micromips_op_hash;
10653 past = &micromips_opcodes[bfd_micromips_num_opcodes];
10655 else
10657 hash = op_hash;
10658 past = &mips_opcodes[NUMOPCODES];
10660 forced_insn_length = 0;
10661 insn = NULL;
10663 /* We first try to match an instruction up to a space or to the end. */
10664 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
10665 continue;
10667 /* Make a copy of the instruction so that we can fiddle with it. */
10668 name = alloca (end + 1);
10669 memcpy (name, str, end);
10670 name[end] = '\0';
10672 for (;;)
10674 insn = (struct mips_opcode *) hash_find (hash, name);
10676 if (insn != NULL || !mips_opts.micromips)
10677 break;
10678 if (forced_insn_length)
10679 break;
10681 /* See if there's an instruction size override suffix,
10682 either `16' or `32', at the end of the mnemonic proper,
10683 that defines the operation, i.e. before the first `.'
10684 character if any. Strip it and retry. */
10685 dot = strchr (name, '.');
10686 opend = dot != NULL ? dot - name : end;
10687 if (opend < 3)
10688 break;
10689 if (name[opend - 2] == '1' && name[opend - 1] == '6')
10690 forced_insn_length = 2;
10691 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
10692 forced_insn_length = 4;
10693 else
10694 break;
10695 memcpy (name + opend - 2, name + opend, end - opend + 1);
10697 if (insn == NULL)
10699 insn_error = _("Unrecognized opcode");
10700 return;
10703 /* For microMIPS instructions placed in a fixed-length branch delay slot
10704 we make up to two passes over the relevant fragment of the opcode
10705 table. First we try instructions that meet the delay slot's length
10706 requirement. If none matched, then we retry with the remaining ones
10707 and if one matches, then we use it and then issue an appropriate
10708 warning later on. */
10709 argsStart = s = str + end;
10710 for (;;)
10712 bfd_boolean delay_slot_ok;
10713 bfd_boolean size_ok;
10714 bfd_boolean ok;
10716 gas_assert (strcmp (insn->name, name) == 0);
10718 ok = is_opcode_valid (insn);
10719 size_ok = is_size_valid (insn);
10720 delay_slot_ok = is_delay_slot_valid (insn);
10721 if (!delay_slot_ok && !wrong_delay_slot_insns)
10723 firstinsn = insn;
10724 wrong_delay_slot_insns = TRUE;
10726 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
10728 static char buf[256];
10730 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
10732 ++insn;
10733 continue;
10735 if (wrong_delay_slot_insns && need_delay_slot_ok)
10737 gas_assert (firstinsn);
10738 need_delay_slot_ok = FALSE;
10739 past = insn + 1;
10740 insn = firstinsn;
10741 continue;
10744 if (insn_error)
10745 return;
10747 if (!ok)
10748 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
10749 mips_cpu_info_from_arch (mips_opts.arch)->name,
10750 mips_cpu_info_from_isa (mips_opts.isa)->name);
10751 else
10752 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
10753 8 * forced_insn_length);
10754 insn_error = buf;
10756 return;
10759 create_insn (ip, insn);
10760 insn_error = NULL;
10761 argnum = 1;
10762 lastregno = 0xffffffff;
10763 for (args = insn->args;; ++args)
10765 int is_mdmx;
10767 s += strspn (s, " \t");
10768 is_mdmx = 0;
10769 switch (*args)
10771 case '\0': /* end of args */
10772 if (*s == '\0')
10773 return;
10774 break;
10776 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
10777 gas_assert (!mips_opts.micromips);
10778 my_getExpression (&imm_expr, s);
10779 check_absolute_expr (ip, &imm_expr);
10780 if ((unsigned long) imm_expr.X_add_number != 1
10781 && (unsigned long) imm_expr.X_add_number != 3)
10783 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
10784 (unsigned long) imm_expr.X_add_number);
10786 INSERT_OPERAND (0, BP, *ip, imm_expr.X_add_number);
10787 imm_expr.X_op = O_absent;
10788 s = expr_end;
10789 continue;
10791 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
10792 gas_assert (!mips_opts.micromips);
10793 my_getExpression (&imm_expr, s);
10794 check_absolute_expr (ip, &imm_expr);
10795 if (imm_expr.X_add_number & ~OP_MASK_SA3)
10797 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10798 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
10800 INSERT_OPERAND (0, SA3, *ip, imm_expr.X_add_number);
10801 imm_expr.X_op = O_absent;
10802 s = expr_end;
10803 continue;
10805 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
10806 gas_assert (!mips_opts.micromips);
10807 my_getExpression (&imm_expr, s);
10808 check_absolute_expr (ip, &imm_expr);
10809 if (imm_expr.X_add_number & ~OP_MASK_SA4)
10811 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10812 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
10814 INSERT_OPERAND (0, SA4, *ip, imm_expr.X_add_number);
10815 imm_expr.X_op = O_absent;
10816 s = expr_end;
10817 continue;
10819 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
10820 gas_assert (!mips_opts.micromips);
10821 my_getExpression (&imm_expr, s);
10822 check_absolute_expr (ip, &imm_expr);
10823 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
10825 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10826 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
10828 INSERT_OPERAND (0, IMM8, *ip, imm_expr.X_add_number);
10829 imm_expr.X_op = O_absent;
10830 s = expr_end;
10831 continue;
10833 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
10834 gas_assert (!mips_opts.micromips);
10835 my_getExpression (&imm_expr, s);
10836 check_absolute_expr (ip, &imm_expr);
10837 if (imm_expr.X_add_number & ~OP_MASK_RS)
10839 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10840 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
10842 INSERT_OPERAND (0, RS, *ip, imm_expr.X_add_number);
10843 imm_expr.X_op = O_absent;
10844 s = expr_end;
10845 continue;
10847 case '7': /* Four DSP accumulators in bits 11,12. */
10848 gas_assert (!mips_opts.micromips);
10849 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
10850 s[3] >= '0' && s[3] <= '3')
10852 regno = s[3] - '0';
10853 s += 4;
10854 INSERT_OPERAND (0, DSPACC, *ip, regno);
10855 continue;
10857 else
10858 as_bad (_("Invalid dsp acc register"));
10859 break;
10861 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
10862 gas_assert (!mips_opts.micromips);
10863 my_getExpression (&imm_expr, s);
10864 check_absolute_expr (ip, &imm_expr);
10865 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
10867 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10868 OP_MASK_WRDSP,
10869 (unsigned long) imm_expr.X_add_number);
10871 INSERT_OPERAND (0, WRDSP, *ip, imm_expr.X_add_number);
10872 imm_expr.X_op = O_absent;
10873 s = expr_end;
10874 continue;
10876 case '9': /* Four DSP accumulators in bits 21,22. */
10877 gas_assert (!mips_opts.micromips);
10878 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
10879 s[3] >= '0' && s[3] <= '3')
10881 regno = s[3] - '0';
10882 s += 4;
10883 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
10884 continue;
10886 else
10887 as_bad (_("Invalid dsp acc register"));
10888 break;
10890 case '0': /* DSP 6-bit signed immediate in bit 20. */
10891 gas_assert (!mips_opts.micromips);
10892 my_getExpression (&imm_expr, s);
10893 check_absolute_expr (ip, &imm_expr);
10894 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
10895 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
10896 if (imm_expr.X_add_number < min_range ||
10897 imm_expr.X_add_number > max_range)
10899 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
10900 (long) min_range, (long) max_range,
10901 (long) imm_expr.X_add_number);
10903 INSERT_OPERAND (0, DSPSFT, *ip, imm_expr.X_add_number);
10904 imm_expr.X_op = O_absent;
10905 s = expr_end;
10906 continue;
10908 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
10909 gas_assert (!mips_opts.micromips);
10910 my_getExpression (&imm_expr, s);
10911 check_absolute_expr (ip, &imm_expr);
10912 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
10914 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10915 OP_MASK_RDDSP,
10916 (unsigned long) imm_expr.X_add_number);
10918 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
10919 imm_expr.X_op = O_absent;
10920 s = expr_end;
10921 continue;
10923 case ':': /* DSP 7-bit signed immediate in bit 19. */
10924 gas_assert (!mips_opts.micromips);
10925 my_getExpression (&imm_expr, s);
10926 check_absolute_expr (ip, &imm_expr);
10927 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
10928 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
10929 if (imm_expr.X_add_number < min_range ||
10930 imm_expr.X_add_number > max_range)
10932 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
10933 (long) min_range, (long) max_range,
10934 (long) imm_expr.X_add_number);
10936 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
10937 imm_expr.X_op = O_absent;
10938 s = expr_end;
10939 continue;
10941 case '@': /* DSP 10-bit signed immediate in bit 16. */
10942 gas_assert (!mips_opts.micromips);
10943 my_getExpression (&imm_expr, s);
10944 check_absolute_expr (ip, &imm_expr);
10945 min_range = -((OP_MASK_IMM10 + 1) >> 1);
10946 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
10947 if (imm_expr.X_add_number < min_range ||
10948 imm_expr.X_add_number > max_range)
10950 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
10951 (long) min_range, (long) max_range,
10952 (long) imm_expr.X_add_number);
10954 INSERT_OPERAND (0, IMM10, *ip, imm_expr.X_add_number);
10955 imm_expr.X_op = O_absent;
10956 s = expr_end;
10957 continue;
10959 case '!': /* MT usermode flag bit. */
10960 gas_assert (!mips_opts.micromips);
10961 my_getExpression (&imm_expr, s);
10962 check_absolute_expr (ip, &imm_expr);
10963 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
10964 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
10965 (unsigned long) imm_expr.X_add_number);
10966 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
10967 imm_expr.X_op = O_absent;
10968 s = expr_end;
10969 continue;
10971 case '$': /* MT load high flag bit. */
10972 gas_assert (!mips_opts.micromips);
10973 my_getExpression (&imm_expr, s);
10974 check_absolute_expr (ip, &imm_expr);
10975 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
10976 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
10977 (unsigned long) imm_expr.X_add_number);
10978 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
10979 imm_expr.X_op = O_absent;
10980 s = expr_end;
10981 continue;
10983 case '*': /* Four DSP accumulators in bits 18,19. */
10984 gas_assert (!mips_opts.micromips);
10985 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
10986 s[3] >= '0' && s[3] <= '3')
10988 regno = s[3] - '0';
10989 s += 4;
10990 INSERT_OPERAND (0, MTACC_T, *ip, regno);
10991 continue;
10993 else
10994 as_bad (_("Invalid dsp/smartmips acc register"));
10995 break;
10997 case '&': /* Four DSP accumulators in bits 13,14. */
10998 gas_assert (!mips_opts.micromips);
10999 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11000 s[3] >= '0' && s[3] <= '3')
11002 regno = s[3] - '0';
11003 s += 4;
11004 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11005 continue;
11007 else
11008 as_bad (_("Invalid dsp/smartmips acc register"));
11009 break;
11011 case '\\': /* 3-bit bit position. */
11013 unsigned long mask = (mips_opts.micromips
11014 ? MICROMIPSOP_MASK_3BITPOS
11015 : OP_MASK_3BITPOS);
11017 my_getExpression (&imm_expr, s);
11018 check_absolute_expr (ip, &imm_expr);
11019 if ((unsigned long) imm_expr.X_add_number > mask)
11020 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11021 ip->insn_mo->name,
11022 mask, (unsigned long) imm_expr.X_add_number);
11023 INSERT_OPERAND (mips_opts.micromips,
11024 3BITPOS, *ip, imm_expr.X_add_number);
11025 imm_expr.X_op = O_absent;
11026 s = expr_end;
11028 continue;
11030 case ',':
11031 ++argnum;
11032 if (*s++ == *args)
11033 continue;
11034 s--;
11035 switch (*++args)
11037 case 'r':
11038 case 'v':
11039 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11040 continue;
11042 case 'w':
11043 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11044 continue;
11046 case 'W':
11047 gas_assert (!mips_opts.micromips);
11048 INSERT_OPERAND (0, FT, *ip, lastregno);
11049 continue;
11051 case 'V':
11052 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11053 continue;
11055 break;
11057 case '(':
11058 /* Handle optional base register.
11059 Either the base register is omitted or
11060 we must have a left paren. */
11061 /* This is dependent on the next operand specifier
11062 is a base register specification. */
11063 gas_assert (args[1] == 'b'
11064 || (mips_opts.micromips
11065 && args[1] == 'm'
11066 && (args[2] == 'l' || args[2] == 'n'
11067 || args[2] == 's' || args[2] == 'a')));
11068 if (*s == '\0' && args[1] == 'b')
11069 return;
11070 /* Fall through. */
11072 case ')': /* These must match exactly. */
11073 if (*s++ == *args)
11074 continue;
11075 break;
11077 case '[': /* These must match exactly. */
11078 case ']':
11079 gas_assert (!mips_opts.micromips);
11080 if (*s++ == *args)
11081 continue;
11082 break;
11084 case '+': /* Opcode extension character. */
11085 switch (*++args)
11087 case '1': /* UDI immediates. */
11088 case '2':
11089 case '3':
11090 case '4':
11091 gas_assert (!mips_opts.micromips);
11093 const struct mips_immed *imm = mips_immed;
11095 while (imm->type && imm->type != *args)
11096 ++imm;
11097 if (! imm->type)
11098 internalError ();
11099 my_getExpression (&imm_expr, s);
11100 check_absolute_expr (ip, &imm_expr);
11101 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11103 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11104 imm->desc ? imm->desc : ip->insn_mo->name,
11105 (unsigned long) imm_expr.X_add_number,
11106 (unsigned long) imm_expr.X_add_number);
11107 imm_expr.X_add_number &= imm->mask;
11109 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11110 << imm->shift);
11111 imm_expr.X_op = O_absent;
11112 s = expr_end;
11114 continue;
11116 case 'A': /* ins/ext position, becomes LSB. */
11117 limlo = 0;
11118 limhi = 31;
11119 goto do_lsb;
11120 case 'E':
11121 limlo = 32;
11122 limhi = 63;
11123 goto do_lsb;
11124 do_lsb:
11125 my_getExpression (&imm_expr, s);
11126 check_absolute_expr (ip, &imm_expr);
11127 if ((unsigned long) imm_expr.X_add_number < limlo
11128 || (unsigned long) imm_expr.X_add_number > limhi)
11130 as_bad (_("Improper position (%lu)"),
11131 (unsigned long) imm_expr.X_add_number);
11132 imm_expr.X_add_number = limlo;
11134 lastpos = imm_expr.X_add_number;
11135 INSERT_OPERAND (mips_opts.micromips,
11136 EXTLSB, *ip, imm_expr.X_add_number);
11137 imm_expr.X_op = O_absent;
11138 s = expr_end;
11139 continue;
11141 case 'B': /* ins size, becomes MSB. */
11142 limlo = 1;
11143 limhi = 32;
11144 goto do_msb;
11145 case 'F':
11146 limlo = 33;
11147 limhi = 64;
11148 goto do_msb;
11149 do_msb:
11150 my_getExpression (&imm_expr, s);
11151 check_absolute_expr (ip, &imm_expr);
11152 /* Check for negative input so that small negative numbers
11153 will not succeed incorrectly. The checks against
11154 (pos+size) transitively check "size" itself,
11155 assuming that "pos" is reasonable. */
11156 if ((long) imm_expr.X_add_number < 0
11157 || ((unsigned long) imm_expr.X_add_number
11158 + lastpos) < limlo
11159 || ((unsigned long) imm_expr.X_add_number
11160 + lastpos) > limhi)
11162 as_bad (_("Improper insert size (%lu, position %lu)"),
11163 (unsigned long) imm_expr.X_add_number,
11164 (unsigned long) lastpos);
11165 imm_expr.X_add_number = limlo - lastpos;
11167 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11168 lastpos + imm_expr.X_add_number - 1);
11169 imm_expr.X_op = O_absent;
11170 s = expr_end;
11171 continue;
11173 case 'C': /* ext size, becomes MSBD. */
11174 limlo = 1;
11175 limhi = 32;
11176 goto do_msbd;
11177 case 'G':
11178 limlo = 33;
11179 limhi = 64;
11180 goto do_msbd;
11181 case 'H':
11182 limlo = 33;
11183 limhi = 64;
11184 goto do_msbd;
11185 do_msbd:
11186 my_getExpression (&imm_expr, s);
11187 check_absolute_expr (ip, &imm_expr);
11188 /* Check for negative input so that small negative numbers
11189 will not succeed incorrectly. The checks against
11190 (pos+size) transitively check "size" itself,
11191 assuming that "pos" is reasonable. */
11192 if ((long) imm_expr.X_add_number < 0
11193 || ((unsigned long) imm_expr.X_add_number
11194 + lastpos) < limlo
11195 || ((unsigned long) imm_expr.X_add_number
11196 + lastpos) > limhi)
11198 as_bad (_("Improper extract size (%lu, position %lu)"),
11199 (unsigned long) imm_expr.X_add_number,
11200 (unsigned long) lastpos);
11201 imm_expr.X_add_number = limlo - lastpos;
11203 INSERT_OPERAND (mips_opts.micromips,
11204 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11205 imm_expr.X_op = O_absent;
11206 s = expr_end;
11207 continue;
11209 case 'D':
11210 /* +D is for disassembly only; never match. */
11211 break;
11213 case 'I':
11214 /* "+I" is like "I", except that imm2_expr is used. */
11215 my_getExpression (&imm2_expr, s);
11216 if (imm2_expr.X_op != O_big
11217 && imm2_expr.X_op != O_constant)
11218 insn_error = _("absolute expression required");
11219 if (HAVE_32BIT_GPRS)
11220 normalize_constant_expr (&imm2_expr);
11221 s = expr_end;
11222 continue;
11224 case 'T': /* Coprocessor register. */
11225 gas_assert (!mips_opts.micromips);
11226 /* +T is for disassembly only; never match. */
11227 break;
11229 case 't': /* Coprocessor register number. */
11230 gas_assert (!mips_opts.micromips);
11231 if (s[0] == '$' && ISDIGIT (s[1]))
11233 ++s;
11234 regno = 0;
11237 regno *= 10;
11238 regno += *s - '0';
11239 ++s;
11241 while (ISDIGIT (*s));
11242 if (regno > 31)
11243 as_bad (_("Invalid register number (%d)"), regno);
11244 else
11246 INSERT_OPERAND (0, RT, *ip, regno);
11247 continue;
11250 else
11251 as_bad (_("Invalid coprocessor 0 register number"));
11252 break;
11254 case 'x':
11255 /* bbit[01] and bbit[01]32 bit index. Give error if index
11256 is not in the valid range. */
11257 gas_assert (!mips_opts.micromips);
11258 my_getExpression (&imm_expr, s);
11259 check_absolute_expr (ip, &imm_expr);
11260 if ((unsigned) imm_expr.X_add_number > 31)
11262 as_bad (_("Improper bit index (%lu)"),
11263 (unsigned long) imm_expr.X_add_number);
11264 imm_expr.X_add_number = 0;
11266 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11267 imm_expr.X_op = O_absent;
11268 s = expr_end;
11269 continue;
11271 case 'X':
11272 /* bbit[01] bit index when bbit is used but we generate
11273 bbit[01]32 because the index is over 32. Move to the
11274 next candidate if index is not in the valid range. */
11275 gas_assert (!mips_opts.micromips);
11276 my_getExpression (&imm_expr, s);
11277 check_absolute_expr (ip, &imm_expr);
11278 if ((unsigned) imm_expr.X_add_number < 32
11279 || (unsigned) imm_expr.X_add_number > 63)
11280 break;
11281 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11282 imm_expr.X_op = O_absent;
11283 s = expr_end;
11284 continue;
11286 case 'p':
11287 /* cins, cins32, exts and exts32 position field. Give error
11288 if it's not in the valid range. */
11289 gas_assert (!mips_opts.micromips);
11290 my_getExpression (&imm_expr, s);
11291 check_absolute_expr (ip, &imm_expr);
11292 if ((unsigned) imm_expr.X_add_number > 31)
11294 as_bad (_("Improper position (%lu)"),
11295 (unsigned long) imm_expr.X_add_number);
11296 imm_expr.X_add_number = 0;
11298 /* Make the pos explicit to simplify +S. */
11299 lastpos = imm_expr.X_add_number + 32;
11300 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11301 imm_expr.X_op = O_absent;
11302 s = expr_end;
11303 continue;
11305 case 'P':
11306 /* cins, cins32, exts and exts32 position field. Move to
11307 the next candidate if it's not in the valid range. */
11308 gas_assert (!mips_opts.micromips);
11309 my_getExpression (&imm_expr, s);
11310 check_absolute_expr (ip, &imm_expr);
11311 if ((unsigned) imm_expr.X_add_number < 32
11312 || (unsigned) imm_expr.X_add_number > 63)
11313 break;
11314 lastpos = imm_expr.X_add_number;
11315 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
11316 imm_expr.X_op = O_absent;
11317 s = expr_end;
11318 continue;
11320 case 's':
11321 /* cins and exts length-minus-one field. */
11322 gas_assert (!mips_opts.micromips);
11323 my_getExpression (&imm_expr, s);
11324 check_absolute_expr (ip, &imm_expr);
11325 if ((unsigned long) imm_expr.X_add_number > 31)
11327 as_bad (_("Improper size (%lu)"),
11328 (unsigned long) imm_expr.X_add_number);
11329 imm_expr.X_add_number = 0;
11331 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11332 imm_expr.X_op = O_absent;
11333 s = expr_end;
11334 continue;
11336 case 'S':
11337 /* cins32/exts32 and cins/exts aliasing cint32/exts32
11338 length-minus-one field. */
11339 gas_assert (!mips_opts.micromips);
11340 my_getExpression (&imm_expr, s);
11341 check_absolute_expr (ip, &imm_expr);
11342 if ((long) imm_expr.X_add_number < 0
11343 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
11345 as_bad (_("Improper size (%lu)"),
11346 (unsigned long) imm_expr.X_add_number);
11347 imm_expr.X_add_number = 0;
11349 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11350 imm_expr.X_op = O_absent;
11351 s = expr_end;
11352 continue;
11354 case 'Q':
11355 /* seqi/snei immediate field. */
11356 gas_assert (!mips_opts.micromips);
11357 my_getExpression (&imm_expr, s);
11358 check_absolute_expr (ip, &imm_expr);
11359 if ((long) imm_expr.X_add_number < -512
11360 || (long) imm_expr.X_add_number >= 512)
11362 as_bad (_("Improper immediate (%ld)"),
11363 (long) imm_expr.X_add_number);
11364 imm_expr.X_add_number = 0;
11366 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
11367 imm_expr.X_op = O_absent;
11368 s = expr_end;
11369 continue;
11371 case 'a': /* 8-bit signed offset in bit 6 */
11372 gas_assert (!mips_opts.micromips);
11373 my_getExpression (&imm_expr, s);
11374 check_absolute_expr (ip, &imm_expr);
11375 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
11376 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
11377 if (imm_expr.X_add_number < min_range
11378 || imm_expr.X_add_number > max_range)
11380 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11381 (long) min_range, (long) max_range,
11382 (long) imm_expr.X_add_number);
11384 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
11385 imm_expr.X_op = O_absent;
11386 s = expr_end;
11387 continue;
11389 case 'b': /* 8-bit signed offset in bit 3 */
11390 gas_assert (!mips_opts.micromips);
11391 my_getExpression (&imm_expr, s);
11392 check_absolute_expr (ip, &imm_expr);
11393 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
11394 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
11395 if (imm_expr.X_add_number < min_range
11396 || imm_expr.X_add_number > max_range)
11398 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11399 (long) min_range, (long) max_range,
11400 (long) imm_expr.X_add_number);
11402 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
11403 imm_expr.X_op = O_absent;
11404 s = expr_end;
11405 continue;
11407 case 'c': /* 9-bit signed offset in bit 6 */
11408 gas_assert (!mips_opts.micromips);
11409 my_getExpression (&imm_expr, s);
11410 check_absolute_expr (ip, &imm_expr);
11411 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
11412 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
11413 /* We check the offset range before adjusted. */
11414 min_range <<= 4;
11415 max_range <<= 4;
11416 if (imm_expr.X_add_number < min_range
11417 || imm_expr.X_add_number > max_range)
11419 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11420 (long) min_range, (long) max_range,
11421 (long) imm_expr.X_add_number);
11423 if (imm_expr.X_add_number & 0xf)
11425 as_bad (_("Offset not 16 bytes alignment (%ld)"),
11426 (long) imm_expr.X_add_number);
11428 /* Right shift 4 bits to adjust the offset operand. */
11429 INSERT_OPERAND (0, OFFSET_C, *ip,
11430 imm_expr.X_add_number >> 4);
11431 imm_expr.X_op = O_absent;
11432 s = expr_end;
11433 continue;
11435 case 'z':
11436 gas_assert (!mips_opts.micromips);
11437 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
11438 break;
11439 if (regno == AT && mips_opts.at)
11441 if (mips_opts.at == ATREG)
11442 as_warn (_("used $at without \".set noat\""));
11443 else
11444 as_warn (_("used $%u with \".set at=$%u\""),
11445 regno, mips_opts.at);
11447 INSERT_OPERAND (0, RZ, *ip, regno);
11448 continue;
11450 case 'Z':
11451 gas_assert (!mips_opts.micromips);
11452 if (!reg_lookup (&s, RTYPE_FPU, &regno))
11453 break;
11454 INSERT_OPERAND (0, FZ, *ip, regno);
11455 continue;
11457 default:
11458 as_bad (_("Internal error: bad %s opcode "
11459 "(unknown extension operand type `+%c'): %s %s"),
11460 mips_opts.micromips ? "microMIPS" : "MIPS",
11461 *args, insn->name, insn->args);
11462 /* Further processing is fruitless. */
11463 return;
11465 break;
11467 case '.': /* 10-bit offset. */
11468 gas_assert (mips_opts.micromips);
11469 case '~': /* 12-bit offset. */
11471 int shift = *args == '.' ? 9 : 11;
11472 size_t i;
11474 /* Check whether there is only a single bracketed expression
11475 left. If so, it must be the base register and the
11476 constant must be zero. */
11477 if (*s == '(' && strchr (s + 1, '(') == 0)
11478 continue;
11480 /* If this value won't fit into the offset, then go find
11481 a macro that will generate a 16- or 32-bit offset code
11482 pattern. */
11483 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
11484 if ((i == 0 && (imm_expr.X_op != O_constant
11485 || imm_expr.X_add_number >= 1 << shift
11486 || imm_expr.X_add_number < -1 << shift))
11487 || i > 0)
11489 imm_expr.X_op = O_absent;
11490 break;
11492 if (shift == 9)
11493 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
11494 else
11495 INSERT_OPERAND (mips_opts.micromips,
11496 OFFSET12, *ip, imm_expr.X_add_number);
11497 imm_expr.X_op = O_absent;
11498 s = expr_end;
11500 continue;
11502 case '<': /* must be at least one digit */
11504 * According to the manual, if the shift amount is greater
11505 * than 31 or less than 0, then the shift amount should be
11506 * mod 32. In reality the mips assembler issues an error.
11507 * We issue a warning and mask out all but the low 5 bits.
11509 my_getExpression (&imm_expr, s);
11510 check_absolute_expr (ip, &imm_expr);
11511 if ((unsigned long) imm_expr.X_add_number > 31)
11512 as_warn (_("Improper shift amount (%lu)"),
11513 (unsigned long) imm_expr.X_add_number);
11514 INSERT_OPERAND (mips_opts.micromips,
11515 SHAMT, *ip, imm_expr.X_add_number);
11516 imm_expr.X_op = O_absent;
11517 s = expr_end;
11518 continue;
11520 case '>': /* shift amount minus 32 */
11521 my_getExpression (&imm_expr, s);
11522 check_absolute_expr (ip, &imm_expr);
11523 if ((unsigned long) imm_expr.X_add_number < 32
11524 || (unsigned long) imm_expr.X_add_number > 63)
11525 break;
11526 INSERT_OPERAND (mips_opts.micromips,
11527 SHAMT, *ip, imm_expr.X_add_number - 32);
11528 imm_expr.X_op = O_absent;
11529 s = expr_end;
11530 continue;
11532 case 'k': /* CACHE code. */
11533 case 'h': /* PREFX code. */
11534 case '1': /* SYNC type. */
11535 my_getExpression (&imm_expr, s);
11536 check_absolute_expr (ip, &imm_expr);
11537 if ((unsigned long) imm_expr.X_add_number > 31)
11538 as_warn (_("Invalid value for `%s' (%lu)"),
11539 ip->insn_mo->name,
11540 (unsigned long) imm_expr.X_add_number);
11541 switch (*args)
11543 case 'k':
11544 if (mips_fix_cn63xxp1
11545 && !mips_opts.micromips
11546 && strcmp ("pref", insn->name) == 0)
11547 switch (imm_expr.X_add_number)
11549 case 5:
11550 case 25:
11551 case 26:
11552 case 27:
11553 case 28:
11554 case 29:
11555 case 30:
11556 case 31: /* These are ok. */
11557 break;
11559 default: /* The rest must be changed to 28. */
11560 imm_expr.X_add_number = 28;
11561 break;
11563 INSERT_OPERAND (mips_opts.micromips,
11564 CACHE, *ip, imm_expr.X_add_number);
11565 break;
11566 case 'h':
11567 INSERT_OPERAND (mips_opts.micromips,
11568 PREFX, *ip, imm_expr.X_add_number);
11569 break;
11570 case '1':
11571 INSERT_OPERAND (mips_opts.micromips,
11572 STYPE, *ip, imm_expr.X_add_number);
11573 break;
11575 imm_expr.X_op = O_absent;
11576 s = expr_end;
11577 continue;
11579 case 'c': /* BREAK code. */
11581 unsigned long mask = (mips_opts.micromips
11582 ? MICROMIPSOP_MASK_CODE
11583 : OP_MASK_CODE);
11585 my_getExpression (&imm_expr, s);
11586 check_absolute_expr (ip, &imm_expr);
11587 if ((unsigned long) imm_expr.X_add_number > mask)
11588 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11589 ip->insn_mo->name,
11590 mask, (unsigned long) imm_expr.X_add_number);
11591 INSERT_OPERAND (mips_opts.micromips,
11592 CODE, *ip, imm_expr.X_add_number);
11593 imm_expr.X_op = O_absent;
11594 s = expr_end;
11596 continue;
11598 case 'q': /* Lower BREAK code. */
11600 unsigned long mask = (mips_opts.micromips
11601 ? MICROMIPSOP_MASK_CODE2
11602 : OP_MASK_CODE2);
11604 my_getExpression (&imm_expr, s);
11605 check_absolute_expr (ip, &imm_expr);
11606 if ((unsigned long) imm_expr.X_add_number > mask)
11607 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
11608 ip->insn_mo->name,
11609 mask, (unsigned long) imm_expr.X_add_number);
11610 INSERT_OPERAND (mips_opts.micromips,
11611 CODE2, *ip, imm_expr.X_add_number);
11612 imm_expr.X_op = O_absent;
11613 s = expr_end;
11615 continue;
11617 case 'B': /* 20- or 10-bit syscall/break/wait code. */
11619 unsigned long mask = (mips_opts.micromips
11620 ? MICROMIPSOP_MASK_CODE10
11621 : OP_MASK_CODE20);
11623 my_getExpression (&imm_expr, s);
11624 check_absolute_expr (ip, &imm_expr);
11625 if ((unsigned long) imm_expr.X_add_number > mask)
11626 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11627 ip->insn_mo->name,
11628 mask, (unsigned long) imm_expr.X_add_number);
11629 if (mips_opts.micromips)
11630 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
11631 else
11632 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
11633 imm_expr.X_op = O_absent;
11634 s = expr_end;
11636 continue;
11638 case 'C': /* 25- or 23-bit coprocessor code. */
11640 unsigned long mask = (mips_opts.micromips
11641 ? MICROMIPSOP_MASK_COPZ
11642 : OP_MASK_COPZ);
11644 my_getExpression (&imm_expr, s);
11645 check_absolute_expr (ip, &imm_expr);
11646 if ((unsigned long) imm_expr.X_add_number > mask)
11647 as_warn (_("Coproccesor code > %u bits (%lu)"),
11648 mips_opts.micromips ? 23U : 25U,
11649 (unsigned long) imm_expr.X_add_number);
11650 INSERT_OPERAND (mips_opts.micromips,
11651 COPZ, *ip, imm_expr.X_add_number);
11652 imm_expr.X_op = O_absent;
11653 s = expr_end;
11655 continue;
11657 case 'J': /* 19-bit WAIT code. */
11658 gas_assert (!mips_opts.micromips);
11659 my_getExpression (&imm_expr, s);
11660 check_absolute_expr (ip, &imm_expr);
11661 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
11663 as_warn (_("Illegal 19-bit code (%lu)"),
11664 (unsigned long) imm_expr.X_add_number);
11665 imm_expr.X_add_number &= OP_MASK_CODE19;
11667 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
11668 imm_expr.X_op = O_absent;
11669 s = expr_end;
11670 continue;
11672 case 'P': /* Performance register. */
11673 gas_assert (!mips_opts.micromips);
11674 my_getExpression (&imm_expr, s);
11675 check_absolute_expr (ip, &imm_expr);
11676 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
11677 as_warn (_("Invalid performance register (%lu)"),
11678 (unsigned long) imm_expr.X_add_number);
11679 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
11680 imm_expr.X_op = O_absent;
11681 s = expr_end;
11682 continue;
11684 case 'G': /* Coprocessor destination register. */
11686 unsigned long opcode = ip->insn_opcode;
11687 unsigned long mask;
11688 unsigned int types;
11689 int cop0;
11691 if (mips_opts.micromips)
11693 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
11694 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
11695 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
11696 opcode &= mask;
11697 switch (opcode)
11699 case 0x000000fc: /* mfc0 */
11700 case 0x000002fc: /* mtc0 */
11701 case 0x580000fc: /* dmfc0 */
11702 case 0x580002fc: /* dmtc0 */
11703 cop0 = 1;
11704 break;
11705 default:
11706 cop0 = 0;
11707 break;
11710 else
11712 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
11713 cop0 = opcode == OP_OP_COP0;
11715 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
11716 ok = reg_lookup (&s, types, &regno);
11717 if (mips_opts.micromips)
11718 INSERT_OPERAND (1, RS, *ip, regno);
11719 else
11720 INSERT_OPERAND (0, RD, *ip, regno);
11721 if (ok)
11723 lastregno = regno;
11724 continue;
11727 break;
11729 case 'y': /* ALNV.PS source register. */
11730 gas_assert (mips_opts.micromips);
11731 goto do_reg;
11732 case 'x': /* Ignore register name. */
11733 case 'U': /* Destination register (CLO/CLZ). */
11734 case 'g': /* Coprocessor destination register. */
11735 gas_assert (!mips_opts.micromips);
11736 case 'b': /* Base register. */
11737 case 'd': /* Destination register. */
11738 case 's': /* Source register. */
11739 case 't': /* Target register. */
11740 case 'r': /* Both target and source. */
11741 case 'v': /* Both dest and source. */
11742 case 'w': /* Both dest and target. */
11743 case 'E': /* Coprocessor target register. */
11744 case 'K': /* RDHWR destination register. */
11745 case 'z': /* Must be zero register. */
11746 do_reg:
11747 s_reset = s;
11748 if (*args == 'E' || *args == 'K')
11749 ok = reg_lookup (&s, RTYPE_NUM, &regno);
11750 else
11752 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
11753 if (regno == AT && mips_opts.at)
11755 if (mips_opts.at == ATREG)
11756 as_warn (_("Used $at without \".set noat\""));
11757 else
11758 as_warn (_("Used $%u with \".set at=$%u\""),
11759 regno, mips_opts.at);
11762 if (ok)
11764 c = *args;
11765 if (*s == ' ')
11766 ++s;
11767 if (args[1] != *s)
11769 if (c == 'r' || c == 'v' || c == 'w')
11771 regno = lastregno;
11772 s = s_reset;
11773 ++args;
11776 /* 'z' only matches $0. */
11777 if (c == 'z' && regno != 0)
11778 break;
11780 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
11782 if (regno == lastregno)
11784 insn_error
11785 = _("Source and destination must be different");
11786 continue;
11788 if (regno == 31 && lastregno == 0xffffffff)
11790 insn_error
11791 = _("A destination register must be supplied");
11792 continue;
11795 /* Now that we have assembled one operand, we use the args
11796 string to figure out where it goes in the instruction. */
11797 switch (c)
11799 case 'r':
11800 case 's':
11801 case 'v':
11802 case 'b':
11803 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
11804 break;
11806 case 'K':
11807 if (mips_opts.micromips)
11808 INSERT_OPERAND (1, RS, *ip, regno);
11809 else
11810 INSERT_OPERAND (0, RD, *ip, regno);
11811 break;
11813 case 'd':
11814 case 'g':
11815 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
11816 break;
11818 case 'U':
11819 gas_assert (!mips_opts.micromips);
11820 INSERT_OPERAND (0, RD, *ip, regno);
11821 INSERT_OPERAND (0, RT, *ip, regno);
11822 break;
11824 case 'w':
11825 case 't':
11826 case 'E':
11827 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
11828 break;
11830 case 'y':
11831 gas_assert (mips_opts.micromips);
11832 INSERT_OPERAND (1, RS3, *ip, regno);
11833 break;
11835 case 'x':
11836 /* This case exists because on the r3000 trunc
11837 expands into a macro which requires a gp
11838 register. On the r6000 or r4000 it is
11839 assembled into a single instruction which
11840 ignores the register. Thus the insn version
11841 is MIPS_ISA2 and uses 'x', and the macro
11842 version is MIPS_ISA1 and uses 't'. */
11843 break;
11845 case 'z':
11846 /* This case is for the div instruction, which
11847 acts differently if the destination argument
11848 is $0. This only matches $0, and is checked
11849 outside the switch. */
11850 break;
11852 lastregno = regno;
11853 continue;
11855 switch (*args++)
11857 case 'r':
11858 case 'v':
11859 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11860 continue;
11862 case 'w':
11863 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11864 continue;
11866 break;
11868 case 'O': /* MDMX alignment immediate constant. */
11869 gas_assert (!mips_opts.micromips);
11870 my_getExpression (&imm_expr, s);
11871 check_absolute_expr (ip, &imm_expr);
11872 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
11873 as_warn (_("Improper align amount (%ld), using low bits"),
11874 (long) imm_expr.X_add_number);
11875 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
11876 imm_expr.X_op = O_absent;
11877 s = expr_end;
11878 continue;
11880 case 'Q': /* MDMX vector, element sel, or const. */
11881 if (s[0] != '$')
11883 /* MDMX Immediate. */
11884 gas_assert (!mips_opts.micromips);
11885 my_getExpression (&imm_expr, s);
11886 check_absolute_expr (ip, &imm_expr);
11887 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
11888 as_warn (_("Invalid MDMX Immediate (%ld)"),
11889 (long) imm_expr.X_add_number);
11890 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
11891 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
11892 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
11893 else
11894 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
11895 imm_expr.X_op = O_absent;
11896 s = expr_end;
11897 continue;
11899 /* Not MDMX Immediate. Fall through. */
11900 case 'X': /* MDMX destination register. */
11901 case 'Y': /* MDMX source register. */
11902 case 'Z': /* MDMX target register. */
11903 is_mdmx = 1;
11904 case 'W':
11905 gas_assert (!mips_opts.micromips);
11906 case 'D': /* Floating point destination register. */
11907 case 'S': /* Floating point source register. */
11908 case 'T': /* Floating point target register. */
11909 case 'R': /* Floating point source register. */
11910 case 'V':
11911 rtype = RTYPE_FPU;
11912 if (is_mdmx
11913 || (mips_opts.ase_mdmx
11914 && (ip->insn_mo->pinfo & FP_D)
11915 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
11916 | INSN_COPROC_MEMORY_DELAY
11917 | INSN_LOAD_COPROC_DELAY
11918 | INSN_LOAD_MEMORY_DELAY
11919 | INSN_STORE_MEMORY))))
11920 rtype |= RTYPE_VEC;
11921 s_reset = s;
11922 if (reg_lookup (&s, rtype, &regno))
11924 if ((regno & 1) != 0
11925 && HAVE_32BIT_FPRS
11926 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
11927 as_warn (_("Float register should be even, was %d"),
11928 regno);
11930 c = *args;
11931 if (*s == ' ')
11932 ++s;
11933 if (args[1] != *s)
11935 if (c == 'V' || c == 'W')
11937 regno = lastregno;
11938 s = s_reset;
11939 ++args;
11942 switch (c)
11944 case 'D':
11945 case 'X':
11946 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
11947 break;
11949 case 'V':
11950 case 'S':
11951 case 'Y':
11952 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
11953 break;
11955 case 'Q':
11956 /* This is like 'Z', but also needs to fix the MDMX
11957 vector/scalar select bits. Note that the
11958 scalar immediate case is handled above. */
11959 if (*s == '[')
11961 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
11962 int max_el = (is_qh ? 3 : 7);
11963 s++;
11964 my_getExpression(&imm_expr, s);
11965 check_absolute_expr (ip, &imm_expr);
11966 s = expr_end;
11967 if (imm_expr.X_add_number > max_el)
11968 as_bad (_("Bad element selector %ld"),
11969 (long) imm_expr.X_add_number);
11970 imm_expr.X_add_number &= max_el;
11971 ip->insn_opcode |= (imm_expr.X_add_number
11972 << (OP_SH_VSEL +
11973 (is_qh ? 2 : 1)));
11974 imm_expr.X_op = O_absent;
11975 if (*s != ']')
11976 as_warn (_("Expecting ']' found '%s'"), s);
11977 else
11978 s++;
11980 else
11982 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
11983 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
11984 << OP_SH_VSEL);
11985 else
11986 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
11987 OP_SH_VSEL);
11989 /* Fall through. */
11990 case 'W':
11991 case 'T':
11992 case 'Z':
11993 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
11994 break;
11996 case 'R':
11997 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
11998 break;
12000 lastregno = regno;
12001 continue;
12004 switch (*args++)
12006 case 'V':
12007 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12008 continue;
12010 case 'W':
12011 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12012 continue;
12014 break;
12016 case 'I':
12017 my_getExpression (&imm_expr, s);
12018 if (imm_expr.X_op != O_big
12019 && imm_expr.X_op != O_constant)
12020 insn_error = _("absolute expression required");
12021 if (HAVE_32BIT_GPRS)
12022 normalize_constant_expr (&imm_expr);
12023 s = expr_end;
12024 continue;
12026 case 'A':
12027 my_getExpression (&offset_expr, s);
12028 normalize_address_expr (&offset_expr);
12029 *imm_reloc = BFD_RELOC_32;
12030 s = expr_end;
12031 continue;
12033 case 'F':
12034 case 'L':
12035 case 'f':
12036 case 'l':
12038 int f64;
12039 int using_gprs;
12040 char *save_in;
12041 char *err;
12042 unsigned char temp[8];
12043 int len;
12044 unsigned int length;
12045 segT seg;
12046 subsegT subseg;
12047 char *p;
12049 /* These only appear as the last operand in an
12050 instruction, and every instruction that accepts
12051 them in any variant accepts them in all variants.
12052 This means we don't have to worry about backing out
12053 any changes if the instruction does not match.
12055 The difference between them is the size of the
12056 floating point constant and where it goes. For 'F'
12057 and 'L' the constant is 64 bits; for 'f' and 'l' it
12058 is 32 bits. Where the constant is placed is based
12059 on how the MIPS assembler does things:
12060 F -- .rdata
12061 L -- .lit8
12062 f -- immediate value
12063 l -- .lit4
12065 The .lit4 and .lit8 sections are only used if
12066 permitted by the -G argument.
12068 The code below needs to know whether the target register
12069 is 32 or 64 bits wide. It relies on the fact 'f' and
12070 'F' are used with GPR-based instructions and 'l' and
12071 'L' are used with FPR-based instructions. */
12073 f64 = *args == 'F' || *args == 'L';
12074 using_gprs = *args == 'F' || *args == 'f';
12076 save_in = input_line_pointer;
12077 input_line_pointer = s;
12078 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12079 length = len;
12080 s = input_line_pointer;
12081 input_line_pointer = save_in;
12082 if (err != NULL && *err != '\0')
12084 as_bad (_("Bad floating point constant: %s"), err);
12085 memset (temp, '\0', sizeof temp);
12086 length = f64 ? 8 : 4;
12089 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12091 if (*args == 'f'
12092 || (*args == 'l'
12093 && (g_switch_value < 4
12094 || (temp[0] == 0 && temp[1] == 0)
12095 || (temp[2] == 0 && temp[3] == 0))))
12097 imm_expr.X_op = O_constant;
12098 if (!target_big_endian)
12099 imm_expr.X_add_number = bfd_getl32 (temp);
12100 else
12101 imm_expr.X_add_number = bfd_getb32 (temp);
12103 else if (length > 4
12104 && !mips_disable_float_construction
12105 /* Constants can only be constructed in GPRs and
12106 copied to FPRs if the GPRs are at least as wide
12107 as the FPRs. Force the constant into memory if
12108 we are using 64-bit FPRs but the GPRs are only
12109 32 bits wide. */
12110 && (using_gprs
12111 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12112 && ((temp[0] == 0 && temp[1] == 0)
12113 || (temp[2] == 0 && temp[3] == 0))
12114 && ((temp[4] == 0 && temp[5] == 0)
12115 || (temp[6] == 0 && temp[7] == 0)))
12117 /* The value is simple enough to load with a couple of
12118 instructions. If using 32-bit registers, set
12119 imm_expr to the high order 32 bits and offset_expr to
12120 the low order 32 bits. Otherwise, set imm_expr to
12121 the entire 64 bit constant. */
12122 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12124 imm_expr.X_op = O_constant;
12125 offset_expr.X_op = O_constant;
12126 if (!target_big_endian)
12128 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12129 offset_expr.X_add_number = bfd_getl32 (temp);
12131 else
12133 imm_expr.X_add_number = bfd_getb32 (temp);
12134 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12136 if (offset_expr.X_add_number == 0)
12137 offset_expr.X_op = O_absent;
12139 else if (sizeof (imm_expr.X_add_number) > 4)
12141 imm_expr.X_op = O_constant;
12142 if (!target_big_endian)
12143 imm_expr.X_add_number = bfd_getl64 (temp);
12144 else
12145 imm_expr.X_add_number = bfd_getb64 (temp);
12147 else
12149 imm_expr.X_op = O_big;
12150 imm_expr.X_add_number = 4;
12151 if (!target_big_endian)
12153 generic_bignum[0] = bfd_getl16 (temp);
12154 generic_bignum[1] = bfd_getl16 (temp + 2);
12155 generic_bignum[2] = bfd_getl16 (temp + 4);
12156 generic_bignum[3] = bfd_getl16 (temp + 6);
12158 else
12160 generic_bignum[0] = bfd_getb16 (temp + 6);
12161 generic_bignum[1] = bfd_getb16 (temp + 4);
12162 generic_bignum[2] = bfd_getb16 (temp + 2);
12163 generic_bignum[3] = bfd_getb16 (temp);
12167 else
12169 const char *newname;
12170 segT new_seg;
12172 /* Switch to the right section. */
12173 seg = now_seg;
12174 subseg = now_subseg;
12175 switch (*args)
12177 default: /* unused default case avoids warnings. */
12178 case 'L':
12179 newname = RDATA_SECTION_NAME;
12180 if (g_switch_value >= 8)
12181 newname = ".lit8";
12182 break;
12183 case 'F':
12184 newname = RDATA_SECTION_NAME;
12185 break;
12186 case 'l':
12187 gas_assert (g_switch_value >= 4);
12188 newname = ".lit4";
12189 break;
12191 new_seg = subseg_new (newname, (subsegT) 0);
12192 if (IS_ELF)
12193 bfd_set_section_flags (stdoutput, new_seg,
12194 (SEC_ALLOC
12195 | SEC_LOAD
12196 | SEC_READONLY
12197 | SEC_DATA));
12198 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12199 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
12200 record_alignment (new_seg, 4);
12201 else
12202 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12203 if (seg == now_seg)
12204 as_bad (_("Can't use floating point insn in this section"));
12206 /* Set the argument to the current address in the
12207 section. */
12208 offset_expr.X_op = O_symbol;
12209 offset_expr.X_add_symbol = symbol_temp_new_now ();
12210 offset_expr.X_add_number = 0;
12212 /* Put the floating point number into the section. */
12213 p = frag_more ((int) length);
12214 memcpy (p, temp, length);
12216 /* Switch back to the original section. */
12217 subseg_set (seg, subseg);
12220 continue;
12222 case 'i': /* 16-bit unsigned immediate. */
12223 case 'j': /* 16-bit signed immediate. */
12224 *imm_reloc = BFD_RELOC_LO16;
12225 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12227 int more;
12228 offsetT minval, maxval;
12230 more = (insn + 1 < past
12231 && strcmp (insn->name, insn[1].name) == 0);
12233 /* If the expression was written as an unsigned number,
12234 only treat it as signed if there are no more
12235 alternatives. */
12236 if (more
12237 && *args == 'j'
12238 && sizeof (imm_expr.X_add_number) <= 4
12239 && imm_expr.X_op == O_constant
12240 && imm_expr.X_add_number < 0
12241 && imm_expr.X_unsigned
12242 && HAVE_64BIT_GPRS)
12243 break;
12245 /* For compatibility with older assemblers, we accept
12246 0x8000-0xffff as signed 16-bit numbers when only
12247 signed numbers are allowed. */
12248 if (*args == 'i')
12249 minval = 0, maxval = 0xffff;
12250 else if (more)
12251 minval = -0x8000, maxval = 0x7fff;
12252 else
12253 minval = -0x8000, maxval = 0xffff;
12255 if (imm_expr.X_op != O_constant
12256 || imm_expr.X_add_number < minval
12257 || imm_expr.X_add_number > maxval)
12259 if (more)
12260 break;
12261 if (imm_expr.X_op == O_constant
12262 || imm_expr.X_op == O_big)
12263 as_bad (_("Expression out of range"));
12266 s = expr_end;
12267 continue;
12269 case 'o': /* 16-bit offset. */
12270 offset_reloc[0] = BFD_RELOC_LO16;
12271 offset_reloc[1] = BFD_RELOC_UNUSED;
12272 offset_reloc[2] = BFD_RELOC_UNUSED;
12274 /* Check whether there is only a single bracketed expression
12275 left. If so, it must be the base register and the
12276 constant must be zero. */
12277 if (*s == '(' && strchr (s + 1, '(') == 0)
12279 offset_expr.X_op = O_constant;
12280 offset_expr.X_add_number = 0;
12281 continue;
12284 /* If this value won't fit into a 16 bit offset, then go
12285 find a macro that will generate the 32 bit offset
12286 code pattern. */
12287 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
12288 && (offset_expr.X_op != O_constant
12289 || offset_expr.X_add_number >= 0x8000
12290 || offset_expr.X_add_number < -0x8000))
12291 break;
12293 s = expr_end;
12294 continue;
12296 case 'p': /* PC-relative offset. */
12297 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12298 my_getExpression (&offset_expr, s);
12299 s = expr_end;
12300 continue;
12302 case 'u': /* Upper 16 bits. */
12303 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
12304 && imm_expr.X_op == O_constant
12305 && (imm_expr.X_add_number < 0
12306 || imm_expr.X_add_number >= 0x10000))
12307 as_bad (_("lui expression (%lu) not in range 0..65535"),
12308 (unsigned long) imm_expr.X_add_number);
12309 s = expr_end;
12310 continue;
12312 case 'a': /* 26-bit address. */
12313 *offset_reloc = BFD_RELOC_MIPS_JMP;
12314 my_getExpression (&offset_expr, s);
12315 s = expr_end;
12316 continue;
12318 case 'N': /* 3-bit branch condition code. */
12319 case 'M': /* 3-bit compare condition code. */
12320 rtype = RTYPE_CCC;
12321 if (ip->insn_mo->pinfo & (FP_D | FP_S))
12322 rtype |= RTYPE_FCC;
12323 if (!reg_lookup (&s, rtype, &regno))
12324 break;
12325 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
12326 || strcmp (str + strlen (str) - 5, "any2f") == 0
12327 || strcmp (str + strlen (str) - 5, "any2t") == 0)
12328 && (regno & 1) != 0)
12329 as_warn (_("Condition code register should be even for %s, "
12330 "was %d"),
12331 str, regno);
12332 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
12333 || strcmp (str + strlen (str) - 5, "any4t") == 0)
12334 && (regno & 3) != 0)
12335 as_warn (_("Condition code register should be 0 or 4 for %s, "
12336 "was %d"),
12337 str, regno);
12338 if (*args == 'N')
12339 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
12340 else
12341 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
12342 continue;
12344 case 'H':
12345 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
12346 s += 2;
12347 if (ISDIGIT (*s))
12349 c = 0;
12352 c *= 10;
12353 c += *s - '0';
12354 ++s;
12356 while (ISDIGIT (*s));
12358 else
12359 c = 8; /* Invalid sel value. */
12361 if (c > 7)
12362 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
12363 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
12364 continue;
12366 case 'e':
12367 gas_assert (!mips_opts.micromips);
12368 /* Must be at least one digit. */
12369 my_getExpression (&imm_expr, s);
12370 check_absolute_expr (ip, &imm_expr);
12372 if ((unsigned long) imm_expr.X_add_number
12373 > (unsigned long) OP_MASK_VECBYTE)
12375 as_bad (_("bad byte vector index (%ld)"),
12376 (long) imm_expr.X_add_number);
12377 imm_expr.X_add_number = 0;
12380 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
12381 imm_expr.X_op = O_absent;
12382 s = expr_end;
12383 continue;
12385 case '%':
12386 gas_assert (!mips_opts.micromips);
12387 my_getExpression (&imm_expr, s);
12388 check_absolute_expr (ip, &imm_expr);
12390 if ((unsigned long) imm_expr.X_add_number
12391 > (unsigned long) OP_MASK_VECALIGN)
12393 as_bad (_("bad byte vector index (%ld)"),
12394 (long) imm_expr.X_add_number);
12395 imm_expr.X_add_number = 0;
12398 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
12399 imm_expr.X_op = O_absent;
12400 s = expr_end;
12401 continue;
12403 case 'm': /* Opcode extension character. */
12404 gas_assert (mips_opts.micromips);
12405 c = *++args;
12406 switch (c)
12408 case 'r':
12409 if (strncmp (s, "$pc", 3) == 0)
12411 s += 3;
12412 continue;
12414 break;
12416 case 'a':
12417 case 'b':
12418 case 'c':
12419 case 'd':
12420 case 'e':
12421 case 'f':
12422 case 'g':
12423 case 'h':
12424 case 'i':
12425 case 'j':
12426 case 'l':
12427 case 'm':
12428 case 'n':
12429 case 'p':
12430 case 'q':
12431 case 's':
12432 case 't':
12433 case 'x':
12434 case 'y':
12435 case 'z':
12436 s_reset = s;
12437 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
12438 if (regno == AT && mips_opts.at)
12440 if (mips_opts.at == ATREG)
12441 as_warn (_("Used $at without \".set noat\""));
12442 else
12443 as_warn (_("Used $%u with \".set at=$%u\""),
12444 regno, mips_opts.at);
12446 if (!ok)
12448 if (c == 'c')
12450 gas_assert (args[1] == ',');
12451 regno = lastregno;
12452 ++args;
12454 else if (c == 't')
12456 gas_assert (args[1] == ',');
12457 ++args;
12458 continue; /* Nothing to do. */
12460 else
12461 break;
12464 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
12466 if (regno == lastregno)
12468 insn_error
12469 = _("Source and destination must be different");
12470 continue;
12472 if (regno == 31 && lastregno == 0xffffffff)
12474 insn_error
12475 = _("A destination register must be supplied");
12476 continue;
12480 if (*s == ' ')
12481 ++s;
12482 if (args[1] != *s)
12484 if (c == 'e')
12486 gas_assert (args[1] == ',');
12487 regno = lastregno;
12488 s = s_reset;
12489 ++args;
12491 else if (c == 't')
12493 gas_assert (args[1] == ',');
12494 s = s_reset;
12495 ++args;
12496 continue; /* Nothing to do. */
12500 /* Make sure regno is the same as lastregno. */
12501 if (c == 't' && regno != lastregno)
12502 break;
12504 /* Make sure regno is the same as destregno. */
12505 if (c == 'x' && regno != destregno)
12506 break;
12508 /* We need to save regno, before regno maps to the
12509 microMIPS register encoding. */
12510 lastregno = regno;
12512 if (c == 'f')
12513 destregno = regno;
12515 switch (c)
12517 case 'a':
12518 if (regno != GP)
12519 regno = ILLEGAL_REG;
12520 break;
12522 case 'b':
12523 regno = mips32_to_micromips_reg_b_map[regno];
12524 break;
12526 case 'c':
12527 regno = mips32_to_micromips_reg_c_map[regno];
12528 break;
12530 case 'd':
12531 regno = mips32_to_micromips_reg_d_map[regno];
12532 break;
12534 case 'e':
12535 regno = mips32_to_micromips_reg_e_map[regno];
12536 break;
12538 case 'f':
12539 regno = mips32_to_micromips_reg_f_map[regno];
12540 break;
12542 case 'g':
12543 regno = mips32_to_micromips_reg_g_map[regno];
12544 break;
12546 case 'h':
12547 regno = mips32_to_micromips_reg_h_map[regno];
12548 break;
12550 case 'i':
12551 switch (EXTRACT_OPERAND (1, MI, *ip))
12553 case 4:
12554 if (regno == 21)
12555 regno = 3;
12556 else if (regno == 22)
12557 regno = 4;
12558 else if (regno == 5)
12559 regno = 5;
12560 else if (regno == 6)
12561 regno = 6;
12562 else if (regno == 7)
12563 regno = 7;
12564 else
12565 regno = ILLEGAL_REG;
12566 break;
12568 case 5:
12569 if (regno == 6)
12570 regno = 0;
12571 else if (regno == 7)
12572 regno = 1;
12573 else
12574 regno = ILLEGAL_REG;
12575 break;
12577 case 6:
12578 if (regno == 7)
12579 regno = 2;
12580 else
12581 regno = ILLEGAL_REG;
12582 break;
12584 default:
12585 regno = ILLEGAL_REG;
12586 break;
12588 break;
12590 case 'l':
12591 regno = mips32_to_micromips_reg_l_map[regno];
12592 break;
12594 case 'm':
12595 regno = mips32_to_micromips_reg_m_map[regno];
12596 break;
12598 case 'n':
12599 regno = mips32_to_micromips_reg_n_map[regno];
12600 break;
12602 case 'q':
12603 regno = mips32_to_micromips_reg_q_map[regno];
12604 break;
12606 case 's':
12607 if (regno != SP)
12608 regno = ILLEGAL_REG;
12609 break;
12611 case 'y':
12612 if (regno != 31)
12613 regno = ILLEGAL_REG;
12614 break;
12616 case 'z':
12617 if (regno != ZERO)
12618 regno = ILLEGAL_REG;
12619 break;
12621 case 'j': /* Do nothing. */
12622 case 'p':
12623 case 't':
12624 case 'x':
12625 break;
12627 default:
12628 internalError ();
12631 if (regno == ILLEGAL_REG)
12632 break;
12634 switch (c)
12636 case 'b':
12637 INSERT_OPERAND (1, MB, *ip, regno);
12638 break;
12640 case 'c':
12641 INSERT_OPERAND (1, MC, *ip, regno);
12642 break;
12644 case 'd':
12645 INSERT_OPERAND (1, MD, *ip, regno);
12646 break;
12648 case 'e':
12649 INSERT_OPERAND (1, ME, *ip, regno);
12650 break;
12652 case 'f':
12653 INSERT_OPERAND (1, MF, *ip, regno);
12654 break;
12656 case 'g':
12657 INSERT_OPERAND (1, MG, *ip, regno);
12658 break;
12660 case 'h':
12661 INSERT_OPERAND (1, MH, *ip, regno);
12662 break;
12664 case 'i':
12665 INSERT_OPERAND (1, MI, *ip, regno);
12666 break;
12668 case 'j':
12669 INSERT_OPERAND (1, MJ, *ip, regno);
12670 break;
12672 case 'l':
12673 INSERT_OPERAND (1, ML, *ip, regno);
12674 break;
12676 case 'm':
12677 INSERT_OPERAND (1, MM, *ip, regno);
12678 break;
12680 case 'n':
12681 INSERT_OPERAND (1, MN, *ip, regno);
12682 break;
12684 case 'p':
12685 INSERT_OPERAND (1, MP, *ip, regno);
12686 break;
12688 case 'q':
12689 INSERT_OPERAND (1, MQ, *ip, regno);
12690 break;
12692 case 'a': /* Do nothing. */
12693 case 's': /* Do nothing. */
12694 case 't': /* Do nothing. */
12695 case 'x': /* Do nothing. */
12696 case 'y': /* Do nothing. */
12697 case 'z': /* Do nothing. */
12698 break;
12700 default:
12701 internalError ();
12703 continue;
12705 case 'A':
12707 bfd_reloc_code_real_type r[3];
12708 expressionS ep;
12709 int imm;
12711 /* Check whether there is only a single bracketed
12712 expression left. If so, it must be the base register
12713 and the constant must be zero. */
12714 if (*s == '(' && strchr (s + 1, '(') == 0)
12716 INSERT_OPERAND (1, IMMA, *ip, 0);
12717 continue;
12720 if (my_getSmallExpression (&ep, r, s) > 0
12721 || !expr_const_in_range (&ep, -64, 64, 2))
12722 break;
12724 imm = ep.X_add_number >> 2;
12725 INSERT_OPERAND (1, IMMA, *ip, imm);
12727 s = expr_end;
12728 continue;
12730 case 'B':
12732 bfd_reloc_code_real_type r[3];
12733 expressionS ep;
12734 int imm;
12736 if (my_getSmallExpression (&ep, r, s) > 0
12737 || ep.X_op != O_constant)
12738 break;
12740 for (imm = 0; imm < 8; imm++)
12741 if (micromips_imm_b_map[imm] == ep.X_add_number)
12742 break;
12743 if (imm >= 8)
12744 break;
12746 INSERT_OPERAND (1, IMMB, *ip, imm);
12748 s = expr_end;
12749 continue;
12751 case 'C':
12753 bfd_reloc_code_real_type r[3];
12754 expressionS ep;
12755 int imm;
12757 if (my_getSmallExpression (&ep, r, s) > 0
12758 || ep.X_op != O_constant)
12759 break;
12761 for (imm = 0; imm < 16; imm++)
12762 if (micromips_imm_c_map[imm] == ep.X_add_number)
12763 break;
12764 if (imm >= 16)
12765 break;
12767 INSERT_OPERAND (1, IMMC, *ip, imm);
12769 s = expr_end;
12770 continue;
12772 case 'D': /* pc relative offset */
12773 case 'E': /* pc relative offset */
12774 my_getExpression (&offset_expr, s);
12775 if (offset_expr.X_op == O_register)
12776 break;
12778 if (!forced_insn_length)
12779 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
12780 else if (c == 'D')
12781 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
12782 else
12783 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
12784 s = expr_end;
12785 continue;
12787 case 'F':
12789 bfd_reloc_code_real_type r[3];
12790 expressionS ep;
12791 int imm;
12793 if (my_getSmallExpression (&ep, r, s) > 0
12794 || !expr_const_in_range (&ep, 0, 16, 0))
12795 break;
12797 imm = ep.X_add_number;
12798 INSERT_OPERAND (1, IMMF, *ip, imm);
12800 s = expr_end;
12801 continue;
12803 case 'G':
12805 bfd_reloc_code_real_type r[3];
12806 expressionS ep;
12807 int imm;
12809 /* Check whether there is only a single bracketed
12810 expression left. If so, it must be the base register
12811 and the constant must be zero. */
12812 if (*s == '(' && strchr (s + 1, '(') == 0)
12814 INSERT_OPERAND (1, IMMG, *ip, 0);
12815 continue;
12818 if (my_getSmallExpression (&ep, r, s) > 0
12819 || !expr_const_in_range (&ep, -1, 15, 0))
12820 break;
12822 imm = ep.X_add_number & 15;
12823 INSERT_OPERAND (1, IMMG, *ip, imm);
12825 s = expr_end;
12826 continue;
12828 case 'H':
12830 bfd_reloc_code_real_type r[3];
12831 expressionS ep;
12832 int imm;
12834 /* Check whether there is only a single bracketed
12835 expression left. If so, it must be the base register
12836 and the constant must be zero. */
12837 if (*s == '(' && strchr (s + 1, '(') == 0)
12839 INSERT_OPERAND (1, IMMH, *ip, 0);
12840 continue;
12843 if (my_getSmallExpression (&ep, r, s) > 0
12844 || !expr_const_in_range (&ep, 0, 16, 1))
12845 break;
12847 imm = ep.X_add_number >> 1;
12848 INSERT_OPERAND (1, IMMH, *ip, imm);
12850 s = expr_end;
12851 continue;
12853 case 'I':
12855 bfd_reloc_code_real_type r[3];
12856 expressionS ep;
12857 int imm;
12859 if (my_getSmallExpression (&ep, r, s) > 0
12860 || !expr_const_in_range (&ep, -1, 127, 0))
12861 break;
12863 imm = ep.X_add_number & 127;
12864 INSERT_OPERAND (1, IMMI, *ip, imm);
12866 s = expr_end;
12867 continue;
12869 case 'J':
12871 bfd_reloc_code_real_type r[3];
12872 expressionS ep;
12873 int imm;
12875 /* Check whether there is only a single bracketed
12876 expression left. If so, it must be the base register
12877 and the constant must be zero. */
12878 if (*s == '(' && strchr (s + 1, '(') == 0)
12880 INSERT_OPERAND (1, IMMJ, *ip, 0);
12881 continue;
12884 if (my_getSmallExpression (&ep, r, s) > 0
12885 || !expr_const_in_range (&ep, 0, 16, 2))
12886 break;
12888 imm = ep.X_add_number >> 2;
12889 INSERT_OPERAND (1, IMMJ, *ip, imm);
12891 s = expr_end;
12892 continue;
12894 case 'L':
12896 bfd_reloc_code_real_type r[3];
12897 expressionS ep;
12898 int imm;
12900 /* Check whether there is only a single bracketed
12901 expression left. If so, it must be the base register
12902 and the constant must be zero. */
12903 if (*s == '(' && strchr (s + 1, '(') == 0)
12905 INSERT_OPERAND (1, IMML, *ip, 0);
12906 continue;
12909 if (my_getSmallExpression (&ep, r, s) > 0
12910 || !expr_const_in_range (&ep, 0, 16, 0))
12911 break;
12913 imm = ep.X_add_number;
12914 INSERT_OPERAND (1, IMML, *ip, imm);
12916 s = expr_end;
12917 continue;
12919 case 'M':
12921 bfd_reloc_code_real_type r[3];
12922 expressionS ep;
12923 int imm;
12925 if (my_getSmallExpression (&ep, r, s) > 0
12926 || !expr_const_in_range (&ep, 1, 9, 0))
12927 break;
12929 imm = ep.X_add_number & 7;
12930 INSERT_OPERAND (1, IMMM, *ip, imm);
12932 s = expr_end;
12933 continue;
12935 case 'N': /* Register list for lwm and swm. */
12937 /* A comma-separated list of registers and/or
12938 dash-separated contiguous ranges including
12939 both ra and a set of one or more registers
12940 starting at s0 up to s3 which have to be
12941 consecutive, e.g.:
12943 s0, ra
12944 s0, s1, ra, s2, s3
12945 s0-s2, ra
12947 and any permutations of these. */
12948 unsigned int reglist;
12949 int imm;
12951 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
12952 break;
12954 if ((reglist & 0xfff1ffff) != 0x80010000)
12955 break;
12957 reglist = (reglist >> 17) & 7;
12958 reglist += 1;
12959 if ((reglist & -reglist) != reglist)
12960 break;
12962 imm = ffs (reglist) - 1;
12963 INSERT_OPERAND (1, IMMN, *ip, imm);
12965 continue;
12967 case 'O': /* sdbbp 4-bit code. */
12969 bfd_reloc_code_real_type r[3];
12970 expressionS ep;
12971 int imm;
12973 if (my_getSmallExpression (&ep, r, s) > 0
12974 || !expr_const_in_range (&ep, 0, 16, 0))
12975 break;
12977 imm = ep.X_add_number;
12978 INSERT_OPERAND (1, IMMO, *ip, imm);
12980 s = expr_end;
12981 continue;
12983 case 'P':
12985 bfd_reloc_code_real_type r[3];
12986 expressionS ep;
12987 int imm;
12989 if (my_getSmallExpression (&ep, r, s) > 0
12990 || !expr_const_in_range (&ep, 0, 32, 2))
12991 break;
12993 imm = ep.X_add_number >> 2;
12994 INSERT_OPERAND (1, IMMP, *ip, imm);
12996 s = expr_end;
12997 continue;
12999 case 'Q':
13001 bfd_reloc_code_real_type r[3];
13002 expressionS ep;
13003 int imm;
13005 if (my_getSmallExpression (&ep, r, s) > 0
13006 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13007 break;
13009 imm = ep.X_add_number >> 2;
13010 INSERT_OPERAND (1, IMMQ, *ip, imm);
13012 s = expr_end;
13013 continue;
13015 case 'U':
13017 bfd_reloc_code_real_type r[3];
13018 expressionS ep;
13019 int imm;
13021 /* Check whether there is only a single bracketed
13022 expression left. If so, it must be the base register
13023 and the constant must be zero. */
13024 if (*s == '(' && strchr (s + 1, '(') == 0)
13026 INSERT_OPERAND (1, IMMU, *ip, 0);
13027 continue;
13030 if (my_getSmallExpression (&ep, r, s) > 0
13031 || !expr_const_in_range (&ep, 0, 32, 2))
13032 break;
13034 imm = ep.X_add_number >> 2;
13035 INSERT_OPERAND (1, IMMU, *ip, imm);
13037 s = expr_end;
13038 continue;
13040 case 'W':
13042 bfd_reloc_code_real_type r[3];
13043 expressionS ep;
13044 int imm;
13046 if (my_getSmallExpression (&ep, r, s) > 0
13047 || !expr_const_in_range (&ep, 0, 64, 2))
13048 break;
13050 imm = ep.X_add_number >> 2;
13051 INSERT_OPERAND (1, IMMW, *ip, imm);
13053 s = expr_end;
13054 continue;
13056 case 'X':
13058 bfd_reloc_code_real_type r[3];
13059 expressionS ep;
13060 int imm;
13062 if (my_getSmallExpression (&ep, r, s) > 0
13063 || !expr_const_in_range (&ep, -8, 8, 0))
13064 break;
13066 imm = ep.X_add_number;
13067 INSERT_OPERAND (1, IMMX, *ip, imm);
13069 s = expr_end;
13070 continue;
13072 case 'Y':
13074 bfd_reloc_code_real_type r[3];
13075 expressionS ep;
13076 int imm;
13078 if (my_getSmallExpression (&ep, r, s) > 0
13079 || expr_const_in_range (&ep, -2, 2, 2)
13080 || !expr_const_in_range (&ep, -258, 258, 2))
13081 break;
13083 imm = ep.X_add_number >> 2;
13084 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13085 INSERT_OPERAND (1, IMMY, *ip, imm);
13087 s = expr_end;
13088 continue;
13090 case 'Z':
13092 bfd_reloc_code_real_type r[3];
13093 expressionS ep;
13095 if (my_getSmallExpression (&ep, r, s) > 0
13096 || !expr_const_in_range (&ep, 0, 1, 0))
13097 break;
13099 s = expr_end;
13100 continue;
13102 default:
13103 as_bad (_("Internal error: bad microMIPS opcode "
13104 "(unknown extension operand type `m%c'): %s %s"),
13105 *args, insn->name, insn->args);
13106 /* Further processing is fruitless. */
13107 return;
13109 break;
13111 case 'n': /* Register list for 32-bit lwm and swm. */
13112 gas_assert (mips_opts.micromips);
13114 /* A comma-separated list of registers and/or
13115 dash-separated contiguous ranges including
13116 at least one of ra and a set of one or more
13117 registers starting at s0 up to s7 and then
13118 s8 which have to be consecutive, e.g.:
13122 ra, s0, s1, s2
13123 s0-s8
13124 s0-s5, ra
13126 and any permutations of these. */
13127 unsigned int reglist;
13128 int imm;
13129 int ra;
13131 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13132 break;
13134 if ((reglist & 0x3f00ffff) != 0)
13135 break;
13137 ra = (reglist >> 27) & 0x10;
13138 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13139 reglist += 1;
13140 if ((reglist & -reglist) != reglist)
13141 break;
13143 imm = (ffs (reglist) - 1) | ra;
13144 INSERT_OPERAND (1, RT, *ip, imm);
13145 imm_expr.X_op = O_absent;
13147 continue;
13149 case '|': /* 4-bit trap code. */
13150 gas_assert (mips_opts.micromips);
13151 my_getExpression (&imm_expr, s);
13152 check_absolute_expr (ip, &imm_expr);
13153 if ((unsigned long) imm_expr.X_add_number
13154 > MICROMIPSOP_MASK_TRAP)
13155 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13156 (unsigned long) imm_expr.X_add_number,
13157 ip->insn_mo->name);
13158 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13159 imm_expr.X_op = O_absent;
13160 s = expr_end;
13161 continue;
13163 default:
13164 as_bad (_("Bad char = '%c'\n"), *args);
13165 internalError ();
13167 break;
13169 /* Args don't match. */
13170 s = argsStart;
13171 insn_error = _("Illegal operands");
13172 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13174 ++insn;
13175 continue;
13177 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13179 gas_assert (firstinsn);
13180 need_delay_slot_ok = FALSE;
13181 past = insn + 1;
13182 insn = firstinsn;
13183 continue;
13185 return;
13189 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13191 /* This routine assembles an instruction into its binary format when
13192 assembling for the mips16. As a side effect, it sets one of the
13193 global variables imm_reloc or offset_reloc to the type of relocation
13194 to do if one of the operands is an address expression. It also sets
13195 forced_insn_length to the resulting instruction size in bytes if the
13196 user explicitly requested a small or extended instruction. */
13198 static void
13199 mips16_ip (char *str, struct mips_cl_insn *ip)
13201 char *s;
13202 const char *args;
13203 struct mips_opcode *insn;
13204 char *argsstart;
13205 unsigned int regno;
13206 unsigned int lastregno = 0;
13207 char *s_reset;
13208 size_t i;
13210 insn_error = NULL;
13212 forced_insn_length = 0;
13214 for (s = str; ISLOWER (*s); ++s)
13216 switch (*s)
13218 case '\0':
13219 break;
13221 case ' ':
13222 *s++ = '\0';
13223 break;
13225 case '.':
13226 if (s[1] == 't' && s[2] == ' ')
13228 *s = '\0';
13229 forced_insn_length = 2;
13230 s += 3;
13231 break;
13233 else if (s[1] == 'e' && s[2] == ' ')
13235 *s = '\0';
13236 forced_insn_length = 4;
13237 s += 3;
13238 break;
13240 /* Fall through. */
13241 default:
13242 insn_error = _("unknown opcode");
13243 return;
13246 if (mips_opts.noautoextend && !forced_insn_length)
13247 forced_insn_length = 2;
13249 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13251 insn_error = _("unrecognized opcode");
13252 return;
13255 argsstart = s;
13256 for (;;)
13258 bfd_boolean ok;
13260 gas_assert (strcmp (insn->name, str) == 0);
13262 ok = is_opcode_valid_16 (insn);
13263 if (! ok)
13265 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13266 && strcmp (insn->name, insn[1].name) == 0)
13268 ++insn;
13269 continue;
13271 else
13273 if (!insn_error)
13275 static char buf[100];
13276 sprintf (buf,
13277 _("Opcode not supported on this processor: %s (%s)"),
13278 mips_cpu_info_from_arch (mips_opts.arch)->name,
13279 mips_cpu_info_from_isa (mips_opts.isa)->name);
13280 insn_error = buf;
13282 return;
13286 create_insn (ip, insn);
13287 imm_expr.X_op = O_absent;
13288 imm_reloc[0] = BFD_RELOC_UNUSED;
13289 imm_reloc[1] = BFD_RELOC_UNUSED;
13290 imm_reloc[2] = BFD_RELOC_UNUSED;
13291 imm2_expr.X_op = O_absent;
13292 offset_expr.X_op = O_absent;
13293 offset_reloc[0] = BFD_RELOC_UNUSED;
13294 offset_reloc[1] = BFD_RELOC_UNUSED;
13295 offset_reloc[2] = BFD_RELOC_UNUSED;
13296 for (args = insn->args; 1; ++args)
13298 int c;
13300 if (*s == ' ')
13301 ++s;
13303 /* In this switch statement we call break if we did not find
13304 a match, continue if we did find a match, or return if we
13305 are done. */
13307 c = *args;
13308 switch (c)
13310 case '\0':
13311 if (*s == '\0')
13313 /* Stuff the immediate value in now, if we can. */
13314 if (imm_expr.X_op == O_constant
13315 && *imm_reloc > BFD_RELOC_UNUSED
13316 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
13317 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
13318 && insn->pinfo != INSN_MACRO)
13320 valueT tmp;
13322 switch (*offset_reloc)
13324 case BFD_RELOC_MIPS16_HI16_S:
13325 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
13326 break;
13328 case BFD_RELOC_MIPS16_HI16:
13329 tmp = imm_expr.X_add_number >> 16;
13330 break;
13332 case BFD_RELOC_MIPS16_LO16:
13333 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
13334 - 0x8000;
13335 break;
13337 case BFD_RELOC_UNUSED:
13338 tmp = imm_expr.X_add_number;
13339 break;
13341 default:
13342 internalError ();
13344 *offset_reloc = BFD_RELOC_UNUSED;
13346 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
13347 tmp, TRUE, forced_insn_length == 2,
13348 forced_insn_length == 4, &ip->insn_opcode,
13349 &ip->use_extend, &ip->extend);
13350 imm_expr.X_op = O_absent;
13351 *imm_reloc = BFD_RELOC_UNUSED;
13354 return;
13356 break;
13358 case ',':
13359 if (*s++ == c)
13360 continue;
13361 s--;
13362 switch (*++args)
13364 case 'v':
13365 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13366 continue;
13367 case 'w':
13368 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13369 continue;
13371 break;
13373 case '(':
13374 case ')':
13375 if (*s++ == c)
13376 continue;
13377 break;
13379 case 'v':
13380 case 'w':
13381 if (s[0] != '$')
13383 if (c == 'v')
13384 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13385 else
13386 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13387 ++args;
13388 continue;
13390 /* Fall through. */
13391 case 'x':
13392 case 'y':
13393 case 'z':
13394 case 'Z':
13395 case '0':
13396 case 'S':
13397 case 'R':
13398 case 'X':
13399 case 'Y':
13400 s_reset = s;
13401 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
13403 if (c == 'v' || c == 'w')
13405 if (c == 'v')
13406 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13407 else
13408 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13409 ++args;
13410 continue;
13412 break;
13415 if (*s == ' ')
13416 ++s;
13417 if (args[1] != *s)
13419 if (c == 'v' || c == 'w')
13421 regno = mips16_to_32_reg_map[lastregno];
13422 s = s_reset;
13423 ++args;
13427 switch (c)
13429 case 'x':
13430 case 'y':
13431 case 'z':
13432 case 'v':
13433 case 'w':
13434 case 'Z':
13435 regno = mips32_to_16_reg_map[regno];
13436 break;
13438 case '0':
13439 if (regno != 0)
13440 regno = ILLEGAL_REG;
13441 break;
13443 case 'S':
13444 if (regno != SP)
13445 regno = ILLEGAL_REG;
13446 break;
13448 case 'R':
13449 if (regno != RA)
13450 regno = ILLEGAL_REG;
13451 break;
13453 case 'X':
13454 case 'Y':
13455 if (regno == AT && mips_opts.at)
13457 if (mips_opts.at == ATREG)
13458 as_warn (_("used $at without \".set noat\""));
13459 else
13460 as_warn (_("used $%u with \".set at=$%u\""),
13461 regno, mips_opts.at);
13463 break;
13465 default:
13466 internalError ();
13469 if (regno == ILLEGAL_REG)
13470 break;
13472 switch (c)
13474 case 'x':
13475 case 'v':
13476 MIPS16_INSERT_OPERAND (RX, *ip, regno);
13477 break;
13478 case 'y':
13479 case 'w':
13480 MIPS16_INSERT_OPERAND (RY, *ip, regno);
13481 break;
13482 case 'z':
13483 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
13484 break;
13485 case 'Z':
13486 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
13487 case '0':
13488 case 'S':
13489 case 'R':
13490 break;
13491 case 'X':
13492 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
13493 break;
13494 case 'Y':
13495 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
13496 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
13497 break;
13498 default:
13499 internalError ();
13502 lastregno = regno;
13503 continue;
13505 case 'P':
13506 if (strncmp (s, "$pc", 3) == 0)
13508 s += 3;
13509 continue;
13511 break;
13513 case '5':
13514 case 'H':
13515 case 'W':
13516 case 'D':
13517 case 'j':
13518 case 'V':
13519 case 'C':
13520 case 'U':
13521 case 'k':
13522 case 'K':
13523 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
13524 if (i > 0)
13526 if (imm_expr.X_op != O_constant)
13528 forced_insn_length = 4;
13529 ip->use_extend = TRUE;
13530 ip->extend = 0;
13532 else
13534 /* We need to relax this instruction. */
13535 *offset_reloc = *imm_reloc;
13536 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13538 s = expr_end;
13539 continue;
13541 *imm_reloc = BFD_RELOC_UNUSED;
13542 /* Fall through. */
13543 case '<':
13544 case '>':
13545 case '[':
13546 case ']':
13547 case '4':
13548 case '8':
13549 my_getExpression (&imm_expr, s);
13550 if (imm_expr.X_op == O_register)
13552 /* What we thought was an expression turned out to
13553 be a register. */
13555 if (s[0] == '(' && args[1] == '(')
13557 /* It looks like the expression was omitted
13558 before a register indirection, which means
13559 that the expression is implicitly zero. We
13560 still set up imm_expr, so that we handle
13561 explicit extensions correctly. */
13562 imm_expr.X_op = O_constant;
13563 imm_expr.X_add_number = 0;
13564 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13565 continue;
13568 break;
13571 /* We need to relax this instruction. */
13572 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13573 s = expr_end;
13574 continue;
13576 case 'p':
13577 case 'q':
13578 case 'A':
13579 case 'B':
13580 case 'E':
13581 /* We use offset_reloc rather than imm_reloc for the PC
13582 relative operands. This lets macros with both
13583 immediate and address operands work correctly. */
13584 my_getExpression (&offset_expr, s);
13586 if (offset_expr.X_op == O_register)
13587 break;
13589 /* We need to relax this instruction. */
13590 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13591 s = expr_end;
13592 continue;
13594 case '6': /* break code */
13595 my_getExpression (&imm_expr, s);
13596 check_absolute_expr (ip, &imm_expr);
13597 if ((unsigned long) imm_expr.X_add_number > 63)
13598 as_warn (_("Invalid value for `%s' (%lu)"),
13599 ip->insn_mo->name,
13600 (unsigned long) imm_expr.X_add_number);
13601 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
13602 imm_expr.X_op = O_absent;
13603 s = expr_end;
13604 continue;
13606 case 'a': /* 26 bit address */
13607 my_getExpression (&offset_expr, s);
13608 s = expr_end;
13609 *offset_reloc = BFD_RELOC_MIPS16_JMP;
13610 ip->insn_opcode <<= 16;
13611 continue;
13613 case 'l': /* register list for entry macro */
13614 case 'L': /* register list for exit macro */
13616 int mask;
13618 if (c == 'l')
13619 mask = 0;
13620 else
13621 mask = 7 << 3;
13622 while (*s != '\0')
13624 unsigned int freg, reg1, reg2;
13626 while (*s == ' ' || *s == ',')
13627 ++s;
13628 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
13629 freg = 0;
13630 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
13631 freg = 1;
13632 else
13634 as_bad (_("can't parse register list"));
13635 break;
13637 if (*s == ' ')
13638 ++s;
13639 if (*s != '-')
13640 reg2 = reg1;
13641 else
13643 ++s;
13644 if (!reg_lookup (&s, freg ? RTYPE_FPU
13645 : (RTYPE_GP | RTYPE_NUM), &reg2))
13647 as_bad (_("invalid register list"));
13648 break;
13651 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
13653 mask &= ~ (7 << 3);
13654 mask |= 5 << 3;
13656 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
13658 mask &= ~ (7 << 3);
13659 mask |= 6 << 3;
13661 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
13662 mask |= (reg2 - 3) << 3;
13663 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
13664 mask |= (reg2 - 15) << 1;
13665 else if (reg1 == RA && reg2 == RA)
13666 mask |= 1;
13667 else
13669 as_bad (_("invalid register list"));
13670 break;
13673 /* The mask is filled in in the opcode table for the
13674 benefit of the disassembler. We remove it before
13675 applying the actual mask. */
13676 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
13677 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
13679 continue;
13681 case 'm': /* Register list for save insn. */
13682 case 'M': /* Register list for restore insn. */
13684 int opcode = 0;
13685 int framesz = 0, seen_framesz = 0;
13686 int nargs = 0, statics = 0, sregs = 0;
13688 while (*s != '\0')
13690 unsigned int reg1, reg2;
13692 SKIP_SPACE_TABS (s);
13693 while (*s == ',')
13694 ++s;
13695 SKIP_SPACE_TABS (s);
13697 my_getExpression (&imm_expr, s);
13698 if (imm_expr.X_op == O_constant)
13700 /* Handle the frame size. */
13701 if (seen_framesz)
13703 as_bad (_("more than one frame size in list"));
13704 break;
13706 seen_framesz = 1;
13707 framesz = imm_expr.X_add_number;
13708 imm_expr.X_op = O_absent;
13709 s = expr_end;
13710 continue;
13713 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
13715 as_bad (_("can't parse register list"));
13716 break;
13719 while (*s == ' ')
13720 ++s;
13722 if (*s != '-')
13723 reg2 = reg1;
13724 else
13726 ++s;
13727 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
13728 || reg2 < reg1)
13730 as_bad (_("can't parse register list"));
13731 break;
13735 while (reg1 <= reg2)
13737 if (reg1 >= 4 && reg1 <= 7)
13739 if (!seen_framesz)
13740 /* args $a0-$a3 */
13741 nargs |= 1 << (reg1 - 4);
13742 else
13743 /* statics $a0-$a3 */
13744 statics |= 1 << (reg1 - 4);
13746 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
13748 /* $s0-$s8 */
13749 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
13751 else if (reg1 == 31)
13753 /* Add $ra to insn. */
13754 opcode |= 0x40;
13756 else
13758 as_bad (_("unexpected register in list"));
13759 break;
13761 if (++reg1 == 24)
13762 reg1 = 30;
13766 /* Encode args/statics combination. */
13767 if (nargs & statics)
13768 as_bad (_("arg/static registers overlap"));
13769 else if (nargs == 0xf)
13770 /* All $a0-$a3 are args. */
13771 opcode |= MIPS16_ALL_ARGS << 16;
13772 else if (statics == 0xf)
13773 /* All $a0-$a3 are statics. */
13774 opcode |= MIPS16_ALL_STATICS << 16;
13775 else
13777 int narg = 0, nstat = 0;
13779 /* Count arg registers. */
13780 while (nargs & 0x1)
13782 nargs >>= 1;
13783 narg++;
13785 if (nargs != 0)
13786 as_bad (_("invalid arg register list"));
13788 /* Count static registers. */
13789 while (statics & 0x8)
13791 statics = (statics << 1) & 0xf;
13792 nstat++;
13794 if (statics != 0)
13795 as_bad (_("invalid static register list"));
13797 /* Encode args/statics. */
13798 opcode |= ((narg << 2) | nstat) << 16;
13801 /* Encode $s0/$s1. */
13802 if (sregs & (1 << 0)) /* $s0 */
13803 opcode |= 0x20;
13804 if (sregs & (1 << 1)) /* $s1 */
13805 opcode |= 0x10;
13806 sregs >>= 2;
13808 if (sregs != 0)
13810 /* Count regs $s2-$s8. */
13811 int nsreg = 0;
13812 while (sregs & 1)
13814 sregs >>= 1;
13815 nsreg++;
13817 if (sregs != 0)
13818 as_bad (_("invalid static register list"));
13819 /* Encode $s2-$s8. */
13820 opcode |= nsreg << 24;
13823 /* Encode frame size. */
13824 if (!seen_framesz)
13825 as_bad (_("missing frame size"));
13826 else if ((framesz & 7) != 0 || framesz < 0
13827 || framesz > 0xff * 8)
13828 as_bad (_("invalid frame size"));
13829 else if (framesz != 128 || (opcode >> 16) != 0)
13831 framesz /= 8;
13832 opcode |= (((framesz & 0xf0) << 16)
13833 | (framesz & 0x0f));
13836 /* Finally build the instruction. */
13837 if ((opcode >> 16) != 0 || framesz == 0)
13839 ip->use_extend = TRUE;
13840 ip->extend = opcode >> 16;
13842 ip->insn_opcode |= opcode & 0x7f;
13844 continue;
13846 case 'e': /* extend code */
13847 my_getExpression (&imm_expr, s);
13848 check_absolute_expr (ip, &imm_expr);
13849 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
13851 as_warn (_("Invalid value for `%s' (%lu)"),
13852 ip->insn_mo->name,
13853 (unsigned long) imm_expr.X_add_number);
13854 imm_expr.X_add_number &= 0x7ff;
13856 ip->insn_opcode |= imm_expr.X_add_number;
13857 imm_expr.X_op = O_absent;
13858 s = expr_end;
13859 continue;
13861 default:
13862 internalError ();
13864 break;
13867 /* Args don't match. */
13868 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
13869 strcmp (insn->name, insn[1].name) == 0)
13871 ++insn;
13872 s = argsstart;
13873 continue;
13876 insn_error = _("illegal operands");
13878 return;
13882 /* This structure holds information we know about a mips16 immediate
13883 argument type. */
13885 struct mips16_immed_operand
13887 /* The type code used in the argument string in the opcode table. */
13888 int type;
13889 /* The number of bits in the short form of the opcode. */
13890 int nbits;
13891 /* The number of bits in the extended form of the opcode. */
13892 int extbits;
13893 /* The amount by which the short form is shifted when it is used;
13894 for example, the sw instruction has a shift count of 2. */
13895 int shift;
13896 /* The amount by which the short form is shifted when it is stored
13897 into the instruction code. */
13898 int op_shift;
13899 /* Non-zero if the short form is unsigned. */
13900 int unsp;
13901 /* Non-zero if the extended form is unsigned. */
13902 int extu;
13903 /* Non-zero if the value is PC relative. */
13904 int pcrel;
13907 /* The mips16 immediate operand types. */
13909 static const struct mips16_immed_operand mips16_immed_operands[] =
13911 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
13912 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
13913 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
13914 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
13915 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
13916 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
13917 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
13918 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
13919 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
13920 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
13921 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
13922 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
13923 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
13924 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
13925 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
13926 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
13927 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
13928 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
13929 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
13930 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
13931 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
13934 #define MIPS16_NUM_IMMED \
13935 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
13937 /* Handle a mips16 instruction with an immediate value. This or's the
13938 small immediate value into *INSN. It sets *USE_EXTEND to indicate
13939 whether an extended value is needed; if one is needed, it sets
13940 *EXTEND to the value. The argument type is TYPE. The value is VAL.
13941 If SMALL is true, an unextended opcode was explicitly requested.
13942 If EXT is true, an extended opcode was explicitly requested. If
13943 WARN is true, warn if EXT does not match reality. */
13945 static void
13946 mips16_immed (char *file, unsigned int line, int type, offsetT val,
13947 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
13948 unsigned long *insn, bfd_boolean *use_extend,
13949 unsigned short *extend)
13951 const struct mips16_immed_operand *op;
13952 int mintiny, maxtiny;
13953 bfd_boolean needext;
13955 op = mips16_immed_operands;
13956 while (op->type != type)
13958 ++op;
13959 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13962 if (op->unsp)
13964 if (type == '<' || type == '>' || type == '[' || type == ']')
13966 mintiny = 1;
13967 maxtiny = 1 << op->nbits;
13969 else
13971 mintiny = 0;
13972 maxtiny = (1 << op->nbits) - 1;
13975 else
13977 mintiny = - (1 << (op->nbits - 1));
13978 maxtiny = (1 << (op->nbits - 1)) - 1;
13981 /* Branch offsets have an implicit 0 in the lowest bit. */
13982 if (type == 'p' || type == 'q')
13983 val /= 2;
13985 if ((val & ((1 << op->shift) - 1)) != 0
13986 || val < (mintiny << op->shift)
13987 || val > (maxtiny << op->shift))
13988 needext = TRUE;
13989 else
13990 needext = FALSE;
13992 if (warn && ext && ! needext)
13993 as_warn_where (file, line,
13994 _("extended operand requested but not required"));
13995 if (small && needext)
13996 as_bad_where (file, line, _("invalid unextended operand value"));
13998 if (small || (! ext && ! needext))
14000 int insnval;
14002 *use_extend = FALSE;
14003 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14004 insnval <<= op->op_shift;
14005 *insn |= insnval;
14007 else
14009 long minext, maxext;
14010 int extval;
14012 if (op->extu)
14014 minext = 0;
14015 maxext = (1 << op->extbits) - 1;
14017 else
14019 minext = - (1 << (op->extbits - 1));
14020 maxext = (1 << (op->extbits - 1)) - 1;
14022 if (val < minext || val > maxext)
14023 as_bad_where (file, line,
14024 _("operand value out of range for instruction"));
14026 *use_extend = TRUE;
14027 if (op->extbits == 16)
14029 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14030 val &= 0x1f;
14032 else if (op->extbits == 15)
14034 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14035 val &= 0xf;
14037 else
14039 extval = ((val & 0x1f) << 6) | (val & 0x20);
14040 val = 0;
14043 *extend = (unsigned short) extval;
14044 *insn |= val;
14048 struct percent_op_match
14050 const char *str;
14051 bfd_reloc_code_real_type reloc;
14054 static const struct percent_op_match mips_percent_op[] =
14056 {"%lo", BFD_RELOC_LO16},
14057 #ifdef OBJ_ELF
14058 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14059 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14060 {"%call16", BFD_RELOC_MIPS_CALL16},
14061 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14062 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14063 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14064 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14065 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14066 {"%got", BFD_RELOC_MIPS_GOT16},
14067 {"%gp_rel", BFD_RELOC_GPREL16},
14068 {"%half", BFD_RELOC_16},
14069 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14070 {"%higher", BFD_RELOC_MIPS_HIGHER},
14071 {"%neg", BFD_RELOC_MIPS_SUB},
14072 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14073 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14074 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14075 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14076 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14077 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14078 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14079 #endif
14080 {"%hi", BFD_RELOC_HI16_S}
14083 static const struct percent_op_match mips16_percent_op[] =
14085 {"%lo", BFD_RELOC_MIPS16_LO16},
14086 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14087 {"%got", BFD_RELOC_MIPS16_GOT16},
14088 {"%call16", BFD_RELOC_MIPS16_CALL16},
14089 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14090 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14091 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14092 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14093 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14094 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14095 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14096 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14100 /* Return true if *STR points to a relocation operator. When returning true,
14101 move *STR over the operator and store its relocation code in *RELOC.
14102 Leave both *STR and *RELOC alone when returning false. */
14104 static bfd_boolean
14105 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14107 const struct percent_op_match *percent_op;
14108 size_t limit, i;
14110 if (mips_opts.mips16)
14112 percent_op = mips16_percent_op;
14113 limit = ARRAY_SIZE (mips16_percent_op);
14115 else
14117 percent_op = mips_percent_op;
14118 limit = ARRAY_SIZE (mips_percent_op);
14121 for (i = 0; i < limit; i++)
14122 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14124 int len = strlen (percent_op[i].str);
14126 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14127 continue;
14129 *str += strlen (percent_op[i].str);
14130 *reloc = percent_op[i].reloc;
14132 /* Check whether the output BFD supports this relocation.
14133 If not, issue an error and fall back on something safe. */
14134 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14136 as_bad (_("relocation %s isn't supported by the current ABI"),
14137 percent_op[i].str);
14138 *reloc = BFD_RELOC_UNUSED;
14140 return TRUE;
14142 return FALSE;
14146 /* Parse string STR as a 16-bit relocatable operand. Store the
14147 expression in *EP and the relocations in the array starting
14148 at RELOC. Return the number of relocation operators used.
14150 On exit, EXPR_END points to the first character after the expression. */
14152 static size_t
14153 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14154 char *str)
14156 bfd_reloc_code_real_type reversed_reloc[3];
14157 size_t reloc_index, i;
14158 int crux_depth, str_depth;
14159 char *crux;
14161 /* Search for the start of the main expression, recoding relocations
14162 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14163 of the main expression and with CRUX_DEPTH containing the number
14164 of open brackets at that point. */
14165 reloc_index = -1;
14166 str_depth = 0;
14169 reloc_index++;
14170 crux = str;
14171 crux_depth = str_depth;
14173 /* Skip over whitespace and brackets, keeping count of the number
14174 of brackets. */
14175 while (*str == ' ' || *str == '\t' || *str == '(')
14176 if (*str++ == '(')
14177 str_depth++;
14179 while (*str == '%'
14180 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14181 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14183 my_getExpression (ep, crux);
14184 str = expr_end;
14186 /* Match every open bracket. */
14187 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14188 if (*str++ == ')')
14189 crux_depth--;
14191 if (crux_depth > 0)
14192 as_bad (_("unclosed '('"));
14194 expr_end = str;
14196 if (reloc_index != 0)
14198 prev_reloc_op_frag = frag_now;
14199 for (i = 0; i < reloc_index; i++)
14200 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14203 return reloc_index;
14206 static void
14207 my_getExpression (expressionS *ep, char *str)
14209 char *save_in;
14211 save_in = input_line_pointer;
14212 input_line_pointer = str;
14213 expression (ep);
14214 expr_end = input_line_pointer;
14215 input_line_pointer = save_in;
14218 char *
14219 md_atof (int type, char *litP, int *sizeP)
14221 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14224 void
14225 md_number_to_chars (char *buf, valueT val, int n)
14227 if (target_big_endian)
14228 number_to_chars_bigendian (buf, val, n);
14229 else
14230 number_to_chars_littleendian (buf, val, n);
14233 #ifdef OBJ_ELF
14234 static int support_64bit_objects(void)
14236 const char **list, **l;
14237 int yes;
14239 list = bfd_target_list ();
14240 for (l = list; *l != NULL; l++)
14241 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14242 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14243 break;
14244 yes = (*l != NULL);
14245 free (list);
14246 return yes;
14248 #endif /* OBJ_ELF */
14250 const char *md_shortopts = "O::g::G:";
14252 enum options
14254 OPTION_MARCH = OPTION_MD_BASE,
14255 OPTION_MTUNE,
14256 OPTION_MIPS1,
14257 OPTION_MIPS2,
14258 OPTION_MIPS3,
14259 OPTION_MIPS4,
14260 OPTION_MIPS5,
14261 OPTION_MIPS32,
14262 OPTION_MIPS64,
14263 OPTION_MIPS32R2,
14264 OPTION_MIPS64R2,
14265 OPTION_MIPS16,
14266 OPTION_NO_MIPS16,
14267 OPTION_MIPS3D,
14268 OPTION_NO_MIPS3D,
14269 OPTION_MDMX,
14270 OPTION_NO_MDMX,
14271 OPTION_DSP,
14272 OPTION_NO_DSP,
14273 OPTION_MT,
14274 OPTION_NO_MT,
14275 OPTION_SMARTMIPS,
14276 OPTION_NO_SMARTMIPS,
14277 OPTION_DSPR2,
14278 OPTION_NO_DSPR2,
14279 OPTION_MICROMIPS,
14280 OPTION_NO_MICROMIPS,
14281 OPTION_MCU,
14282 OPTION_NO_MCU,
14283 OPTION_COMPAT_ARCH_BASE,
14284 OPTION_M4650,
14285 OPTION_NO_M4650,
14286 OPTION_M4010,
14287 OPTION_NO_M4010,
14288 OPTION_M4100,
14289 OPTION_NO_M4100,
14290 OPTION_M3900,
14291 OPTION_NO_M3900,
14292 OPTION_M7000_HILO_FIX,
14293 OPTION_MNO_7000_HILO_FIX,
14294 OPTION_FIX_24K,
14295 OPTION_NO_FIX_24K,
14296 OPTION_FIX_LOONGSON2F_JUMP,
14297 OPTION_NO_FIX_LOONGSON2F_JUMP,
14298 OPTION_FIX_LOONGSON2F_NOP,
14299 OPTION_NO_FIX_LOONGSON2F_NOP,
14300 OPTION_FIX_VR4120,
14301 OPTION_NO_FIX_VR4120,
14302 OPTION_FIX_VR4130,
14303 OPTION_NO_FIX_VR4130,
14304 OPTION_FIX_CN63XXP1,
14305 OPTION_NO_FIX_CN63XXP1,
14306 OPTION_TRAP,
14307 OPTION_BREAK,
14308 OPTION_EB,
14309 OPTION_EL,
14310 OPTION_FP32,
14311 OPTION_GP32,
14312 OPTION_CONSTRUCT_FLOATS,
14313 OPTION_NO_CONSTRUCT_FLOATS,
14314 OPTION_FP64,
14315 OPTION_GP64,
14316 OPTION_RELAX_BRANCH,
14317 OPTION_NO_RELAX_BRANCH,
14318 OPTION_MSHARED,
14319 OPTION_MNO_SHARED,
14320 OPTION_MSYM32,
14321 OPTION_MNO_SYM32,
14322 OPTION_SOFT_FLOAT,
14323 OPTION_HARD_FLOAT,
14324 OPTION_SINGLE_FLOAT,
14325 OPTION_DOUBLE_FLOAT,
14326 OPTION_32,
14327 #ifdef OBJ_ELF
14328 OPTION_CALL_SHARED,
14329 OPTION_CALL_NONPIC,
14330 OPTION_NON_SHARED,
14331 OPTION_XGOT,
14332 OPTION_MABI,
14333 OPTION_N32,
14334 OPTION_64,
14335 OPTION_MDEBUG,
14336 OPTION_NO_MDEBUG,
14337 OPTION_PDR,
14338 OPTION_NO_PDR,
14339 OPTION_MVXWORKS_PIC,
14340 #endif /* OBJ_ELF */
14341 OPTION_END_OF_ENUM
14344 struct option md_longopts[] =
14346 /* Options which specify architecture. */
14347 {"march", required_argument, NULL, OPTION_MARCH},
14348 {"mtune", required_argument, NULL, OPTION_MTUNE},
14349 {"mips0", no_argument, NULL, OPTION_MIPS1},
14350 {"mips1", no_argument, NULL, OPTION_MIPS1},
14351 {"mips2", no_argument, NULL, OPTION_MIPS2},
14352 {"mips3", no_argument, NULL, OPTION_MIPS3},
14353 {"mips4", no_argument, NULL, OPTION_MIPS4},
14354 {"mips5", no_argument, NULL, OPTION_MIPS5},
14355 {"mips32", no_argument, NULL, OPTION_MIPS32},
14356 {"mips64", no_argument, NULL, OPTION_MIPS64},
14357 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
14358 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
14360 /* Options which specify Application Specific Extensions (ASEs). */
14361 {"mips16", no_argument, NULL, OPTION_MIPS16},
14362 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
14363 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
14364 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
14365 {"mdmx", no_argument, NULL, OPTION_MDMX},
14366 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
14367 {"mdsp", no_argument, NULL, OPTION_DSP},
14368 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
14369 {"mmt", no_argument, NULL, OPTION_MT},
14370 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
14371 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
14372 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
14373 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
14374 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
14375 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
14376 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
14377 {"mmcu", no_argument, NULL, OPTION_MCU},
14378 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
14380 /* Old-style architecture options. Don't add more of these. */
14381 {"m4650", no_argument, NULL, OPTION_M4650},
14382 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
14383 {"m4010", no_argument, NULL, OPTION_M4010},
14384 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
14385 {"m4100", no_argument, NULL, OPTION_M4100},
14386 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
14387 {"m3900", no_argument, NULL, OPTION_M3900},
14388 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
14390 /* Options which enable bug fixes. */
14391 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
14392 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14393 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14394 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
14395 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
14396 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
14397 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
14398 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
14399 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
14400 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
14401 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
14402 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
14403 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
14404 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
14405 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
14407 /* Miscellaneous options. */
14408 {"trap", no_argument, NULL, OPTION_TRAP},
14409 {"no-break", no_argument, NULL, OPTION_TRAP},
14410 {"break", no_argument, NULL, OPTION_BREAK},
14411 {"no-trap", no_argument, NULL, OPTION_BREAK},
14412 {"EB", no_argument, NULL, OPTION_EB},
14413 {"EL", no_argument, NULL, OPTION_EL},
14414 {"mfp32", no_argument, NULL, OPTION_FP32},
14415 {"mgp32", no_argument, NULL, OPTION_GP32},
14416 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
14417 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
14418 {"mfp64", no_argument, NULL, OPTION_FP64},
14419 {"mgp64", no_argument, NULL, OPTION_GP64},
14420 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
14421 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
14422 {"mshared", no_argument, NULL, OPTION_MSHARED},
14423 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
14424 {"msym32", no_argument, NULL, OPTION_MSYM32},
14425 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
14426 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
14427 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
14428 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
14429 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
14431 /* Strictly speaking this next option is ELF specific,
14432 but we allow it for other ports as well in order to
14433 make testing easier. */
14434 {"32", no_argument, NULL, OPTION_32},
14436 /* ELF-specific options. */
14437 #ifdef OBJ_ELF
14438 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
14439 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
14440 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
14441 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
14442 {"xgot", no_argument, NULL, OPTION_XGOT},
14443 {"mabi", required_argument, NULL, OPTION_MABI},
14444 {"n32", no_argument, NULL, OPTION_N32},
14445 {"64", no_argument, NULL, OPTION_64},
14446 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
14447 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
14448 {"mpdr", no_argument, NULL, OPTION_PDR},
14449 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
14450 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
14451 #endif /* OBJ_ELF */
14453 {NULL, no_argument, NULL, 0}
14455 size_t md_longopts_size = sizeof (md_longopts);
14457 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14458 NEW_VALUE. Warn if another value was already specified. Note:
14459 we have to defer parsing the -march and -mtune arguments in order
14460 to handle 'from-abi' correctly, since the ABI might be specified
14461 in a later argument. */
14463 static void
14464 mips_set_option_string (const char **string_ptr, const char *new_value)
14466 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14467 as_warn (_("A different %s was already specified, is now %s"),
14468 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14469 new_value);
14471 *string_ptr = new_value;
14475 md_parse_option (int c, char *arg)
14477 switch (c)
14479 case OPTION_CONSTRUCT_FLOATS:
14480 mips_disable_float_construction = 0;
14481 break;
14483 case OPTION_NO_CONSTRUCT_FLOATS:
14484 mips_disable_float_construction = 1;
14485 break;
14487 case OPTION_TRAP:
14488 mips_trap = 1;
14489 break;
14491 case OPTION_BREAK:
14492 mips_trap = 0;
14493 break;
14495 case OPTION_EB:
14496 target_big_endian = 1;
14497 break;
14499 case OPTION_EL:
14500 target_big_endian = 0;
14501 break;
14503 case 'O':
14504 if (arg == NULL)
14505 mips_optimize = 1;
14506 else if (arg[0] == '0')
14507 mips_optimize = 0;
14508 else if (arg[0] == '1')
14509 mips_optimize = 1;
14510 else
14511 mips_optimize = 2;
14512 break;
14514 case 'g':
14515 if (arg == NULL)
14516 mips_debug = 2;
14517 else
14518 mips_debug = atoi (arg);
14519 break;
14521 case OPTION_MIPS1:
14522 file_mips_isa = ISA_MIPS1;
14523 break;
14525 case OPTION_MIPS2:
14526 file_mips_isa = ISA_MIPS2;
14527 break;
14529 case OPTION_MIPS3:
14530 file_mips_isa = ISA_MIPS3;
14531 break;
14533 case OPTION_MIPS4:
14534 file_mips_isa = ISA_MIPS4;
14535 break;
14537 case OPTION_MIPS5:
14538 file_mips_isa = ISA_MIPS5;
14539 break;
14541 case OPTION_MIPS32:
14542 file_mips_isa = ISA_MIPS32;
14543 break;
14545 case OPTION_MIPS32R2:
14546 file_mips_isa = ISA_MIPS32R2;
14547 break;
14549 case OPTION_MIPS64R2:
14550 file_mips_isa = ISA_MIPS64R2;
14551 break;
14553 case OPTION_MIPS64:
14554 file_mips_isa = ISA_MIPS64;
14555 break;
14557 case OPTION_MTUNE:
14558 mips_set_option_string (&mips_tune_string, arg);
14559 break;
14561 case OPTION_MARCH:
14562 mips_set_option_string (&mips_arch_string, arg);
14563 break;
14565 case OPTION_M4650:
14566 mips_set_option_string (&mips_arch_string, "4650");
14567 mips_set_option_string (&mips_tune_string, "4650");
14568 break;
14570 case OPTION_NO_M4650:
14571 break;
14573 case OPTION_M4010:
14574 mips_set_option_string (&mips_arch_string, "4010");
14575 mips_set_option_string (&mips_tune_string, "4010");
14576 break;
14578 case OPTION_NO_M4010:
14579 break;
14581 case OPTION_M4100:
14582 mips_set_option_string (&mips_arch_string, "4100");
14583 mips_set_option_string (&mips_tune_string, "4100");
14584 break;
14586 case OPTION_NO_M4100:
14587 break;
14589 case OPTION_M3900:
14590 mips_set_option_string (&mips_arch_string, "3900");
14591 mips_set_option_string (&mips_tune_string, "3900");
14592 break;
14594 case OPTION_NO_M3900:
14595 break;
14597 case OPTION_MDMX:
14598 mips_opts.ase_mdmx = 1;
14599 break;
14601 case OPTION_NO_MDMX:
14602 mips_opts.ase_mdmx = 0;
14603 break;
14605 case OPTION_DSP:
14606 mips_opts.ase_dsp = 1;
14607 mips_opts.ase_dspr2 = 0;
14608 break;
14610 case OPTION_NO_DSP:
14611 mips_opts.ase_dsp = 0;
14612 mips_opts.ase_dspr2 = 0;
14613 break;
14615 case OPTION_DSPR2:
14616 mips_opts.ase_dspr2 = 1;
14617 mips_opts.ase_dsp = 1;
14618 break;
14620 case OPTION_NO_DSPR2:
14621 mips_opts.ase_dspr2 = 0;
14622 mips_opts.ase_dsp = 0;
14623 break;
14625 case OPTION_MT:
14626 mips_opts.ase_mt = 1;
14627 break;
14629 case OPTION_NO_MT:
14630 mips_opts.ase_mt = 0;
14631 break;
14633 case OPTION_MCU:
14634 mips_opts.ase_mcu = 1;
14635 break;
14637 case OPTION_NO_MCU:
14638 mips_opts.ase_mcu = 0;
14639 break;
14641 case OPTION_MICROMIPS:
14642 if (mips_opts.mips16 == 1)
14644 as_bad (_("-mmicromips cannot be used with -mips16"));
14645 return 0;
14647 mips_opts.micromips = 1;
14648 mips_no_prev_insn ();
14649 break;
14651 case OPTION_NO_MICROMIPS:
14652 mips_opts.micromips = 0;
14653 mips_no_prev_insn ();
14654 break;
14656 case OPTION_MIPS16:
14657 if (mips_opts.micromips == 1)
14659 as_bad (_("-mips16 cannot be used with -micromips"));
14660 return 0;
14662 mips_opts.mips16 = 1;
14663 mips_no_prev_insn ();
14664 break;
14666 case OPTION_NO_MIPS16:
14667 mips_opts.mips16 = 0;
14668 mips_no_prev_insn ();
14669 break;
14671 case OPTION_MIPS3D:
14672 mips_opts.ase_mips3d = 1;
14673 break;
14675 case OPTION_NO_MIPS3D:
14676 mips_opts.ase_mips3d = 0;
14677 break;
14679 case OPTION_SMARTMIPS:
14680 mips_opts.ase_smartmips = 1;
14681 break;
14683 case OPTION_NO_SMARTMIPS:
14684 mips_opts.ase_smartmips = 0;
14685 break;
14687 case OPTION_FIX_24K:
14688 mips_fix_24k = 1;
14689 break;
14691 case OPTION_NO_FIX_24K:
14692 mips_fix_24k = 0;
14693 break;
14695 case OPTION_FIX_LOONGSON2F_JUMP:
14696 mips_fix_loongson2f_jump = TRUE;
14697 break;
14699 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14700 mips_fix_loongson2f_jump = FALSE;
14701 break;
14703 case OPTION_FIX_LOONGSON2F_NOP:
14704 mips_fix_loongson2f_nop = TRUE;
14705 break;
14707 case OPTION_NO_FIX_LOONGSON2F_NOP:
14708 mips_fix_loongson2f_nop = FALSE;
14709 break;
14711 case OPTION_FIX_VR4120:
14712 mips_fix_vr4120 = 1;
14713 break;
14715 case OPTION_NO_FIX_VR4120:
14716 mips_fix_vr4120 = 0;
14717 break;
14719 case OPTION_FIX_VR4130:
14720 mips_fix_vr4130 = 1;
14721 break;
14723 case OPTION_NO_FIX_VR4130:
14724 mips_fix_vr4130 = 0;
14725 break;
14727 case OPTION_FIX_CN63XXP1:
14728 mips_fix_cn63xxp1 = TRUE;
14729 break;
14731 case OPTION_NO_FIX_CN63XXP1:
14732 mips_fix_cn63xxp1 = FALSE;
14733 break;
14735 case OPTION_RELAX_BRANCH:
14736 mips_relax_branch = 1;
14737 break;
14739 case OPTION_NO_RELAX_BRANCH:
14740 mips_relax_branch = 0;
14741 break;
14743 case OPTION_MSHARED:
14744 mips_in_shared = TRUE;
14745 break;
14747 case OPTION_MNO_SHARED:
14748 mips_in_shared = FALSE;
14749 break;
14751 case OPTION_MSYM32:
14752 mips_opts.sym32 = TRUE;
14753 break;
14755 case OPTION_MNO_SYM32:
14756 mips_opts.sym32 = FALSE;
14757 break;
14759 #ifdef OBJ_ELF
14760 /* When generating ELF code, we permit -KPIC and -call_shared to
14761 select SVR4_PIC, and -non_shared to select no PIC. This is
14762 intended to be compatible with Irix 5. */
14763 case OPTION_CALL_SHARED:
14764 if (!IS_ELF)
14766 as_bad (_("-call_shared is supported only for ELF format"));
14767 return 0;
14769 mips_pic = SVR4_PIC;
14770 mips_abicalls = TRUE;
14771 break;
14773 case OPTION_CALL_NONPIC:
14774 if (!IS_ELF)
14776 as_bad (_("-call_nonpic is supported only for ELF format"));
14777 return 0;
14779 mips_pic = NO_PIC;
14780 mips_abicalls = TRUE;
14781 break;
14783 case OPTION_NON_SHARED:
14784 if (!IS_ELF)
14786 as_bad (_("-non_shared is supported only for ELF format"));
14787 return 0;
14789 mips_pic = NO_PIC;
14790 mips_abicalls = FALSE;
14791 break;
14793 /* The -xgot option tells the assembler to use 32 bit offsets
14794 when accessing the got in SVR4_PIC mode. It is for Irix
14795 compatibility. */
14796 case OPTION_XGOT:
14797 mips_big_got = 1;
14798 break;
14799 #endif /* OBJ_ELF */
14801 case 'G':
14802 g_switch_value = atoi (arg);
14803 g_switch_seen = 1;
14804 break;
14806 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14807 and -mabi=64. */
14808 case OPTION_32:
14809 if (IS_ELF)
14810 mips_abi = O32_ABI;
14811 /* We silently ignore -32 for non-ELF targets. This greatly
14812 simplifies the construction of the MIPS GAS test cases. */
14813 break;
14815 #ifdef OBJ_ELF
14816 case OPTION_N32:
14817 if (!IS_ELF)
14819 as_bad (_("-n32 is supported for ELF format only"));
14820 return 0;
14822 mips_abi = N32_ABI;
14823 break;
14825 case OPTION_64:
14826 if (!IS_ELF)
14828 as_bad (_("-64 is supported for ELF format only"));
14829 return 0;
14831 mips_abi = N64_ABI;
14832 if (!support_64bit_objects())
14833 as_fatal (_("No compiled in support for 64 bit object file format"));
14834 break;
14835 #endif /* OBJ_ELF */
14837 case OPTION_GP32:
14838 file_mips_gp32 = 1;
14839 break;
14841 case OPTION_GP64:
14842 file_mips_gp32 = 0;
14843 break;
14845 case OPTION_FP32:
14846 file_mips_fp32 = 1;
14847 break;
14849 case OPTION_FP64:
14850 file_mips_fp32 = 0;
14851 break;
14853 case OPTION_SINGLE_FLOAT:
14854 file_mips_single_float = 1;
14855 break;
14857 case OPTION_DOUBLE_FLOAT:
14858 file_mips_single_float = 0;
14859 break;
14861 case OPTION_SOFT_FLOAT:
14862 file_mips_soft_float = 1;
14863 break;
14865 case OPTION_HARD_FLOAT:
14866 file_mips_soft_float = 0;
14867 break;
14869 #ifdef OBJ_ELF
14870 case OPTION_MABI:
14871 if (!IS_ELF)
14873 as_bad (_("-mabi is supported for ELF format only"));
14874 return 0;
14876 if (strcmp (arg, "32") == 0)
14877 mips_abi = O32_ABI;
14878 else if (strcmp (arg, "o64") == 0)
14879 mips_abi = O64_ABI;
14880 else if (strcmp (arg, "n32") == 0)
14881 mips_abi = N32_ABI;
14882 else if (strcmp (arg, "64") == 0)
14884 mips_abi = N64_ABI;
14885 if (! support_64bit_objects())
14886 as_fatal (_("No compiled in support for 64 bit object file "
14887 "format"));
14889 else if (strcmp (arg, "eabi") == 0)
14890 mips_abi = EABI_ABI;
14891 else
14893 as_fatal (_("invalid abi -mabi=%s"), arg);
14894 return 0;
14896 break;
14897 #endif /* OBJ_ELF */
14899 case OPTION_M7000_HILO_FIX:
14900 mips_7000_hilo_fix = TRUE;
14901 break;
14903 case OPTION_MNO_7000_HILO_FIX:
14904 mips_7000_hilo_fix = FALSE;
14905 break;
14907 #ifdef OBJ_ELF
14908 case OPTION_MDEBUG:
14909 mips_flag_mdebug = TRUE;
14910 break;
14912 case OPTION_NO_MDEBUG:
14913 mips_flag_mdebug = FALSE;
14914 break;
14916 case OPTION_PDR:
14917 mips_flag_pdr = TRUE;
14918 break;
14920 case OPTION_NO_PDR:
14921 mips_flag_pdr = FALSE;
14922 break;
14924 case OPTION_MVXWORKS_PIC:
14925 mips_pic = VXWORKS_PIC;
14926 break;
14927 #endif /* OBJ_ELF */
14929 default:
14930 return 0;
14933 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14935 return 1;
14938 /* Set up globals to generate code for the ISA or processor
14939 described by INFO. */
14941 static void
14942 mips_set_architecture (const struct mips_cpu_info *info)
14944 if (info != 0)
14946 file_mips_arch = info->cpu;
14947 mips_opts.arch = info->cpu;
14948 mips_opts.isa = info->isa;
14953 /* Likewise for tuning. */
14955 static void
14956 mips_set_tune (const struct mips_cpu_info *info)
14958 if (info != 0)
14959 mips_tune = info->cpu;
14963 void
14964 mips_after_parse_args (void)
14966 const struct mips_cpu_info *arch_info = 0;
14967 const struct mips_cpu_info *tune_info = 0;
14969 /* GP relative stuff not working for PE */
14970 if (strncmp (TARGET_OS, "pe", 2) == 0)
14972 if (g_switch_seen && g_switch_value != 0)
14973 as_bad (_("-G not supported in this configuration."));
14974 g_switch_value = 0;
14977 if (mips_abi == NO_ABI)
14978 mips_abi = MIPS_DEFAULT_ABI;
14980 /* The following code determines the architecture and register size.
14981 Similar code was added to GCC 3.3 (see override_options() in
14982 config/mips/mips.c). The GAS and GCC code should be kept in sync
14983 as much as possible. */
14985 if (mips_arch_string != 0)
14986 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14988 if (file_mips_isa != ISA_UNKNOWN)
14990 /* Handle -mipsN. At this point, file_mips_isa contains the
14991 ISA level specified by -mipsN, while arch_info->isa contains
14992 the -march selection (if any). */
14993 if (arch_info != 0)
14995 /* -march takes precedence over -mipsN, since it is more descriptive.
14996 There's no harm in specifying both as long as the ISA levels
14997 are the same. */
14998 if (file_mips_isa != arch_info->isa)
14999 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15000 mips_cpu_info_from_isa (file_mips_isa)->name,
15001 mips_cpu_info_from_isa (arch_info->isa)->name);
15003 else
15004 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15007 if (arch_info == 0)
15008 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15010 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15011 as_bad (_("-march=%s is not compatible with the selected ABI"),
15012 arch_info->name);
15014 mips_set_architecture (arch_info);
15016 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15017 if (mips_tune_string != 0)
15018 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15020 if (tune_info == 0)
15021 mips_set_tune (arch_info);
15022 else
15023 mips_set_tune (tune_info);
15025 if (file_mips_gp32 >= 0)
15027 /* The user specified the size of the integer registers. Make sure
15028 it agrees with the ABI and ISA. */
15029 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15030 as_bad (_("-mgp64 used with a 32-bit processor"));
15031 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15032 as_bad (_("-mgp32 used with a 64-bit ABI"));
15033 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15034 as_bad (_("-mgp64 used with a 32-bit ABI"));
15036 else
15038 /* Infer the integer register size from the ABI and processor.
15039 Restrict ourselves to 32-bit registers if that's all the
15040 processor has, or if the ABI cannot handle 64-bit registers. */
15041 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15042 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15045 switch (file_mips_fp32)
15047 default:
15048 case -1:
15049 /* No user specified float register size.
15050 ??? GAS treats single-float processors as though they had 64-bit
15051 float registers (although it complains when double-precision
15052 instructions are used). As things stand, saying they have 32-bit
15053 registers would lead to spurious "register must be even" messages.
15054 So here we assume float registers are never smaller than the
15055 integer ones. */
15056 if (file_mips_gp32 == 0)
15057 /* 64-bit integer registers implies 64-bit float registers. */
15058 file_mips_fp32 = 0;
15059 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
15060 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15061 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15062 file_mips_fp32 = 0;
15063 else
15064 /* 32-bit float registers. */
15065 file_mips_fp32 = 1;
15066 break;
15068 /* The user specified the size of the float registers. Check if it
15069 agrees with the ABI and ISA. */
15070 case 0:
15071 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15072 as_bad (_("-mfp64 used with a 32-bit fpu"));
15073 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15074 && !ISA_HAS_MXHC1 (mips_opts.isa))
15075 as_warn (_("-mfp64 used with a 32-bit ABI"));
15076 break;
15077 case 1:
15078 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15079 as_warn (_("-mfp32 used with a 64-bit ABI"));
15080 break;
15083 /* End of GCC-shared inference code. */
15085 /* This flag is set when we have a 64-bit capable CPU but use only
15086 32-bit wide registers. Note that EABI does not use it. */
15087 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15088 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15089 || mips_abi == O32_ABI))
15090 mips_32bitmode = 1;
15092 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15093 as_bad (_("trap exception not supported at ISA 1"));
15095 /* If the selected architecture includes support for ASEs, enable
15096 generation of code for them. */
15097 if (mips_opts.mips16 == -1)
15098 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15099 if (mips_opts.micromips == -1)
15100 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15101 if (mips_opts.ase_mips3d == -1)
15102 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
15103 && file_mips_fp32 == 0) ? 1 : 0;
15104 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
15105 as_bad (_("-mfp32 used with -mips3d"));
15107 if (mips_opts.ase_mdmx == -1)
15108 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
15109 && file_mips_fp32 == 0) ? 1 : 0;
15110 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
15111 as_bad (_("-mfp32 used with -mdmx"));
15113 if (mips_opts.ase_smartmips == -1)
15114 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
15115 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
15116 as_warn (_("%s ISA does not support SmartMIPS"),
15117 mips_cpu_info_from_isa (mips_opts.isa)->name);
15119 if (mips_opts.ase_dsp == -1)
15120 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15121 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
15122 as_warn (_("%s ISA does not support DSP ASE"),
15123 mips_cpu_info_from_isa (mips_opts.isa)->name);
15125 if (mips_opts.ase_dspr2 == -1)
15127 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
15128 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15130 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
15131 as_warn (_("%s ISA does not support DSP R2 ASE"),
15132 mips_cpu_info_from_isa (mips_opts.isa)->name);
15134 if (mips_opts.ase_mt == -1)
15135 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
15136 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
15137 as_warn (_("%s ISA does not support MT ASE"),
15138 mips_cpu_info_from_isa (mips_opts.isa)->name);
15140 if (mips_opts.ase_mcu == -1)
15141 mips_opts.ase_mcu = (arch_info->flags & MIPS_CPU_ASE_MCU) ? 1 : 0;
15142 if (mips_opts.ase_mcu && !ISA_SUPPORTS_MCU_ASE)
15143 as_warn (_("%s ISA does not support MCU ASE"),
15144 mips_cpu_info_from_isa (mips_opts.isa)->name);
15146 file_mips_isa = mips_opts.isa;
15147 file_ase_mips3d = mips_opts.ase_mips3d;
15148 file_ase_mdmx = mips_opts.ase_mdmx;
15149 file_ase_smartmips = mips_opts.ase_smartmips;
15150 file_ase_dsp = mips_opts.ase_dsp;
15151 file_ase_dspr2 = mips_opts.ase_dspr2;
15152 file_ase_mt = mips_opts.ase_mt;
15153 mips_opts.gp32 = file_mips_gp32;
15154 mips_opts.fp32 = file_mips_fp32;
15155 mips_opts.soft_float = file_mips_soft_float;
15156 mips_opts.single_float = file_mips_single_float;
15158 if (mips_flag_mdebug < 0)
15160 #ifdef OBJ_MAYBE_ECOFF
15161 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
15162 mips_flag_mdebug = 1;
15163 else
15164 #endif /* OBJ_MAYBE_ECOFF */
15165 mips_flag_mdebug = 0;
15169 void
15170 mips_init_after_args (void)
15172 /* initialize opcodes */
15173 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15174 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15177 long
15178 md_pcrel_from (fixS *fixP)
15180 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15181 switch (fixP->fx_r_type)
15183 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15184 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15185 /* Return the address of the delay slot. */
15186 return addr + 2;
15188 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15189 case BFD_RELOC_MICROMIPS_JMP:
15190 case BFD_RELOC_16_PCREL_S2:
15191 case BFD_RELOC_MIPS_JMP:
15192 /* Return the address of the delay slot. */
15193 return addr + 4;
15195 default:
15196 /* We have no relocation type for PC relative MIPS16 instructions. */
15197 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15198 as_bad_where (fixP->fx_file, fixP->fx_line,
15199 _("PC relative MIPS16 instruction references a different section"));
15200 return addr;
15204 /* This is called before the symbol table is processed. In order to
15205 work with gcc when using mips-tfile, we must keep all local labels.
15206 However, in other cases, we want to discard them. If we were
15207 called with -g, but we didn't see any debugging information, it may
15208 mean that gcc is smuggling debugging information through to
15209 mips-tfile, in which case we must generate all local labels. */
15211 void
15212 mips_frob_file_before_adjust (void)
15214 #ifndef NO_ECOFF_DEBUGGING
15215 if (ECOFF_DEBUGGING
15216 && mips_debug != 0
15217 && ! ecoff_debugging_seen)
15218 flag_keep_locals = 1;
15219 #endif
15222 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15223 the corresponding LO16 reloc. This is called before md_apply_fix and
15224 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15225 relocation operators.
15227 For our purposes, a %lo() expression matches a %got() or %hi()
15228 expression if:
15230 (a) it refers to the same symbol; and
15231 (b) the offset applied in the %lo() expression is no lower than
15232 the offset applied in the %got() or %hi().
15234 (b) allows us to cope with code like:
15236 lui $4,%hi(foo)
15237 lh $4,%lo(foo+2)($4)
15239 ...which is legal on RELA targets, and has a well-defined behaviour
15240 if the user knows that adding 2 to "foo" will not induce a carry to
15241 the high 16 bits.
15243 When several %lo()s match a particular %got() or %hi(), we use the
15244 following rules to distinguish them:
15246 (1) %lo()s with smaller offsets are a better match than %lo()s with
15247 higher offsets.
15249 (2) %lo()s with no matching %got() or %hi() are better than those
15250 that already have a matching %got() or %hi().
15252 (3) later %lo()s are better than earlier %lo()s.
15254 These rules are applied in order.
15256 (1) means, among other things, that %lo()s with identical offsets are
15257 chosen if they exist.
15259 (2) means that we won't associate several high-part relocations with
15260 the same low-part relocation unless there's no alternative. Having
15261 several high parts for the same low part is a GNU extension; this rule
15262 allows careful users to avoid it.
15264 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15265 with the last high-part relocation being at the front of the list.
15266 It therefore makes sense to choose the last matching low-part
15267 relocation, all other things being equal. It's also easier
15268 to code that way. */
15270 void
15271 mips_frob_file (void)
15273 struct mips_hi_fixup *l;
15274 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15276 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15278 segment_info_type *seginfo;
15279 bfd_boolean matched_lo_p;
15280 fixS **hi_pos, **lo_pos, **pos;
15282 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15284 /* If a GOT16 relocation turns out to be against a global symbol,
15285 there isn't supposed to be a matching LO. */
15286 if (got16_reloc_p (l->fixp->fx_r_type)
15287 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
15288 continue;
15290 /* Check quickly whether the next fixup happens to be a matching %lo. */
15291 if (fixup_has_matching_lo_p (l->fixp))
15292 continue;
15294 seginfo = seg_info (l->seg);
15296 /* Set HI_POS to the position of this relocation in the chain.
15297 Set LO_POS to the position of the chosen low-part relocation.
15298 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15299 relocation that matches an immediately-preceding high-part
15300 relocation. */
15301 hi_pos = NULL;
15302 lo_pos = NULL;
15303 matched_lo_p = FALSE;
15304 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15306 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15308 if (*pos == l->fixp)
15309 hi_pos = pos;
15311 if ((*pos)->fx_r_type == looking_for_rtype
15312 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15313 && (*pos)->fx_offset >= l->fixp->fx_offset
15314 && (lo_pos == NULL
15315 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15316 || (!matched_lo_p
15317 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15318 lo_pos = pos;
15320 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15321 && fixup_has_matching_lo_p (*pos));
15324 /* If we found a match, remove the high-part relocation from its
15325 current position and insert it before the low-part relocation.
15326 Make the offsets match so that fixup_has_matching_lo_p()
15327 will return true.
15329 We don't warn about unmatched high-part relocations since some
15330 versions of gcc have been known to emit dead "lui ...%hi(...)"
15331 instructions. */
15332 if (lo_pos != NULL)
15334 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15335 if (l->fixp->fx_next != *lo_pos)
15337 *hi_pos = l->fixp->fx_next;
15338 l->fixp->fx_next = *lo_pos;
15339 *lo_pos = l->fixp;
15345 /* We may have combined relocations without symbols in the N32/N64 ABI.
15346 We have to prevent gas from dropping them. */
15349 mips_force_relocation (fixS *fixp)
15351 if (generic_force_reloc (fixp))
15352 return 1;
15354 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15355 so that the linker relaxation can update targets. */
15356 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15357 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15358 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15359 return 1;
15361 if (HAVE_NEWABI
15362 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
15363 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
15364 || hi16_reloc_p (fixp->fx_r_type)
15365 || lo16_reloc_p (fixp->fx_r_type)))
15366 return 1;
15368 return 0;
15371 /* Apply a fixup to the object file. */
15373 void
15374 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15376 bfd_byte *buf;
15377 long insn;
15378 reloc_howto_type *howto;
15380 /* We ignore generic BFD relocations we don't know about. */
15381 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15382 if (! howto)
15383 return;
15385 gas_assert (fixP->fx_size == 2
15386 || fixP->fx_size == 4
15387 || fixP->fx_r_type == BFD_RELOC_16
15388 || fixP->fx_r_type == BFD_RELOC_64
15389 || fixP->fx_r_type == BFD_RELOC_CTOR
15390 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15391 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15392 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15393 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15394 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15396 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
15398 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15399 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15400 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15401 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
15403 /* Don't treat parts of a composite relocation as done. There are two
15404 reasons for this:
15406 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15407 should nevertheless be emitted if the first part is.
15409 (2) In normal usage, composite relocations are never assembly-time
15410 constants. The easiest way of dealing with the pathological
15411 exceptions is to generate a relocation against STN_UNDEF and
15412 leave everything up to the linker. */
15413 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15414 fixP->fx_done = 1;
15416 switch (fixP->fx_r_type)
15418 case BFD_RELOC_MIPS_TLS_GD:
15419 case BFD_RELOC_MIPS_TLS_LDM:
15420 case BFD_RELOC_MIPS_TLS_DTPREL32:
15421 case BFD_RELOC_MIPS_TLS_DTPREL64:
15422 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15423 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15424 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15425 case BFD_RELOC_MIPS_TLS_TPREL32:
15426 case BFD_RELOC_MIPS_TLS_TPREL64:
15427 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15428 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15429 case BFD_RELOC_MICROMIPS_TLS_GD:
15430 case BFD_RELOC_MICROMIPS_TLS_LDM:
15431 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15432 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15433 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15434 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15435 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15436 case BFD_RELOC_MIPS16_TLS_GD:
15437 case BFD_RELOC_MIPS16_TLS_LDM:
15438 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15439 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15440 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15441 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15442 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15443 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15444 /* fall through */
15446 case BFD_RELOC_MIPS_JMP:
15447 case BFD_RELOC_MIPS_SHIFT5:
15448 case BFD_RELOC_MIPS_SHIFT6:
15449 case BFD_RELOC_MIPS_GOT_DISP:
15450 case BFD_RELOC_MIPS_GOT_PAGE:
15451 case BFD_RELOC_MIPS_GOT_OFST:
15452 case BFD_RELOC_MIPS_SUB:
15453 case BFD_RELOC_MIPS_INSERT_A:
15454 case BFD_RELOC_MIPS_INSERT_B:
15455 case BFD_RELOC_MIPS_DELETE:
15456 case BFD_RELOC_MIPS_HIGHEST:
15457 case BFD_RELOC_MIPS_HIGHER:
15458 case BFD_RELOC_MIPS_SCN_DISP:
15459 case BFD_RELOC_MIPS_REL16:
15460 case BFD_RELOC_MIPS_RELGOT:
15461 case BFD_RELOC_MIPS_JALR:
15462 case BFD_RELOC_HI16:
15463 case BFD_RELOC_HI16_S:
15464 case BFD_RELOC_GPREL16:
15465 case BFD_RELOC_MIPS_LITERAL:
15466 case BFD_RELOC_MIPS_CALL16:
15467 case BFD_RELOC_MIPS_GOT16:
15468 case BFD_RELOC_GPREL32:
15469 case BFD_RELOC_MIPS_GOT_HI16:
15470 case BFD_RELOC_MIPS_GOT_LO16:
15471 case BFD_RELOC_MIPS_CALL_HI16:
15472 case BFD_RELOC_MIPS_CALL_LO16:
15473 case BFD_RELOC_MIPS16_GPREL:
15474 case BFD_RELOC_MIPS16_GOT16:
15475 case BFD_RELOC_MIPS16_CALL16:
15476 case BFD_RELOC_MIPS16_HI16:
15477 case BFD_RELOC_MIPS16_HI16_S:
15478 case BFD_RELOC_MIPS16_JMP:
15479 case BFD_RELOC_MICROMIPS_JMP:
15480 case BFD_RELOC_MICROMIPS_GOT_DISP:
15481 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15482 case BFD_RELOC_MICROMIPS_GOT_OFST:
15483 case BFD_RELOC_MICROMIPS_SUB:
15484 case BFD_RELOC_MICROMIPS_HIGHEST:
15485 case BFD_RELOC_MICROMIPS_HIGHER:
15486 case BFD_RELOC_MICROMIPS_SCN_DISP:
15487 case BFD_RELOC_MICROMIPS_JALR:
15488 case BFD_RELOC_MICROMIPS_HI16:
15489 case BFD_RELOC_MICROMIPS_HI16_S:
15490 case BFD_RELOC_MICROMIPS_GPREL16:
15491 case BFD_RELOC_MICROMIPS_LITERAL:
15492 case BFD_RELOC_MICROMIPS_CALL16:
15493 case BFD_RELOC_MICROMIPS_GOT16:
15494 case BFD_RELOC_MICROMIPS_GOT_HI16:
15495 case BFD_RELOC_MICROMIPS_GOT_LO16:
15496 case BFD_RELOC_MICROMIPS_CALL_HI16:
15497 case BFD_RELOC_MICROMIPS_CALL_LO16:
15498 /* Nothing needed to do. The value comes from the reloc entry. */
15499 break;
15501 case BFD_RELOC_64:
15502 /* This is handled like BFD_RELOC_32, but we output a sign
15503 extended value if we are only 32 bits. */
15504 if (fixP->fx_done)
15506 if (8 <= sizeof (valueT))
15507 md_number_to_chars ((char *) buf, *valP, 8);
15508 else
15510 valueT hiv;
15512 if ((*valP & 0x80000000) != 0)
15513 hiv = 0xffffffff;
15514 else
15515 hiv = 0;
15516 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
15517 *valP, 4);
15518 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
15519 hiv, 4);
15522 break;
15524 case BFD_RELOC_RVA:
15525 case BFD_RELOC_32:
15526 case BFD_RELOC_16:
15527 /* If we are deleting this reloc entry, we must fill in the
15528 value now. This can happen if we have a .word which is not
15529 resolved when it appears but is later defined. */
15530 if (fixP->fx_done)
15531 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
15532 break;
15534 case BFD_RELOC_LO16:
15535 case BFD_RELOC_MIPS16_LO16:
15536 case BFD_RELOC_MICROMIPS_LO16:
15537 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
15538 may be safe to remove, but if so it's not obvious. */
15539 /* When handling an embedded PIC switch statement, we can wind
15540 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
15541 if (fixP->fx_done)
15543 if (*valP + 0x8000 > 0xffff)
15544 as_bad_where (fixP->fx_file, fixP->fx_line,
15545 _("relocation overflow"));
15546 /* 32-bit microMIPS instructions are divided into two halfwords.
15547 Relocations always refer to the second halfword, regardless
15548 of endianness. */
15549 if (target_big_endian || fixP->fx_r_type == BFD_RELOC_MICROMIPS_LO16)
15550 buf += 2;
15551 md_number_to_chars ((char *) buf, *valP, 2);
15553 break;
15555 case BFD_RELOC_16_PCREL_S2:
15556 if ((*valP & 0x3) != 0)
15557 as_bad_where (fixP->fx_file, fixP->fx_line,
15558 _("Branch to misaligned address (%lx)"), (long) *valP);
15560 /* We need to save the bits in the instruction since fixup_segment()
15561 might be deleting the relocation entry (i.e., a branch within
15562 the current segment). */
15563 if (! fixP->fx_done)
15564 break;
15566 /* Update old instruction data. */
15567 if (target_big_endian)
15568 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
15569 else
15570 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
15572 if (*valP + 0x20000 <= 0x3ffff)
15574 insn |= (*valP >> 2) & 0xffff;
15575 md_number_to_chars ((char *) buf, insn, 4);
15577 else if (mips_pic == NO_PIC
15578 && fixP->fx_done
15579 && fixP->fx_frag->fr_address >= text_section->vma
15580 && (fixP->fx_frag->fr_address
15581 < text_section->vma + bfd_get_section_size (text_section))
15582 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15583 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15584 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15586 /* The branch offset is too large. If this is an
15587 unconditional branch, and we are not generating PIC code,
15588 we can convert it to an absolute jump instruction. */
15589 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15590 insn = 0x0c000000; /* jal */
15591 else
15592 insn = 0x08000000; /* j */
15593 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15594 fixP->fx_done = 0;
15595 fixP->fx_addsy = section_symbol (text_section);
15596 *valP += md_pcrel_from (fixP);
15597 md_number_to_chars ((char *) buf, insn, 4);
15599 else
15601 /* If we got here, we have branch-relaxation disabled,
15602 and there's nothing we can do to fix this instruction
15603 without turning it into a longer sequence. */
15604 as_bad_where (fixP->fx_file, fixP->fx_line,
15605 _("Branch out of range"));
15607 break;
15609 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15610 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15611 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15612 /* We adjust the offset back to even. */
15613 if ((*valP & 0x1) != 0)
15614 --(*valP);
15616 if (! fixP->fx_done)
15617 break;
15619 /* Should never visit here, because we keep the relocation. */
15620 abort ();
15621 break;
15623 case BFD_RELOC_VTABLE_INHERIT:
15624 fixP->fx_done = 0;
15625 if (fixP->fx_addsy
15626 && !S_IS_DEFINED (fixP->fx_addsy)
15627 && !S_IS_WEAK (fixP->fx_addsy))
15628 S_SET_WEAK (fixP->fx_addsy);
15629 break;
15631 case BFD_RELOC_VTABLE_ENTRY:
15632 fixP->fx_done = 0;
15633 break;
15635 default:
15636 internalError ();
15639 /* Remember value for tc_gen_reloc. */
15640 fixP->fx_addnumber = *valP;
15643 static symbolS *
15644 get_symbol (void)
15646 int c;
15647 char *name;
15648 symbolS *p;
15650 name = input_line_pointer;
15651 c = get_symbol_end ();
15652 p = (symbolS *) symbol_find_or_make (name);
15653 *input_line_pointer = c;
15654 return p;
15657 /* Align the current frag to a given power of two. If a particular
15658 fill byte should be used, FILL points to an integer that contains
15659 that byte, otherwise FILL is null.
15661 This function used to have the comment:
15663 The MIPS assembler also automatically adjusts any preceding label.
15665 The implementation therefore applied the adjustment to a maximum of
15666 one label. However, other label adjustments are applied to batches
15667 of labels, and adjusting just one caused problems when new labels
15668 were added for the sake of debugging or unwind information.
15669 We therefore adjust all preceding labels (given as LABELS) instead. */
15671 static void
15672 mips_align (int to, int *fill, struct insn_label_list *labels)
15674 mips_emit_delays ();
15675 mips_record_compressed_mode ();
15676 if (fill == NULL && subseg_text_p (now_seg))
15677 frag_align_code (to, 0);
15678 else
15679 frag_align (to, fill ? *fill : 0, 0);
15680 record_alignment (now_seg, to);
15681 mips_move_labels (labels, FALSE);
15684 /* Align to a given power of two. .align 0 turns off the automatic
15685 alignment used by the data creating pseudo-ops. */
15687 static void
15688 s_align (int x ATTRIBUTE_UNUSED)
15690 int temp, fill_value, *fill_ptr;
15691 long max_alignment = 28;
15693 /* o Note that the assembler pulls down any immediately preceding label
15694 to the aligned address.
15695 o It's not documented but auto alignment is reinstated by
15696 a .align pseudo instruction.
15697 o Note also that after auto alignment is turned off the mips assembler
15698 issues an error on attempt to assemble an improperly aligned data item.
15699 We don't. */
15701 temp = get_absolute_expression ();
15702 if (temp > max_alignment)
15703 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
15704 else if (temp < 0)
15706 as_warn (_("Alignment negative: 0 assumed."));
15707 temp = 0;
15709 if (*input_line_pointer == ',')
15711 ++input_line_pointer;
15712 fill_value = get_absolute_expression ();
15713 fill_ptr = &fill_value;
15715 else
15716 fill_ptr = 0;
15717 if (temp)
15719 segment_info_type *si = seg_info (now_seg);
15720 struct insn_label_list *l = si->label_list;
15721 /* Auto alignment should be switched on by next section change. */
15722 auto_align = 1;
15723 mips_align (temp, fill_ptr, l);
15725 else
15727 auto_align = 0;
15730 demand_empty_rest_of_line ();
15733 static void
15734 s_change_sec (int sec)
15736 segT seg;
15738 #ifdef OBJ_ELF
15739 /* The ELF backend needs to know that we are changing sections, so
15740 that .previous works correctly. We could do something like check
15741 for an obj_section_change_hook macro, but that might be confusing
15742 as it would not be appropriate to use it in the section changing
15743 functions in read.c, since obj-elf.c intercepts those. FIXME:
15744 This should be cleaner, somehow. */
15745 if (IS_ELF)
15746 obj_elf_section_change_hook ();
15747 #endif
15749 mips_emit_delays ();
15751 switch (sec)
15753 case 't':
15754 s_text (0);
15755 break;
15756 case 'd':
15757 s_data (0);
15758 break;
15759 case 'b':
15760 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15761 demand_empty_rest_of_line ();
15762 break;
15764 case 'r':
15765 seg = subseg_new (RDATA_SECTION_NAME,
15766 (subsegT) get_absolute_expression ());
15767 if (IS_ELF)
15769 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15770 | SEC_READONLY | SEC_RELOC
15771 | SEC_DATA));
15772 if (strncmp (TARGET_OS, "elf", 3) != 0)
15773 record_alignment (seg, 4);
15775 demand_empty_rest_of_line ();
15776 break;
15778 case 's':
15779 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15780 if (IS_ELF)
15782 bfd_set_section_flags (stdoutput, seg,
15783 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15784 if (strncmp (TARGET_OS, "elf", 3) != 0)
15785 record_alignment (seg, 4);
15787 demand_empty_rest_of_line ();
15788 break;
15790 case 'B':
15791 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15792 if (IS_ELF)
15794 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15795 if (strncmp (TARGET_OS, "elf", 3) != 0)
15796 record_alignment (seg, 4);
15798 demand_empty_rest_of_line ();
15799 break;
15802 auto_align = 1;
15805 void
15806 s_change_section (int ignore ATTRIBUTE_UNUSED)
15808 #ifdef OBJ_ELF
15809 char *section_name;
15810 char c;
15811 char next_c = 0;
15812 int section_type;
15813 int section_flag;
15814 int section_entry_size;
15815 int section_alignment;
15817 if (!IS_ELF)
15818 return;
15820 section_name = input_line_pointer;
15821 c = get_symbol_end ();
15822 if (c)
15823 next_c = *(input_line_pointer + 1);
15825 /* Do we have .section Name<,"flags">? */
15826 if (c != ',' || (c == ',' && next_c == '"'))
15828 /* just after name is now '\0'. */
15829 *input_line_pointer = c;
15830 input_line_pointer = section_name;
15831 obj_elf_section (ignore);
15832 return;
15834 input_line_pointer++;
15836 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15837 if (c == ',')
15838 section_type = get_absolute_expression ();
15839 else
15840 section_type = 0;
15841 if (*input_line_pointer++ == ',')
15842 section_flag = get_absolute_expression ();
15843 else
15844 section_flag = 0;
15845 if (*input_line_pointer++ == ',')
15846 section_entry_size = get_absolute_expression ();
15847 else
15848 section_entry_size = 0;
15849 if (*input_line_pointer++ == ',')
15850 section_alignment = get_absolute_expression ();
15851 else
15852 section_alignment = 0;
15853 /* FIXME: really ignore? */
15854 (void) section_alignment;
15856 section_name = xstrdup (section_name);
15858 /* When using the generic form of .section (as implemented by obj-elf.c),
15859 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15860 traditionally had to fall back on the more common @progbits instead.
15862 There's nothing really harmful in this, since bfd will correct
15863 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15864 means that, for backwards compatibility, the special_section entries
15865 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15867 Even so, we shouldn't force users of the MIPS .section syntax to
15868 incorrectly label the sections as SHT_PROGBITS. The best compromise
15869 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15870 generic type-checking code. */
15871 if (section_type == SHT_MIPS_DWARF)
15872 section_type = SHT_PROGBITS;
15874 obj_elf_change_section (section_name, section_type, section_flag,
15875 section_entry_size, 0, 0, 0);
15877 if (now_seg->name != section_name)
15878 free (section_name);
15879 #endif /* OBJ_ELF */
15882 void
15883 mips_enable_auto_align (void)
15885 auto_align = 1;
15888 static void
15889 s_cons (int log_size)
15891 segment_info_type *si = seg_info (now_seg);
15892 struct insn_label_list *l = si->label_list;
15894 mips_emit_delays ();
15895 if (log_size > 0 && auto_align)
15896 mips_align (log_size, 0, l);
15897 cons (1 << log_size);
15898 mips_clear_insn_labels ();
15901 static void
15902 s_float_cons (int type)
15904 segment_info_type *si = seg_info (now_seg);
15905 struct insn_label_list *l = si->label_list;
15907 mips_emit_delays ();
15909 if (auto_align)
15911 if (type == 'd')
15912 mips_align (3, 0, l);
15913 else
15914 mips_align (2, 0, l);
15917 float_cons (type);
15918 mips_clear_insn_labels ();
15921 /* Handle .globl. We need to override it because on Irix 5 you are
15922 permitted to say
15923 .globl foo .text
15924 where foo is an undefined symbol, to mean that foo should be
15925 considered to be the address of a function. */
15927 static void
15928 s_mips_globl (int x ATTRIBUTE_UNUSED)
15930 char *name;
15931 int c;
15932 symbolS *symbolP;
15933 flagword flag;
15937 name = input_line_pointer;
15938 c = get_symbol_end ();
15939 symbolP = symbol_find_or_make (name);
15940 S_SET_EXTERNAL (symbolP);
15942 *input_line_pointer = c;
15943 SKIP_WHITESPACE ();
15945 /* On Irix 5, every global symbol that is not explicitly labelled as
15946 being a function is apparently labelled as being an object. */
15947 flag = BSF_OBJECT;
15949 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15950 && (*input_line_pointer != ','))
15952 char *secname;
15953 asection *sec;
15955 secname = input_line_pointer;
15956 c = get_symbol_end ();
15957 sec = bfd_get_section_by_name (stdoutput, secname);
15958 if (sec == NULL)
15959 as_bad (_("%s: no such section"), secname);
15960 *input_line_pointer = c;
15962 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15963 flag = BSF_FUNCTION;
15966 symbol_get_bfdsym (symbolP)->flags |= flag;
15968 c = *input_line_pointer;
15969 if (c == ',')
15971 input_line_pointer++;
15972 SKIP_WHITESPACE ();
15973 if (is_end_of_line[(unsigned char) *input_line_pointer])
15974 c = '\n';
15977 while (c == ',');
15979 demand_empty_rest_of_line ();
15982 static void
15983 s_option (int x ATTRIBUTE_UNUSED)
15985 char *opt;
15986 char c;
15988 opt = input_line_pointer;
15989 c = get_symbol_end ();
15991 if (*opt == 'O')
15993 /* FIXME: What does this mean? */
15995 else if (strncmp (opt, "pic", 3) == 0)
15997 int i;
15999 i = atoi (opt + 3);
16000 if (i == 0)
16001 mips_pic = NO_PIC;
16002 else if (i == 2)
16004 mips_pic = SVR4_PIC;
16005 mips_abicalls = TRUE;
16007 else
16008 as_bad (_(".option pic%d not supported"), i);
16010 if (mips_pic == SVR4_PIC)
16012 if (g_switch_seen && g_switch_value != 0)
16013 as_warn (_("-G may not be used with SVR4 PIC code"));
16014 g_switch_value = 0;
16015 bfd_set_gp_size (stdoutput, 0);
16018 else
16019 as_warn (_("Unrecognized option \"%s\""), opt);
16021 *input_line_pointer = c;
16022 demand_empty_rest_of_line ();
16025 /* This structure is used to hold a stack of .set values. */
16027 struct mips_option_stack
16029 struct mips_option_stack *next;
16030 struct mips_set_options options;
16033 static struct mips_option_stack *mips_opts_stack;
16035 /* Handle the .set pseudo-op. */
16037 static void
16038 s_mipsset (int x ATTRIBUTE_UNUSED)
16040 char *name = input_line_pointer, ch;
16042 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16043 ++input_line_pointer;
16044 ch = *input_line_pointer;
16045 *input_line_pointer = '\0';
16047 if (strcmp (name, "reorder") == 0)
16049 if (mips_opts.noreorder)
16050 end_noreorder ();
16052 else if (strcmp (name, "noreorder") == 0)
16054 if (!mips_opts.noreorder)
16055 start_noreorder ();
16057 else if (strncmp (name, "at=", 3) == 0)
16059 char *s = name + 3;
16061 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16062 as_bad (_("Unrecognized register name `%s'"), s);
16064 else if (strcmp (name, "at") == 0)
16066 mips_opts.at = ATREG;
16068 else if (strcmp (name, "noat") == 0)
16070 mips_opts.at = ZERO;
16072 else if (strcmp (name, "macro") == 0)
16074 mips_opts.warn_about_macros = 0;
16076 else if (strcmp (name, "nomacro") == 0)
16078 if (mips_opts.noreorder == 0)
16079 as_bad (_("`noreorder' must be set before `nomacro'"));
16080 mips_opts.warn_about_macros = 1;
16082 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16084 mips_opts.nomove = 0;
16086 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16088 mips_opts.nomove = 1;
16090 else if (strcmp (name, "bopt") == 0)
16092 mips_opts.nobopt = 0;
16094 else if (strcmp (name, "nobopt") == 0)
16096 mips_opts.nobopt = 1;
16098 else if (strcmp (name, "gp=default") == 0)
16099 mips_opts.gp32 = file_mips_gp32;
16100 else if (strcmp (name, "gp=32") == 0)
16101 mips_opts.gp32 = 1;
16102 else if (strcmp (name, "gp=64") == 0)
16104 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16105 as_warn (_("%s isa does not support 64-bit registers"),
16106 mips_cpu_info_from_isa (mips_opts.isa)->name);
16107 mips_opts.gp32 = 0;
16109 else if (strcmp (name, "fp=default") == 0)
16110 mips_opts.fp32 = file_mips_fp32;
16111 else if (strcmp (name, "fp=32") == 0)
16112 mips_opts.fp32 = 1;
16113 else if (strcmp (name, "fp=64") == 0)
16115 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16116 as_warn (_("%s isa does not support 64-bit floating point registers"),
16117 mips_cpu_info_from_isa (mips_opts.isa)->name);
16118 mips_opts.fp32 = 0;
16120 else if (strcmp (name, "softfloat") == 0)
16121 mips_opts.soft_float = 1;
16122 else if (strcmp (name, "hardfloat") == 0)
16123 mips_opts.soft_float = 0;
16124 else if (strcmp (name, "singlefloat") == 0)
16125 mips_opts.single_float = 1;
16126 else if (strcmp (name, "doublefloat") == 0)
16127 mips_opts.single_float = 0;
16128 else if (strcmp (name, "mips16") == 0
16129 || strcmp (name, "MIPS-16") == 0)
16131 if (mips_opts.micromips == 1)
16132 as_fatal (_("`mips16' cannot be used with `micromips'"));
16133 mips_opts.mips16 = 1;
16135 else if (strcmp (name, "nomips16") == 0
16136 || strcmp (name, "noMIPS-16") == 0)
16137 mips_opts.mips16 = 0;
16138 else if (strcmp (name, "micromips") == 0)
16140 if (mips_opts.mips16 == 1)
16141 as_fatal (_("`micromips' cannot be used with `mips16'"));
16142 mips_opts.micromips = 1;
16144 else if (strcmp (name, "nomicromips") == 0)
16145 mips_opts.micromips = 0;
16146 else if (strcmp (name, "smartmips") == 0)
16148 if (!ISA_SUPPORTS_SMARTMIPS)
16149 as_warn (_("%s ISA does not support SmartMIPS ASE"),
16150 mips_cpu_info_from_isa (mips_opts.isa)->name);
16151 mips_opts.ase_smartmips = 1;
16153 else if (strcmp (name, "nosmartmips") == 0)
16154 mips_opts.ase_smartmips = 0;
16155 else if (strcmp (name, "mips3d") == 0)
16156 mips_opts.ase_mips3d = 1;
16157 else if (strcmp (name, "nomips3d") == 0)
16158 mips_opts.ase_mips3d = 0;
16159 else if (strcmp (name, "mdmx") == 0)
16160 mips_opts.ase_mdmx = 1;
16161 else if (strcmp (name, "nomdmx") == 0)
16162 mips_opts.ase_mdmx = 0;
16163 else if (strcmp (name, "dsp") == 0)
16165 if (!ISA_SUPPORTS_DSP_ASE)
16166 as_warn (_("%s ISA does not support DSP ASE"),
16167 mips_cpu_info_from_isa (mips_opts.isa)->name);
16168 mips_opts.ase_dsp = 1;
16169 mips_opts.ase_dspr2 = 0;
16171 else if (strcmp (name, "nodsp") == 0)
16173 mips_opts.ase_dsp = 0;
16174 mips_opts.ase_dspr2 = 0;
16176 else if (strcmp (name, "dspr2") == 0)
16178 if (!ISA_SUPPORTS_DSPR2_ASE)
16179 as_warn (_("%s ISA does not support DSP R2 ASE"),
16180 mips_cpu_info_from_isa (mips_opts.isa)->name);
16181 mips_opts.ase_dspr2 = 1;
16182 mips_opts.ase_dsp = 1;
16184 else if (strcmp (name, "nodspr2") == 0)
16186 mips_opts.ase_dspr2 = 0;
16187 mips_opts.ase_dsp = 0;
16189 else if (strcmp (name, "mt") == 0)
16191 if (!ISA_SUPPORTS_MT_ASE)
16192 as_warn (_("%s ISA does not support MT ASE"),
16193 mips_cpu_info_from_isa (mips_opts.isa)->name);
16194 mips_opts.ase_mt = 1;
16196 else if (strcmp (name, "nomt") == 0)
16197 mips_opts.ase_mt = 0;
16198 else if (strcmp (name, "mcu") == 0)
16199 mips_opts.ase_mcu = 1;
16200 else if (strcmp (name, "nomcu") == 0)
16201 mips_opts.ase_mcu = 0;
16202 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16204 int reset = 0;
16206 /* Permit the user to change the ISA and architecture on the fly.
16207 Needless to say, misuse can cause serious problems. */
16208 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16210 reset = 1;
16211 mips_opts.isa = file_mips_isa;
16212 mips_opts.arch = file_mips_arch;
16214 else if (strncmp (name, "arch=", 5) == 0)
16216 const struct mips_cpu_info *p;
16218 p = mips_parse_cpu("internal use", name + 5);
16219 if (!p)
16220 as_bad (_("unknown architecture %s"), name + 5);
16221 else
16223 mips_opts.arch = p->cpu;
16224 mips_opts.isa = p->isa;
16227 else if (strncmp (name, "mips", 4) == 0)
16229 const struct mips_cpu_info *p;
16231 p = mips_parse_cpu("internal use", name);
16232 if (!p)
16233 as_bad (_("unknown ISA level %s"), name + 4);
16234 else
16236 mips_opts.arch = p->cpu;
16237 mips_opts.isa = p->isa;
16240 else
16241 as_bad (_("unknown ISA or architecture %s"), name);
16243 switch (mips_opts.isa)
16245 case 0:
16246 break;
16247 case ISA_MIPS1:
16248 case ISA_MIPS2:
16249 case ISA_MIPS32:
16250 case ISA_MIPS32R2:
16251 mips_opts.gp32 = 1;
16252 mips_opts.fp32 = 1;
16253 break;
16254 case ISA_MIPS3:
16255 case ISA_MIPS4:
16256 case ISA_MIPS5:
16257 case ISA_MIPS64:
16258 case ISA_MIPS64R2:
16259 mips_opts.gp32 = 0;
16260 mips_opts.fp32 = 0;
16261 break;
16262 default:
16263 as_bad (_("unknown ISA level %s"), name + 4);
16264 break;
16266 if (reset)
16268 mips_opts.gp32 = file_mips_gp32;
16269 mips_opts.fp32 = file_mips_fp32;
16272 else if (strcmp (name, "autoextend") == 0)
16273 mips_opts.noautoextend = 0;
16274 else if (strcmp (name, "noautoextend") == 0)
16275 mips_opts.noautoextend = 1;
16276 else if (strcmp (name, "push") == 0)
16278 struct mips_option_stack *s;
16280 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16281 s->next = mips_opts_stack;
16282 s->options = mips_opts;
16283 mips_opts_stack = s;
16285 else if (strcmp (name, "pop") == 0)
16287 struct mips_option_stack *s;
16289 s = mips_opts_stack;
16290 if (s == NULL)
16291 as_bad (_(".set pop with no .set push"));
16292 else
16294 /* If we're changing the reorder mode we need to handle
16295 delay slots correctly. */
16296 if (s->options.noreorder && ! mips_opts.noreorder)
16297 start_noreorder ();
16298 else if (! s->options.noreorder && mips_opts.noreorder)
16299 end_noreorder ();
16301 mips_opts = s->options;
16302 mips_opts_stack = s->next;
16303 free (s);
16306 else if (strcmp (name, "sym32") == 0)
16307 mips_opts.sym32 = TRUE;
16308 else if (strcmp (name, "nosym32") == 0)
16309 mips_opts.sym32 = FALSE;
16310 else if (strchr (name, ','))
16312 /* Generic ".set" directive; use the generic handler. */
16313 *input_line_pointer = ch;
16314 input_line_pointer = name;
16315 s_set (0);
16316 return;
16318 else
16320 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16322 *input_line_pointer = ch;
16323 demand_empty_rest_of_line ();
16326 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16327 .option pic2. It means to generate SVR4 PIC calls. */
16329 static void
16330 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16332 mips_pic = SVR4_PIC;
16333 mips_abicalls = TRUE;
16335 if (g_switch_seen && g_switch_value != 0)
16336 as_warn (_("-G may not be used with SVR4 PIC code"));
16337 g_switch_value = 0;
16339 bfd_set_gp_size (stdoutput, 0);
16340 demand_empty_rest_of_line ();
16343 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16344 PIC code. It sets the $gp register for the function based on the
16345 function address, which is in the register named in the argument.
16346 This uses a relocation against _gp_disp, which is handled specially
16347 by the linker. The result is:
16348 lui $gp,%hi(_gp_disp)
16349 addiu $gp,$gp,%lo(_gp_disp)
16350 addu $gp,$gp,.cpload argument
16351 The .cpload argument is normally $25 == $t9.
16353 The -mno-shared option changes this to:
16354 lui $gp,%hi(__gnu_local_gp)
16355 addiu $gp,$gp,%lo(__gnu_local_gp)
16356 and the argument is ignored. This saves an instruction, but the
16357 resulting code is not position independent; it uses an absolute
16358 address for __gnu_local_gp. Thus code assembled with -mno-shared
16359 can go into an ordinary executable, but not into a shared library. */
16361 static void
16362 s_cpload (int ignore ATTRIBUTE_UNUSED)
16364 expressionS ex;
16365 int reg;
16366 int in_shared;
16368 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16369 .cpload is ignored. */
16370 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16372 s_ignore (0);
16373 return;
16376 /* .cpload should be in a .set noreorder section. */
16377 if (mips_opts.noreorder == 0)
16378 as_warn (_(".cpload not in noreorder section"));
16380 reg = tc_get_register (0);
16382 /* If we need to produce a 64-bit address, we are better off using
16383 the default instruction sequence. */
16384 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16386 ex.X_op = O_symbol;
16387 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16388 "__gnu_local_gp");
16389 ex.X_op_symbol = NULL;
16390 ex.X_add_number = 0;
16392 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16393 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16395 macro_start ();
16396 macro_build_lui (&ex, mips_gp_register);
16397 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16398 mips_gp_register, BFD_RELOC_LO16);
16399 if (in_shared)
16400 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16401 mips_gp_register, reg);
16402 macro_end ();
16404 demand_empty_rest_of_line ();
16407 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16408 .cpsetup $reg1, offset|$reg2, label
16410 If offset is given, this results in:
16411 sd $gp, offset($sp)
16412 lui $gp, %hi(%neg(%gp_rel(label)))
16413 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16414 daddu $gp, $gp, $reg1
16416 If $reg2 is given, this results in:
16417 daddu $reg2, $gp, $0
16418 lui $gp, %hi(%neg(%gp_rel(label)))
16419 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16420 daddu $gp, $gp, $reg1
16421 $reg1 is normally $25 == $t9.
16423 The -mno-shared option replaces the last three instructions with
16424 lui $gp,%hi(_gp)
16425 addiu $gp,$gp,%lo(_gp) */
16427 static void
16428 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16430 expressionS ex_off;
16431 expressionS ex_sym;
16432 int reg1;
16434 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16435 We also need NewABI support. */
16436 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16438 s_ignore (0);
16439 return;
16442 reg1 = tc_get_register (0);
16443 SKIP_WHITESPACE ();
16444 if (*input_line_pointer != ',')
16446 as_bad (_("missing argument separator ',' for .cpsetup"));
16447 return;
16449 else
16450 ++input_line_pointer;
16451 SKIP_WHITESPACE ();
16452 if (*input_line_pointer == '$')
16454 mips_cpreturn_register = tc_get_register (0);
16455 mips_cpreturn_offset = -1;
16457 else
16459 mips_cpreturn_offset = get_absolute_expression ();
16460 mips_cpreturn_register = -1;
16462 SKIP_WHITESPACE ();
16463 if (*input_line_pointer != ',')
16465 as_bad (_("missing argument separator ',' for .cpsetup"));
16466 return;
16468 else
16469 ++input_line_pointer;
16470 SKIP_WHITESPACE ();
16471 expression (&ex_sym);
16473 macro_start ();
16474 if (mips_cpreturn_register == -1)
16476 ex_off.X_op = O_constant;
16477 ex_off.X_add_symbol = NULL;
16478 ex_off.X_op_symbol = NULL;
16479 ex_off.X_add_number = mips_cpreturn_offset;
16481 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16482 BFD_RELOC_LO16, SP);
16484 else
16485 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16486 mips_gp_register, 0);
16488 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16490 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16491 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16492 BFD_RELOC_HI16_S);
16494 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16495 mips_gp_register, -1, BFD_RELOC_GPREL16,
16496 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16498 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16499 mips_gp_register, reg1);
16501 else
16503 expressionS ex;
16505 ex.X_op = O_symbol;
16506 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16507 ex.X_op_symbol = NULL;
16508 ex.X_add_number = 0;
16510 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16511 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16513 macro_build_lui (&ex, mips_gp_register);
16514 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16515 mips_gp_register, BFD_RELOC_LO16);
16518 macro_end ();
16520 demand_empty_rest_of_line ();
16523 static void
16524 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16526 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16527 .cplocal is ignored. */
16528 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16530 s_ignore (0);
16531 return;
16534 mips_gp_register = tc_get_register (0);
16535 demand_empty_rest_of_line ();
16538 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16539 offset from $sp. The offset is remembered, and after making a PIC
16540 call $gp is restored from that location. */
16542 static void
16543 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16545 expressionS ex;
16547 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16548 .cprestore is ignored. */
16549 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16551 s_ignore (0);
16552 return;
16555 mips_cprestore_offset = get_absolute_expression ();
16556 mips_cprestore_valid = 1;
16558 ex.X_op = O_constant;
16559 ex.X_add_symbol = NULL;
16560 ex.X_op_symbol = NULL;
16561 ex.X_add_number = mips_cprestore_offset;
16563 macro_start ();
16564 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16565 SP, HAVE_64BIT_ADDRESSES);
16566 macro_end ();
16568 demand_empty_rest_of_line ();
16571 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16572 was given in the preceding .cpsetup, it results in:
16573 ld $gp, offset($sp)
16575 If a register $reg2 was given there, it results in:
16576 daddu $gp, $reg2, $0 */
16578 static void
16579 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16581 expressionS ex;
16583 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16584 We also need NewABI support. */
16585 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16587 s_ignore (0);
16588 return;
16591 macro_start ();
16592 if (mips_cpreturn_register == -1)
16594 ex.X_op = O_constant;
16595 ex.X_add_symbol = NULL;
16596 ex.X_op_symbol = NULL;
16597 ex.X_add_number = mips_cpreturn_offset;
16599 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16601 else
16602 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16603 mips_cpreturn_register, 0);
16604 macro_end ();
16606 demand_empty_rest_of_line ();
16609 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16610 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16611 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16612 debug information or MIPS16 TLS. */
16614 static void
16615 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16616 bfd_reloc_code_real_type rtype)
16618 expressionS ex;
16619 char *p;
16621 expression (&ex);
16623 if (ex.X_op != O_symbol)
16625 as_bad (_("Unsupported use of %s"), dirstr);
16626 ignore_rest_of_line ();
16629 p = frag_more (bytes);
16630 md_number_to_chars (p, 0, bytes);
16631 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16632 demand_empty_rest_of_line ();
16633 mips_clear_insn_labels ();
16636 /* Handle .dtprelword. */
16638 static void
16639 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16641 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16644 /* Handle .dtpreldword. */
16646 static void
16647 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16649 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16652 /* Handle .tprelword. */
16654 static void
16655 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16657 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16660 /* Handle .tpreldword. */
16662 static void
16663 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16665 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16668 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16669 code. It sets the offset to use in gp_rel relocations. */
16671 static void
16672 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16674 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16675 We also need NewABI support. */
16676 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16678 s_ignore (0);
16679 return;
16682 mips_gprel_offset = get_absolute_expression ();
16684 demand_empty_rest_of_line ();
16687 /* Handle the .gpword pseudo-op. This is used when generating PIC
16688 code. It generates a 32 bit GP relative reloc. */
16690 static void
16691 s_gpword (int ignore ATTRIBUTE_UNUSED)
16693 segment_info_type *si;
16694 struct insn_label_list *l;
16695 expressionS ex;
16696 char *p;
16698 /* When not generating PIC code, this is treated as .word. */
16699 if (mips_pic != SVR4_PIC)
16701 s_cons (2);
16702 return;
16705 si = seg_info (now_seg);
16706 l = si->label_list;
16707 mips_emit_delays ();
16708 if (auto_align)
16709 mips_align (2, 0, l);
16711 expression (&ex);
16712 mips_clear_insn_labels ();
16714 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16716 as_bad (_("Unsupported use of .gpword"));
16717 ignore_rest_of_line ();
16720 p = frag_more (4);
16721 md_number_to_chars (p, 0, 4);
16722 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16723 BFD_RELOC_GPREL32);
16725 demand_empty_rest_of_line ();
16728 static void
16729 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16731 segment_info_type *si;
16732 struct insn_label_list *l;
16733 expressionS ex;
16734 char *p;
16736 /* When not generating PIC code, this is treated as .dword. */
16737 if (mips_pic != SVR4_PIC)
16739 s_cons (3);
16740 return;
16743 si = seg_info (now_seg);
16744 l = si->label_list;
16745 mips_emit_delays ();
16746 if (auto_align)
16747 mips_align (3, 0, l);
16749 expression (&ex);
16750 mips_clear_insn_labels ();
16752 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16754 as_bad (_("Unsupported use of .gpdword"));
16755 ignore_rest_of_line ();
16758 p = frag_more (8);
16759 md_number_to_chars (p, 0, 8);
16760 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16761 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16763 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16764 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16765 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16767 demand_empty_rest_of_line ();
16770 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16771 tables in SVR4 PIC code. */
16773 static void
16774 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16776 int reg;
16778 /* This is ignored when not generating SVR4 PIC code. */
16779 if (mips_pic != SVR4_PIC)
16781 s_ignore (0);
16782 return;
16785 /* Add $gp to the register named as an argument. */
16786 macro_start ();
16787 reg = tc_get_register (0);
16788 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16789 macro_end ();
16791 demand_empty_rest_of_line ();
16794 /* Handle the .insn pseudo-op. This marks instruction labels in
16795 mips16/micromips mode. This permits the linker to handle them specially,
16796 such as generating jalx instructions when needed. We also make
16797 them odd for the duration of the assembly, in order to generate the
16798 right sort of code. We will make them even in the adjust_symtab
16799 routine, while leaving them marked. This is convenient for the
16800 debugger and the disassembler. The linker knows to make them odd
16801 again. */
16803 static void
16804 s_insn (int ignore ATTRIBUTE_UNUSED)
16806 mips_mark_labels ();
16808 demand_empty_rest_of_line ();
16811 /* Handle a .stabn directive. We need these in order to mark a label
16812 as being a mips16 text label correctly. Sometimes the compiler
16813 will emit a label, followed by a .stabn, and then switch sections.
16814 If the label and .stabn are in mips16 mode, then the label is
16815 really a mips16 text label. */
16817 static void
16818 s_mips_stab (int type)
16820 if (type == 'n')
16821 mips_mark_labels ();
16823 s_stab (type);
16826 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16828 static void
16829 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16831 char *name;
16832 int c;
16833 symbolS *symbolP;
16834 expressionS exp;
16836 name = input_line_pointer;
16837 c = get_symbol_end ();
16838 symbolP = symbol_find_or_make (name);
16839 S_SET_WEAK (symbolP);
16840 *input_line_pointer = c;
16842 SKIP_WHITESPACE ();
16844 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16846 if (S_IS_DEFINED (symbolP))
16848 as_bad (_("ignoring attempt to redefine symbol %s"),
16849 S_GET_NAME (symbolP));
16850 ignore_rest_of_line ();
16851 return;
16854 if (*input_line_pointer == ',')
16856 ++input_line_pointer;
16857 SKIP_WHITESPACE ();
16860 expression (&exp);
16861 if (exp.X_op != O_symbol)
16863 as_bad (_("bad .weakext directive"));
16864 ignore_rest_of_line ();
16865 return;
16867 symbol_set_value_expression (symbolP, &exp);
16870 demand_empty_rest_of_line ();
16873 /* Parse a register string into a number. Called from the ECOFF code
16874 to parse .frame. The argument is non-zero if this is the frame
16875 register, so that we can record it in mips_frame_reg. */
16878 tc_get_register (int frame)
16880 unsigned int reg;
16882 SKIP_WHITESPACE ();
16883 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16884 reg = 0;
16885 if (frame)
16887 mips_frame_reg = reg != 0 ? reg : SP;
16888 mips_frame_reg_valid = 1;
16889 mips_cprestore_valid = 0;
16891 return reg;
16894 valueT
16895 md_section_align (asection *seg, valueT addr)
16897 int align = bfd_get_section_alignment (stdoutput, seg);
16899 if (IS_ELF)
16901 /* We don't need to align ELF sections to the full alignment.
16902 However, Irix 5 may prefer that we align them at least to a 16
16903 byte boundary. We don't bother to align the sections if we
16904 are targeted for an embedded system. */
16905 if (strncmp (TARGET_OS, "elf", 3) == 0)
16906 return addr;
16907 if (align > 4)
16908 align = 4;
16911 return ((addr + (1 << align) - 1) & (-1 << align));
16914 /* Utility routine, called from above as well. If called while the
16915 input file is still being read, it's only an approximation. (For
16916 example, a symbol may later become defined which appeared to be
16917 undefined earlier.) */
16919 static int
16920 nopic_need_relax (symbolS *sym, int before_relaxing)
16922 if (sym == 0)
16923 return 0;
16925 if (g_switch_value > 0)
16927 const char *symname;
16928 int change;
16930 /* Find out whether this symbol can be referenced off the $gp
16931 register. It can be if it is smaller than the -G size or if
16932 it is in the .sdata or .sbss section. Certain symbols can
16933 not be referenced off the $gp, although it appears as though
16934 they can. */
16935 symname = S_GET_NAME (sym);
16936 if (symname != (const char *) NULL
16937 && (strcmp (symname, "eprol") == 0
16938 || strcmp (symname, "etext") == 0
16939 || strcmp (symname, "_gp") == 0
16940 || strcmp (symname, "edata") == 0
16941 || strcmp (symname, "_fbss") == 0
16942 || strcmp (symname, "_fdata") == 0
16943 || strcmp (symname, "_ftext") == 0
16944 || strcmp (symname, "end") == 0
16945 || strcmp (symname, "_gp_disp") == 0))
16946 change = 1;
16947 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16948 && (0
16949 #ifndef NO_ECOFF_DEBUGGING
16950 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16951 && (symbol_get_obj (sym)->ecoff_extern_size
16952 <= g_switch_value))
16953 #endif
16954 /* We must defer this decision until after the whole
16955 file has been read, since there might be a .extern
16956 after the first use of this symbol. */
16957 || (before_relaxing
16958 #ifndef NO_ECOFF_DEBUGGING
16959 && symbol_get_obj (sym)->ecoff_extern_size == 0
16960 #endif
16961 && S_GET_VALUE (sym) == 0)
16962 || (S_GET_VALUE (sym) != 0
16963 && S_GET_VALUE (sym) <= g_switch_value)))
16964 change = 0;
16965 else
16967 const char *segname;
16969 segname = segment_name (S_GET_SEGMENT (sym));
16970 gas_assert (strcmp (segname, ".lit8") != 0
16971 && strcmp (segname, ".lit4") != 0);
16972 change = (strcmp (segname, ".sdata") != 0
16973 && strcmp (segname, ".sbss") != 0
16974 && strncmp (segname, ".sdata.", 7) != 0
16975 && strncmp (segname, ".sbss.", 6) != 0
16976 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16977 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16979 return change;
16981 else
16982 /* We are not optimizing for the $gp register. */
16983 return 1;
16987 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16989 static bfd_boolean
16990 pic_need_relax (symbolS *sym, asection *segtype)
16992 asection *symsec;
16994 /* Handle the case of a symbol equated to another symbol. */
16995 while (symbol_equated_reloc_p (sym))
16997 symbolS *n;
16999 /* It's possible to get a loop here in a badly written program. */
17000 n = symbol_get_value_expression (sym)->X_add_symbol;
17001 if (n == sym)
17002 break;
17003 sym = n;
17006 if (symbol_section_p (sym))
17007 return TRUE;
17009 symsec = S_GET_SEGMENT (sym);
17011 /* This must duplicate the test in adjust_reloc_syms. */
17012 return (symsec != &bfd_und_section
17013 && symsec != &bfd_abs_section
17014 && !bfd_is_com_section (symsec)
17015 && !s_is_linkonce (sym, segtype)
17016 #ifdef OBJ_ELF
17017 /* A global or weak symbol is treated as external. */
17018 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
17019 #endif
17024 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17025 extended opcode. SEC is the section the frag is in. */
17027 static int
17028 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17030 int type;
17031 const struct mips16_immed_operand *op;
17032 offsetT val;
17033 int mintiny, maxtiny;
17034 segT symsec;
17035 fragS *sym_frag;
17037 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17038 return 0;
17039 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17040 return 1;
17042 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17043 op = mips16_immed_operands;
17044 while (op->type != type)
17046 ++op;
17047 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17050 if (op->unsp)
17052 if (type == '<' || type == '>' || type == '[' || type == ']')
17054 mintiny = 1;
17055 maxtiny = 1 << op->nbits;
17057 else
17059 mintiny = 0;
17060 maxtiny = (1 << op->nbits) - 1;
17063 else
17065 mintiny = - (1 << (op->nbits - 1));
17066 maxtiny = (1 << (op->nbits - 1)) - 1;
17069 sym_frag = symbol_get_frag (fragp->fr_symbol);
17070 val = S_GET_VALUE (fragp->fr_symbol);
17071 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17073 if (op->pcrel)
17075 addressT addr;
17077 /* We won't have the section when we are called from
17078 mips_relax_frag. However, we will always have been called
17079 from md_estimate_size_before_relax first. If this is a
17080 branch to a different section, we mark it as such. If SEC is
17081 NULL, and the frag is not marked, then it must be a branch to
17082 the same section. */
17083 if (sec == NULL)
17085 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17086 return 1;
17088 else
17090 /* Must have been called from md_estimate_size_before_relax. */
17091 if (symsec != sec)
17093 fragp->fr_subtype =
17094 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17096 /* FIXME: We should support this, and let the linker
17097 catch branches and loads that are out of range. */
17098 as_bad_where (fragp->fr_file, fragp->fr_line,
17099 _("unsupported PC relative reference to different section"));
17101 return 1;
17103 if (fragp != sym_frag && sym_frag->fr_address == 0)
17104 /* Assume non-extended on the first relaxation pass.
17105 The address we have calculated will be bogus if this is
17106 a forward branch to another frag, as the forward frag
17107 will have fr_address == 0. */
17108 return 0;
17111 /* In this case, we know for sure that the symbol fragment is in
17112 the same section. If the relax_marker of the symbol fragment
17113 differs from the relax_marker of this fragment, we have not
17114 yet adjusted the symbol fragment fr_address. We want to add
17115 in STRETCH in order to get a better estimate of the address.
17116 This particularly matters because of the shift bits. */
17117 if (stretch != 0
17118 && sym_frag->relax_marker != fragp->relax_marker)
17120 fragS *f;
17122 /* Adjust stretch for any alignment frag. Note that if have
17123 been expanding the earlier code, the symbol may be
17124 defined in what appears to be an earlier frag. FIXME:
17125 This doesn't handle the fr_subtype field, which specifies
17126 a maximum number of bytes to skip when doing an
17127 alignment. */
17128 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17130 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17132 if (stretch < 0)
17133 stretch = - ((- stretch)
17134 & ~ ((1 << (int) f->fr_offset) - 1));
17135 else
17136 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17137 if (stretch == 0)
17138 break;
17141 if (f != NULL)
17142 val += stretch;
17145 addr = fragp->fr_address + fragp->fr_fix;
17147 /* The base address rules are complicated. The base address of
17148 a branch is the following instruction. The base address of a
17149 PC relative load or add is the instruction itself, but if it
17150 is in a delay slot (in which case it can not be extended) use
17151 the address of the instruction whose delay slot it is in. */
17152 if (type == 'p' || type == 'q')
17154 addr += 2;
17156 /* If we are currently assuming that this frag should be
17157 extended, then, the current address is two bytes
17158 higher. */
17159 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17160 addr += 2;
17162 /* Ignore the low bit in the target, since it will be set
17163 for a text label. */
17164 if ((val & 1) != 0)
17165 --val;
17167 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17168 addr -= 4;
17169 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17170 addr -= 2;
17172 val -= addr & ~ ((1 << op->shift) - 1);
17174 /* Branch offsets have an implicit 0 in the lowest bit. */
17175 if (type == 'p' || type == 'q')
17176 val /= 2;
17178 /* If any of the shifted bits are set, we must use an extended
17179 opcode. If the address depends on the size of this
17180 instruction, this can lead to a loop, so we arrange to always
17181 use an extended opcode. We only check this when we are in
17182 the main relaxation loop, when SEC is NULL. */
17183 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17185 fragp->fr_subtype =
17186 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17187 return 1;
17190 /* If we are about to mark a frag as extended because the value
17191 is precisely maxtiny + 1, then there is a chance of an
17192 infinite loop as in the following code:
17193 la $4,foo
17194 .skip 1020
17195 .align 2
17196 foo:
17197 In this case when the la is extended, foo is 0x3fc bytes
17198 away, so the la can be shrunk, but then foo is 0x400 away, so
17199 the la must be extended. To avoid this loop, we mark the
17200 frag as extended if it was small, and is about to become
17201 extended with a value of maxtiny + 1. */
17202 if (val == ((maxtiny + 1) << op->shift)
17203 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17204 && sec == NULL)
17206 fragp->fr_subtype =
17207 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17208 return 1;
17211 else if (symsec != absolute_section && sec != NULL)
17212 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17214 if ((val & ((1 << op->shift) - 1)) != 0
17215 || val < (mintiny << op->shift)
17216 || val > (maxtiny << op->shift))
17217 return 1;
17218 else
17219 return 0;
17222 /* Compute the length of a branch sequence, and adjust the
17223 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17224 worst-case length is computed, with UPDATE being used to indicate
17225 whether an unconditional (-1), branch-likely (+1) or regular (0)
17226 branch is to be computed. */
17227 static int
17228 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17230 bfd_boolean toofar;
17231 int length;
17233 if (fragp
17234 && S_IS_DEFINED (fragp->fr_symbol)
17235 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17237 addressT addr;
17238 offsetT val;
17240 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17242 addr = fragp->fr_address + fragp->fr_fix + 4;
17244 val -= addr;
17246 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17248 else if (fragp)
17249 /* If the symbol is not defined or it's in a different segment,
17250 assume the user knows what's going on and emit a short
17251 branch. */
17252 toofar = FALSE;
17253 else
17254 toofar = TRUE;
17256 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17257 fragp->fr_subtype
17258 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17259 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17260 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17261 RELAX_BRANCH_LINK (fragp->fr_subtype),
17262 toofar);
17264 length = 4;
17265 if (toofar)
17267 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17268 length += 8;
17270 if (mips_pic != NO_PIC)
17272 /* Additional space for PIC loading of target address. */
17273 length += 8;
17274 if (mips_opts.isa == ISA_MIPS1)
17275 /* Additional space for $at-stabilizing nop. */
17276 length += 4;
17279 /* If branch is conditional. */
17280 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17281 length += 8;
17284 return length;
17287 /* Compute the length of a branch sequence, and adjust the
17288 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17289 worst-case length is computed, with UPDATE being used to indicate
17290 whether an unconditional (-1), or regular (0) branch is to be
17291 computed. */
17293 static int
17294 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17296 bfd_boolean toofar;
17297 int length;
17299 if (fragp
17300 && S_IS_DEFINED (fragp->fr_symbol)
17301 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17303 addressT addr;
17304 offsetT val;
17306 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17307 /* Ignore the low bit in the target, since it will be set
17308 for a text label. */
17309 if ((val & 1) != 0)
17310 --val;
17312 addr = fragp->fr_address + fragp->fr_fix + 4;
17314 val -= addr;
17316 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17318 else if (fragp)
17319 /* If the symbol is not defined or it's in a different segment,
17320 assume the user knows what's going on and emit a short
17321 branch. */
17322 toofar = FALSE;
17323 else
17324 toofar = TRUE;
17326 if (fragp && update
17327 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17328 fragp->fr_subtype = (toofar
17329 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17330 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17332 length = 4;
17333 if (toofar)
17335 bfd_boolean compact_known = fragp != NULL;
17336 bfd_boolean compact = FALSE;
17337 bfd_boolean uncond;
17339 if (compact_known)
17340 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17341 if (fragp)
17342 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17343 else
17344 uncond = update < 0;
17346 /* If label is out of range, we turn branch <br>:
17348 <br> label # 4 bytes
17351 into:
17353 j label # 4 bytes
17354 nop # 2 bytes if compact && !PIC
17357 if (mips_pic == NO_PIC && (!compact_known || compact))
17358 length += 2;
17360 /* If assembling PIC code, we further turn:
17362 j label # 4 bytes
17364 into:
17366 lw/ld at, %got(label)(gp) # 4 bytes
17367 d/addiu at, %lo(label) # 4 bytes
17368 jr/c at # 2 bytes
17370 if (mips_pic != NO_PIC)
17371 length += 6;
17373 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17375 <brneg> 0f # 4 bytes
17376 nop # 2 bytes if !compact
17378 if (!uncond)
17379 length += (compact_known && compact) ? 4 : 6;
17382 return length;
17385 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17386 bit accordingly. */
17388 static int
17389 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17391 bfd_boolean toofar;
17393 if (fragp
17394 && S_IS_DEFINED (fragp->fr_symbol)
17395 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17397 addressT addr;
17398 offsetT val;
17399 int type;
17401 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17402 /* Ignore the low bit in the target, since it will be set
17403 for a text label. */
17404 if ((val & 1) != 0)
17405 --val;
17407 /* Assume this is a 2-byte branch. */
17408 addr = fragp->fr_address + fragp->fr_fix + 2;
17410 /* We try to avoid the infinite loop by not adding 2 more bytes for
17411 long branches. */
17413 val -= addr;
17415 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17416 if (type == 'D')
17417 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17418 else if (type == 'E')
17419 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17420 else
17421 abort ();
17423 else
17424 /* If the symbol is not defined or it's in a different segment,
17425 we emit a normal 32-bit branch. */
17426 toofar = TRUE;
17428 if (fragp && update
17429 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17430 fragp->fr_subtype
17431 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17432 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17434 if (toofar)
17435 return 4;
17437 return 2;
17440 /* Estimate the size of a frag before relaxing. Unless this is the
17441 mips16, we are not really relaxing here, and the final size is
17442 encoded in the subtype information. For the mips16, we have to
17443 decide whether we are using an extended opcode or not. */
17446 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17448 int change;
17450 if (RELAX_BRANCH_P (fragp->fr_subtype))
17453 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17455 return fragp->fr_var;
17458 if (RELAX_MIPS16_P (fragp->fr_subtype))
17459 /* We don't want to modify the EXTENDED bit here; it might get us
17460 into infinite loops. We change it only in mips_relax_frag(). */
17461 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17463 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17465 int length = 4;
17467 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17468 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17469 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17470 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17471 fragp->fr_var = length;
17473 return length;
17476 if (mips_pic == NO_PIC)
17477 change = nopic_need_relax (fragp->fr_symbol, 0);
17478 else if (mips_pic == SVR4_PIC)
17479 change = pic_need_relax (fragp->fr_symbol, segtype);
17480 else if (mips_pic == VXWORKS_PIC)
17481 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17482 change = 0;
17483 else
17484 abort ();
17486 if (change)
17488 fragp->fr_subtype |= RELAX_USE_SECOND;
17489 return -RELAX_FIRST (fragp->fr_subtype);
17491 else
17492 return -RELAX_SECOND (fragp->fr_subtype);
17495 /* This is called to see whether a reloc against a defined symbol
17496 should be converted into a reloc against a section. */
17499 mips_fix_adjustable (fixS *fixp)
17501 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17502 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17503 return 0;
17505 if (fixp->fx_addsy == NULL)
17506 return 1;
17508 /* If symbol SYM is in a mergeable section, relocations of the form
17509 SYM + 0 can usually be made section-relative. The mergeable data
17510 is then identified by the section offset rather than by the symbol.
17512 However, if we're generating REL LO16 relocations, the offset is split
17513 between the LO16 and parterning high part relocation. The linker will
17514 need to recalculate the complete offset in order to correctly identify
17515 the merge data.
17517 The linker has traditionally not looked for the parterning high part
17518 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17519 placed anywhere. Rather than break backwards compatibility by changing
17520 this, it seems better not to force the issue, and instead keep the
17521 original symbol. This will work with either linker behavior. */
17522 if ((lo16_reloc_p (fixp->fx_r_type)
17523 || reloc_needs_lo_p (fixp->fx_r_type))
17524 && HAVE_IN_PLACE_ADDENDS
17525 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17526 return 0;
17528 /* There is no place to store an in-place offset for JALR relocations.
17529 Likewise an in-range offset of PC-relative relocations may overflow
17530 the in-place relocatable field if recalculated against the start
17531 address of the symbol's containing section. */
17532 if (HAVE_IN_PLACE_ADDENDS
17533 && (fixp->fx_pcrel || jalr_reloc_p (fixp->fx_r_type)))
17534 return 0;
17536 #ifdef OBJ_ELF
17537 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17538 to a floating-point stub. The same is true for non-R_MIPS16_26
17539 relocations against MIPS16 functions; in this case, the stub becomes
17540 the function's canonical address.
17542 Floating-point stubs are stored in unique .mips16.call.* or
17543 .mips16.fn.* sections. If a stub T for function F is in section S,
17544 the first relocation in section S must be against F; this is how the
17545 linker determines the target function. All relocations that might
17546 resolve to T must also be against F. We therefore have the following
17547 restrictions, which are given in an intentionally-redundant way:
17549 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17550 symbols.
17552 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17553 if that stub might be used.
17555 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17556 symbols.
17558 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17559 that stub might be used.
17561 There is a further restriction:
17563 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17564 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17565 targets with in-place addends; the relocation field cannot
17566 encode the low bit.
17568 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17569 against a MIPS16 symbol. We deal with (5) by by not reducing any
17570 such relocations on REL targets.
17572 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17573 relocation against some symbol R, no relocation against R may be
17574 reduced. (Note that this deals with (2) as well as (1) because
17575 relocations against global symbols will never be reduced on ELF
17576 targets.) This approach is a little simpler than trying to detect
17577 stub sections, and gives the "all or nothing" per-symbol consistency
17578 that we have for MIPS16 symbols. */
17579 if (IS_ELF
17580 && fixp->fx_subsy == NULL
17581 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17582 || *symbol_get_tc (fixp->fx_addsy)
17583 || (HAVE_IN_PLACE_ADDENDS
17584 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17585 && jmp_reloc_p (fixp->fx_r_type))))
17586 return 0;
17587 #endif
17589 return 1;
17592 /* Translate internal representation of relocation info to BFD target
17593 format. */
17595 arelent **
17596 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17598 static arelent *retval[4];
17599 arelent *reloc;
17600 bfd_reloc_code_real_type code;
17602 memset (retval, 0, sizeof(retval));
17603 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17604 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17605 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17606 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17608 if (fixp->fx_pcrel)
17610 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17611 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17612 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17613 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
17615 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17616 Relocations want only the symbol offset. */
17617 reloc->addend = fixp->fx_addnumber + reloc->address;
17618 if (!IS_ELF)
17620 /* A gruesome hack which is a result of the gruesome gas
17621 reloc handling. What's worse, for COFF (as opposed to
17622 ECOFF), we might need yet another copy of reloc->address.
17623 See bfd_install_relocation. */
17624 reloc->addend += reloc->address;
17627 else
17628 reloc->addend = fixp->fx_addnumber;
17630 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17631 entry to be used in the relocation's section offset. */
17632 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17634 reloc->address = reloc->addend;
17635 reloc->addend = 0;
17638 code = fixp->fx_r_type;
17640 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17641 if (reloc->howto == NULL)
17643 as_bad_where (fixp->fx_file, fixp->fx_line,
17644 _("Can not represent %s relocation in this object file format"),
17645 bfd_get_reloc_code_name (code));
17646 retval[0] = NULL;
17649 return retval;
17652 /* Relax a machine dependent frag. This returns the amount by which
17653 the current size of the frag should change. */
17656 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17658 if (RELAX_BRANCH_P (fragp->fr_subtype))
17660 offsetT old_var = fragp->fr_var;
17662 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17664 return fragp->fr_var - old_var;
17667 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17669 offsetT old_var = fragp->fr_var;
17670 offsetT new_var = 4;
17672 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17673 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17674 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17675 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17676 fragp->fr_var = new_var;
17678 return new_var - old_var;
17681 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17682 return 0;
17684 if (mips16_extended_frag (fragp, NULL, stretch))
17686 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17687 return 0;
17688 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17689 return 2;
17691 else
17693 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17694 return 0;
17695 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17696 return -2;
17699 return 0;
17702 /* Convert a machine dependent frag. */
17704 void
17705 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17707 if (RELAX_BRANCH_P (fragp->fr_subtype))
17709 bfd_byte *buf;
17710 unsigned long insn;
17711 expressionS exp;
17712 fixS *fixp;
17714 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
17716 if (target_big_endian)
17717 insn = bfd_getb32 (buf);
17718 else
17719 insn = bfd_getl32 (buf);
17721 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17723 /* We generate a fixup instead of applying it right now
17724 because, if there are linker relaxations, we're going to
17725 need the relocations. */
17726 exp.X_op = O_symbol;
17727 exp.X_add_symbol = fragp->fr_symbol;
17728 exp.X_add_number = fragp->fr_offset;
17730 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
17731 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
17732 fixp->fx_file = fragp->fr_file;
17733 fixp->fx_line = fragp->fr_line;
17735 md_number_to_chars ((char *) buf, insn, 4);
17736 buf += 4;
17738 else
17740 int i;
17742 as_warn_where (fragp->fr_file, fragp->fr_line,
17743 _("Relaxed out-of-range branch into a jump"));
17745 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17746 goto uncond;
17748 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17750 /* Reverse the branch. */
17751 switch ((insn >> 28) & 0xf)
17753 case 4:
17754 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
17755 have the condition reversed by tweaking a single
17756 bit, and their opcodes all have 0x4???????. */
17757 gas_assert ((insn & 0xf1000000) == 0x41000000);
17758 insn ^= 0x00010000;
17759 break;
17761 case 0:
17762 /* bltz 0x04000000 bgez 0x04010000
17763 bltzal 0x04100000 bgezal 0x04110000 */
17764 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17765 insn ^= 0x00010000;
17766 break;
17768 case 1:
17769 /* beq 0x10000000 bne 0x14000000
17770 blez 0x18000000 bgtz 0x1c000000 */
17771 insn ^= 0x04000000;
17772 break;
17774 default:
17775 abort ();
17779 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17781 /* Clear the and-link bit. */
17782 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17784 /* bltzal 0x04100000 bgezal 0x04110000
17785 bltzall 0x04120000 bgezall 0x04130000 */
17786 insn &= ~0x00100000;
17789 /* Branch over the branch (if the branch was likely) or the
17790 full jump (not likely case). Compute the offset from the
17791 current instruction to branch to. */
17792 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17793 i = 16;
17794 else
17796 /* How many bytes in instructions we've already emitted? */
17797 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
17798 /* How many bytes in instructions from here to the end? */
17799 i = fragp->fr_var - i;
17801 /* Convert to instruction count. */
17802 i >>= 2;
17803 /* Branch counts from the next instruction. */
17804 i--;
17805 insn |= i;
17806 /* Branch over the jump. */
17807 md_number_to_chars ((char *) buf, insn, 4);
17808 buf += 4;
17810 /* nop */
17811 md_number_to_chars ((char *) buf, 0, 4);
17812 buf += 4;
17814 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17816 /* beql $0, $0, 2f */
17817 insn = 0x50000000;
17818 /* Compute the PC offset from the current instruction to
17819 the end of the variable frag. */
17820 /* How many bytes in instructions we've already emitted? */
17821 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
17822 /* How many bytes in instructions from here to the end? */
17823 i = fragp->fr_var - i;
17824 /* Convert to instruction count. */
17825 i >>= 2;
17826 /* Don't decrement i, because we want to branch over the
17827 delay slot. */
17829 insn |= i;
17830 md_number_to_chars ((char *) buf, insn, 4);
17831 buf += 4;
17833 md_number_to_chars ((char *) buf, 0, 4);
17834 buf += 4;
17837 uncond:
17838 if (mips_pic == NO_PIC)
17840 /* j or jal. */
17841 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17842 ? 0x0c000000 : 0x08000000);
17843 exp.X_op = O_symbol;
17844 exp.X_add_symbol = fragp->fr_symbol;
17845 exp.X_add_number = fragp->fr_offset;
17847 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
17848 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
17849 fixp->fx_file = fragp->fr_file;
17850 fixp->fx_line = fragp->fr_line;
17852 md_number_to_chars ((char *) buf, insn, 4);
17853 buf += 4;
17855 else
17857 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17859 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17860 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17861 insn |= at << OP_SH_RT;
17862 exp.X_op = O_symbol;
17863 exp.X_add_symbol = fragp->fr_symbol;
17864 exp.X_add_number = fragp->fr_offset;
17866 if (fragp->fr_offset)
17868 exp.X_add_symbol = make_expr_symbol (&exp);
17869 exp.X_add_number = 0;
17872 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
17873 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
17874 fixp->fx_file = fragp->fr_file;
17875 fixp->fx_line = fragp->fr_line;
17877 md_number_to_chars ((char *) buf, insn, 4);
17878 buf += 4;
17880 if (mips_opts.isa == ISA_MIPS1)
17882 /* nop */
17883 md_number_to_chars ((char *) buf, 0, 4);
17884 buf += 4;
17887 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17888 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17889 insn |= at << OP_SH_RS | at << OP_SH_RT;
17891 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
17892 4, &exp, FALSE, BFD_RELOC_LO16);
17893 fixp->fx_file = fragp->fr_file;
17894 fixp->fx_line = fragp->fr_line;
17896 md_number_to_chars ((char *) buf, insn, 4);
17897 buf += 4;
17899 /* j(al)r $at. */
17900 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17901 insn = 0x0000f809;
17902 else
17903 insn = 0x00000008;
17904 insn |= at << OP_SH_RS;
17906 md_number_to_chars ((char *) buf, insn, 4);
17907 buf += 4;
17911 gas_assert (buf == (bfd_byte *)fragp->fr_literal
17912 + fragp->fr_fix + fragp->fr_var);
17914 fragp->fr_fix += fragp->fr_var;
17916 return;
17919 /* Relax microMIPS branches. */
17920 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17922 bfd_byte *buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
17923 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17924 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17925 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17926 bfd_boolean short_ds;
17927 unsigned long insn;
17928 expressionS exp;
17929 fixS *fixp;
17931 exp.X_op = O_symbol;
17932 exp.X_add_symbol = fragp->fr_symbol;
17933 exp.X_add_number = fragp->fr_offset;
17935 fragp->fr_fix += fragp->fr_var;
17937 /* Handle 16-bit branches that fit or are forced to fit. */
17938 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17940 /* We generate a fixup instead of applying it right now,
17941 because if there is linker relaxation, we're going to
17942 need the relocations. */
17943 if (type == 'D')
17944 fixp = fix_new_exp (fragp,
17945 buf - (bfd_byte *) fragp->fr_literal,
17946 2, &exp, TRUE,
17947 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17948 else if (type == 'E')
17949 fixp = fix_new_exp (fragp,
17950 buf - (bfd_byte *) fragp->fr_literal,
17951 2, &exp, TRUE,
17952 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17953 else
17954 abort ();
17956 fixp->fx_file = fragp->fr_file;
17957 fixp->fx_line = fragp->fr_line;
17959 /* These relocations can have an addend that won't fit in
17960 2 octets. */
17961 fixp->fx_no_overflow = 1;
17963 return;
17966 /* Handle 32-bit branches that fit or are forced to fit. */
17967 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17968 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17970 /* We generate a fixup instead of applying it right now,
17971 because if there is linker relaxation, we're going to
17972 need the relocations. */
17973 fixp = fix_new_exp (fragp, buf - (bfd_byte *) fragp->fr_literal,
17974 4, &exp, TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
17975 fixp->fx_file = fragp->fr_file;
17976 fixp->fx_line = fragp->fr_line;
17978 if (type == 0)
17979 return;
17982 /* Relax 16-bit branches to 32-bit branches. */
17983 if (type != 0)
17985 if (target_big_endian)
17986 insn = bfd_getb16 (buf);
17987 else
17988 insn = bfd_getl16 (buf);
17990 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17991 insn = 0x94000000; /* beq */
17992 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17994 unsigned long regno;
17996 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17997 regno = micromips_to_32_reg_d_map [regno];
17998 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17999 insn |= regno << MICROMIPSOP_SH_RS;
18001 else
18002 abort ();
18004 /* Nothing else to do, just write it out. */
18005 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18006 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18008 md_number_to_chars ((char *) buf, insn >> 16, 2);
18009 buf += 2;
18010 md_number_to_chars ((char *) buf, insn & 0xffff, 2);
18011 buf += 2;
18013 gas_assert (buf == ((bfd_byte *) fragp->fr_literal
18014 + fragp->fr_fix));
18015 return;
18018 else
18020 unsigned long next;
18022 if (target_big_endian)
18024 insn = bfd_getb16 (buf);
18025 next = bfd_getb16 (buf + 2);
18027 else
18029 insn = bfd_getl16 (buf);
18030 next = bfd_getl16 (buf + 2);
18032 insn = (insn << 16) | next;
18035 /* Relax 32-bit branches to a sequence of instructions. */
18036 as_warn_where (fragp->fr_file, fragp->fr_line,
18037 _("Relaxed out-of-range branch into a jump"));
18039 /* Set the short-delay-slot bit. */
18040 short_ds = al && (insn & 0x02000000) != 0;
18042 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18044 symbolS *l;
18046 /* Reverse the branch. */
18047 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18048 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18049 insn ^= 0x20000000;
18050 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18051 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18052 || (insn & 0xffe00000) == 0x40800000 /* blez */
18053 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18054 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18055 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18056 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18057 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18058 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18059 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18060 insn ^= 0x00400000;
18061 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18062 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18063 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18064 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18065 insn ^= 0x00200000;
18066 else
18067 abort ();
18069 if (al)
18071 /* Clear the and-link and short-delay-slot bits. */
18072 gas_assert ((insn & 0xfda00000) == 0x40200000);
18074 /* bltzal 0x40200000 bgezal 0x40600000 */
18075 /* bltzals 0x42200000 bgezals 0x42600000 */
18076 insn &= ~0x02200000;
18079 /* Make a label at the end for use with the branch. */
18080 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18081 micromips_label_inc ();
18082 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
18083 if (IS_ELF)
18084 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18085 #endif
18087 /* Refer to it. */
18088 fixp = fix_new (fragp, buf - (bfd_byte *) fragp->fr_literal,
18089 4, l, 0, TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18090 fixp->fx_file = fragp->fr_file;
18091 fixp->fx_line = fragp->fr_line;
18093 /* Branch over the jump. */
18094 md_number_to_chars ((char *) buf, insn >> 16, 2);
18095 buf += 2;
18096 md_number_to_chars ((char *) buf, insn & 0xffff, 2);
18097 buf += 2;
18099 if (!compact)
18101 /* nop */
18102 insn = 0x0c00;
18103 md_number_to_chars ((char *) buf, insn, 2);
18104 buf += 2;
18108 if (mips_pic == NO_PIC)
18110 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18112 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18113 insn = al ? jal : 0xd4000000;
18115 fixp = fix_new_exp (fragp, buf - (bfd_byte *) fragp->fr_literal,
18116 4, &exp, FALSE, BFD_RELOC_MICROMIPS_JMP);
18117 fixp->fx_file = fragp->fr_file;
18118 fixp->fx_line = fragp->fr_line;
18120 md_number_to_chars ((char *) buf, insn >> 16, 2);
18121 buf += 2;
18122 md_number_to_chars ((char *) buf, insn & 0xffff, 2);
18123 buf += 2;
18125 if (compact)
18127 /* nop */
18128 insn = 0x0c00;
18129 md_number_to_chars ((char *) buf, insn, 2);
18130 buf += 2;
18133 else
18135 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18136 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18137 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18139 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18140 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18141 insn |= at << MICROMIPSOP_SH_RT;
18143 if (exp.X_add_number)
18145 exp.X_add_symbol = make_expr_symbol (&exp);
18146 exp.X_add_number = 0;
18149 fixp = fix_new_exp (fragp, buf - (bfd_byte *) fragp->fr_literal,
18150 4, &exp, FALSE, BFD_RELOC_MICROMIPS_GOT16);
18151 fixp->fx_file = fragp->fr_file;
18152 fixp->fx_line = fragp->fr_line;
18154 md_number_to_chars ((char *) buf, insn >> 16, 2);
18155 buf += 2;
18156 md_number_to_chars ((char *) buf, insn & 0xffff, 2);
18157 buf += 2;
18159 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18160 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18161 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18163 fixp = fix_new_exp (fragp, buf - (bfd_byte *) fragp->fr_literal,
18164 4, &exp, FALSE, BFD_RELOC_MICROMIPS_LO16);
18165 fixp->fx_file = fragp->fr_file;
18166 fixp->fx_line = fragp->fr_line;
18168 md_number_to_chars ((char *) buf, insn >> 16, 2);
18169 buf += 2;
18170 md_number_to_chars ((char *) buf, insn & 0xffff, 2);
18171 buf += 2;
18173 /* jr/jrc/jalr/jalrs $at */
18174 insn = al ? jalr : jr;
18175 insn |= at << MICROMIPSOP_SH_MJ;
18177 md_number_to_chars ((char *) buf, insn & 0xffff, 2);
18178 buf += 2;
18181 gas_assert (buf == (bfd_byte *) fragp->fr_literal + fragp->fr_fix);
18182 return;
18185 if (RELAX_MIPS16_P (fragp->fr_subtype))
18187 int type;
18188 const struct mips16_immed_operand *op;
18189 bfd_boolean small, ext;
18190 offsetT val;
18191 bfd_byte *buf;
18192 unsigned long insn;
18193 bfd_boolean use_extend;
18194 unsigned short extend;
18196 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18197 op = mips16_immed_operands;
18198 while (op->type != type)
18199 ++op;
18201 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18203 small = FALSE;
18204 ext = TRUE;
18206 else
18208 small = TRUE;
18209 ext = FALSE;
18212 val = resolve_symbol_value (fragp->fr_symbol);
18213 if (op->pcrel)
18215 addressT addr;
18217 addr = fragp->fr_address + fragp->fr_fix;
18219 /* The rules for the base address of a PC relative reloc are
18220 complicated; see mips16_extended_frag. */
18221 if (type == 'p' || type == 'q')
18223 addr += 2;
18224 if (ext)
18225 addr += 2;
18226 /* Ignore the low bit in the target, since it will be
18227 set for a text label. */
18228 if ((val & 1) != 0)
18229 --val;
18231 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18232 addr -= 4;
18233 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18234 addr -= 2;
18236 addr &= ~ (addressT) ((1 << op->shift) - 1);
18237 val -= addr;
18239 /* Make sure the section winds up with the alignment we have
18240 assumed. */
18241 if (op->shift > 0)
18242 record_alignment (asec, op->shift);
18245 if (ext
18246 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18247 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18248 as_warn_where (fragp->fr_file, fragp->fr_line,
18249 _("extended instruction in delay slot"));
18251 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
18253 if (target_big_endian)
18254 insn = bfd_getb16 (buf);
18255 else
18256 insn = bfd_getl16 (buf);
18258 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
18259 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
18260 small, ext, &insn, &use_extend, &extend);
18262 if (use_extend)
18264 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
18265 fragp->fr_fix += 2;
18266 buf += 2;
18269 md_number_to_chars ((char *) buf, insn, 2);
18270 fragp->fr_fix += 2;
18271 buf += 2;
18273 else
18275 relax_substateT subtype = fragp->fr_subtype;
18276 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18277 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18278 int first, second;
18279 fixS *fixp;
18281 first = RELAX_FIRST (subtype);
18282 second = RELAX_SECOND (subtype);
18283 fixp = (fixS *) fragp->fr_opcode;
18285 /* If the delay slot chosen does not match the size of the instruction,
18286 then emit a warning. */
18287 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18288 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18290 relax_substateT s;
18291 const char *msg;
18293 s = subtype & (RELAX_DELAY_SLOT_16BIT
18294 | RELAX_DELAY_SLOT_SIZE_FIRST
18295 | RELAX_DELAY_SLOT_SIZE_SECOND);
18296 msg = macro_warning (s);
18297 if (msg != NULL)
18298 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18299 subtype &= ~s;
18302 /* Possibly emit a warning if we've chosen the longer option. */
18303 if (use_second == second_longer)
18305 relax_substateT s;
18306 const char *msg;
18308 s = (subtype
18309 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18310 msg = macro_warning (s);
18311 if (msg != NULL)
18312 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18313 subtype &= ~s;
18316 /* Go through all the fixups for the first sequence. Disable them
18317 (by marking them as done) if we're going to use the second
18318 sequence instead. */
18319 while (fixp
18320 && fixp->fx_frag == fragp
18321 && fixp->fx_where < fragp->fr_fix - second)
18323 if (subtype & RELAX_USE_SECOND)
18324 fixp->fx_done = 1;
18325 fixp = fixp->fx_next;
18328 /* Go through the fixups for the second sequence. Disable them if
18329 we're going to use the first sequence, otherwise adjust their
18330 addresses to account for the relaxation. */
18331 while (fixp && fixp->fx_frag == fragp)
18333 if (subtype & RELAX_USE_SECOND)
18334 fixp->fx_where -= first;
18335 else
18336 fixp->fx_done = 1;
18337 fixp = fixp->fx_next;
18340 /* Now modify the frag contents. */
18341 if (subtype & RELAX_USE_SECOND)
18343 char *start;
18345 start = fragp->fr_literal + fragp->fr_fix - first - second;
18346 memmove (start, start + first, second);
18347 fragp->fr_fix -= first;
18349 else
18350 fragp->fr_fix -= second;
18354 #ifdef OBJ_ELF
18356 /* This function is called after the relocs have been generated.
18357 We've been storing mips16 text labels as odd. Here we convert them
18358 back to even for the convenience of the debugger. */
18360 void
18361 mips_frob_file_after_relocs (void)
18363 asymbol **syms;
18364 unsigned int count, i;
18366 if (!IS_ELF)
18367 return;
18369 syms = bfd_get_outsymbols (stdoutput);
18370 count = bfd_get_symcount (stdoutput);
18371 for (i = 0; i < count; i++, syms++)
18372 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18373 && ((*syms)->value & 1) != 0)
18375 (*syms)->value &= ~1;
18376 /* If the symbol has an odd size, it was probably computed
18377 incorrectly, so adjust that as well. */
18378 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18379 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18383 #endif
18385 /* This function is called whenever a label is defined, including fake
18386 labels instantiated off the dot special symbol. It is used when
18387 handling branch delays; if a branch has a label, we assume we cannot
18388 move it. This also bumps the value of the symbol by 1 in compressed
18389 code. */
18391 void
18392 mips_record_label (symbolS *sym)
18394 segment_info_type *si = seg_info (now_seg);
18395 struct insn_label_list *l;
18397 if (free_insn_labels == NULL)
18398 l = (struct insn_label_list *) xmalloc (sizeof *l);
18399 else
18401 l = free_insn_labels;
18402 free_insn_labels = l->next;
18405 l->label = sym;
18406 l->next = si->label_list;
18407 si->label_list = l;
18410 /* This function is called as tc_frob_label() whenever a label is defined
18411 and adds a DWARF-2 record we only want for true labels. */
18413 void
18414 mips_define_label (symbolS *sym)
18416 mips_record_label (sym);
18417 #ifdef OBJ_ELF
18418 dwarf2_emit_label (sym);
18419 #endif
18422 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
18424 /* Some special processing for a MIPS ELF file. */
18426 void
18427 mips_elf_final_processing (void)
18429 /* Write out the register information. */
18430 if (mips_abi != N64_ABI)
18432 Elf32_RegInfo s;
18434 s.ri_gprmask = mips_gprmask;
18435 s.ri_cprmask[0] = mips_cprmask[0];
18436 s.ri_cprmask[1] = mips_cprmask[1];
18437 s.ri_cprmask[2] = mips_cprmask[2];
18438 s.ri_cprmask[3] = mips_cprmask[3];
18439 /* The gp_value field is set by the MIPS ELF backend. */
18441 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18442 ((Elf32_External_RegInfo *)
18443 mips_regmask_frag));
18445 else
18447 Elf64_Internal_RegInfo s;
18449 s.ri_gprmask = mips_gprmask;
18450 s.ri_pad = 0;
18451 s.ri_cprmask[0] = mips_cprmask[0];
18452 s.ri_cprmask[1] = mips_cprmask[1];
18453 s.ri_cprmask[2] = mips_cprmask[2];
18454 s.ri_cprmask[3] = mips_cprmask[3];
18455 /* The gp_value field is set by the MIPS ELF backend. */
18457 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18458 ((Elf64_External_RegInfo *)
18459 mips_regmask_frag));
18462 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18463 sort of BFD interface for this. */
18464 if (mips_any_noreorder)
18465 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18466 if (mips_pic != NO_PIC)
18468 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18469 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18471 if (mips_abicalls)
18472 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18474 /* Set MIPS ELF flags for ASEs. */
18475 /* We may need to define a new flag for DSP ASE, and set this flag when
18476 file_ase_dsp is true. */
18477 /* Same for DSP R2. */
18478 /* We may need to define a new flag for MT ASE, and set this flag when
18479 file_ase_mt is true. */
18480 if (file_ase_mips16)
18481 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18482 if (file_ase_micromips)
18483 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18484 #if 0 /* XXX FIXME */
18485 if (file_ase_mips3d)
18486 elf_elfheader (stdoutput)->e_flags |= ???;
18487 #endif
18488 if (file_ase_mdmx)
18489 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18491 /* Set the MIPS ELF ABI flags. */
18492 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18493 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18494 else if (mips_abi == O64_ABI)
18495 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18496 else if (mips_abi == EABI_ABI)
18498 if (!file_mips_gp32)
18499 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18500 else
18501 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18503 else if (mips_abi == N32_ABI)
18504 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18506 /* Nothing to do for N64_ABI. */
18508 if (mips_32bitmode)
18509 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18511 #if 0 /* XXX FIXME */
18512 /* 32 bit code with 64 bit FP registers. */
18513 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18514 elf_elfheader (stdoutput)->e_flags |= ???;
18515 #endif
18518 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
18520 typedef struct proc {
18521 symbolS *func_sym;
18522 symbolS *func_end_sym;
18523 unsigned long reg_mask;
18524 unsigned long reg_offset;
18525 unsigned long fpreg_mask;
18526 unsigned long fpreg_offset;
18527 unsigned long frame_offset;
18528 unsigned long frame_reg;
18529 unsigned long pc_reg;
18530 } procS;
18532 static procS cur_proc;
18533 static procS *cur_proc_ptr;
18534 static int numprocs;
18536 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18537 as "2", and a normal nop as "0". */
18539 #define NOP_OPCODE_MIPS 0
18540 #define NOP_OPCODE_MIPS16 1
18541 #define NOP_OPCODE_MICROMIPS 2
18543 char
18544 mips_nop_opcode (void)
18546 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18547 return NOP_OPCODE_MICROMIPS;
18548 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18549 return NOP_OPCODE_MIPS16;
18550 else
18551 return NOP_OPCODE_MIPS;
18554 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18555 32-bit microMIPS NOPs here (if applicable). */
18557 void
18558 mips_handle_align (fragS *fragp)
18560 char nop_opcode;
18561 char *p;
18562 int bytes, size, excess;
18563 valueT opcode;
18565 if (fragp->fr_type != rs_align_code)
18566 return;
18568 p = fragp->fr_literal + fragp->fr_fix;
18569 nop_opcode = *p;
18570 switch (nop_opcode)
18572 case NOP_OPCODE_MICROMIPS:
18573 opcode = micromips_nop32_insn.insn_opcode;
18574 size = 4;
18575 break;
18576 case NOP_OPCODE_MIPS16:
18577 opcode = mips16_nop_insn.insn_opcode;
18578 size = 2;
18579 break;
18580 case NOP_OPCODE_MIPS:
18581 default:
18582 opcode = nop_insn.insn_opcode;
18583 size = 4;
18584 break;
18587 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18588 excess = bytes % size;
18590 /* Handle the leading part if we're not inserting a whole number of
18591 instructions, and make it the end of the fixed part of the frag.
18592 Try to fit in a short microMIPS NOP if applicable and possible,
18593 and use zeroes otherwise. */
18594 gas_assert (excess < 4);
18595 fragp->fr_fix += excess;
18596 switch (excess)
18598 case 3:
18599 *p++ = '\0';
18600 /* Fall through. */
18601 case 2:
18602 if (nop_opcode == NOP_OPCODE_MICROMIPS)
18604 md_number_to_chars (p, micromips_nop16_insn.insn_opcode, 2);
18605 p += 2;
18606 break;
18608 *p++ = '\0';
18609 /* Fall through. */
18610 case 1:
18611 *p++ = '\0';
18612 /* Fall through. */
18613 case 0:
18614 break;
18617 md_number_to_chars (p, opcode, size);
18618 fragp->fr_var = size;
18621 static void
18622 md_obj_begin (void)
18626 static void
18627 md_obj_end (void)
18629 /* Check for premature end, nesting errors, etc. */
18630 if (cur_proc_ptr)
18631 as_warn (_("missing .end at end of assembly"));
18634 static long
18635 get_number (void)
18637 int negative = 0;
18638 long val = 0;
18640 if (*input_line_pointer == '-')
18642 ++input_line_pointer;
18643 negative = 1;
18645 if (!ISDIGIT (*input_line_pointer))
18646 as_bad (_("expected simple number"));
18647 if (input_line_pointer[0] == '0')
18649 if (input_line_pointer[1] == 'x')
18651 input_line_pointer += 2;
18652 while (ISXDIGIT (*input_line_pointer))
18654 val <<= 4;
18655 val |= hex_value (*input_line_pointer++);
18657 return negative ? -val : val;
18659 else
18661 ++input_line_pointer;
18662 while (ISDIGIT (*input_line_pointer))
18664 val <<= 3;
18665 val |= *input_line_pointer++ - '0';
18667 return negative ? -val : val;
18670 if (!ISDIGIT (*input_line_pointer))
18672 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18673 *input_line_pointer, *input_line_pointer);
18674 as_warn (_("invalid number"));
18675 return -1;
18677 while (ISDIGIT (*input_line_pointer))
18679 val *= 10;
18680 val += *input_line_pointer++ - '0';
18682 return negative ? -val : val;
18685 /* The .file directive; just like the usual .file directive, but there
18686 is an initial number which is the ECOFF file index. In the non-ECOFF
18687 case .file implies DWARF-2. */
18689 static void
18690 s_mips_file (int x ATTRIBUTE_UNUSED)
18692 static int first_file_directive = 0;
18694 if (ECOFF_DEBUGGING)
18696 get_number ();
18697 s_app_file (0);
18699 else
18701 char *filename;
18703 filename = dwarf2_directive_file (0);
18705 /* Versions of GCC up to 3.1 start files with a ".file"
18706 directive even for stabs output. Make sure that this
18707 ".file" is handled. Note that you need a version of GCC
18708 after 3.1 in order to support DWARF-2 on MIPS. */
18709 if (filename != NULL && ! first_file_directive)
18711 (void) new_logical_line (filename, -1);
18712 s_app_file_string (filename, 0);
18714 first_file_directive = 1;
18718 /* The .loc directive, implying DWARF-2. */
18720 static void
18721 s_mips_loc (int x ATTRIBUTE_UNUSED)
18723 if (!ECOFF_DEBUGGING)
18724 dwarf2_directive_loc (0);
18727 /* The .end directive. */
18729 static void
18730 s_mips_end (int x ATTRIBUTE_UNUSED)
18732 symbolS *p;
18734 /* Following functions need their own .frame and .cprestore directives. */
18735 mips_frame_reg_valid = 0;
18736 mips_cprestore_valid = 0;
18738 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18740 p = get_symbol ();
18741 demand_empty_rest_of_line ();
18743 else
18744 p = NULL;
18746 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18747 as_warn (_(".end not in text section"));
18749 if (!cur_proc_ptr)
18751 as_warn (_(".end directive without a preceding .ent directive."));
18752 demand_empty_rest_of_line ();
18753 return;
18756 if (p != NULL)
18758 gas_assert (S_GET_NAME (p));
18759 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18760 as_warn (_(".end symbol does not match .ent symbol."));
18762 if (debug_type == DEBUG_STABS)
18763 stabs_generate_asm_endfunc (S_GET_NAME (p),
18764 S_GET_NAME (p));
18766 else
18767 as_warn (_(".end directive missing or unknown symbol"));
18769 #ifdef OBJ_ELF
18770 /* Create an expression to calculate the size of the function. */
18771 if (p && cur_proc_ptr)
18773 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18774 expressionS *exp = xmalloc (sizeof (expressionS));
18776 obj->size = exp;
18777 exp->X_op = O_subtract;
18778 exp->X_add_symbol = symbol_temp_new_now ();
18779 exp->X_op_symbol = p;
18780 exp->X_add_number = 0;
18782 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18785 /* Generate a .pdr section. */
18786 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
18788 segT saved_seg = now_seg;
18789 subsegT saved_subseg = now_subseg;
18790 expressionS exp;
18791 char *fragp;
18793 #ifdef md_flush_pending_output
18794 md_flush_pending_output ();
18795 #endif
18797 gas_assert (pdr_seg);
18798 subseg_set (pdr_seg, 0);
18800 /* Write the symbol. */
18801 exp.X_op = O_symbol;
18802 exp.X_add_symbol = p;
18803 exp.X_add_number = 0;
18804 emit_expr (&exp, 4);
18806 fragp = frag_more (7 * 4);
18808 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18809 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18810 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18811 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18812 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18813 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18814 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18816 subseg_set (saved_seg, saved_subseg);
18818 #endif /* OBJ_ELF */
18820 cur_proc_ptr = NULL;
18823 /* The .aent and .ent directives. */
18825 static void
18826 s_mips_ent (int aent)
18828 symbolS *symbolP;
18830 symbolP = get_symbol ();
18831 if (*input_line_pointer == ',')
18832 ++input_line_pointer;
18833 SKIP_WHITESPACE ();
18834 if (ISDIGIT (*input_line_pointer)
18835 || *input_line_pointer == '-')
18836 get_number ();
18838 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18839 as_warn (_(".ent or .aent not in text section."));
18841 if (!aent && cur_proc_ptr)
18842 as_warn (_("missing .end"));
18844 if (!aent)
18846 /* This function needs its own .frame and .cprestore directives. */
18847 mips_frame_reg_valid = 0;
18848 mips_cprestore_valid = 0;
18850 cur_proc_ptr = &cur_proc;
18851 memset (cur_proc_ptr, '\0', sizeof (procS));
18853 cur_proc_ptr->func_sym = symbolP;
18855 ++numprocs;
18857 if (debug_type == DEBUG_STABS)
18858 stabs_generate_asm_func (S_GET_NAME (symbolP),
18859 S_GET_NAME (symbolP));
18862 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18864 demand_empty_rest_of_line ();
18867 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18868 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18869 s_mips_frame is used so that we can set the PDR information correctly.
18870 We can't use the ecoff routines because they make reference to the ecoff
18871 symbol table (in the mdebug section). */
18873 static void
18874 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18876 #ifdef OBJ_ELF
18877 if (IS_ELF && !ECOFF_DEBUGGING)
18879 long val;
18881 if (cur_proc_ptr == (procS *) NULL)
18883 as_warn (_(".frame outside of .ent"));
18884 demand_empty_rest_of_line ();
18885 return;
18888 cur_proc_ptr->frame_reg = tc_get_register (1);
18890 SKIP_WHITESPACE ();
18891 if (*input_line_pointer++ != ','
18892 || get_absolute_expression_and_terminator (&val) != ',')
18894 as_warn (_("Bad .frame directive"));
18895 --input_line_pointer;
18896 demand_empty_rest_of_line ();
18897 return;
18900 cur_proc_ptr->frame_offset = val;
18901 cur_proc_ptr->pc_reg = tc_get_register (0);
18903 demand_empty_rest_of_line ();
18905 else
18906 #endif /* OBJ_ELF */
18907 s_ignore (ignore);
18910 /* The .fmask and .mask directives. If the mdebug section is present
18911 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18912 embedded targets, s_mips_mask is used so that we can set the PDR
18913 information correctly. We can't use the ecoff routines because they
18914 make reference to the ecoff symbol table (in the mdebug section). */
18916 static void
18917 s_mips_mask (int reg_type)
18919 #ifdef OBJ_ELF
18920 if (IS_ELF && !ECOFF_DEBUGGING)
18922 long mask, off;
18924 if (cur_proc_ptr == (procS *) NULL)
18926 as_warn (_(".mask/.fmask outside of .ent"));
18927 demand_empty_rest_of_line ();
18928 return;
18931 if (get_absolute_expression_and_terminator (&mask) != ',')
18933 as_warn (_("Bad .mask/.fmask directive"));
18934 --input_line_pointer;
18935 demand_empty_rest_of_line ();
18936 return;
18939 off = get_absolute_expression ();
18941 if (reg_type == 'F')
18943 cur_proc_ptr->fpreg_mask = mask;
18944 cur_proc_ptr->fpreg_offset = off;
18946 else
18948 cur_proc_ptr->reg_mask = mask;
18949 cur_proc_ptr->reg_offset = off;
18952 demand_empty_rest_of_line ();
18954 else
18955 #endif /* OBJ_ELF */
18956 s_ignore (reg_type);
18959 /* A table describing all the processors gas knows about. Names are
18960 matched in the order listed.
18962 To ease comparison, please keep this table in the same order as
18963 gcc's mips_cpu_info_table[]. */
18964 static const struct mips_cpu_info mips_cpu_info_table[] =
18966 /* Entries for generic ISAs */
18967 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
18968 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
18969 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
18970 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
18971 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
18972 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
18973 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
18974 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
18975 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
18977 /* MIPS I */
18978 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
18979 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
18980 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
18982 /* MIPS II */
18983 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
18985 /* MIPS III */
18986 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
18987 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
18988 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
18989 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
18990 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
18991 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
18992 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
18993 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
18994 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
18995 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
18996 { "orion", 0, ISA_MIPS3, CPU_R4600 },
18997 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
18998 /* ST Microelectronics Loongson 2E and 2F cores */
18999 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
19000 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
19002 /* MIPS IV */
19003 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
19004 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
19005 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
19006 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
19007 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
19008 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
19009 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
19010 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
19011 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
19012 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
19013 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
19014 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
19015 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
19016 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
19017 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
19019 /* MIPS 32 */
19020 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
19021 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
19022 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
19023 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19025 /* MIPS 32 Release 2 */
19026 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19027 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19028 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19029 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19030 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19031 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19032 { "m14k", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19033 { "m14kc", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19034 { "m14ke", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19035 ISA_MIPS32R2, CPU_MIPS32R2 },
19036 { "m14kec", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19037 ISA_MIPS32R2, CPU_MIPS32R2 },
19038 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19039 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19040 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19041 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19042 /* Deprecated forms of the above. */
19043 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19044 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19045 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19046 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19047 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19048 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19049 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19050 /* Deprecated forms of the above. */
19051 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19052 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19053 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19054 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19055 ISA_MIPS32R2, CPU_MIPS32R2 },
19056 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19057 ISA_MIPS32R2, CPU_MIPS32R2 },
19058 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19059 ISA_MIPS32R2, CPU_MIPS32R2 },
19060 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19061 ISA_MIPS32R2, CPU_MIPS32R2 },
19062 /* Deprecated forms of the above. */
19063 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19064 ISA_MIPS32R2, CPU_MIPS32R2 },
19065 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19066 ISA_MIPS32R2, CPU_MIPS32R2 },
19067 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19068 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19069 ISA_MIPS32R2, CPU_MIPS32R2 },
19070 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19071 ISA_MIPS32R2, CPU_MIPS32R2 },
19072 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19073 ISA_MIPS32R2, CPU_MIPS32R2 },
19074 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19075 ISA_MIPS32R2, CPU_MIPS32R2 },
19076 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19077 ISA_MIPS32R2, CPU_MIPS32R2 },
19078 /* Deprecated forms of the above. */
19079 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19080 ISA_MIPS32R2, CPU_MIPS32R2 },
19081 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19082 ISA_MIPS32R2, CPU_MIPS32R2 },
19083 /* 1004K cores are multiprocessor versions of the 34K. */
19084 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19085 ISA_MIPS32R2, CPU_MIPS32R2 },
19086 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19087 ISA_MIPS32R2, CPU_MIPS32R2 },
19088 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19089 ISA_MIPS32R2, CPU_MIPS32R2 },
19090 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19091 ISA_MIPS32R2, CPU_MIPS32R2 },
19093 /* MIPS 64 */
19094 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
19095 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
19096 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19097 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19099 /* Broadcom SB-1 CPU core */
19100 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19101 ISA_MIPS64, CPU_SB1 },
19102 /* Broadcom SB-1A CPU core */
19103 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19104 ISA_MIPS64, CPU_SB1 },
19106 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
19108 /* MIPS 64 Release 2 */
19110 /* Cavium Networks Octeon CPU core */
19111 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
19112 { "octeon+", 0, ISA_MIPS64R2, CPU_OCTEONP },
19113 { "octeon2", 0, ISA_MIPS64R2, CPU_OCTEON2 },
19115 /* RMI Xlr */
19116 { "xlr", 0, ISA_MIPS64, CPU_XLR },
19118 /* End marker */
19119 { NULL, 0, 0, 0 }
19123 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19124 with a final "000" replaced by "k". Ignore case.
19126 Note: this function is shared between GCC and GAS. */
19128 static bfd_boolean
19129 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19131 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19132 given++, canonical++;
19134 return ((*given == 0 && *canonical == 0)
19135 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19139 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19140 CPU name. We've traditionally allowed a lot of variation here.
19142 Note: this function is shared between GCC and GAS. */
19144 static bfd_boolean
19145 mips_matching_cpu_name_p (const char *canonical, const char *given)
19147 /* First see if the name matches exactly, or with a final "000"
19148 turned into "k". */
19149 if (mips_strict_matching_cpu_name_p (canonical, given))
19150 return TRUE;
19152 /* If not, try comparing based on numerical designation alone.
19153 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19154 if (TOLOWER (*given) == 'r')
19155 given++;
19156 if (!ISDIGIT (*given))
19157 return FALSE;
19159 /* Skip over some well-known prefixes in the canonical name,
19160 hoping to find a number there too. */
19161 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19162 canonical += 2;
19163 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19164 canonical += 2;
19165 else if (TOLOWER (canonical[0]) == 'r')
19166 canonical += 1;
19168 return mips_strict_matching_cpu_name_p (canonical, given);
19172 /* Parse an option that takes the name of a processor as its argument.
19173 OPTION is the name of the option and CPU_STRING is the argument.
19174 Return the corresponding processor enumeration if the CPU_STRING is
19175 recognized, otherwise report an error and return null.
19177 A similar function exists in GCC. */
19179 static const struct mips_cpu_info *
19180 mips_parse_cpu (const char *option, const char *cpu_string)
19182 const struct mips_cpu_info *p;
19184 /* 'from-abi' selects the most compatible architecture for the given
19185 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19186 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19187 version. Look first at the -mgp options, if given, otherwise base
19188 the choice on MIPS_DEFAULT_64BIT.
19190 Treat NO_ABI like the EABIs. One reason to do this is that the
19191 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19192 architecture. This code picks MIPS I for 'mips' and MIPS III for
19193 'mips64', just as we did in the days before 'from-abi'. */
19194 if (strcasecmp (cpu_string, "from-abi") == 0)
19196 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19197 return mips_cpu_info_from_isa (ISA_MIPS1);
19199 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19200 return mips_cpu_info_from_isa (ISA_MIPS3);
19202 if (file_mips_gp32 >= 0)
19203 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19205 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19206 ? ISA_MIPS3
19207 : ISA_MIPS1);
19210 /* 'default' has traditionally been a no-op. Probably not very useful. */
19211 if (strcasecmp (cpu_string, "default") == 0)
19212 return 0;
19214 for (p = mips_cpu_info_table; p->name != 0; p++)
19215 if (mips_matching_cpu_name_p (p->name, cpu_string))
19216 return p;
19218 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19219 return 0;
19222 /* Return the canonical processor information for ISA (a member of the
19223 ISA_MIPS* enumeration). */
19225 static const struct mips_cpu_info *
19226 mips_cpu_info_from_isa (int isa)
19228 int i;
19230 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19231 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19232 && isa == mips_cpu_info_table[i].isa)
19233 return (&mips_cpu_info_table[i]);
19235 return NULL;
19238 static const struct mips_cpu_info *
19239 mips_cpu_info_from_arch (int arch)
19241 int i;
19243 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19244 if (arch == mips_cpu_info_table[i].cpu)
19245 return (&mips_cpu_info_table[i]);
19247 return NULL;
19250 static void
19251 show (FILE *stream, const char *string, int *col_p, int *first_p)
19253 if (*first_p)
19255 fprintf (stream, "%24s", "");
19256 *col_p = 24;
19258 else
19260 fprintf (stream, ", ");
19261 *col_p += 2;
19264 if (*col_p + strlen (string) > 72)
19266 fprintf (stream, "\n%24s", "");
19267 *col_p = 24;
19270 fprintf (stream, "%s", string);
19271 *col_p += strlen (string);
19273 *first_p = 0;
19276 void
19277 md_show_usage (FILE *stream)
19279 int column, first;
19280 size_t i;
19282 fprintf (stream, _("\
19283 MIPS options:\n\
19284 -EB generate big endian output\n\
19285 -EL generate little endian output\n\
19286 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19287 -G NUM allow referencing objects up to NUM bytes\n\
19288 implicitly with the gp register [default 8]\n"));
19289 fprintf (stream, _("\
19290 -mips1 generate MIPS ISA I instructions\n\
19291 -mips2 generate MIPS ISA II instructions\n\
19292 -mips3 generate MIPS ISA III instructions\n\
19293 -mips4 generate MIPS ISA IV instructions\n\
19294 -mips5 generate MIPS ISA V instructions\n\
19295 -mips32 generate MIPS32 ISA instructions\n\
19296 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19297 -mips64 generate MIPS64 ISA instructions\n\
19298 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19299 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19301 first = 1;
19303 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19304 show (stream, mips_cpu_info_table[i].name, &column, &first);
19305 show (stream, "from-abi", &column, &first);
19306 fputc ('\n', stream);
19308 fprintf (stream, _("\
19309 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19310 -no-mCPU don't generate code specific to CPU.\n\
19311 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19313 first = 1;
19315 show (stream, "3900", &column, &first);
19316 show (stream, "4010", &column, &first);
19317 show (stream, "4100", &column, &first);
19318 show (stream, "4650", &column, &first);
19319 fputc ('\n', stream);
19321 fprintf (stream, _("\
19322 -mips16 generate mips16 instructions\n\
19323 -no-mips16 do not generate mips16 instructions\n"));
19324 fprintf (stream, _("\
19325 -mmicromips generate microMIPS instructions\n\
19326 -mno-micromips do not generate microMIPS instructions\n"));
19327 fprintf (stream, _("\
19328 -msmartmips generate smartmips instructions\n\
19329 -mno-smartmips do not generate smartmips instructions\n"));
19330 fprintf (stream, _("\
19331 -mdsp generate DSP instructions\n\
19332 -mno-dsp do not generate DSP instructions\n"));
19333 fprintf (stream, _("\
19334 -mdspr2 generate DSP R2 instructions\n\
19335 -mno-dspr2 do not generate DSP R2 instructions\n"));
19336 fprintf (stream, _("\
19337 -mmt generate MT instructions\n\
19338 -mno-mt do not generate MT instructions\n"));
19339 fprintf (stream, _("\
19340 -mmcu generate MCU instructions\n\
19341 -mno-mcu do not generate MCU instructions\n"));
19342 fprintf (stream, _("\
19343 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19344 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19345 -mfix-vr4120 work around certain VR4120 errata\n\
19346 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19347 -mfix-24k insert a nop after ERET and DERET instructions\n\
19348 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19349 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19350 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19351 -msym32 assume all symbols have 32-bit values\n\
19352 -O0 remove unneeded NOPs, do not swap branches\n\
19353 -O remove unneeded NOPs and swap branches\n\
19354 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19355 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19356 fprintf (stream, _("\
19357 -mhard-float allow floating-point instructions\n\
19358 -msoft-float do not allow floating-point instructions\n\
19359 -msingle-float only allow 32-bit floating-point operations\n\
19360 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19361 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
19363 #ifdef OBJ_ELF
19364 fprintf (stream, _("\
19365 -KPIC, -call_shared generate SVR4 position independent code\n\
19366 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19367 -mvxworks-pic generate VxWorks position independent code\n\
19368 -non_shared do not generate code that can operate with DSOs\n\
19369 -xgot assume a 32 bit GOT\n\
19370 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19371 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19372 position dependent (non shared) code\n\
19373 -mabi=ABI create ABI conformant object file for:\n"));
19375 first = 1;
19377 show (stream, "32", &column, &first);
19378 show (stream, "o64", &column, &first);
19379 show (stream, "n32", &column, &first);
19380 show (stream, "64", &column, &first);
19381 show (stream, "eabi", &column, &first);
19383 fputc ('\n', stream);
19385 fprintf (stream, _("\
19386 -32 create o32 ABI object file (default)\n\
19387 -n32 create n32 ABI object file\n\
19388 -64 create 64 ABI object file\n"));
19389 #endif
19392 #ifdef TE_IRIX
19393 enum dwarf2_format
19394 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19396 if (HAVE_64BIT_SYMBOLS)
19397 return dwarf2_format_64bit_irix;
19398 else
19399 return dwarf2_format_32bit;
19401 #endif
19404 mips_dwarf2_addr_size (void)
19406 if (HAVE_64BIT_OBJECTS)
19407 return 8;
19408 else
19409 return 4;
19412 /* Standard calling conventions leave the CFA at SP on entry. */
19413 void
19414 mips_cfi_frame_initial_instructions (void)
19416 cfi_add_CFA_def_cfa_register (SP);
19420 tc_mips_regname_to_dw2regnum (char *regname)
19422 unsigned int regnum = -1;
19423 unsigned int reg;
19425 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19426 regnum = reg;
19428 return regnum;