bfd/
[binutils.git] / gas / config / tc-i386.c
blobc90cadca4c5bdf916c382a29105e05b8eff66dc3
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 LOCKREP_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define LOCKREP_PREFIX 4
68 #define REX_PREFIX 5 /* must come last. */
69 #define MAX_PREFIXES 6 /* max prefixes per opcode */
71 /* we define the syntax here (modulo base,index,scale syntax) */
72 #define REGISTER_PREFIX '%'
73 #define IMMEDIATE_PREFIX '$'
74 #define ABSOLUTE_PREFIX '*'
76 /* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78 #define WORD_MNEM_SUFFIX 'w'
79 #define BYTE_MNEM_SUFFIX 'b'
80 #define SHORT_MNEM_SUFFIX 's'
81 #define LONG_MNEM_SUFFIX 'l'
82 #define QWORD_MNEM_SUFFIX 'q'
83 #define XMMWORD_MNEM_SUFFIX 'x'
84 #define YMMWORD_MNEM_SUFFIX 'y'
85 /* Intel Syntax. Use a non-ascii letter since since it never appears
86 in instructions. */
87 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
89 #define END_OF_INSN '\0'
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
96 END.
98 typedef struct
100 const template *start;
101 const template *end;
103 templates;
105 /* 386 operand encoding bytes: see 386 book for details of this. */
106 typedef struct
108 unsigned int regmem; /* codes register or memory operand */
109 unsigned int reg; /* codes register operand (or extended opcode) */
110 unsigned int mode; /* how to interpret regmem & reg */
112 modrm_byte;
114 /* x86-64 extension prefix. */
115 typedef int rex_byte;
117 /* 386 opcode byte to code indirect addressing. */
118 typedef struct
120 unsigned base;
121 unsigned index;
122 unsigned scale;
124 sib_byte;
126 /* x86 arch names, types and features */
127 typedef struct
129 const char *name; /* arch name */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
133 arch_entry;
135 static void set_code_flag (int);
136 static void set_16bit_gcc_code_flag (int);
137 static void set_intel_syntax (int);
138 static void set_intel_mnemonic (int);
139 static void set_allow_index_reg (int);
140 static void set_sse_check (int);
141 static void set_cpu_arch (int);
142 #ifdef TE_PE
143 static void pe_directive_secrel (int);
144 #endif
145 static void signed_cons (int);
146 static char *output_invalid (int c);
147 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
148 const char *);
149 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
150 const char *);
151 static int i386_att_operand (char *);
152 static int i386_intel_operand (char *, int);
153 static int i386_intel_simplify (expressionS *);
154 static int i386_intel_parse_name (const char *, expressionS *);
155 static const reg_entry *parse_register (char *, char **);
156 static char *parse_insn (char *, char *);
157 static char *parse_operands (char *, const char *);
158 static void swap_operands (void);
159 static void swap_2_operands (int, int);
160 static void optimize_imm (void);
161 static void optimize_disp (void);
162 static const template *match_template (void);
163 static int check_string (void);
164 static int process_suffix (void);
165 static int check_byte_reg (void);
166 static int check_long_reg (void);
167 static int check_qword_reg (void);
168 static int check_word_reg (void);
169 static int finalize_imm (void);
170 static int process_operands (void);
171 static const seg_entry *build_modrm_byte (void);
172 static void output_insn (void);
173 static void output_imm (fragS *, offsetT);
174 static void output_disp (fragS *, offsetT);
175 #ifndef I386COFF
176 static void s_bss (int);
177 #endif
178 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
179 static void handle_large_common (int small ATTRIBUTE_UNUSED);
180 #endif
182 static const char *default_arch = DEFAULT_ARCH;
184 /* VEX prefix. */
185 typedef struct
187 /* VEX prefix is either 2 byte or 3 byte. */
188 unsigned char bytes[3];
189 unsigned int length;
190 /* Destination or source register specifier. */
191 const reg_entry *register_specifier;
192 } vex_prefix;
194 /* 'md_assemble ()' gathers together information and puts it into a
195 i386_insn. */
197 union i386_op
199 expressionS *disps;
200 expressionS *imms;
201 const reg_entry *regs;
204 struct _i386_insn
206 /* TM holds the template for the insn were currently assembling. */
207 template tm;
209 /* SUFFIX holds the instruction size suffix for byte, word, dword
210 or qword, if given. */
211 char suffix;
213 /* OPERANDS gives the number of given operands. */
214 unsigned int operands;
216 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
217 of given register, displacement, memory operands and immediate
218 operands. */
219 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
221 /* TYPES [i] is the type (see above #defines) which tells us how to
222 use OP[i] for the corresponding operand. */
223 i386_operand_type types[MAX_OPERANDS];
225 /* Displacement expression, immediate expression, or register for each
226 operand. */
227 union i386_op op[MAX_OPERANDS];
229 /* Flags for operands. */
230 unsigned int flags[MAX_OPERANDS];
231 #define Operand_PCrel 1
233 /* Relocation type for operand */
234 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
236 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
237 the base index byte below. */
238 const reg_entry *base_reg;
239 const reg_entry *index_reg;
240 unsigned int log2_scale_factor;
242 /* SEG gives the seg_entries of this insn. They are zero unless
243 explicit segment overrides are given. */
244 const seg_entry *seg[2];
246 /* PREFIX holds all the given prefix opcodes (usually null).
247 PREFIXES is the number of prefix opcodes. */
248 unsigned int prefixes;
249 unsigned char prefix[MAX_PREFIXES];
251 /* RM and SIB are the modrm byte and the sib byte where the
252 addressing modes of this insn are encoded. */
253 modrm_byte rm;
254 rex_byte rex;
255 sib_byte sib;
256 vex_prefix vex;
258 /* Swap operand in encoding. */
259 unsigned int swap_operand : 1;
262 typedef struct _i386_insn i386_insn;
264 /* List of chars besides those in app.c:symbol_chars that can start an
265 operand. Used to prevent the scrubber eating vital white-space. */
266 const char extra_symbol_chars[] = "*%-(["
267 #ifdef LEX_AT
269 #endif
270 #ifdef LEX_QM
272 #endif
275 #if (defined (TE_I386AIX) \
276 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
277 && !defined (TE_GNU) \
278 && !defined (TE_LINUX) \
279 && !defined (TE_NETWARE) \
280 && !defined (TE_FreeBSD) \
281 && !defined (TE_NetBSD)))
282 /* This array holds the chars that always start a comment. If the
283 pre-processor is disabled, these aren't very useful. The option
284 --divide will remove '/' from this list. */
285 const char *i386_comment_chars = "#/";
286 #define SVR4_COMMENT_CHARS 1
287 #define PREFIX_SEPARATOR '\\'
289 #else
290 const char *i386_comment_chars = "#";
291 #define PREFIX_SEPARATOR '/'
292 #endif
294 /* This array holds the chars that only start a comment at the beginning of
295 a line. If the line seems to have the form '# 123 filename'
296 .line and .file directives will appear in the pre-processed output.
297 Note that input_file.c hand checks for '#' at the beginning of the
298 first line of the input file. This is because the compiler outputs
299 #NO_APP at the beginning of its output.
300 Also note that comments started like this one will always work if
301 '/' isn't otherwise defined. */
302 const char line_comment_chars[] = "#/";
304 const char line_separator_chars[] = ";";
306 /* Chars that can be used to separate mant from exp in floating point
307 nums. */
308 const char EXP_CHARS[] = "eE";
310 /* Chars that mean this number is a floating point constant
311 As in 0f12.456
312 or 0d1.2345e12. */
313 const char FLT_CHARS[] = "fFdDxX";
315 /* Tables for lexical analysis. */
316 static char mnemonic_chars[256];
317 static char register_chars[256];
318 static char operand_chars[256];
319 static char identifier_chars[256];
320 static char digit_chars[256];
322 /* Lexical macros. */
323 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
324 #define is_operand_char(x) (operand_chars[(unsigned char) x])
325 #define is_register_char(x) (register_chars[(unsigned char) x])
326 #define is_space_char(x) ((x) == ' ')
327 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
328 #define is_digit_char(x) (digit_chars[(unsigned char) x])
330 /* All non-digit non-letter characters that may occur in an operand. */
331 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
333 /* md_assemble() always leaves the strings it's passed unaltered. To
334 effect this we maintain a stack of saved characters that we've smashed
335 with '\0's (indicating end of strings for various sub-fields of the
336 assembler instruction). */
337 static char save_stack[32];
338 static char *save_stack_p;
339 #define END_STRING_AND_SAVE(s) \
340 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
341 #define RESTORE_END_STRING(s) \
342 do { *(s) = *--save_stack_p; } while (0)
344 /* The instruction we're assembling. */
345 static i386_insn i;
347 /* Possible templates for current insn. */
348 static const templates *current_templates;
350 /* Per instruction expressionS buffers: max displacements & immediates. */
351 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
352 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
354 /* Current operand we are working on. */
355 static int this_operand = -1;
357 /* We support four different modes. FLAG_CODE variable is used to distinguish
358 these. */
360 enum flag_code {
361 CODE_32BIT,
362 CODE_16BIT,
363 CODE_64BIT };
365 static enum flag_code flag_code;
366 static unsigned int object_64bit;
367 static int use_rela_relocations = 0;
369 /* The names used to print error messages. */
370 static const char *flag_code_names[] =
372 "32",
373 "16",
374 "64"
377 /* 1 for intel syntax,
378 0 if att syntax. */
379 static int intel_syntax = 0;
381 /* 1 for intel mnemonic,
382 0 if att mnemonic. */
383 static int intel_mnemonic = !SYSV386_COMPAT;
385 /* 1 if support old (<= 2.8.1) versions of gcc. */
386 static int old_gcc = OLDGCC_COMPAT;
388 /* 1 if pseudo registers are permitted. */
389 static int allow_pseudo_reg = 0;
391 /* 1 if register prefix % not required. */
392 static int allow_naked_reg = 0;
394 /* 1 if pseudo index register, eiz/riz, is allowed . */
395 static int allow_index_reg = 0;
397 static enum
399 sse_check_none = 0,
400 sse_check_warning,
401 sse_check_error
403 sse_check;
405 /* Register prefix used for error message. */
406 static const char *register_prefix = "%";
408 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
409 leave, push, and pop instructions so that gcc has the same stack
410 frame as in 32 bit mode. */
411 static char stackop_size = '\0';
413 /* Non-zero to optimize code alignment. */
414 int optimize_align_code = 1;
416 /* Non-zero to quieten some warnings. */
417 static int quiet_warnings = 0;
419 /* CPU name. */
420 static const char *cpu_arch_name = NULL;
421 static char *cpu_sub_arch_name = NULL;
423 /* CPU feature flags. */
424 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
426 /* If we have selected a cpu we are generating instructions for. */
427 static int cpu_arch_tune_set = 0;
429 /* Cpu we are generating instructions for. */
430 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
432 /* CPU feature flags of cpu we are generating instructions for. */
433 static i386_cpu_flags cpu_arch_tune_flags;
435 /* CPU instruction set architecture used. */
436 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
438 /* CPU feature flags of instruction set architecture used. */
439 i386_cpu_flags cpu_arch_isa_flags;
441 /* If set, conditional jumps are not automatically promoted to handle
442 larger than a byte offset. */
443 static unsigned int no_cond_jump_promotion = 0;
445 /* Encode SSE instructions with VEX prefix. */
446 static unsigned int sse2avx;
448 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
449 static symbolS *GOT_symbol;
451 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
452 unsigned int x86_dwarf2_return_column;
454 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
455 int x86_cie_data_alignment;
457 /* Interface to relax_segment.
458 There are 3 major relax states for 386 jump insns because the
459 different types of jumps add different sizes to frags when we're
460 figuring out what sort of jump to choose to reach a given label. */
462 /* Types. */
463 #define UNCOND_JUMP 0
464 #define COND_JUMP 1
465 #define COND_JUMP86 2
467 /* Sizes. */
468 #define CODE16 1
469 #define SMALL 0
470 #define SMALL16 (SMALL | CODE16)
471 #define BIG 2
472 #define BIG16 (BIG | CODE16)
474 #ifndef INLINE
475 #ifdef __GNUC__
476 #define INLINE __inline__
477 #else
478 #define INLINE
479 #endif
480 #endif
482 #define ENCODE_RELAX_STATE(type, size) \
483 ((relax_substateT) (((type) << 2) | (size)))
484 #define TYPE_FROM_RELAX_STATE(s) \
485 ((s) >> 2)
486 #define DISP_SIZE_FROM_RELAX_STATE(s) \
487 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
489 /* This table is used by relax_frag to promote short jumps to long
490 ones where necessary. SMALL (short) jumps may be promoted to BIG
491 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
492 don't allow a short jump in a 32 bit code segment to be promoted to
493 a 16 bit offset jump because it's slower (requires data size
494 prefix), and doesn't work, unless the destination is in the bottom
495 64k of the code segment (The top 16 bits of eip are zeroed). */
497 const relax_typeS md_relax_table[] =
499 /* The fields are:
500 1) most positive reach of this state,
501 2) most negative reach of this state,
502 3) how many bytes this mode will have in the variable part of the frag
503 4) which index into the table to try if we can't fit into this one. */
505 /* UNCOND_JUMP states. */
506 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
507 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
508 /* dword jmp adds 4 bytes to frag:
509 0 extra opcode bytes, 4 displacement bytes. */
510 {0, 0, 4, 0},
511 /* word jmp adds 2 byte2 to frag:
512 0 extra opcode bytes, 2 displacement bytes. */
513 {0, 0, 2, 0},
515 /* COND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
518 /* dword conditionals adds 5 bytes to frag:
519 1 extra opcode byte, 4 displacement bytes. */
520 {0, 0, 5, 0},
521 /* word conditionals add 3 bytes to frag:
522 1 extra opcode byte, 2 displacement bytes. */
523 {0, 0, 3, 0},
525 /* COND_JUMP86 states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 4 bytes to frag:
532 1 displacement byte and a 3 byte long branch insn. */
533 {0, 0, 4, 0}
536 static const arch_entry cpu_arch[] =
538 { "generic32", PROCESSOR_GENERIC32,
539 CPU_GENERIC32_FLAGS },
540 { "generic64", PROCESSOR_GENERIC64,
541 CPU_GENERIC64_FLAGS },
542 { "i8086", PROCESSOR_UNKNOWN,
543 CPU_NONE_FLAGS },
544 { "i186", PROCESSOR_UNKNOWN,
545 CPU_I186_FLAGS },
546 { "i286", PROCESSOR_UNKNOWN,
547 CPU_I286_FLAGS },
548 { "i386", PROCESSOR_I386,
549 CPU_I386_FLAGS },
550 { "i486", PROCESSOR_I486,
551 CPU_I486_FLAGS },
552 { "i586", PROCESSOR_PENTIUM,
553 CPU_I586_FLAGS },
554 { "i686", PROCESSOR_PENTIUMPRO,
555 CPU_I686_FLAGS },
556 { "pentium", PROCESSOR_PENTIUM,
557 CPU_I586_FLAGS },
558 { "pentiumpro", PROCESSOR_PENTIUMPRO,
559 CPU_I686_FLAGS },
560 { "pentiumii", PROCESSOR_PENTIUMPRO,
561 CPU_P2_FLAGS },
562 { "pentiumiii",PROCESSOR_PENTIUMPRO,
563 CPU_P3_FLAGS },
564 { "pentium4", PROCESSOR_PENTIUM4,
565 CPU_P4_FLAGS },
566 { "prescott", PROCESSOR_NOCONA,
567 CPU_CORE_FLAGS },
568 { "nocona", PROCESSOR_NOCONA,
569 CPU_NOCONA_FLAGS },
570 { "yonah", PROCESSOR_CORE,
571 CPU_CORE_FLAGS },
572 { "core", PROCESSOR_CORE,
573 CPU_CORE_FLAGS },
574 { "merom", PROCESSOR_CORE2,
575 CPU_CORE2_FLAGS },
576 { "core2", PROCESSOR_CORE2,
577 CPU_CORE2_FLAGS },
578 { "corei7", PROCESSOR_COREI7,
579 CPU_COREI7_FLAGS },
580 { "l1om", PROCESSOR_GENERIC64,
581 CPU_L1OM_FLAGS },
582 { "k6", PROCESSOR_K6,
583 CPU_K6_FLAGS },
584 { "k6_2", PROCESSOR_K6,
585 CPU_K6_2_FLAGS },
586 { "athlon", PROCESSOR_ATHLON,
587 CPU_ATHLON_FLAGS },
588 { "sledgehammer", PROCESSOR_K8,
589 CPU_K8_FLAGS },
590 { "opteron", PROCESSOR_K8,
591 CPU_K8_FLAGS },
592 { "k8", PROCESSOR_K8,
593 CPU_K8_FLAGS },
594 { "amdfam10", PROCESSOR_AMDFAM10,
595 CPU_AMDFAM10_FLAGS },
596 { ".8087", PROCESSOR_UNKNOWN,
597 CPU_8087_FLAGS },
598 { ".287", PROCESSOR_UNKNOWN,
599 CPU_287_FLAGS },
600 { ".387", PROCESSOR_UNKNOWN,
601 CPU_387_FLAGS },
602 { ".no87", PROCESSOR_UNKNOWN,
603 CPU_ANY87_FLAGS },
604 { ".mmx", PROCESSOR_UNKNOWN,
605 CPU_MMX_FLAGS },
606 { ".nommx", PROCESSOR_UNKNOWN,
607 CPU_3DNOWA_FLAGS },
608 { ".sse", PROCESSOR_UNKNOWN,
609 CPU_SSE_FLAGS },
610 { ".sse2", PROCESSOR_UNKNOWN,
611 CPU_SSE2_FLAGS },
612 { ".sse3", PROCESSOR_UNKNOWN,
613 CPU_SSE3_FLAGS },
614 { ".ssse3", PROCESSOR_UNKNOWN,
615 CPU_SSSE3_FLAGS },
616 { ".sse4.1", PROCESSOR_UNKNOWN,
617 CPU_SSE4_1_FLAGS },
618 { ".sse4.2", PROCESSOR_UNKNOWN,
619 CPU_SSE4_2_FLAGS },
620 { ".sse4", PROCESSOR_UNKNOWN,
621 CPU_SSE4_2_FLAGS },
622 { ".nosse", PROCESSOR_UNKNOWN,
623 CPU_ANY_SSE_FLAGS },
624 { ".avx", PROCESSOR_UNKNOWN,
625 CPU_AVX_FLAGS },
626 { ".noavx", PROCESSOR_UNKNOWN,
627 CPU_ANY_AVX_FLAGS },
628 { ".vmx", PROCESSOR_UNKNOWN,
629 CPU_VMX_FLAGS },
630 { ".smx", PROCESSOR_UNKNOWN,
631 CPU_SMX_FLAGS },
632 { ".xsave", PROCESSOR_UNKNOWN,
633 CPU_XSAVE_FLAGS },
634 { ".aes", PROCESSOR_UNKNOWN,
635 CPU_AES_FLAGS },
636 { ".pclmul", PROCESSOR_UNKNOWN,
637 CPU_PCLMUL_FLAGS },
638 { ".clmul", PROCESSOR_UNKNOWN,
639 CPU_PCLMUL_FLAGS },
640 { ".fma", PROCESSOR_UNKNOWN,
641 CPU_FMA_FLAGS },
642 { ".fma4", PROCESSOR_UNKNOWN,
643 CPU_FMA4_FLAGS },
644 { ".movbe", PROCESSOR_UNKNOWN,
645 CPU_MOVBE_FLAGS },
646 { ".ept", PROCESSOR_UNKNOWN,
647 CPU_EPT_FLAGS },
648 { ".clflush", PROCESSOR_UNKNOWN,
649 CPU_CLFLUSH_FLAGS },
650 { ".syscall", PROCESSOR_UNKNOWN,
651 CPU_SYSCALL_FLAGS },
652 { ".rdtscp", PROCESSOR_UNKNOWN,
653 CPU_RDTSCP_FLAGS },
654 { ".3dnow", PROCESSOR_UNKNOWN,
655 CPU_3DNOW_FLAGS },
656 { ".3dnowa", PROCESSOR_UNKNOWN,
657 CPU_3DNOWA_FLAGS },
658 { ".padlock", PROCESSOR_UNKNOWN,
659 CPU_PADLOCK_FLAGS },
660 { ".pacifica", PROCESSOR_UNKNOWN,
661 CPU_SVME_FLAGS },
662 { ".svme", PROCESSOR_UNKNOWN,
663 CPU_SVME_FLAGS },
664 { ".sse4a", PROCESSOR_UNKNOWN,
665 CPU_SSE4A_FLAGS },
666 { ".abm", PROCESSOR_UNKNOWN,
667 CPU_ABM_FLAGS },
670 #ifdef I386COFF
671 /* Like s_lcomm_internal in gas/read.c but the alignment string
672 is allowed to be optional. */
674 static symbolS *
675 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
677 addressT align = 0;
679 SKIP_WHITESPACE ();
681 if (needs_align
682 && *input_line_pointer == ',')
684 align = parse_align (needs_align - 1);
686 if (align == (addressT) -1)
687 return NULL;
689 else
691 if (size >= 8)
692 align = 3;
693 else if (size >= 4)
694 align = 2;
695 else if (size >= 2)
696 align = 1;
697 else
698 align = 0;
701 bss_alloc (symbolP, size, align);
702 return symbolP;
705 static void
706 pe_lcomm (int needs_align)
708 s_comm_internal (needs_align * 2, pe_lcomm_internal);
710 #endif
712 const pseudo_typeS md_pseudo_table[] =
714 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
715 {"align", s_align_bytes, 0},
716 #else
717 {"align", s_align_ptwo, 0},
718 #endif
719 {"arch", set_cpu_arch, 0},
720 #ifndef I386COFF
721 {"bss", s_bss, 0},
722 #else
723 {"lcomm", pe_lcomm, 1},
724 #endif
725 {"ffloat", float_cons, 'f'},
726 {"dfloat", float_cons, 'd'},
727 {"tfloat", float_cons, 'x'},
728 {"value", cons, 2},
729 {"slong", signed_cons, 4},
730 {"noopt", s_ignore, 0},
731 {"optim", s_ignore, 0},
732 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
733 {"code16", set_code_flag, CODE_16BIT},
734 {"code32", set_code_flag, CODE_32BIT},
735 {"code64", set_code_flag, CODE_64BIT},
736 {"intel_syntax", set_intel_syntax, 1},
737 {"att_syntax", set_intel_syntax, 0},
738 {"intel_mnemonic", set_intel_mnemonic, 1},
739 {"att_mnemonic", set_intel_mnemonic, 0},
740 {"allow_index_reg", set_allow_index_reg, 1},
741 {"disallow_index_reg", set_allow_index_reg, 0},
742 {"sse_check", set_sse_check, 0},
743 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
744 {"largecomm", handle_large_common, 0},
745 #else
746 {"file", (void (*) (int)) dwarf2_directive_file, 0},
747 {"loc", dwarf2_directive_loc, 0},
748 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
749 #endif
750 #ifdef TE_PE
751 {"secrel32", pe_directive_secrel, 0},
752 #endif
753 {0, 0, 0}
756 /* For interface with expression (). */
757 extern char *input_line_pointer;
759 /* Hash table for instruction mnemonic lookup. */
760 static struct hash_control *op_hash;
762 /* Hash table for register lookup. */
763 static struct hash_control *reg_hash;
765 void
766 i386_align_code (fragS *fragP, int count)
768 /* Various efficient no-op patterns for aligning code labels.
769 Note: Don't try to assemble the instructions in the comments.
770 0L and 0w are not legal. */
771 static const char f32_1[] =
772 {0x90}; /* nop */
773 static const char f32_2[] =
774 {0x66,0x90}; /* xchg %ax,%ax */
775 static const char f32_3[] =
776 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
777 static const char f32_4[] =
778 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
779 static const char f32_5[] =
780 {0x90, /* nop */
781 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
782 static const char f32_6[] =
783 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
784 static const char f32_7[] =
785 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
786 static const char f32_8[] =
787 {0x90, /* nop */
788 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
789 static const char f32_9[] =
790 {0x89,0xf6, /* movl %esi,%esi */
791 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
792 static const char f32_10[] =
793 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
794 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
795 static const char f32_11[] =
796 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
797 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
798 static const char f32_12[] =
799 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
800 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
801 static const char f32_13[] =
802 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
803 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
804 static const char f32_14[] =
805 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
806 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
807 static const char f16_3[] =
808 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
809 static const char f16_4[] =
810 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
811 static const char f16_5[] =
812 {0x90, /* nop */
813 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
814 static const char f16_6[] =
815 {0x89,0xf6, /* mov %si,%si */
816 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
817 static const char f16_7[] =
818 {0x8d,0x74,0x00, /* lea 0(%si),%si */
819 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
820 static const char f16_8[] =
821 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
822 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
823 static const char jump_31[] =
824 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
825 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
826 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
827 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
828 static const char *const f32_patt[] = {
829 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
830 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
832 static const char *const f16_patt[] = {
833 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
835 /* nopl (%[re]ax) */
836 static const char alt_3[] =
837 {0x0f,0x1f,0x00};
838 /* nopl 0(%[re]ax) */
839 static const char alt_4[] =
840 {0x0f,0x1f,0x40,0x00};
841 /* nopl 0(%[re]ax,%[re]ax,1) */
842 static const char alt_5[] =
843 {0x0f,0x1f,0x44,0x00,0x00};
844 /* nopw 0(%[re]ax,%[re]ax,1) */
845 static const char alt_6[] =
846 {0x66,0x0f,0x1f,0x44,0x00,0x00};
847 /* nopl 0L(%[re]ax) */
848 static const char alt_7[] =
849 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
850 /* nopl 0L(%[re]ax,%[re]ax,1) */
851 static const char alt_8[] =
852 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
853 /* nopw 0L(%[re]ax,%[re]ax,1) */
854 static const char alt_9[] =
855 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
856 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
857 static const char alt_10[] =
858 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
859 /* data16
860 nopw %cs:0L(%[re]ax,%[re]ax,1) */
861 static const char alt_long_11[] =
862 {0x66,
863 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
864 /* data16
865 data16
866 nopw %cs:0L(%[re]ax,%[re]ax,1) */
867 static const char alt_long_12[] =
868 {0x66,
869 0x66,
870 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
871 /* data16
872 data16
873 data16
874 nopw %cs:0L(%[re]ax,%[re]ax,1) */
875 static const char alt_long_13[] =
876 {0x66,
877 0x66,
878 0x66,
879 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
880 /* data16
881 data16
882 data16
883 data16
884 nopw %cs:0L(%[re]ax,%[re]ax,1) */
885 static const char alt_long_14[] =
886 {0x66,
887 0x66,
888 0x66,
889 0x66,
890 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
891 /* data16
892 data16
893 data16
894 data16
895 data16
896 nopw %cs:0L(%[re]ax,%[re]ax,1) */
897 static const char alt_long_15[] =
898 {0x66,
899 0x66,
900 0x66,
901 0x66,
902 0x66,
903 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
904 /* nopl 0(%[re]ax,%[re]ax,1)
905 nopw 0(%[re]ax,%[re]ax,1) */
906 static const char alt_short_11[] =
907 {0x0f,0x1f,0x44,0x00,0x00,
908 0x66,0x0f,0x1f,0x44,0x00,0x00};
909 /* nopw 0(%[re]ax,%[re]ax,1)
910 nopw 0(%[re]ax,%[re]ax,1) */
911 static const char alt_short_12[] =
912 {0x66,0x0f,0x1f,0x44,0x00,0x00,
913 0x66,0x0f,0x1f,0x44,0x00,0x00};
914 /* nopw 0(%[re]ax,%[re]ax,1)
915 nopl 0L(%[re]ax) */
916 static const char alt_short_13[] =
917 {0x66,0x0f,0x1f,0x44,0x00,0x00,
918 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
919 /* nopl 0L(%[re]ax)
920 nopl 0L(%[re]ax) */
921 static const char alt_short_14[] =
922 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
923 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
924 /* nopl 0L(%[re]ax)
925 nopl 0L(%[re]ax,%[re]ax,1) */
926 static const char alt_short_15[] =
927 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
928 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
929 static const char *const alt_short_patt[] = {
930 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
931 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
932 alt_short_14, alt_short_15
934 static const char *const alt_long_patt[] = {
935 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
936 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
937 alt_long_14, alt_long_15
940 /* Only align for at least a positive non-zero boundary. */
941 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
942 return;
944 /* We need to decide which NOP sequence to use for 32bit and
945 64bit. When -mtune= is used:
947 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
948 PROCESSOR_GENERIC32, f32_patt will be used.
949 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
950 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
951 PROCESSOR_GENERIC64, alt_long_patt will be used.
952 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
953 PROCESSOR_AMDFAM10, alt_short_patt will be used.
955 When -mtune= isn't used, alt_long_patt will be used if
956 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
957 be used.
959 When -march= or .arch is used, we can't use anything beyond
960 cpu_arch_isa_flags. */
962 if (flag_code == CODE_16BIT)
964 if (count > 8)
966 memcpy (fragP->fr_literal + fragP->fr_fix,
967 jump_31, count);
968 /* Adjust jump offset. */
969 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
971 else
972 memcpy (fragP->fr_literal + fragP->fr_fix,
973 f16_patt[count - 1], count);
975 else
977 const char *const *patt = NULL;
979 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
981 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
982 switch (cpu_arch_tune)
984 case PROCESSOR_UNKNOWN:
985 /* We use cpu_arch_isa_flags to check if we SHOULD
986 optimize for Cpu686. */
987 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
988 patt = alt_long_patt;
989 else
990 patt = f32_patt;
991 break;
992 case PROCESSOR_PENTIUMPRO:
993 case PROCESSOR_PENTIUM4:
994 case PROCESSOR_NOCONA:
995 case PROCESSOR_CORE:
996 case PROCESSOR_CORE2:
997 case PROCESSOR_COREI7:
998 case PROCESSOR_GENERIC64:
999 patt = alt_long_patt;
1000 break;
1001 case PROCESSOR_K6:
1002 case PROCESSOR_ATHLON:
1003 case PROCESSOR_K8:
1004 case PROCESSOR_AMDFAM10:
1005 patt = alt_short_patt;
1006 break;
1007 case PROCESSOR_I386:
1008 case PROCESSOR_I486:
1009 case PROCESSOR_PENTIUM:
1010 case PROCESSOR_GENERIC32:
1011 patt = f32_patt;
1012 break;
1015 else
1017 switch (fragP->tc_frag_data.tune)
1019 case PROCESSOR_UNKNOWN:
1020 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1021 PROCESSOR_UNKNOWN. */
1022 abort ();
1023 break;
1025 case PROCESSOR_I386:
1026 case PROCESSOR_I486:
1027 case PROCESSOR_PENTIUM:
1028 case PROCESSOR_K6:
1029 case PROCESSOR_ATHLON:
1030 case PROCESSOR_K8:
1031 case PROCESSOR_AMDFAM10:
1032 case PROCESSOR_GENERIC32:
1033 /* We use cpu_arch_isa_flags to check if we CAN optimize
1034 for Cpu686. */
1035 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1036 patt = alt_short_patt;
1037 else
1038 patt = f32_patt;
1039 break;
1040 case PROCESSOR_PENTIUMPRO:
1041 case PROCESSOR_PENTIUM4:
1042 case PROCESSOR_NOCONA:
1043 case PROCESSOR_CORE:
1044 case PROCESSOR_CORE2:
1045 case PROCESSOR_COREI7:
1046 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1047 patt = alt_long_patt;
1048 else
1049 patt = f32_patt;
1050 break;
1051 case PROCESSOR_GENERIC64:
1052 patt = alt_long_patt;
1053 break;
1057 if (patt == f32_patt)
1059 /* If the padding is less than 15 bytes, we use the normal
1060 ones. Otherwise, we use a jump instruction and adjust
1061 its offset. */
1062 int limit;
1064 /* For 64bit, the limit is 3 bytes. */
1065 if (flag_code == CODE_64BIT
1066 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1067 limit = 3;
1068 else
1069 limit = 15;
1070 if (count < limit)
1071 memcpy (fragP->fr_literal + fragP->fr_fix,
1072 patt[count - 1], count);
1073 else
1075 memcpy (fragP->fr_literal + fragP->fr_fix,
1076 jump_31, count);
1077 /* Adjust jump offset. */
1078 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1081 else
1083 /* Maximum length of an instruction is 15 byte. If the
1084 padding is greater than 15 bytes and we don't use jump,
1085 we have to break it into smaller pieces. */
1086 int padding = count;
1087 while (padding > 15)
1089 padding -= 15;
1090 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1091 patt [14], 15);
1094 if (padding)
1095 memcpy (fragP->fr_literal + fragP->fr_fix,
1096 patt [padding - 1], padding);
1099 fragP->fr_var = count;
1102 static INLINE int
1103 operand_type_all_zero (const union i386_operand_type *x)
1105 switch (ARRAY_SIZE(x->array))
1107 case 3:
1108 if (x->array[2])
1109 return 0;
1110 case 2:
1111 if (x->array[1])
1112 return 0;
1113 case 1:
1114 return !x->array[0];
1115 default:
1116 abort ();
1120 static INLINE void
1121 operand_type_set (union i386_operand_type *x, unsigned int v)
1123 switch (ARRAY_SIZE(x->array))
1125 case 3:
1126 x->array[2] = v;
1127 case 2:
1128 x->array[1] = v;
1129 case 1:
1130 x->array[0] = v;
1131 break;
1132 default:
1133 abort ();
1137 static INLINE int
1138 operand_type_equal (const union i386_operand_type *x,
1139 const union i386_operand_type *y)
1141 switch (ARRAY_SIZE(x->array))
1143 case 3:
1144 if (x->array[2] != y->array[2])
1145 return 0;
1146 case 2:
1147 if (x->array[1] != y->array[1])
1148 return 0;
1149 case 1:
1150 return x->array[0] == y->array[0];
1151 break;
1152 default:
1153 abort ();
1157 static INLINE int
1158 cpu_flags_all_zero (const union i386_cpu_flags *x)
1160 switch (ARRAY_SIZE(x->array))
1162 case 3:
1163 if (x->array[2])
1164 return 0;
1165 case 2:
1166 if (x->array[1])
1167 return 0;
1168 case 1:
1169 return !x->array[0];
1170 default:
1171 abort ();
1175 static INLINE void
1176 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1178 switch (ARRAY_SIZE(x->array))
1180 case 3:
1181 x->array[2] = v;
1182 case 2:
1183 x->array[1] = v;
1184 case 1:
1185 x->array[0] = v;
1186 break;
1187 default:
1188 abort ();
1192 static INLINE int
1193 cpu_flags_equal (const union i386_cpu_flags *x,
1194 const union i386_cpu_flags *y)
1196 switch (ARRAY_SIZE(x->array))
1198 case 3:
1199 if (x->array[2] != y->array[2])
1200 return 0;
1201 case 2:
1202 if (x->array[1] != y->array[1])
1203 return 0;
1204 case 1:
1205 return x->array[0] == y->array[0];
1206 break;
1207 default:
1208 abort ();
1212 static INLINE int
1213 cpu_flags_check_cpu64 (i386_cpu_flags f)
1215 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1216 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1219 static INLINE i386_cpu_flags
1220 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1222 switch (ARRAY_SIZE (x.array))
1224 case 3:
1225 x.array [2] &= y.array [2];
1226 case 2:
1227 x.array [1] &= y.array [1];
1228 case 1:
1229 x.array [0] &= y.array [0];
1230 break;
1231 default:
1232 abort ();
1234 return x;
1237 static INLINE i386_cpu_flags
1238 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1240 switch (ARRAY_SIZE (x.array))
1242 case 3:
1243 x.array [2] |= y.array [2];
1244 case 2:
1245 x.array [1] |= y.array [1];
1246 case 1:
1247 x.array [0] |= y.array [0];
1248 break;
1249 default:
1250 abort ();
1252 return x;
1255 static INLINE i386_cpu_flags
1256 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1258 switch (ARRAY_SIZE (x.array))
1260 case 3:
1261 x.array [2] &= ~y.array [2];
1262 case 2:
1263 x.array [1] &= ~y.array [1];
1264 case 1:
1265 x.array [0] &= ~y.array [0];
1266 break;
1267 default:
1268 abort ();
1270 return x;
1273 #define CPU_FLAGS_ARCH_MATCH 0x1
1274 #define CPU_FLAGS_64BIT_MATCH 0x2
1275 #define CPU_FLAGS_AES_MATCH 0x4
1276 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1277 #define CPU_FLAGS_AVX_MATCH 0x10
1279 #define CPU_FLAGS_32BIT_MATCH \
1280 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1281 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1282 #define CPU_FLAGS_PERFECT_MATCH \
1283 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1285 /* Return CPU flags match bits. */
1287 static int
1288 cpu_flags_match (const template *t)
1290 i386_cpu_flags x = t->cpu_flags;
1291 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1293 x.bitfield.cpu64 = 0;
1294 x.bitfield.cpuno64 = 0;
1296 if (cpu_flags_all_zero (&x))
1298 /* This instruction is available on all archs. */
1299 match |= CPU_FLAGS_32BIT_MATCH;
1301 else
1303 /* This instruction is available only on some archs. */
1304 i386_cpu_flags cpu = cpu_arch_flags;
1306 cpu.bitfield.cpu64 = 0;
1307 cpu.bitfield.cpuno64 = 0;
1308 cpu = cpu_flags_and (x, cpu);
1309 if (!cpu_flags_all_zero (&cpu))
1311 if (x.bitfield.cpuavx)
1313 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1314 if (cpu.bitfield.cpuavx)
1316 /* Check SSE2AVX. */
1317 if (!t->opcode_modifier.sse2avx|| sse2avx)
1319 match |= (CPU_FLAGS_ARCH_MATCH
1320 | CPU_FLAGS_AVX_MATCH);
1321 /* Check AES. */
1322 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1323 match |= CPU_FLAGS_AES_MATCH;
1324 /* Check PCLMUL. */
1325 if (!x.bitfield.cpupclmul
1326 || cpu.bitfield.cpupclmul)
1327 match |= CPU_FLAGS_PCLMUL_MATCH;
1330 else
1331 match |= CPU_FLAGS_ARCH_MATCH;
1333 else
1334 match |= CPU_FLAGS_32BIT_MATCH;
1337 return match;
1340 static INLINE i386_operand_type
1341 operand_type_and (i386_operand_type x, i386_operand_type y)
1343 switch (ARRAY_SIZE (x.array))
1345 case 3:
1346 x.array [2] &= y.array [2];
1347 case 2:
1348 x.array [1] &= y.array [1];
1349 case 1:
1350 x.array [0] &= y.array [0];
1351 break;
1352 default:
1353 abort ();
1355 return x;
1358 static INLINE i386_operand_type
1359 operand_type_or (i386_operand_type x, i386_operand_type y)
1361 switch (ARRAY_SIZE (x.array))
1363 case 3:
1364 x.array [2] |= y.array [2];
1365 case 2:
1366 x.array [1] |= y.array [1];
1367 case 1:
1368 x.array [0] |= y.array [0];
1369 break;
1370 default:
1371 abort ();
1373 return x;
1376 static INLINE i386_operand_type
1377 operand_type_xor (i386_operand_type x, i386_operand_type y)
1379 switch (ARRAY_SIZE (x.array))
1381 case 3:
1382 x.array [2] ^= y.array [2];
1383 case 2:
1384 x.array [1] ^= y.array [1];
1385 case 1:
1386 x.array [0] ^= y.array [0];
1387 break;
1388 default:
1389 abort ();
1391 return x;
1394 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1395 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1396 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1397 static const i386_operand_type inoutportreg
1398 = OPERAND_TYPE_INOUTPORTREG;
1399 static const i386_operand_type reg16_inoutportreg
1400 = OPERAND_TYPE_REG16_INOUTPORTREG;
1401 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1402 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1403 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1404 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1405 static const i386_operand_type anydisp
1406 = OPERAND_TYPE_ANYDISP;
1407 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1408 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1409 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1410 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1411 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1412 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1413 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1414 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1415 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1416 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1417 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1419 enum operand_type
1421 reg,
1422 imm,
1423 disp,
1424 anymem
1427 static INLINE int
1428 operand_type_check (i386_operand_type t, enum operand_type c)
1430 switch (c)
1432 case reg:
1433 return (t.bitfield.reg8
1434 || t.bitfield.reg16
1435 || t.bitfield.reg32
1436 || t.bitfield.reg64);
1438 case imm:
1439 return (t.bitfield.imm8
1440 || t.bitfield.imm8s
1441 || t.bitfield.imm16
1442 || t.bitfield.imm32
1443 || t.bitfield.imm32s
1444 || t.bitfield.imm64);
1446 case disp:
1447 return (t.bitfield.disp8
1448 || t.bitfield.disp16
1449 || t.bitfield.disp32
1450 || t.bitfield.disp32s
1451 || t.bitfield.disp64);
1453 case anymem:
1454 return (t.bitfield.disp8
1455 || t.bitfield.disp16
1456 || t.bitfield.disp32
1457 || t.bitfield.disp32s
1458 || t.bitfield.disp64
1459 || t.bitfield.baseindex);
1461 default:
1462 abort ();
1465 return 0;
1468 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1469 operand J for instruction template T. */
1471 static INLINE int
1472 match_reg_size (const template *t, unsigned int j)
1474 return !((i.types[j].bitfield.byte
1475 && !t->operand_types[j].bitfield.byte)
1476 || (i.types[j].bitfield.word
1477 && !t->operand_types[j].bitfield.word)
1478 || (i.types[j].bitfield.dword
1479 && !t->operand_types[j].bitfield.dword)
1480 || (i.types[j].bitfield.qword
1481 && !t->operand_types[j].bitfield.qword));
1484 /* Return 1 if there is no conflict in any size on operand J for
1485 instruction template T. */
1487 static INLINE int
1488 match_mem_size (const template *t, unsigned int j)
1490 return (match_reg_size (t, j)
1491 && !((i.types[j].bitfield.unspecified
1492 && !t->operand_types[j].bitfield.unspecified)
1493 || (i.types[j].bitfield.fword
1494 && !t->operand_types[j].bitfield.fword)
1495 || (i.types[j].bitfield.tbyte
1496 && !t->operand_types[j].bitfield.tbyte)
1497 || (i.types[j].bitfield.xmmword
1498 && !t->operand_types[j].bitfield.xmmword)
1499 || (i.types[j].bitfield.ymmword
1500 && !t->operand_types[j].bitfield.ymmword)));
1503 /* Return 1 if there is no size conflict on any operands for
1504 instruction template T. */
1506 static INLINE int
1507 operand_size_match (const template *t)
1509 unsigned int j;
1510 int match = 1;
1512 /* Don't check jump instructions. */
1513 if (t->opcode_modifier.jump
1514 || t->opcode_modifier.jumpbyte
1515 || t->opcode_modifier.jumpdword
1516 || t->opcode_modifier.jumpintersegment)
1517 return match;
1519 /* Check memory and accumulator operand size. */
1520 for (j = 0; j < i.operands; j++)
1522 if (t->operand_types[j].bitfield.anysize)
1523 continue;
1525 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1527 match = 0;
1528 break;
1531 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1533 match = 0;
1534 break;
1538 if (match
1539 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1540 return match;
1542 /* Check reverse. */
1543 gas_assert (i.operands == 2);
1545 match = 1;
1546 for (j = 0; j < 2; j++)
1548 if (t->operand_types[j].bitfield.acc
1549 && !match_reg_size (t, j ? 0 : 1))
1551 match = 0;
1552 break;
1555 if (i.types[j].bitfield.mem
1556 && !match_mem_size (t, j ? 0 : 1))
1558 match = 0;
1559 break;
1563 return match;
1566 static INLINE int
1567 operand_type_match (i386_operand_type overlap,
1568 i386_operand_type given)
1570 i386_operand_type temp = overlap;
1572 temp.bitfield.jumpabsolute = 0;
1573 temp.bitfield.unspecified = 0;
1574 temp.bitfield.byte = 0;
1575 temp.bitfield.word = 0;
1576 temp.bitfield.dword = 0;
1577 temp.bitfield.fword = 0;
1578 temp.bitfield.qword = 0;
1579 temp.bitfield.tbyte = 0;
1580 temp.bitfield.xmmword = 0;
1581 temp.bitfield.ymmword = 0;
1582 if (operand_type_all_zero (&temp))
1583 return 0;
1585 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1586 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1589 /* If given types g0 and g1 are registers they must be of the same type
1590 unless the expected operand type register overlap is null.
1591 Note that Acc in a template matches every size of reg. */
1593 static INLINE int
1594 operand_type_register_match (i386_operand_type m0,
1595 i386_operand_type g0,
1596 i386_operand_type t0,
1597 i386_operand_type m1,
1598 i386_operand_type g1,
1599 i386_operand_type t1)
1601 if (!operand_type_check (g0, reg))
1602 return 1;
1604 if (!operand_type_check (g1, reg))
1605 return 1;
1607 if (g0.bitfield.reg8 == g1.bitfield.reg8
1608 && g0.bitfield.reg16 == g1.bitfield.reg16
1609 && g0.bitfield.reg32 == g1.bitfield.reg32
1610 && g0.bitfield.reg64 == g1.bitfield.reg64)
1611 return 1;
1613 if (m0.bitfield.acc)
1615 t0.bitfield.reg8 = 1;
1616 t0.bitfield.reg16 = 1;
1617 t0.bitfield.reg32 = 1;
1618 t0.bitfield.reg64 = 1;
1621 if (m1.bitfield.acc)
1623 t1.bitfield.reg8 = 1;
1624 t1.bitfield.reg16 = 1;
1625 t1.bitfield.reg32 = 1;
1626 t1.bitfield.reg64 = 1;
1629 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1630 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1631 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1632 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1635 static INLINE unsigned int
1636 mode_from_disp_size (i386_operand_type t)
1638 if (t.bitfield.disp8)
1639 return 1;
1640 else if (t.bitfield.disp16
1641 || t.bitfield.disp32
1642 || t.bitfield.disp32s)
1643 return 2;
1644 else
1645 return 0;
1648 static INLINE int
1649 fits_in_signed_byte (offsetT num)
1651 return (num >= -128) && (num <= 127);
1654 static INLINE int
1655 fits_in_unsigned_byte (offsetT num)
1657 return (num & 0xff) == num;
1660 static INLINE int
1661 fits_in_unsigned_word (offsetT num)
1663 return (num & 0xffff) == num;
1666 static INLINE int
1667 fits_in_signed_word (offsetT num)
1669 return (-32768 <= num) && (num <= 32767);
1672 static INLINE int
1673 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1675 #ifndef BFD64
1676 return 1;
1677 #else
1678 return (!(((offsetT) -1 << 31) & num)
1679 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1680 #endif
1681 } /* fits_in_signed_long() */
1683 static INLINE int
1684 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1686 #ifndef BFD64
1687 return 1;
1688 #else
1689 return (num & (((offsetT) 2 << 31) - 1)) == num;
1690 #endif
1691 } /* fits_in_unsigned_long() */
1693 static i386_operand_type
1694 smallest_imm_type (offsetT num)
1696 i386_operand_type t;
1698 operand_type_set (&t, 0);
1699 t.bitfield.imm64 = 1;
1701 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1703 /* This code is disabled on the 486 because all the Imm1 forms
1704 in the opcode table are slower on the i486. They're the
1705 versions with the implicitly specified single-position
1706 displacement, which has another syntax if you really want to
1707 use that form. */
1708 t.bitfield.imm1 = 1;
1709 t.bitfield.imm8 = 1;
1710 t.bitfield.imm8s = 1;
1711 t.bitfield.imm16 = 1;
1712 t.bitfield.imm32 = 1;
1713 t.bitfield.imm32s = 1;
1715 else if (fits_in_signed_byte (num))
1717 t.bitfield.imm8 = 1;
1718 t.bitfield.imm8s = 1;
1719 t.bitfield.imm16 = 1;
1720 t.bitfield.imm32 = 1;
1721 t.bitfield.imm32s = 1;
1723 else if (fits_in_unsigned_byte (num))
1725 t.bitfield.imm8 = 1;
1726 t.bitfield.imm16 = 1;
1727 t.bitfield.imm32 = 1;
1728 t.bitfield.imm32s = 1;
1730 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1732 t.bitfield.imm16 = 1;
1733 t.bitfield.imm32 = 1;
1734 t.bitfield.imm32s = 1;
1736 else if (fits_in_signed_long (num))
1738 t.bitfield.imm32 = 1;
1739 t.bitfield.imm32s = 1;
1741 else if (fits_in_unsigned_long (num))
1742 t.bitfield.imm32 = 1;
1744 return t;
1747 static offsetT
1748 offset_in_range (offsetT val, int size)
1750 addressT mask;
1752 switch (size)
1754 case 1: mask = ((addressT) 1 << 8) - 1; break;
1755 case 2: mask = ((addressT) 1 << 16) - 1; break;
1756 case 4: mask = ((addressT) 2 << 31) - 1; break;
1757 #ifdef BFD64
1758 case 8: mask = ((addressT) 2 << 63) - 1; break;
1759 #endif
1760 default: abort ();
1763 /* If BFD64, sign extend val. */
1764 if (!use_rela_relocations)
1765 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1766 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1768 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1770 char buf1[40], buf2[40];
1772 sprint_value (buf1, val);
1773 sprint_value (buf2, val & mask);
1774 as_warn (_("%s shortened to %s"), buf1, buf2);
1776 return val & mask;
1779 /* Returns 0 if attempting to add a prefix where one from the same
1780 class already exists, 1 if non rep/repne added, 2 if rep/repne
1781 added. */
1782 static int
1783 add_prefix (unsigned int prefix)
1785 int ret = 1;
1786 unsigned int q;
1788 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1789 && flag_code == CODE_64BIT)
1791 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1792 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1793 && (prefix & (REX_R | REX_X | REX_B))))
1794 ret = 0;
1795 q = REX_PREFIX;
1797 else
1799 switch (prefix)
1801 default:
1802 abort ();
1804 case CS_PREFIX_OPCODE:
1805 case DS_PREFIX_OPCODE:
1806 case ES_PREFIX_OPCODE:
1807 case FS_PREFIX_OPCODE:
1808 case GS_PREFIX_OPCODE:
1809 case SS_PREFIX_OPCODE:
1810 q = SEG_PREFIX;
1811 break;
1813 case REPNE_PREFIX_OPCODE:
1814 case REPE_PREFIX_OPCODE:
1815 ret = 2;
1816 /* fall thru */
1817 case LOCK_PREFIX_OPCODE:
1818 q = LOCKREP_PREFIX;
1819 break;
1821 case FWAIT_OPCODE:
1822 q = WAIT_PREFIX;
1823 break;
1825 case ADDR_PREFIX_OPCODE:
1826 q = ADDR_PREFIX;
1827 break;
1829 case DATA_PREFIX_OPCODE:
1830 q = DATA_PREFIX;
1831 break;
1833 if (i.prefix[q] != 0)
1834 ret = 0;
1837 if (ret)
1839 if (!i.prefix[q])
1840 ++i.prefixes;
1841 i.prefix[q] |= prefix;
1843 else
1844 as_bad (_("same type of prefix used twice"));
1846 return ret;
1849 static void
1850 set_code_flag (int value)
1852 flag_code = value;
1853 if (flag_code == CODE_64BIT)
1855 cpu_arch_flags.bitfield.cpu64 = 1;
1856 cpu_arch_flags.bitfield.cpuno64 = 0;
1858 else
1860 cpu_arch_flags.bitfield.cpu64 = 0;
1861 cpu_arch_flags.bitfield.cpuno64 = 1;
1863 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1865 as_bad (_("64bit mode not supported on this CPU."));
1867 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1869 as_bad (_("32bit mode not supported on this CPU."));
1871 stackop_size = '\0';
1874 static void
1875 set_16bit_gcc_code_flag (int new_code_flag)
1877 flag_code = new_code_flag;
1878 if (flag_code != CODE_16BIT)
1879 abort ();
1880 cpu_arch_flags.bitfield.cpu64 = 0;
1881 cpu_arch_flags.bitfield.cpuno64 = 1;
1882 stackop_size = LONG_MNEM_SUFFIX;
1885 static void
1886 set_intel_syntax (int syntax_flag)
1888 /* Find out if register prefixing is specified. */
1889 int ask_naked_reg = 0;
1891 SKIP_WHITESPACE ();
1892 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1894 char *string = input_line_pointer;
1895 int e = get_symbol_end ();
1897 if (strcmp (string, "prefix") == 0)
1898 ask_naked_reg = 1;
1899 else if (strcmp (string, "noprefix") == 0)
1900 ask_naked_reg = -1;
1901 else
1902 as_bad (_("bad argument to syntax directive."));
1903 *input_line_pointer = e;
1905 demand_empty_rest_of_line ();
1907 intel_syntax = syntax_flag;
1909 if (ask_naked_reg == 0)
1910 allow_naked_reg = (intel_syntax
1911 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1912 else
1913 allow_naked_reg = (ask_naked_reg < 0);
1915 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1917 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1918 identifier_chars['$'] = intel_syntax ? '$' : 0;
1919 register_prefix = allow_naked_reg ? "" : "%";
1922 static void
1923 set_intel_mnemonic (int mnemonic_flag)
1925 intel_mnemonic = mnemonic_flag;
1928 static void
1929 set_allow_index_reg (int flag)
1931 allow_index_reg = flag;
1934 static void
1935 set_sse_check (int dummy ATTRIBUTE_UNUSED)
1937 SKIP_WHITESPACE ();
1939 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1941 char *string = input_line_pointer;
1942 int e = get_symbol_end ();
1944 if (strcmp (string, "none") == 0)
1945 sse_check = sse_check_none;
1946 else if (strcmp (string, "warning") == 0)
1947 sse_check = sse_check_warning;
1948 else if (strcmp (string, "error") == 0)
1949 sse_check = sse_check_error;
1950 else
1951 as_bad (_("bad argument to sse_check directive."));
1952 *input_line_pointer = e;
1954 else
1955 as_bad (_("missing argument for sse_check directive"));
1957 demand_empty_rest_of_line ();
1960 static void
1961 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1962 i386_cpu_flags new ATTRIBUTE_UNUSED)
1964 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1965 static const char *arch;
1967 /* Intel LIOM is only supported on ELF. */
1968 if (!IS_ELF)
1969 return;
1971 if (!arch)
1973 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
1974 use default_arch. */
1975 arch = cpu_arch_name;
1976 if (!arch)
1977 arch = default_arch;
1980 /* If we are targeting Intel L1OM, wm must enable it. */
1981 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1982 || new.bitfield.cpul1om)
1983 return;
1985 as_bad (_("`%s' is not supported on `%s'"), name, arch);
1986 #endif
1989 static void
1990 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1992 SKIP_WHITESPACE ();
1994 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1996 char *string = input_line_pointer;
1997 int e = get_symbol_end ();
1998 unsigned int i;
1999 i386_cpu_flags flags;
2001 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
2003 if (strcmp (string, cpu_arch[i].name) == 0)
2005 check_cpu_arch_compatible (string, cpu_arch[i].flags);
2007 if (*string != '.')
2009 cpu_arch_name = cpu_arch[i].name;
2010 cpu_sub_arch_name = NULL;
2011 cpu_arch_flags = cpu_arch[i].flags;
2012 if (flag_code == CODE_64BIT)
2014 cpu_arch_flags.bitfield.cpu64 = 1;
2015 cpu_arch_flags.bitfield.cpuno64 = 0;
2017 else
2019 cpu_arch_flags.bitfield.cpu64 = 0;
2020 cpu_arch_flags.bitfield.cpuno64 = 1;
2022 cpu_arch_isa = cpu_arch[i].type;
2023 cpu_arch_isa_flags = cpu_arch[i].flags;
2024 if (!cpu_arch_tune_set)
2026 cpu_arch_tune = cpu_arch_isa;
2027 cpu_arch_tune_flags = cpu_arch_isa_flags;
2029 break;
2032 if (strncmp (string + 1, "no", 2))
2033 flags = cpu_flags_or (cpu_arch_flags,
2034 cpu_arch[i].flags);
2035 else
2036 flags = cpu_flags_and_not (cpu_arch_flags,
2037 cpu_arch[i].flags);
2038 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2040 if (cpu_sub_arch_name)
2042 char *name = cpu_sub_arch_name;
2043 cpu_sub_arch_name = concat (name,
2044 cpu_arch[i].name,
2045 (const char *) NULL);
2046 free (name);
2048 else
2049 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
2050 cpu_arch_flags = flags;
2052 *input_line_pointer = e;
2053 demand_empty_rest_of_line ();
2054 return;
2057 if (i >= ARRAY_SIZE (cpu_arch))
2058 as_bad (_("no such architecture: `%s'"), string);
2060 *input_line_pointer = e;
2062 else
2063 as_bad (_("missing cpu architecture"));
2065 no_cond_jump_promotion = 0;
2066 if (*input_line_pointer == ','
2067 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2069 char *string = ++input_line_pointer;
2070 int e = get_symbol_end ();
2072 if (strcmp (string, "nojumps") == 0)
2073 no_cond_jump_promotion = 1;
2074 else if (strcmp (string, "jumps") == 0)
2076 else
2077 as_bad (_("no such architecture modifier: `%s'"), string);
2079 *input_line_pointer = e;
2082 demand_empty_rest_of_line ();
2085 enum bfd_architecture
2086 i386_arch (void)
2088 if (cpu_arch_isa_flags.bitfield.cpul1om)
2090 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2091 || flag_code != CODE_64BIT)
2092 as_fatal (_("Intel L1OM is 64bit ELF only"));
2093 return bfd_arch_l1om;
2095 else
2096 return bfd_arch_i386;
2099 unsigned long
2100 i386_mach ()
2102 if (!strcmp (default_arch, "x86_64"))
2104 if (cpu_arch_isa_flags.bitfield.cpul1om)
2106 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2107 as_fatal (_("Intel L1OM is 64bit ELF only"));
2108 return bfd_mach_l1om;
2110 else
2111 return bfd_mach_x86_64;
2113 else if (!strcmp (default_arch, "i386"))
2114 return bfd_mach_i386_i386;
2115 else
2116 as_fatal (_("Unknown architecture"));
2119 void
2120 md_begin ()
2122 const char *hash_err;
2124 /* Initialize op_hash hash table. */
2125 op_hash = hash_new ();
2128 const template *optab;
2129 templates *core_optab;
2131 /* Setup for loop. */
2132 optab = i386_optab;
2133 core_optab = (templates *) xmalloc (sizeof (templates));
2134 core_optab->start = optab;
2136 while (1)
2138 ++optab;
2139 if (optab->name == NULL
2140 || strcmp (optab->name, (optab - 1)->name) != 0)
2142 /* different name --> ship out current template list;
2143 add to hash table; & begin anew. */
2144 core_optab->end = optab;
2145 hash_err = hash_insert (op_hash,
2146 (optab - 1)->name,
2147 (void *) core_optab);
2148 if (hash_err)
2150 as_fatal (_("Internal Error: Can't hash %s: %s"),
2151 (optab - 1)->name,
2152 hash_err);
2154 if (optab->name == NULL)
2155 break;
2156 core_optab = (templates *) xmalloc (sizeof (templates));
2157 core_optab->start = optab;
2162 /* Initialize reg_hash hash table. */
2163 reg_hash = hash_new ();
2165 const reg_entry *regtab;
2166 unsigned int regtab_size = i386_regtab_size;
2168 for (regtab = i386_regtab; regtab_size--; regtab++)
2170 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2171 if (hash_err)
2172 as_fatal (_("Internal Error: Can't hash %s: %s"),
2173 regtab->reg_name,
2174 hash_err);
2178 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2180 int c;
2181 char *p;
2183 for (c = 0; c < 256; c++)
2185 if (ISDIGIT (c))
2187 digit_chars[c] = c;
2188 mnemonic_chars[c] = c;
2189 register_chars[c] = c;
2190 operand_chars[c] = c;
2192 else if (ISLOWER (c))
2194 mnemonic_chars[c] = c;
2195 register_chars[c] = c;
2196 operand_chars[c] = c;
2198 else if (ISUPPER (c))
2200 mnemonic_chars[c] = TOLOWER (c);
2201 register_chars[c] = mnemonic_chars[c];
2202 operand_chars[c] = c;
2205 if (ISALPHA (c) || ISDIGIT (c))
2206 identifier_chars[c] = c;
2207 else if (c >= 128)
2209 identifier_chars[c] = c;
2210 operand_chars[c] = c;
2214 #ifdef LEX_AT
2215 identifier_chars['@'] = '@';
2216 #endif
2217 #ifdef LEX_QM
2218 identifier_chars['?'] = '?';
2219 operand_chars['?'] = '?';
2220 #endif
2221 digit_chars['-'] = '-';
2222 mnemonic_chars['_'] = '_';
2223 mnemonic_chars['-'] = '-';
2224 mnemonic_chars['.'] = '.';
2225 identifier_chars['_'] = '_';
2226 identifier_chars['.'] = '.';
2228 for (p = operand_special_chars; *p != '\0'; p++)
2229 operand_chars[(unsigned char) *p] = *p;
2232 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2233 if (IS_ELF)
2235 record_alignment (text_section, 2);
2236 record_alignment (data_section, 2);
2237 record_alignment (bss_section, 2);
2239 #endif
2241 if (flag_code == CODE_64BIT)
2243 x86_dwarf2_return_column = 16;
2244 x86_cie_data_alignment = -8;
2246 else
2248 x86_dwarf2_return_column = 8;
2249 x86_cie_data_alignment = -4;
2253 void
2254 i386_print_statistics (FILE *file)
2256 hash_print_statistics (file, "i386 opcode", op_hash);
2257 hash_print_statistics (file, "i386 register", reg_hash);
2260 #ifdef DEBUG386
2262 /* Debugging routines for md_assemble. */
2263 static void pte (template *);
2264 static void pt (i386_operand_type);
2265 static void pe (expressionS *);
2266 static void ps (symbolS *);
2268 static void
2269 pi (char *line, i386_insn *x)
2271 unsigned int i;
2273 fprintf (stdout, "%s: template ", line);
2274 pte (&x->tm);
2275 fprintf (stdout, " address: base %s index %s scale %x\n",
2276 x->base_reg ? x->base_reg->reg_name : "none",
2277 x->index_reg ? x->index_reg->reg_name : "none",
2278 x->log2_scale_factor);
2279 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2280 x->rm.mode, x->rm.reg, x->rm.regmem);
2281 fprintf (stdout, " sib: base %x index %x scale %x\n",
2282 x->sib.base, x->sib.index, x->sib.scale);
2283 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2284 (x->rex & REX_W) != 0,
2285 (x->rex & REX_R) != 0,
2286 (x->rex & REX_X) != 0,
2287 (x->rex & REX_B) != 0);
2288 for (i = 0; i < x->operands; i++)
2290 fprintf (stdout, " #%d: ", i + 1);
2291 pt (x->types[i]);
2292 fprintf (stdout, "\n");
2293 if (x->types[i].bitfield.reg8
2294 || x->types[i].bitfield.reg16
2295 || x->types[i].bitfield.reg32
2296 || x->types[i].bitfield.reg64
2297 || x->types[i].bitfield.regmmx
2298 || x->types[i].bitfield.regxmm
2299 || x->types[i].bitfield.regymm
2300 || x->types[i].bitfield.sreg2
2301 || x->types[i].bitfield.sreg3
2302 || x->types[i].bitfield.control
2303 || x->types[i].bitfield.debug
2304 || x->types[i].bitfield.test)
2305 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2306 if (operand_type_check (x->types[i], imm))
2307 pe (x->op[i].imms);
2308 if (operand_type_check (x->types[i], disp))
2309 pe (x->op[i].disps);
2313 static void
2314 pte (template *t)
2316 unsigned int i;
2317 fprintf (stdout, " %d operands ", t->operands);
2318 fprintf (stdout, "opcode %x ", t->base_opcode);
2319 if (t->extension_opcode != None)
2320 fprintf (stdout, "ext %x ", t->extension_opcode);
2321 if (t->opcode_modifier.d)
2322 fprintf (stdout, "D");
2323 if (t->opcode_modifier.w)
2324 fprintf (stdout, "W");
2325 fprintf (stdout, "\n");
2326 for (i = 0; i < t->operands; i++)
2328 fprintf (stdout, " #%d type ", i + 1);
2329 pt (t->operand_types[i]);
2330 fprintf (stdout, "\n");
2334 static void
2335 pe (expressionS *e)
2337 fprintf (stdout, " operation %d\n", e->X_op);
2338 fprintf (stdout, " add_number %ld (%lx)\n",
2339 (long) e->X_add_number, (long) e->X_add_number);
2340 if (e->X_add_symbol)
2342 fprintf (stdout, " add_symbol ");
2343 ps (e->X_add_symbol);
2344 fprintf (stdout, "\n");
2346 if (e->X_op_symbol)
2348 fprintf (stdout, " op_symbol ");
2349 ps (e->X_op_symbol);
2350 fprintf (stdout, "\n");
2354 static void
2355 ps (symbolS *s)
2357 fprintf (stdout, "%s type %s%s",
2358 S_GET_NAME (s),
2359 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2360 segment_name (S_GET_SEGMENT (s)));
2363 static struct type_name
2365 i386_operand_type mask;
2366 const char *name;
2368 const type_names[] =
2370 { OPERAND_TYPE_REG8, "r8" },
2371 { OPERAND_TYPE_REG16, "r16" },
2372 { OPERAND_TYPE_REG32, "r32" },
2373 { OPERAND_TYPE_REG64, "r64" },
2374 { OPERAND_TYPE_IMM8, "i8" },
2375 { OPERAND_TYPE_IMM8, "i8s" },
2376 { OPERAND_TYPE_IMM16, "i16" },
2377 { OPERAND_TYPE_IMM32, "i32" },
2378 { OPERAND_TYPE_IMM32S, "i32s" },
2379 { OPERAND_TYPE_IMM64, "i64" },
2380 { OPERAND_TYPE_IMM1, "i1" },
2381 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2382 { OPERAND_TYPE_DISP8, "d8" },
2383 { OPERAND_TYPE_DISP16, "d16" },
2384 { OPERAND_TYPE_DISP32, "d32" },
2385 { OPERAND_TYPE_DISP32S, "d32s" },
2386 { OPERAND_TYPE_DISP64, "d64" },
2387 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2388 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2389 { OPERAND_TYPE_CONTROL, "control reg" },
2390 { OPERAND_TYPE_TEST, "test reg" },
2391 { OPERAND_TYPE_DEBUG, "debug reg" },
2392 { OPERAND_TYPE_FLOATREG, "FReg" },
2393 { OPERAND_TYPE_FLOATACC, "FAcc" },
2394 { OPERAND_TYPE_SREG2, "SReg2" },
2395 { OPERAND_TYPE_SREG3, "SReg3" },
2396 { OPERAND_TYPE_ACC, "Acc" },
2397 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2398 { OPERAND_TYPE_REGMMX, "rMMX" },
2399 { OPERAND_TYPE_REGXMM, "rXMM" },
2400 { OPERAND_TYPE_REGYMM, "rYMM" },
2401 { OPERAND_TYPE_ESSEG, "es" },
2404 static void
2405 pt (i386_operand_type t)
2407 unsigned int j;
2408 i386_operand_type a;
2410 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2412 a = operand_type_and (t, type_names[j].mask);
2413 if (!operand_type_all_zero (&a))
2414 fprintf (stdout, "%s, ", type_names[j].name);
2416 fflush (stdout);
2419 #endif /* DEBUG386 */
2421 static bfd_reloc_code_real_type
2422 reloc (unsigned int size,
2423 int pcrel,
2424 int sign,
2425 bfd_reloc_code_real_type other)
2427 if (other != NO_RELOC)
2429 reloc_howto_type *reloc;
2431 if (size == 8)
2432 switch (other)
2434 case BFD_RELOC_X86_64_GOT32:
2435 return BFD_RELOC_X86_64_GOT64;
2436 break;
2437 case BFD_RELOC_X86_64_PLTOFF64:
2438 return BFD_RELOC_X86_64_PLTOFF64;
2439 break;
2440 case BFD_RELOC_X86_64_GOTPC32:
2441 other = BFD_RELOC_X86_64_GOTPC64;
2442 break;
2443 case BFD_RELOC_X86_64_GOTPCREL:
2444 other = BFD_RELOC_X86_64_GOTPCREL64;
2445 break;
2446 case BFD_RELOC_X86_64_TPOFF32:
2447 other = BFD_RELOC_X86_64_TPOFF64;
2448 break;
2449 case BFD_RELOC_X86_64_DTPOFF32:
2450 other = BFD_RELOC_X86_64_DTPOFF64;
2451 break;
2452 default:
2453 break;
2456 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2457 if (size == 4 && flag_code != CODE_64BIT)
2458 sign = -1;
2460 reloc = bfd_reloc_type_lookup (stdoutput, other);
2461 if (!reloc)
2462 as_bad (_("unknown relocation (%u)"), other);
2463 else if (size != bfd_get_reloc_size (reloc))
2464 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2465 bfd_get_reloc_size (reloc),
2466 size);
2467 else if (pcrel && !reloc->pc_relative)
2468 as_bad (_("non-pc-relative relocation for pc-relative field"));
2469 else if ((reloc->complain_on_overflow == complain_overflow_signed
2470 && !sign)
2471 || (reloc->complain_on_overflow == complain_overflow_unsigned
2472 && sign > 0))
2473 as_bad (_("relocated field and relocation type differ in signedness"));
2474 else
2475 return other;
2476 return NO_RELOC;
2479 if (pcrel)
2481 if (!sign)
2482 as_bad (_("there are no unsigned pc-relative relocations"));
2483 switch (size)
2485 case 1: return BFD_RELOC_8_PCREL;
2486 case 2: return BFD_RELOC_16_PCREL;
2487 case 4: return BFD_RELOC_32_PCREL;
2488 case 8: return BFD_RELOC_64_PCREL;
2490 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2492 else
2494 if (sign > 0)
2495 switch (size)
2497 case 4: return BFD_RELOC_X86_64_32S;
2499 else
2500 switch (size)
2502 case 1: return BFD_RELOC_8;
2503 case 2: return BFD_RELOC_16;
2504 case 4: return BFD_RELOC_32;
2505 case 8: return BFD_RELOC_64;
2507 as_bad (_("cannot do %s %u byte relocation"),
2508 sign > 0 ? "signed" : "unsigned", size);
2511 return NO_RELOC;
2514 /* Here we decide which fixups can be adjusted to make them relative to
2515 the beginning of the section instead of the symbol. Basically we need
2516 to make sure that the dynamic relocations are done correctly, so in
2517 some cases we force the original symbol to be used. */
2520 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2522 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2523 if (!IS_ELF)
2524 return 1;
2526 /* Don't adjust pc-relative references to merge sections in 64-bit
2527 mode. */
2528 if (use_rela_relocations
2529 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2530 && fixP->fx_pcrel)
2531 return 0;
2533 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2534 and changed later by validate_fix. */
2535 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2536 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2537 return 0;
2539 /* adjust_reloc_syms doesn't know about the GOT. */
2540 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2541 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2542 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2543 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2544 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2545 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2546 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2547 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2548 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2549 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2550 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2551 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2552 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2553 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2554 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2555 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2556 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2557 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2558 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2559 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2560 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2561 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2562 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2563 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2564 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2565 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2566 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2567 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2568 return 0;
2570 if (fixP->fx_addsy != NULL
2571 && symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_GNU_INDIRECT_FUNCTION)
2572 return 0;
2573 #endif
2574 return 1;
2577 static int
2578 intel_float_operand (const char *mnemonic)
2580 /* Note that the value returned is meaningful only for opcodes with (memory)
2581 operands, hence the code here is free to improperly handle opcodes that
2582 have no operands (for better performance and smaller code). */
2584 if (mnemonic[0] != 'f')
2585 return 0; /* non-math */
2587 switch (mnemonic[1])
2589 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2590 the fs segment override prefix not currently handled because no
2591 call path can make opcodes without operands get here */
2592 case 'i':
2593 return 2 /* integer op */;
2594 case 'l':
2595 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2596 return 3; /* fldcw/fldenv */
2597 break;
2598 case 'n':
2599 if (mnemonic[2] != 'o' /* fnop */)
2600 return 3; /* non-waiting control op */
2601 break;
2602 case 'r':
2603 if (mnemonic[2] == 's')
2604 return 3; /* frstor/frstpm */
2605 break;
2606 case 's':
2607 if (mnemonic[2] == 'a')
2608 return 3; /* fsave */
2609 if (mnemonic[2] == 't')
2611 switch (mnemonic[3])
2613 case 'c': /* fstcw */
2614 case 'd': /* fstdw */
2615 case 'e': /* fstenv */
2616 case 's': /* fsts[gw] */
2617 return 3;
2620 break;
2621 case 'x':
2622 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2623 return 0; /* fxsave/fxrstor are not really math ops */
2624 break;
2627 return 1;
2630 /* Build the VEX prefix. */
2632 static void
2633 build_vex_prefix (const template *t)
2635 unsigned int register_specifier;
2636 unsigned int implied_prefix;
2637 unsigned int vector_length;
2639 /* Check register specifier. */
2640 if (i.vex.register_specifier)
2642 register_specifier = i.vex.register_specifier->reg_num;
2643 if ((i.vex.register_specifier->reg_flags & RegRex))
2644 register_specifier += 8;
2645 register_specifier = ~register_specifier & 0xf;
2647 else
2648 register_specifier = 0xf;
2650 /* Use 2-byte VEX prefix by swappping destination and source
2651 operand. */
2652 if (!i.swap_operand
2653 && i.operands == i.reg_operands
2654 && i.tm.opcode_modifier.vex0f
2655 && i.tm.opcode_modifier.s
2656 && i.rex == REX_B)
2658 unsigned int xchg = i.operands - 1;
2659 union i386_op temp_op;
2660 i386_operand_type temp_type;
2662 temp_type = i.types[xchg];
2663 i.types[xchg] = i.types[0];
2664 i.types[0] = temp_type;
2665 temp_op = i.op[xchg];
2666 i.op[xchg] = i.op[0];
2667 i.op[0] = temp_op;
2669 gas_assert (i.rm.mode == 3);
2671 i.rex = REX_R;
2672 xchg = i.rm.regmem;
2673 i.rm.regmem = i.rm.reg;
2674 i.rm.reg = xchg;
2676 /* Use the next insn. */
2677 i.tm = t[1];
2680 vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
2682 switch ((i.tm.base_opcode >> 8) & 0xff)
2684 case 0:
2685 implied_prefix = 0;
2686 break;
2687 case DATA_PREFIX_OPCODE:
2688 implied_prefix = 1;
2689 break;
2690 case REPE_PREFIX_OPCODE:
2691 implied_prefix = 2;
2692 break;
2693 case REPNE_PREFIX_OPCODE:
2694 implied_prefix = 3;
2695 break;
2696 default:
2697 abort ();
2700 /* Use 2-byte VEX prefix if possible. */
2701 if (i.tm.opcode_modifier.vex0f
2702 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2704 /* 2-byte VEX prefix. */
2705 unsigned int r;
2707 i.vex.length = 2;
2708 i.vex.bytes[0] = 0xc5;
2710 /* Check the REX.R bit. */
2711 r = (i.rex & REX_R) ? 0 : 1;
2712 i.vex.bytes[1] = (r << 7
2713 | register_specifier << 3
2714 | vector_length << 2
2715 | implied_prefix);
2717 else
2719 /* 3-byte VEX prefix. */
2720 unsigned int m, w;
2722 if (i.tm.opcode_modifier.vex0f)
2723 m = 0x1;
2724 else if (i.tm.opcode_modifier.vex0f38)
2725 m = 0x2;
2726 else if (i.tm.opcode_modifier.vex0f3a)
2727 m = 0x3;
2728 else
2729 abort ();
2731 i.vex.length = 3;
2732 i.vex.bytes[0] = 0xc4;
2734 /* The high 3 bits of the second VEX byte are 1's compliment
2735 of RXB bits from REX. */
2736 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2738 /* Check the REX.W bit. */
2739 w = (i.rex & REX_W) ? 1 : 0;
2740 if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
2742 if (w)
2743 abort ();
2745 if (i.tm.opcode_modifier.vexw1)
2746 w = 1;
2749 i.vex.bytes[2] = (w << 7
2750 | register_specifier << 3
2751 | vector_length << 2
2752 | implied_prefix);
2756 static void
2757 process_immext (void)
2759 expressionS *exp;
2761 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2763 /* SSE3 Instructions have the fixed operands with an opcode
2764 suffix which is coded in the same place as an 8-bit immediate
2765 field would be. Here we check those operands and remove them
2766 afterwards. */
2767 unsigned int x;
2769 for (x = 0; x < i.operands; x++)
2770 if (i.op[x].regs->reg_num != x)
2771 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2772 register_prefix, i.op[x].regs->reg_name, x + 1,
2773 i.tm.name);
2775 i.operands = 0;
2778 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2779 which is coded in the same place as an 8-bit immediate field
2780 would be. Here we fake an 8-bit immediate operand from the
2781 opcode suffix stored in tm.extension_opcode.
2783 AVX instructions also use this encoding, for some of
2784 3 argument instructions. */
2786 gas_assert (i.imm_operands == 0
2787 && (i.operands <= 2
2788 || (i.tm.opcode_modifier.vex
2789 && i.operands <= 4)));
2791 exp = &im_expressions[i.imm_operands++];
2792 i.op[i.operands].imms = exp;
2793 i.types[i.operands] = imm8;
2794 i.operands++;
2795 exp->X_op = O_constant;
2796 exp->X_add_number = i.tm.extension_opcode;
2797 i.tm.extension_opcode = None;
2800 /* This is the guts of the machine-dependent assembler. LINE points to a
2801 machine dependent instruction. This function is supposed to emit
2802 the frags/bytes it assembles to. */
2804 void
2805 md_assemble (char *line)
2807 unsigned int j;
2808 char mnemonic[MAX_MNEM_SIZE];
2809 const template *t;
2811 /* Initialize globals. */
2812 memset (&i, '\0', sizeof (i));
2813 for (j = 0; j < MAX_OPERANDS; j++)
2814 i.reloc[j] = NO_RELOC;
2815 memset (disp_expressions, '\0', sizeof (disp_expressions));
2816 memset (im_expressions, '\0', sizeof (im_expressions));
2817 save_stack_p = save_stack;
2819 /* First parse an instruction mnemonic & call i386_operand for the operands.
2820 We assume that the scrubber has arranged it so that line[0] is the valid
2821 start of a (possibly prefixed) mnemonic. */
2823 line = parse_insn (line, mnemonic);
2824 if (line == NULL)
2825 return;
2827 line = parse_operands (line, mnemonic);
2828 this_operand = -1;
2829 if (line == NULL)
2830 return;
2832 /* Now we've parsed the mnemonic into a set of templates, and have the
2833 operands at hand. */
2835 /* All intel opcodes have reversed operands except for "bound" and
2836 "enter". We also don't reverse intersegment "jmp" and "call"
2837 instructions with 2 immediate operands so that the immediate segment
2838 precedes the offset, as it does when in AT&T mode. */
2839 if (intel_syntax
2840 && i.operands > 1
2841 && (strcmp (mnemonic, "bound") != 0)
2842 && (strcmp (mnemonic, "invlpga") != 0)
2843 && !(operand_type_check (i.types[0], imm)
2844 && operand_type_check (i.types[1], imm)))
2845 swap_operands ();
2847 /* The order of the immediates should be reversed
2848 for 2 immediates extrq and insertq instructions */
2849 if (i.imm_operands == 2
2850 && (strcmp (mnemonic, "extrq") == 0
2851 || strcmp (mnemonic, "insertq") == 0))
2852 swap_2_operands (0, 1);
2854 if (i.imm_operands)
2855 optimize_imm ();
2857 /* Don't optimize displacement for movabs since it only takes 64bit
2858 displacement. */
2859 if (i.disp_operands
2860 && (flag_code != CODE_64BIT
2861 || strcmp (mnemonic, "movabs") != 0))
2862 optimize_disp ();
2864 /* Next, we find a template that matches the given insn,
2865 making sure the overlap of the given operands types is consistent
2866 with the template operand types. */
2868 if (!(t = match_template ()))
2869 return;
2871 if (sse_check != sse_check_none
2872 && !i.tm.opcode_modifier.noavx
2873 && (i.tm.cpu_flags.bitfield.cpusse
2874 || i.tm.cpu_flags.bitfield.cpusse2
2875 || i.tm.cpu_flags.bitfield.cpusse3
2876 || i.tm.cpu_flags.bitfield.cpussse3
2877 || i.tm.cpu_flags.bitfield.cpusse4_1
2878 || i.tm.cpu_flags.bitfield.cpusse4_2))
2880 (sse_check == sse_check_warning
2881 ? as_warn
2882 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2885 /* Zap movzx and movsx suffix. The suffix has been set from
2886 "word ptr" or "byte ptr" on the source operand in Intel syntax
2887 or extracted from mnemonic in AT&T syntax. But we'll use
2888 the destination register to choose the suffix for encoding. */
2889 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2891 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2892 there is no suffix, the default will be byte extension. */
2893 if (i.reg_operands != 2
2894 && !i.suffix
2895 && intel_syntax)
2896 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2898 i.suffix = 0;
2901 if (i.tm.opcode_modifier.fwait)
2902 if (!add_prefix (FWAIT_OPCODE))
2903 return;
2905 /* Check string instruction segment overrides. */
2906 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2908 if (!check_string ())
2909 return;
2910 i.disp_operands = 0;
2913 if (!process_suffix ())
2914 return;
2916 /* Update operand types. */
2917 for (j = 0; j < i.operands; j++)
2918 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
2920 /* Make still unresolved immediate matches conform to size of immediate
2921 given in i.suffix. */
2922 if (!finalize_imm ())
2923 return;
2925 if (i.types[0].bitfield.imm1)
2926 i.imm_operands = 0; /* kludge for shift insns. */
2928 /* We only need to check those implicit registers for instructions
2929 with 3 operands or less. */
2930 if (i.operands <= 3)
2931 for (j = 0; j < i.operands; j++)
2932 if (i.types[j].bitfield.inoutportreg
2933 || i.types[j].bitfield.shiftcount
2934 || i.types[j].bitfield.acc
2935 || i.types[j].bitfield.floatacc)
2936 i.reg_operands--;
2938 /* ImmExt should be processed after SSE2AVX. */
2939 if (!i.tm.opcode_modifier.sse2avx
2940 && i.tm.opcode_modifier.immext)
2941 process_immext ();
2943 /* For insns with operands there are more diddles to do to the opcode. */
2944 if (i.operands)
2946 if (!process_operands ())
2947 return;
2949 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2951 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2952 as_warn (_("translating to `%sp'"), i.tm.name);
2955 if (i.tm.opcode_modifier.vex)
2956 build_vex_prefix (t);
2958 /* Handle conversion of 'int $3' --> special int3 insn. */
2959 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2961 i.tm.base_opcode = INT3_OPCODE;
2962 i.imm_operands = 0;
2965 if ((i.tm.opcode_modifier.jump
2966 || i.tm.opcode_modifier.jumpbyte
2967 || i.tm.opcode_modifier.jumpdword)
2968 && i.op[0].disps->X_op == O_constant)
2970 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2971 the absolute address given by the constant. Since ix86 jumps and
2972 calls are pc relative, we need to generate a reloc. */
2973 i.op[0].disps->X_add_symbol = &abs_symbol;
2974 i.op[0].disps->X_op = O_symbol;
2977 if (i.tm.opcode_modifier.rex64)
2978 i.rex |= REX_W;
2980 /* For 8 bit registers we need an empty rex prefix. Also if the
2981 instruction already has a prefix, we need to convert old
2982 registers to new ones. */
2984 if ((i.types[0].bitfield.reg8
2985 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2986 || (i.types[1].bitfield.reg8
2987 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2988 || ((i.types[0].bitfield.reg8
2989 || i.types[1].bitfield.reg8)
2990 && i.rex != 0))
2992 int x;
2994 i.rex |= REX_OPCODE;
2995 for (x = 0; x < 2; x++)
2997 /* Look for 8 bit operand that uses old registers. */
2998 if (i.types[x].bitfield.reg8
2999 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3001 /* In case it is "hi" register, give up. */
3002 if (i.op[x].regs->reg_num > 3)
3003 as_bad (_("can't encode register '%s%s' in an "
3004 "instruction requiring REX prefix."),
3005 register_prefix, i.op[x].regs->reg_name);
3007 /* Otherwise it is equivalent to the extended register.
3008 Since the encoding doesn't change this is merely
3009 cosmetic cleanup for debug output. */
3011 i.op[x].regs = i.op[x].regs + 8;
3016 if (i.rex != 0)
3017 add_prefix (REX_OPCODE | i.rex);
3019 /* We are ready to output the insn. */
3020 output_insn ();
3023 static char *
3024 parse_insn (char *line, char *mnemonic)
3026 char *l = line;
3027 char *token_start = l;
3028 char *mnem_p;
3029 int supported;
3030 const template *t;
3031 char *dot_p = NULL;
3033 /* Non-zero if we found a prefix only acceptable with string insns. */
3034 const char *expecting_string_instruction = NULL;
3036 while (1)
3038 mnem_p = mnemonic;
3039 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3041 if (*mnem_p == '.')
3042 dot_p = mnem_p;
3043 mnem_p++;
3044 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3046 as_bad (_("no such instruction: `%s'"), token_start);
3047 return NULL;
3049 l++;
3051 if (!is_space_char (*l)
3052 && *l != END_OF_INSN
3053 && (intel_syntax
3054 || (*l != PREFIX_SEPARATOR
3055 && *l != ',')))
3057 as_bad (_("invalid character %s in mnemonic"),
3058 output_invalid (*l));
3059 return NULL;
3061 if (token_start == l)
3063 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3064 as_bad (_("expecting prefix; got nothing"));
3065 else
3066 as_bad (_("expecting mnemonic; got nothing"));
3067 return NULL;
3070 /* Look up instruction (or prefix) via hash table. */
3071 current_templates = hash_find (op_hash, mnemonic);
3073 if (*l != END_OF_INSN
3074 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3075 && current_templates
3076 && current_templates->start->opcode_modifier.isprefix)
3078 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3080 as_bad ((flag_code != CODE_64BIT
3081 ? _("`%s' is only supported in 64-bit mode")
3082 : _("`%s' is not supported in 64-bit mode")),
3083 current_templates->start->name);
3084 return NULL;
3086 /* If we are in 16-bit mode, do not allow addr16 or data16.
3087 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3088 if ((current_templates->start->opcode_modifier.size16
3089 || current_templates->start->opcode_modifier.size32)
3090 && flag_code != CODE_64BIT
3091 && (current_templates->start->opcode_modifier.size32
3092 ^ (flag_code == CODE_16BIT)))
3094 as_bad (_("redundant %s prefix"),
3095 current_templates->start->name);
3096 return NULL;
3098 /* Add prefix, checking for repeated prefixes. */
3099 switch (add_prefix (current_templates->start->base_opcode))
3101 case 0:
3102 return NULL;
3103 case 2:
3104 expecting_string_instruction = current_templates->start->name;
3105 break;
3107 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3108 token_start = ++l;
3110 else
3111 break;
3114 if (!current_templates)
3116 /* Check if we should swap operand in encoding. */
3117 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3118 i.swap_operand = 1;
3119 else
3120 goto check_suffix;
3121 mnem_p = dot_p;
3122 *dot_p = '\0';
3123 current_templates = hash_find (op_hash, mnemonic);
3126 if (!current_templates)
3128 check_suffix:
3129 /* See if we can get a match by trimming off a suffix. */
3130 switch (mnem_p[-1])
3132 case WORD_MNEM_SUFFIX:
3133 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3134 i.suffix = SHORT_MNEM_SUFFIX;
3135 else
3136 case BYTE_MNEM_SUFFIX:
3137 case QWORD_MNEM_SUFFIX:
3138 i.suffix = mnem_p[-1];
3139 mnem_p[-1] = '\0';
3140 current_templates = hash_find (op_hash, mnemonic);
3141 break;
3142 case SHORT_MNEM_SUFFIX:
3143 case LONG_MNEM_SUFFIX:
3144 if (!intel_syntax)
3146 i.suffix = mnem_p[-1];
3147 mnem_p[-1] = '\0';
3148 current_templates = hash_find (op_hash, mnemonic);
3150 break;
3152 /* Intel Syntax. */
3153 case 'd':
3154 if (intel_syntax)
3156 if (intel_float_operand (mnemonic) == 1)
3157 i.suffix = SHORT_MNEM_SUFFIX;
3158 else
3159 i.suffix = LONG_MNEM_SUFFIX;
3160 mnem_p[-1] = '\0';
3161 current_templates = hash_find (op_hash, mnemonic);
3163 break;
3165 if (!current_templates)
3167 as_bad (_("no such instruction: `%s'"), token_start);
3168 return NULL;
3172 if (current_templates->start->opcode_modifier.jump
3173 || current_templates->start->opcode_modifier.jumpbyte)
3175 /* Check for a branch hint. We allow ",pt" and ",pn" for
3176 predict taken and predict not taken respectively.
3177 I'm not sure that branch hints actually do anything on loop
3178 and jcxz insns (JumpByte) for current Pentium4 chips. They
3179 may work in the future and it doesn't hurt to accept them
3180 now. */
3181 if (l[0] == ',' && l[1] == 'p')
3183 if (l[2] == 't')
3185 if (!add_prefix (DS_PREFIX_OPCODE))
3186 return NULL;
3187 l += 3;
3189 else if (l[2] == 'n')
3191 if (!add_prefix (CS_PREFIX_OPCODE))
3192 return NULL;
3193 l += 3;
3197 /* Any other comma loses. */
3198 if (*l == ',')
3200 as_bad (_("invalid character %s in mnemonic"),
3201 output_invalid (*l));
3202 return NULL;
3205 /* Check if instruction is supported on specified architecture. */
3206 supported = 0;
3207 for (t = current_templates->start; t < current_templates->end; ++t)
3209 supported |= cpu_flags_match (t);
3210 if (supported == CPU_FLAGS_PERFECT_MATCH)
3211 goto skip;
3214 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3216 as_bad (flag_code == CODE_64BIT
3217 ? _("`%s' is not supported in 64-bit mode")
3218 : _("`%s' is only supported in 64-bit mode"),
3219 current_templates->start->name);
3220 return NULL;
3222 if (supported != CPU_FLAGS_PERFECT_MATCH)
3224 as_bad (_("`%s' is not supported on `%s%s'"),
3225 current_templates->start->name,
3226 cpu_arch_name ? cpu_arch_name : default_arch,
3227 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3228 return NULL;
3231 skip:
3232 if (!cpu_arch_flags.bitfield.cpui386
3233 && (flag_code != CODE_16BIT))
3235 as_warn (_("use .code16 to ensure correct addressing mode"));
3238 /* Check for rep/repne without a string instruction. */
3239 if (expecting_string_instruction)
3241 static templates override;
3243 for (t = current_templates->start; t < current_templates->end; ++t)
3244 if (t->opcode_modifier.isstring)
3245 break;
3246 if (t >= current_templates->end)
3248 as_bad (_("expecting string instruction after `%s'"),
3249 expecting_string_instruction);
3250 return NULL;
3252 for (override.start = t; t < current_templates->end; ++t)
3253 if (!t->opcode_modifier.isstring)
3254 break;
3255 override.end = t;
3256 current_templates = &override;
3259 return l;
3262 static char *
3263 parse_operands (char *l, const char *mnemonic)
3265 char *token_start;
3267 /* 1 if operand is pending after ','. */
3268 unsigned int expecting_operand = 0;
3270 /* Non-zero if operand parens not balanced. */
3271 unsigned int paren_not_balanced;
3273 while (*l != END_OF_INSN)
3275 /* Skip optional white space before operand. */
3276 if (is_space_char (*l))
3277 ++l;
3278 if (!is_operand_char (*l) && *l != END_OF_INSN)
3280 as_bad (_("invalid character %s before operand %d"),
3281 output_invalid (*l),
3282 i.operands + 1);
3283 return NULL;
3285 token_start = l; /* after white space */
3286 paren_not_balanced = 0;
3287 while (paren_not_balanced || *l != ',')
3289 if (*l == END_OF_INSN)
3291 if (paren_not_balanced)
3293 if (!intel_syntax)
3294 as_bad (_("unbalanced parenthesis in operand %d."),
3295 i.operands + 1);
3296 else
3297 as_bad (_("unbalanced brackets in operand %d."),
3298 i.operands + 1);
3299 return NULL;
3301 else
3302 break; /* we are done */
3304 else if (!is_operand_char (*l) && !is_space_char (*l))
3306 as_bad (_("invalid character %s in operand %d"),
3307 output_invalid (*l),
3308 i.operands + 1);
3309 return NULL;
3311 if (!intel_syntax)
3313 if (*l == '(')
3314 ++paren_not_balanced;
3315 if (*l == ')')
3316 --paren_not_balanced;
3318 else
3320 if (*l == '[')
3321 ++paren_not_balanced;
3322 if (*l == ']')
3323 --paren_not_balanced;
3325 l++;
3327 if (l != token_start)
3328 { /* Yes, we've read in another operand. */
3329 unsigned int operand_ok;
3330 this_operand = i.operands++;
3331 i.types[this_operand].bitfield.unspecified = 1;
3332 if (i.operands > MAX_OPERANDS)
3334 as_bad (_("spurious operands; (%d operands/instruction max)"),
3335 MAX_OPERANDS);
3336 return NULL;
3338 /* Now parse operand adding info to 'i' as we go along. */
3339 END_STRING_AND_SAVE (l);
3341 if (intel_syntax)
3342 operand_ok =
3343 i386_intel_operand (token_start,
3344 intel_float_operand (mnemonic));
3345 else
3346 operand_ok = i386_att_operand (token_start);
3348 RESTORE_END_STRING (l);
3349 if (!operand_ok)
3350 return NULL;
3352 else
3354 if (expecting_operand)
3356 expecting_operand_after_comma:
3357 as_bad (_("expecting operand after ','; got nothing"));
3358 return NULL;
3360 if (*l == ',')
3362 as_bad (_("expecting operand before ','; got nothing"));
3363 return NULL;
3367 /* Now *l must be either ',' or END_OF_INSN. */
3368 if (*l == ',')
3370 if (*++l == END_OF_INSN)
3372 /* Just skip it, if it's \n complain. */
3373 goto expecting_operand_after_comma;
3375 expecting_operand = 1;
3378 return l;
3381 static void
3382 swap_2_operands (int xchg1, int xchg2)
3384 union i386_op temp_op;
3385 i386_operand_type temp_type;
3386 enum bfd_reloc_code_real temp_reloc;
3388 temp_type = i.types[xchg2];
3389 i.types[xchg2] = i.types[xchg1];
3390 i.types[xchg1] = temp_type;
3391 temp_op = i.op[xchg2];
3392 i.op[xchg2] = i.op[xchg1];
3393 i.op[xchg1] = temp_op;
3394 temp_reloc = i.reloc[xchg2];
3395 i.reloc[xchg2] = i.reloc[xchg1];
3396 i.reloc[xchg1] = temp_reloc;
3399 static void
3400 swap_operands (void)
3402 switch (i.operands)
3404 case 5:
3405 case 4:
3406 swap_2_operands (1, i.operands - 2);
3407 case 3:
3408 case 2:
3409 swap_2_operands (0, i.operands - 1);
3410 break;
3411 default:
3412 abort ();
3415 if (i.mem_operands == 2)
3417 const seg_entry *temp_seg;
3418 temp_seg = i.seg[0];
3419 i.seg[0] = i.seg[1];
3420 i.seg[1] = temp_seg;
3424 /* Try to ensure constant immediates are represented in the smallest
3425 opcode possible. */
3426 static void
3427 optimize_imm (void)
3429 char guess_suffix = 0;
3430 int op;
3432 if (i.suffix)
3433 guess_suffix = i.suffix;
3434 else if (i.reg_operands)
3436 /* Figure out a suffix from the last register operand specified.
3437 We can't do this properly yet, ie. excluding InOutPortReg,
3438 but the following works for instructions with immediates.
3439 In any case, we can't set i.suffix yet. */
3440 for (op = i.operands; --op >= 0;)
3441 if (i.types[op].bitfield.reg8)
3443 guess_suffix = BYTE_MNEM_SUFFIX;
3444 break;
3446 else if (i.types[op].bitfield.reg16)
3448 guess_suffix = WORD_MNEM_SUFFIX;
3449 break;
3451 else if (i.types[op].bitfield.reg32)
3453 guess_suffix = LONG_MNEM_SUFFIX;
3454 break;
3456 else if (i.types[op].bitfield.reg64)
3458 guess_suffix = QWORD_MNEM_SUFFIX;
3459 break;
3462 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3463 guess_suffix = WORD_MNEM_SUFFIX;
3465 for (op = i.operands; --op >= 0;)
3466 if (operand_type_check (i.types[op], imm))
3468 switch (i.op[op].imms->X_op)
3470 case O_constant:
3471 /* If a suffix is given, this operand may be shortened. */
3472 switch (guess_suffix)
3474 case LONG_MNEM_SUFFIX:
3475 i.types[op].bitfield.imm32 = 1;
3476 i.types[op].bitfield.imm64 = 1;
3477 break;
3478 case WORD_MNEM_SUFFIX:
3479 i.types[op].bitfield.imm16 = 1;
3480 i.types[op].bitfield.imm32 = 1;
3481 i.types[op].bitfield.imm32s = 1;
3482 i.types[op].bitfield.imm64 = 1;
3483 break;
3484 case BYTE_MNEM_SUFFIX:
3485 i.types[op].bitfield.imm8 = 1;
3486 i.types[op].bitfield.imm8s = 1;
3487 i.types[op].bitfield.imm16 = 1;
3488 i.types[op].bitfield.imm32 = 1;
3489 i.types[op].bitfield.imm32s = 1;
3490 i.types[op].bitfield.imm64 = 1;
3491 break;
3494 /* If this operand is at most 16 bits, convert it
3495 to a signed 16 bit number before trying to see
3496 whether it will fit in an even smaller size.
3497 This allows a 16-bit operand such as $0xffe0 to
3498 be recognised as within Imm8S range. */
3499 if ((i.types[op].bitfield.imm16)
3500 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3502 i.op[op].imms->X_add_number =
3503 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3505 if ((i.types[op].bitfield.imm32)
3506 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3507 == 0))
3509 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3510 ^ ((offsetT) 1 << 31))
3511 - ((offsetT) 1 << 31));
3513 i.types[op]
3514 = operand_type_or (i.types[op],
3515 smallest_imm_type (i.op[op].imms->X_add_number));
3517 /* We must avoid matching of Imm32 templates when 64bit
3518 only immediate is available. */
3519 if (guess_suffix == QWORD_MNEM_SUFFIX)
3520 i.types[op].bitfield.imm32 = 0;
3521 break;
3523 case O_absent:
3524 case O_register:
3525 abort ();
3527 /* Symbols and expressions. */
3528 default:
3529 /* Convert symbolic operand to proper sizes for matching, but don't
3530 prevent matching a set of insns that only supports sizes other
3531 than those matching the insn suffix. */
3533 i386_operand_type mask, allowed;
3534 const template *t;
3536 operand_type_set (&mask, 0);
3537 operand_type_set (&allowed, 0);
3539 for (t = current_templates->start;
3540 t < current_templates->end;
3541 ++t)
3542 allowed = operand_type_or (allowed,
3543 t->operand_types[op]);
3544 switch (guess_suffix)
3546 case QWORD_MNEM_SUFFIX:
3547 mask.bitfield.imm64 = 1;
3548 mask.bitfield.imm32s = 1;
3549 break;
3550 case LONG_MNEM_SUFFIX:
3551 mask.bitfield.imm32 = 1;
3552 break;
3553 case WORD_MNEM_SUFFIX:
3554 mask.bitfield.imm16 = 1;
3555 break;
3556 case BYTE_MNEM_SUFFIX:
3557 mask.bitfield.imm8 = 1;
3558 break;
3559 default:
3560 break;
3562 allowed = operand_type_and (mask, allowed);
3563 if (!operand_type_all_zero (&allowed))
3564 i.types[op] = operand_type_and (i.types[op], mask);
3566 break;
3571 /* Try to use the smallest displacement type too. */
3572 static void
3573 optimize_disp (void)
3575 int op;
3577 for (op = i.operands; --op >= 0;)
3578 if (operand_type_check (i.types[op], disp))
3580 if (i.op[op].disps->X_op == O_constant)
3582 offsetT disp = i.op[op].disps->X_add_number;
3584 if (i.types[op].bitfield.disp16
3585 && (disp & ~(offsetT) 0xffff) == 0)
3587 /* If this operand is at most 16 bits, convert
3588 to a signed 16 bit number and don't use 64bit
3589 displacement. */
3590 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
3591 i.types[op].bitfield.disp64 = 0;
3593 if (i.types[op].bitfield.disp32
3594 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3596 /* If this operand is at most 32 bits, convert
3597 to a signed 32 bit number and don't use 64bit
3598 displacement. */
3599 disp &= (((offsetT) 2 << 31) - 1);
3600 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3601 i.types[op].bitfield.disp64 = 0;
3603 if (!disp && i.types[op].bitfield.baseindex)
3605 i.types[op].bitfield.disp8 = 0;
3606 i.types[op].bitfield.disp16 = 0;
3607 i.types[op].bitfield.disp32 = 0;
3608 i.types[op].bitfield.disp32s = 0;
3609 i.types[op].bitfield.disp64 = 0;
3610 i.op[op].disps = 0;
3611 i.disp_operands--;
3613 else if (flag_code == CODE_64BIT)
3615 if (fits_in_signed_long (disp))
3617 i.types[op].bitfield.disp64 = 0;
3618 i.types[op].bitfield.disp32s = 1;
3620 if (fits_in_unsigned_long (disp))
3621 i.types[op].bitfield.disp32 = 1;
3623 if ((i.types[op].bitfield.disp32
3624 || i.types[op].bitfield.disp32s
3625 || i.types[op].bitfield.disp16)
3626 && fits_in_signed_byte (disp))
3627 i.types[op].bitfield.disp8 = 1;
3629 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3630 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3632 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3633 i.op[op].disps, 0, i.reloc[op]);
3634 i.types[op].bitfield.disp8 = 0;
3635 i.types[op].bitfield.disp16 = 0;
3636 i.types[op].bitfield.disp32 = 0;
3637 i.types[op].bitfield.disp32s = 0;
3638 i.types[op].bitfield.disp64 = 0;
3640 else
3641 /* We only support 64bit displacement on constants. */
3642 i.types[op].bitfield.disp64 = 0;
3646 static const template *
3647 match_template (void)
3649 /* Points to template once we've found it. */
3650 const template *t;
3651 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3652 i386_operand_type overlap4;
3653 unsigned int found_reverse_match;
3654 i386_opcode_modifier suffix_check;
3655 i386_operand_type operand_types [MAX_OPERANDS];
3656 int addr_prefix_disp;
3657 unsigned int j;
3658 unsigned int found_cpu_match;
3659 unsigned int check_register;
3661 #if MAX_OPERANDS != 5
3662 # error "MAX_OPERANDS must be 5."
3663 #endif
3665 found_reverse_match = 0;
3666 addr_prefix_disp = -1;
3668 memset (&suffix_check, 0, sizeof (suffix_check));
3669 if (i.suffix == BYTE_MNEM_SUFFIX)
3670 suffix_check.no_bsuf = 1;
3671 else if (i.suffix == WORD_MNEM_SUFFIX)
3672 suffix_check.no_wsuf = 1;
3673 else if (i.suffix == SHORT_MNEM_SUFFIX)
3674 suffix_check.no_ssuf = 1;
3675 else if (i.suffix == LONG_MNEM_SUFFIX)
3676 suffix_check.no_lsuf = 1;
3677 else if (i.suffix == QWORD_MNEM_SUFFIX)
3678 suffix_check.no_qsuf = 1;
3679 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3680 suffix_check.no_ldsuf = 1;
3682 for (t = current_templates->start; t < current_templates->end; t++)
3684 addr_prefix_disp = -1;
3686 /* Must have right number of operands. */
3687 if (i.operands != t->operands)
3688 continue;
3690 /* Check processor support. */
3691 found_cpu_match = (cpu_flags_match (t)
3692 == CPU_FLAGS_PERFECT_MATCH);
3693 if (!found_cpu_match)
3694 continue;
3696 /* Check old gcc support. */
3697 if (!old_gcc && t->opcode_modifier.oldgcc)
3698 continue;
3700 /* Check AT&T mnemonic. */
3701 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3702 continue;
3704 /* Check AT&T syntax Intel syntax. */
3705 if ((intel_syntax && t->opcode_modifier.attsyntax)
3706 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3707 continue;
3709 /* Check the suffix, except for some instructions in intel mode. */
3710 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3711 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3712 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3713 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3714 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3715 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3716 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3717 continue;
3719 if (!operand_size_match (t))
3720 continue;
3722 for (j = 0; j < MAX_OPERANDS; j++)
3723 operand_types[j] = t->operand_types[j];
3725 /* In general, don't allow 64-bit operands in 32-bit mode. */
3726 if (i.suffix == QWORD_MNEM_SUFFIX
3727 && flag_code != CODE_64BIT
3728 && (intel_syntax
3729 ? (!t->opcode_modifier.ignoresize
3730 && !intel_float_operand (t->name))
3731 : intel_float_operand (t->name) != 2)
3732 && ((!operand_types[0].bitfield.regmmx
3733 && !operand_types[0].bitfield.regxmm
3734 && !operand_types[0].bitfield.regymm)
3735 || (!operand_types[t->operands > 1].bitfield.regmmx
3736 && !!operand_types[t->operands > 1].bitfield.regxmm
3737 && !!operand_types[t->operands > 1].bitfield.regymm))
3738 && (t->base_opcode != 0x0fc7
3739 || t->extension_opcode != 1 /* cmpxchg8b */))
3740 continue;
3742 /* In general, don't allow 32-bit operands on pre-386. */
3743 else if (i.suffix == LONG_MNEM_SUFFIX
3744 && !cpu_arch_flags.bitfield.cpui386
3745 && (intel_syntax
3746 ? (!t->opcode_modifier.ignoresize
3747 && !intel_float_operand (t->name))
3748 : intel_float_operand (t->name) != 2)
3749 && ((!operand_types[0].bitfield.regmmx
3750 && !operand_types[0].bitfield.regxmm)
3751 || (!operand_types[t->operands > 1].bitfield.regmmx
3752 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3753 continue;
3755 /* Do not verify operands when there are none. */
3756 else
3758 if (!t->operands)
3759 /* We've found a match; break out of loop. */
3760 break;
3763 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3764 into Disp32/Disp16/Disp32 operand. */
3765 if (i.prefix[ADDR_PREFIX] != 0)
3767 /* There should be only one Disp operand. */
3768 switch (flag_code)
3770 case CODE_16BIT:
3771 for (j = 0; j < MAX_OPERANDS; j++)
3773 if (operand_types[j].bitfield.disp16)
3775 addr_prefix_disp = j;
3776 operand_types[j].bitfield.disp32 = 1;
3777 operand_types[j].bitfield.disp16 = 0;
3778 break;
3781 break;
3782 case CODE_32BIT:
3783 for (j = 0; j < MAX_OPERANDS; j++)
3785 if (operand_types[j].bitfield.disp32)
3787 addr_prefix_disp = j;
3788 operand_types[j].bitfield.disp32 = 0;
3789 operand_types[j].bitfield.disp16 = 1;
3790 break;
3793 break;
3794 case CODE_64BIT:
3795 for (j = 0; j < MAX_OPERANDS; j++)
3797 if (operand_types[j].bitfield.disp64)
3799 addr_prefix_disp = j;
3800 operand_types[j].bitfield.disp64 = 0;
3801 operand_types[j].bitfield.disp32 = 1;
3802 break;
3805 break;
3809 /* We check register size only if size of operands can be
3810 encoded the canonical way. */
3811 check_register = t->opcode_modifier.w;
3812 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3813 switch (t->operands)
3815 case 1:
3816 if (!operand_type_match (overlap0, i.types[0]))
3817 continue;
3818 break;
3819 case 2:
3820 /* xchg %eax, %eax is a special case. It is an aliase for nop
3821 only in 32bit mode and we can use opcode 0x90. In 64bit
3822 mode, we can't use 0x90 for xchg %eax, %eax since it should
3823 zero-extend %eax to %rax. */
3824 if (flag_code == CODE_64BIT
3825 && t->base_opcode == 0x90
3826 && operand_type_equal (&i.types [0], &acc32)
3827 && operand_type_equal (&i.types [1], &acc32))
3828 continue;
3829 if (i.swap_operand)
3831 /* If we swap operand in encoding, we either match
3832 the next one or reverse direction of operands. */
3833 if (t->opcode_modifier.s)
3834 continue;
3835 else if (t->opcode_modifier.d)
3836 goto check_reverse;
3839 case 3:
3840 /* If we swap operand in encoding, we match the next one. */
3841 if (i.swap_operand && t->opcode_modifier.s)
3842 continue;
3843 case 4:
3844 case 5:
3845 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3846 if (!operand_type_match (overlap0, i.types[0])
3847 || !operand_type_match (overlap1, i.types[1])
3848 || (check_register
3849 && !operand_type_register_match (overlap0, i.types[0],
3850 operand_types[0],
3851 overlap1, i.types[1],
3852 operand_types[1])))
3854 /* Check if other direction is valid ... */
3855 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3856 continue;
3858 check_reverse:
3859 /* Try reversing direction of operands. */
3860 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3861 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3862 if (!operand_type_match (overlap0, i.types[0])
3863 || !operand_type_match (overlap1, i.types[1])
3864 || (check_register
3865 && !operand_type_register_match (overlap0,
3866 i.types[0],
3867 operand_types[1],
3868 overlap1,
3869 i.types[1],
3870 operand_types[0])))
3872 /* Does not match either direction. */
3873 continue;
3875 /* found_reverse_match holds which of D or FloatDR
3876 we've found. */
3877 if (t->opcode_modifier.d)
3878 found_reverse_match = Opcode_D;
3879 else if (t->opcode_modifier.floatd)
3880 found_reverse_match = Opcode_FloatD;
3881 else
3882 found_reverse_match = 0;
3883 if (t->opcode_modifier.floatr)
3884 found_reverse_match |= Opcode_FloatR;
3886 else
3888 /* Found a forward 2 operand match here. */
3889 switch (t->operands)
3891 case 5:
3892 overlap4 = operand_type_and (i.types[4],
3893 operand_types[4]);
3894 case 4:
3895 overlap3 = operand_type_and (i.types[3],
3896 operand_types[3]);
3897 case 3:
3898 overlap2 = operand_type_and (i.types[2],
3899 operand_types[2]);
3900 break;
3903 switch (t->operands)
3905 case 5:
3906 if (!operand_type_match (overlap4, i.types[4])
3907 || !operand_type_register_match (overlap3,
3908 i.types[3],
3909 operand_types[3],
3910 overlap4,
3911 i.types[4],
3912 operand_types[4]))
3913 continue;
3914 case 4:
3915 if (!operand_type_match (overlap3, i.types[3])
3916 || (check_register
3917 && !operand_type_register_match (overlap2,
3918 i.types[2],
3919 operand_types[2],
3920 overlap3,
3921 i.types[3],
3922 operand_types[3])))
3923 continue;
3924 case 3:
3925 /* Here we make use of the fact that there are no
3926 reverse match 3 operand instructions, and all 3
3927 operand instructions only need to be checked for
3928 register consistency between operands 2 and 3. */
3929 if (!operand_type_match (overlap2, i.types[2])
3930 || (check_register
3931 && !operand_type_register_match (overlap1,
3932 i.types[1],
3933 operand_types[1],
3934 overlap2,
3935 i.types[2],
3936 operand_types[2])))
3937 continue;
3938 break;
3941 /* Found either forward/reverse 2, 3 or 4 operand match here:
3942 slip through to break. */
3944 if (!found_cpu_match)
3946 found_reverse_match = 0;
3947 continue;
3950 /* We've found a match; break out of loop. */
3951 break;
3954 if (t == current_templates->end)
3956 /* We found no match. */
3957 if (intel_syntax)
3958 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3959 current_templates->start->name);
3960 else
3961 as_bad (_("suffix or operands invalid for `%s'"),
3962 current_templates->start->name);
3963 return NULL;
3966 if (!quiet_warnings)
3968 if (!intel_syntax
3969 && (i.types[0].bitfield.jumpabsolute
3970 != operand_types[0].bitfield.jumpabsolute))
3972 as_warn (_("indirect %s without `*'"), t->name);
3975 if (t->opcode_modifier.isprefix
3976 && t->opcode_modifier.ignoresize)
3978 /* Warn them that a data or address size prefix doesn't
3979 affect assembly of the next line of code. */
3980 as_warn (_("stand-alone `%s' prefix"), t->name);
3984 /* Copy the template we found. */
3985 i.tm = *t;
3987 if (addr_prefix_disp != -1)
3988 i.tm.operand_types[addr_prefix_disp]
3989 = operand_types[addr_prefix_disp];
3991 if (found_reverse_match)
3993 /* If we found a reverse match we must alter the opcode
3994 direction bit. found_reverse_match holds bits to change
3995 (different for int & float insns). */
3997 i.tm.base_opcode ^= found_reverse_match;
3999 i.tm.operand_types[0] = operand_types[1];
4000 i.tm.operand_types[1] = operand_types[0];
4003 return t;
4006 static int
4007 check_string (void)
4009 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4010 if (i.tm.operand_types[mem_op].bitfield.esseg)
4012 if (i.seg[0] != NULL && i.seg[0] != &es)
4014 as_bad (_("`%s' operand %d must use `%ses' segment"),
4015 i.tm.name,
4016 mem_op + 1,
4017 register_prefix);
4018 return 0;
4020 /* There's only ever one segment override allowed per instruction.
4021 This instruction possibly has a legal segment override on the
4022 second operand, so copy the segment to where non-string
4023 instructions store it, allowing common code. */
4024 i.seg[0] = i.seg[1];
4026 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4028 if (i.seg[1] != NULL && i.seg[1] != &es)
4030 as_bad (_("`%s' operand %d must use `%ses' segment"),
4031 i.tm.name,
4032 mem_op + 2,
4033 register_prefix);
4034 return 0;
4037 return 1;
4040 static int
4041 process_suffix (void)
4043 /* If matched instruction specifies an explicit instruction mnemonic
4044 suffix, use it. */
4045 if (i.tm.opcode_modifier.size16)
4046 i.suffix = WORD_MNEM_SUFFIX;
4047 else if (i.tm.opcode_modifier.size32)
4048 i.suffix = LONG_MNEM_SUFFIX;
4049 else if (i.tm.opcode_modifier.size64)
4050 i.suffix = QWORD_MNEM_SUFFIX;
4051 else if (i.reg_operands)
4053 /* If there's no instruction mnemonic suffix we try to invent one
4054 based on register operands. */
4055 if (!i.suffix)
4057 /* We take i.suffix from the last register operand specified,
4058 Destination register type is more significant than source
4059 register type. crc32 in SSE4.2 prefers source register
4060 type. */
4061 if (i.tm.base_opcode == 0xf20f38f1)
4063 if (i.types[0].bitfield.reg16)
4064 i.suffix = WORD_MNEM_SUFFIX;
4065 else if (i.types[0].bitfield.reg32)
4066 i.suffix = LONG_MNEM_SUFFIX;
4067 else if (i.types[0].bitfield.reg64)
4068 i.suffix = QWORD_MNEM_SUFFIX;
4070 else if (i.tm.base_opcode == 0xf20f38f0)
4072 if (i.types[0].bitfield.reg8)
4073 i.suffix = BYTE_MNEM_SUFFIX;
4076 if (!i.suffix)
4078 int op;
4080 if (i.tm.base_opcode == 0xf20f38f1
4081 || i.tm.base_opcode == 0xf20f38f0)
4083 /* We have to know the operand size for crc32. */
4084 as_bad (_("ambiguous memory operand size for `%s`"),
4085 i.tm.name);
4086 return 0;
4089 for (op = i.operands; --op >= 0;)
4090 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4092 if (i.types[op].bitfield.reg8)
4094 i.suffix = BYTE_MNEM_SUFFIX;
4095 break;
4097 else if (i.types[op].bitfield.reg16)
4099 i.suffix = WORD_MNEM_SUFFIX;
4100 break;
4102 else if (i.types[op].bitfield.reg32)
4104 i.suffix = LONG_MNEM_SUFFIX;
4105 break;
4107 else if (i.types[op].bitfield.reg64)
4109 i.suffix = QWORD_MNEM_SUFFIX;
4110 break;
4115 else if (i.suffix == BYTE_MNEM_SUFFIX)
4117 if (!check_byte_reg ())
4118 return 0;
4120 else if (i.suffix == LONG_MNEM_SUFFIX)
4122 if (!check_long_reg ())
4123 return 0;
4125 else if (i.suffix == QWORD_MNEM_SUFFIX)
4127 if (intel_syntax
4128 && i.tm.opcode_modifier.ignoresize
4129 && i.tm.opcode_modifier.no_qsuf)
4130 i.suffix = 0;
4131 else if (!check_qword_reg ())
4132 return 0;
4134 else if (i.suffix == WORD_MNEM_SUFFIX)
4136 if (!check_word_reg ())
4137 return 0;
4139 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4140 || i.suffix == YMMWORD_MNEM_SUFFIX)
4142 /* Skip if the instruction has x/y suffix. match_template
4143 should check if it is a valid suffix. */
4145 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4146 /* Do nothing if the instruction is going to ignore the prefix. */
4148 else
4149 abort ();
4151 else if (i.tm.opcode_modifier.defaultsize
4152 && !i.suffix
4153 /* exclude fldenv/frstor/fsave/fstenv */
4154 && i.tm.opcode_modifier.no_ssuf)
4156 i.suffix = stackop_size;
4158 else if (intel_syntax
4159 && !i.suffix
4160 && (i.tm.operand_types[0].bitfield.jumpabsolute
4161 || i.tm.opcode_modifier.jumpbyte
4162 || i.tm.opcode_modifier.jumpintersegment
4163 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4164 && i.tm.extension_opcode <= 3)))
4166 switch (flag_code)
4168 case CODE_64BIT:
4169 if (!i.tm.opcode_modifier.no_qsuf)
4171 i.suffix = QWORD_MNEM_SUFFIX;
4172 break;
4174 case CODE_32BIT:
4175 if (!i.tm.opcode_modifier.no_lsuf)
4176 i.suffix = LONG_MNEM_SUFFIX;
4177 break;
4178 case CODE_16BIT:
4179 if (!i.tm.opcode_modifier.no_wsuf)
4180 i.suffix = WORD_MNEM_SUFFIX;
4181 break;
4185 if (!i.suffix)
4187 if (!intel_syntax)
4189 if (i.tm.opcode_modifier.w)
4191 as_bad (_("no instruction mnemonic suffix given and "
4192 "no register operands; can't size instruction"));
4193 return 0;
4196 else
4198 unsigned int suffixes;
4200 suffixes = !i.tm.opcode_modifier.no_bsuf;
4201 if (!i.tm.opcode_modifier.no_wsuf)
4202 suffixes |= 1 << 1;
4203 if (!i.tm.opcode_modifier.no_lsuf)
4204 suffixes |= 1 << 2;
4205 if (!i.tm.opcode_modifier.no_ldsuf)
4206 suffixes |= 1 << 3;
4207 if (!i.tm.opcode_modifier.no_ssuf)
4208 suffixes |= 1 << 4;
4209 if (!i.tm.opcode_modifier.no_qsuf)
4210 suffixes |= 1 << 5;
4212 /* There are more than suffix matches. */
4213 if (i.tm.opcode_modifier.w
4214 || ((suffixes & (suffixes - 1))
4215 && !i.tm.opcode_modifier.defaultsize
4216 && !i.tm.opcode_modifier.ignoresize))
4218 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4219 return 0;
4224 /* Change the opcode based on the operand size given by i.suffix;
4225 We don't need to change things for byte insns. */
4227 if (i.suffix
4228 && i.suffix != BYTE_MNEM_SUFFIX
4229 && i.suffix != XMMWORD_MNEM_SUFFIX
4230 && i.suffix != YMMWORD_MNEM_SUFFIX)
4232 /* It's not a byte, select word/dword operation. */
4233 if (i.tm.opcode_modifier.w)
4235 if (i.tm.opcode_modifier.shortform)
4236 i.tm.base_opcode |= 8;
4237 else
4238 i.tm.base_opcode |= 1;
4241 /* Now select between word & dword operations via the operand
4242 size prefix, except for instructions that will ignore this
4243 prefix anyway. */
4244 if (i.tm.opcode_modifier.addrprefixop0)
4246 /* The address size override prefix changes the size of the
4247 first operand. */
4248 if ((flag_code == CODE_32BIT
4249 && i.op->regs[0].reg_type.bitfield.reg16)
4250 || (flag_code != CODE_32BIT
4251 && i.op->regs[0].reg_type.bitfield.reg32))
4252 if (!add_prefix (ADDR_PREFIX_OPCODE))
4253 return 0;
4255 else if (i.suffix != QWORD_MNEM_SUFFIX
4256 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4257 && !i.tm.opcode_modifier.ignoresize
4258 && !i.tm.opcode_modifier.floatmf
4259 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4260 || (flag_code == CODE_64BIT
4261 && i.tm.opcode_modifier.jumpbyte)))
4263 unsigned int prefix = DATA_PREFIX_OPCODE;
4265 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4266 prefix = ADDR_PREFIX_OPCODE;
4268 if (!add_prefix (prefix))
4269 return 0;
4272 /* Set mode64 for an operand. */
4273 if (i.suffix == QWORD_MNEM_SUFFIX
4274 && flag_code == CODE_64BIT
4275 && !i.tm.opcode_modifier.norex64)
4277 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4278 need rex64. cmpxchg8b is also a special case. */
4279 if (! (i.operands == 2
4280 && i.tm.base_opcode == 0x90
4281 && i.tm.extension_opcode == None
4282 && operand_type_equal (&i.types [0], &acc64)
4283 && operand_type_equal (&i.types [1], &acc64))
4284 && ! (i.operands == 1
4285 && i.tm.base_opcode == 0xfc7
4286 && i.tm.extension_opcode == 1
4287 && !operand_type_check (i.types [0], reg)
4288 && operand_type_check (i.types [0], anymem)))
4289 i.rex |= REX_W;
4292 /* Size floating point instruction. */
4293 if (i.suffix == LONG_MNEM_SUFFIX)
4294 if (i.tm.opcode_modifier.floatmf)
4295 i.tm.base_opcode ^= 4;
4298 return 1;
4301 static int
4302 check_byte_reg (void)
4304 int op;
4306 for (op = i.operands; --op >= 0;)
4308 /* If this is an eight bit register, it's OK. If it's the 16 or
4309 32 bit version of an eight bit register, we will just use the
4310 low portion, and that's OK too. */
4311 if (i.types[op].bitfield.reg8)
4312 continue;
4314 /* Don't generate this warning if not needed. */
4315 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
4316 continue;
4318 /* crc32 doesn't generate this warning. */
4319 if (i.tm.base_opcode == 0xf20f38f0)
4320 continue;
4322 if ((i.types[op].bitfield.reg16
4323 || i.types[op].bitfield.reg32
4324 || i.types[op].bitfield.reg64)
4325 && i.op[op].regs->reg_num < 4)
4327 /* Prohibit these changes in the 64bit mode, since the
4328 lowering is more complicated. */
4329 if (flag_code == CODE_64BIT
4330 && !i.tm.operand_types[op].bitfield.inoutportreg)
4332 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4333 register_prefix, i.op[op].regs->reg_name,
4334 i.suffix);
4335 return 0;
4337 #if REGISTER_WARNINGS
4338 if (!quiet_warnings
4339 && !i.tm.operand_types[op].bitfield.inoutportreg)
4340 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4341 register_prefix,
4342 (i.op[op].regs + (i.types[op].bitfield.reg16
4343 ? REGNAM_AL - REGNAM_AX
4344 : REGNAM_AL - REGNAM_EAX))->reg_name,
4345 register_prefix,
4346 i.op[op].regs->reg_name,
4347 i.suffix);
4348 #endif
4349 continue;
4351 /* Any other register is bad. */
4352 if (i.types[op].bitfield.reg16
4353 || i.types[op].bitfield.reg32
4354 || i.types[op].bitfield.reg64
4355 || i.types[op].bitfield.regmmx
4356 || i.types[op].bitfield.regxmm
4357 || i.types[op].bitfield.regymm
4358 || i.types[op].bitfield.sreg2
4359 || i.types[op].bitfield.sreg3
4360 || i.types[op].bitfield.control
4361 || i.types[op].bitfield.debug
4362 || i.types[op].bitfield.test
4363 || i.types[op].bitfield.floatreg
4364 || i.types[op].bitfield.floatacc)
4366 as_bad (_("`%s%s' not allowed with `%s%c'"),
4367 register_prefix,
4368 i.op[op].regs->reg_name,
4369 i.tm.name,
4370 i.suffix);
4371 return 0;
4374 return 1;
4377 static int
4378 check_long_reg (void)
4380 int op;
4382 for (op = i.operands; --op >= 0;)
4383 /* Reject eight bit registers, except where the template requires
4384 them. (eg. movzb) */
4385 if (i.types[op].bitfield.reg8
4386 && (i.tm.operand_types[op].bitfield.reg16
4387 || i.tm.operand_types[op].bitfield.reg32
4388 || i.tm.operand_types[op].bitfield.acc))
4390 as_bad (_("`%s%s' not allowed with `%s%c'"),
4391 register_prefix,
4392 i.op[op].regs->reg_name,
4393 i.tm.name,
4394 i.suffix);
4395 return 0;
4397 /* Warn if the e prefix on a general reg is missing. */
4398 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4399 && i.types[op].bitfield.reg16
4400 && (i.tm.operand_types[op].bitfield.reg32
4401 || i.tm.operand_types[op].bitfield.acc))
4403 /* Prohibit these changes in the 64bit mode, since the
4404 lowering is more complicated. */
4405 if (flag_code == CODE_64BIT)
4407 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4408 register_prefix, i.op[op].regs->reg_name,
4409 i.suffix);
4410 return 0;
4412 #if REGISTER_WARNINGS
4413 else
4414 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4415 register_prefix,
4416 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4417 register_prefix,
4418 i.op[op].regs->reg_name,
4419 i.suffix);
4420 #endif
4422 /* Warn if the r prefix on a general reg is missing. */
4423 else if (i.types[op].bitfield.reg64
4424 && (i.tm.operand_types[op].bitfield.reg32
4425 || i.tm.operand_types[op].bitfield.acc))
4427 if (intel_syntax
4428 && i.tm.opcode_modifier.toqword
4429 && !i.types[0].bitfield.regxmm)
4431 /* Convert to QWORD. We want REX byte. */
4432 i.suffix = QWORD_MNEM_SUFFIX;
4434 else
4436 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4437 register_prefix, i.op[op].regs->reg_name,
4438 i.suffix);
4439 return 0;
4442 return 1;
4445 static int
4446 check_qword_reg (void)
4448 int op;
4450 for (op = i.operands; --op >= 0; )
4451 /* Reject eight bit registers, except where the template requires
4452 them. (eg. movzb) */
4453 if (i.types[op].bitfield.reg8
4454 && (i.tm.operand_types[op].bitfield.reg16
4455 || i.tm.operand_types[op].bitfield.reg32
4456 || i.tm.operand_types[op].bitfield.acc))
4458 as_bad (_("`%s%s' not allowed with `%s%c'"),
4459 register_prefix,
4460 i.op[op].regs->reg_name,
4461 i.tm.name,
4462 i.suffix);
4463 return 0;
4465 /* Warn if the e prefix on a general reg is missing. */
4466 else if ((i.types[op].bitfield.reg16
4467 || i.types[op].bitfield.reg32)
4468 && (i.tm.operand_types[op].bitfield.reg32
4469 || i.tm.operand_types[op].bitfield.acc))
4471 /* Prohibit these changes in the 64bit mode, since the
4472 lowering is more complicated. */
4473 if (intel_syntax
4474 && i.tm.opcode_modifier.todword
4475 && !i.types[0].bitfield.regxmm)
4477 /* Convert to DWORD. We don't want REX byte. */
4478 i.suffix = LONG_MNEM_SUFFIX;
4480 else
4482 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4483 register_prefix, i.op[op].regs->reg_name,
4484 i.suffix);
4485 return 0;
4488 return 1;
4491 static int
4492 check_word_reg (void)
4494 int op;
4495 for (op = i.operands; --op >= 0;)
4496 /* Reject eight bit registers, except where the template requires
4497 them. (eg. movzb) */
4498 if (i.types[op].bitfield.reg8
4499 && (i.tm.operand_types[op].bitfield.reg16
4500 || i.tm.operand_types[op].bitfield.reg32
4501 || i.tm.operand_types[op].bitfield.acc))
4503 as_bad (_("`%s%s' not allowed with `%s%c'"),
4504 register_prefix,
4505 i.op[op].regs->reg_name,
4506 i.tm.name,
4507 i.suffix);
4508 return 0;
4510 /* Warn if the e prefix on a general reg is present. */
4511 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4512 && i.types[op].bitfield.reg32
4513 && (i.tm.operand_types[op].bitfield.reg16
4514 || i.tm.operand_types[op].bitfield.acc))
4516 /* Prohibit these changes in the 64bit mode, since the
4517 lowering is more complicated. */
4518 if (flag_code == CODE_64BIT)
4520 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4521 register_prefix, i.op[op].regs->reg_name,
4522 i.suffix);
4523 return 0;
4525 else
4526 #if REGISTER_WARNINGS
4527 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4528 register_prefix,
4529 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4530 register_prefix,
4531 i.op[op].regs->reg_name,
4532 i.suffix);
4533 #endif
4535 return 1;
4538 static int
4539 update_imm (unsigned int j)
4541 i386_operand_type overlap = i.types[j];
4542 if ((overlap.bitfield.imm8
4543 || overlap.bitfield.imm8s
4544 || overlap.bitfield.imm16
4545 || overlap.bitfield.imm32
4546 || overlap.bitfield.imm32s
4547 || overlap.bitfield.imm64)
4548 && !operand_type_equal (&overlap, &imm8)
4549 && !operand_type_equal (&overlap, &imm8s)
4550 && !operand_type_equal (&overlap, &imm16)
4551 && !operand_type_equal (&overlap, &imm32)
4552 && !operand_type_equal (&overlap, &imm32s)
4553 && !operand_type_equal (&overlap, &imm64))
4555 if (i.suffix)
4557 i386_operand_type temp;
4559 operand_type_set (&temp, 0);
4560 if (i.suffix == BYTE_MNEM_SUFFIX)
4562 temp.bitfield.imm8 = overlap.bitfield.imm8;
4563 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4565 else if (i.suffix == WORD_MNEM_SUFFIX)
4566 temp.bitfield.imm16 = overlap.bitfield.imm16;
4567 else if (i.suffix == QWORD_MNEM_SUFFIX)
4569 temp.bitfield.imm64 = overlap.bitfield.imm64;
4570 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4572 else
4573 temp.bitfield.imm32 = overlap.bitfield.imm32;
4574 overlap = temp;
4576 else if (operand_type_equal (&overlap, &imm16_32_32s)
4577 || operand_type_equal (&overlap, &imm16_32)
4578 || operand_type_equal (&overlap, &imm16_32s))
4580 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4581 overlap = imm16;
4582 else
4583 overlap = imm32s;
4585 if (!operand_type_equal (&overlap, &imm8)
4586 && !operand_type_equal (&overlap, &imm8s)
4587 && !operand_type_equal (&overlap, &imm16)
4588 && !operand_type_equal (&overlap, &imm32)
4589 && !operand_type_equal (&overlap, &imm32s)
4590 && !operand_type_equal (&overlap, &imm64))
4592 as_bad (_("no instruction mnemonic suffix given; "
4593 "can't determine immediate size"));
4594 return 0;
4597 i.types[j] = overlap;
4599 return 1;
4602 static int
4603 finalize_imm (void)
4605 unsigned int j, n;
4607 /* Update the first 2 immediate operands. */
4608 n = i.operands > 2 ? 2 : i.operands;
4609 if (n)
4611 for (j = 0; j < n; j++)
4612 if (update_imm (j) == 0)
4613 return 0;
4615 /* The 3rd operand can't be immediate operand. */
4616 gas_assert (operand_type_check (i.types[2], imm) == 0);
4619 return 1;
4622 static int
4623 bad_implicit_operand (int xmm)
4625 const char *reg = xmm ? "xmm0" : "ymm0";
4626 if (intel_syntax)
4627 as_bad (_("the last operand of `%s' must be `%s%s'"),
4628 i.tm.name, register_prefix, reg);
4629 else
4630 as_bad (_("the first operand of `%s' must be `%s%s'"),
4631 i.tm.name, register_prefix, reg);
4632 return 0;
4635 static int
4636 process_operands (void)
4638 /* Default segment register this instruction will use for memory
4639 accesses. 0 means unknown. This is only for optimizing out
4640 unnecessary segment overrides. */
4641 const seg_entry *default_seg = 0;
4643 if (i.tm.opcode_modifier.sse2avx
4644 && (i.tm.opcode_modifier.vexnds
4645 || i.tm.opcode_modifier.vexndd))
4647 unsigned int dup = i.operands;
4648 unsigned int dest = dup - 1;
4649 unsigned int j;
4651 /* The destination must be an xmm register. */
4652 gas_assert (i.reg_operands
4653 && MAX_OPERANDS > dup
4654 && operand_type_equal (&i.types[dest], &regxmm));
4656 if (i.tm.opcode_modifier.firstxmm0)
4658 /* The first operand is implicit and must be xmm0. */
4659 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4660 if (i.op[0].regs->reg_num != 0)
4661 return bad_implicit_operand (1);
4663 if (i.tm.opcode_modifier.vex3sources)
4665 /* Keep xmm0 for instructions with VEX prefix and 3
4666 sources. */
4667 goto duplicate;
4669 else
4671 /* We remove the first xmm0 and keep the number of
4672 operands unchanged, which in fact duplicates the
4673 destination. */
4674 for (j = 1; j < i.operands; j++)
4676 i.op[j - 1] = i.op[j];
4677 i.types[j - 1] = i.types[j];
4678 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4682 else if (i.tm.opcode_modifier.implicit1stxmm0)
4684 gas_assert ((MAX_OPERANDS - 1) > dup
4685 && i.tm.opcode_modifier.vex3sources);
4687 /* Add the implicit xmm0 for instructions with VEX prefix
4688 and 3 sources. */
4689 for (j = i.operands; j > 0; j--)
4691 i.op[j] = i.op[j - 1];
4692 i.types[j] = i.types[j - 1];
4693 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4695 i.op[0].regs
4696 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4697 i.types[0] = regxmm;
4698 i.tm.operand_types[0] = regxmm;
4700 i.operands += 2;
4701 i.reg_operands += 2;
4702 i.tm.operands += 2;
4704 dup++;
4705 dest++;
4706 i.op[dup] = i.op[dest];
4707 i.types[dup] = i.types[dest];
4708 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4710 else
4712 duplicate:
4713 i.operands++;
4714 i.reg_operands++;
4715 i.tm.operands++;
4717 i.op[dup] = i.op[dest];
4718 i.types[dup] = i.types[dest];
4719 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4722 if (i.tm.opcode_modifier.immext)
4723 process_immext ();
4725 else if (i.tm.opcode_modifier.firstxmm0)
4727 unsigned int j;
4729 /* The first operand is implicit and must be xmm0/ymm0. */
4730 gas_assert (i.reg_operands
4731 && (operand_type_equal (&i.types[0], &regxmm)
4732 || operand_type_equal (&i.types[0], &regymm)));
4733 if (i.op[0].regs->reg_num != 0)
4734 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4736 for (j = 1; j < i.operands; j++)
4738 i.op[j - 1] = i.op[j];
4739 i.types[j - 1] = i.types[j];
4741 /* We need to adjust fields in i.tm since they are used by
4742 build_modrm_byte. */
4743 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4746 i.operands--;
4747 i.reg_operands--;
4748 i.tm.operands--;
4750 else if (i.tm.opcode_modifier.regkludge)
4752 /* The imul $imm, %reg instruction is converted into
4753 imul $imm, %reg, %reg, and the clr %reg instruction
4754 is converted into xor %reg, %reg. */
4756 unsigned int first_reg_op;
4758 if (operand_type_check (i.types[0], reg))
4759 first_reg_op = 0;
4760 else
4761 first_reg_op = 1;
4762 /* Pretend we saw the extra register operand. */
4763 gas_assert (i.reg_operands == 1
4764 && i.op[first_reg_op + 1].regs == 0);
4765 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4766 i.types[first_reg_op + 1] = i.types[first_reg_op];
4767 i.operands++;
4768 i.reg_operands++;
4771 if (i.tm.opcode_modifier.shortform)
4773 if (i.types[0].bitfield.sreg2
4774 || i.types[0].bitfield.sreg3)
4776 if (i.tm.base_opcode == POP_SEG_SHORT
4777 && i.op[0].regs->reg_num == 1)
4779 as_bad (_("you can't `pop %scs'"), register_prefix);
4780 return 0;
4782 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4783 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4784 i.rex |= REX_B;
4786 else
4788 /* The register or float register operand is in operand
4789 0 or 1. */
4790 unsigned int op;
4792 if (i.types[0].bitfield.floatreg
4793 || operand_type_check (i.types[0], reg))
4794 op = 0;
4795 else
4796 op = 1;
4797 /* Register goes in low 3 bits of opcode. */
4798 i.tm.base_opcode |= i.op[op].regs->reg_num;
4799 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4800 i.rex |= REX_B;
4801 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4803 /* Warn about some common errors, but press on regardless.
4804 The first case can be generated by gcc (<= 2.8.1). */
4805 if (i.operands == 2)
4807 /* Reversed arguments on faddp, fsubp, etc. */
4808 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4809 register_prefix, i.op[!intel_syntax].regs->reg_name,
4810 register_prefix, i.op[intel_syntax].regs->reg_name);
4812 else
4814 /* Extraneous `l' suffix on fp insn. */
4815 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4816 register_prefix, i.op[0].regs->reg_name);
4821 else if (i.tm.opcode_modifier.modrm)
4823 /* The opcode is completed (modulo i.tm.extension_opcode which
4824 must be put into the modrm byte). Now, we make the modrm and
4825 index base bytes based on all the info we've collected. */
4827 default_seg = build_modrm_byte ();
4829 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4831 default_seg = &ds;
4833 else if (i.tm.opcode_modifier.isstring)
4835 /* For the string instructions that allow a segment override
4836 on one of their operands, the default segment is ds. */
4837 default_seg = &ds;
4840 if (i.tm.base_opcode == 0x8d /* lea */
4841 && i.seg[0]
4842 && !quiet_warnings)
4843 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4845 /* If a segment was explicitly specified, and the specified segment
4846 is not the default, use an opcode prefix to select it. If we
4847 never figured out what the default segment is, then default_seg
4848 will be zero at this point, and the specified segment prefix will
4849 always be used. */
4850 if ((i.seg[0]) && (i.seg[0] != default_seg))
4852 if (!add_prefix (i.seg[0]->seg_prefix))
4853 return 0;
4855 return 1;
4858 static const seg_entry *
4859 build_modrm_byte (void)
4861 const seg_entry *default_seg = 0;
4862 unsigned int source, dest;
4863 int vex_3_sources;
4865 /* The first operand of instructions with VEX prefix and 3 sources
4866 must be VEX_Imm4. */
4867 vex_3_sources = i.tm.opcode_modifier.vex3sources;
4868 if (vex_3_sources)
4870 unsigned int nds, reg;
4872 if (i.tm.opcode_modifier.veximmext
4873 && i.tm.opcode_modifier.immext)
4875 dest = i.operands - 2;
4876 gas_assert (dest == 3);
4878 else
4879 dest = i.operands - 1;
4880 nds = dest - 1;
4882 /* This instruction must have 4 register operands
4883 or 3 register operands plus 1 memory operand.
4884 It must have VexNDS and VexImmExt. */
4885 gas_assert ((i.reg_operands == 4
4886 || (i.reg_operands == 3 && i.mem_operands == 1))
4887 && i.tm.opcode_modifier.vexnds
4888 && i.tm.opcode_modifier.veximmext
4889 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
4890 || operand_type_equal (&i.tm.operand_types[dest], &regymm)));
4892 /* Generate an 8bit immediate operand to encode the register
4893 operand. */
4894 expressionS *exp = &im_expressions[i.imm_operands++];
4895 i.op[i.operands].imms = exp;
4896 i.types[i.operands] = imm8;
4897 i.operands++;
4898 /* If VexW1 is set, the first operand is the source and
4899 the second operand is encoded in the immediate operand. */
4900 if (i.tm.opcode_modifier.vexw1)
4902 source = 0;
4903 reg = 1;
4905 else
4907 source = 1;
4908 reg = 0;
4910 /* FMA4 swaps REG and NDS. */
4911 if (i.tm.cpu_flags.bitfield.cpufma4)
4913 unsigned int tmp;
4914 tmp = reg;
4915 reg = nds;
4916 nds = tmp;
4918 gas_assert ((operand_type_equal (&i.tm.operand_types[reg], &regxmm)
4919 || operand_type_equal (&i.tm.operand_types[reg],
4920 &regymm))
4921 && (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
4922 || operand_type_equal (&i.tm.operand_types[nds],
4923 &regymm)));
4924 exp->X_op = O_constant;
4925 exp->X_add_number
4926 = ((i.op[reg].regs->reg_num
4927 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
4928 i.vex.register_specifier = i.op[nds].regs;
4930 else
4931 source = dest = 0;
4933 /* i.reg_operands MUST be the number of real register operands;
4934 implicit registers do not count. If there are 3 register
4935 operands, it must be a instruction with VexNDS. For a
4936 instruction with VexNDD, the destination register is encoded
4937 in VEX prefix. If there are 4 register operands, it must be
4938 a instruction with VEX prefix and 3 sources. */
4939 if (i.mem_operands == 0
4940 && ((i.reg_operands == 2
4941 && !i.tm.opcode_modifier.vexndd)
4942 || (i.reg_operands == 3
4943 && i.tm.opcode_modifier.vexnds)
4944 || (i.reg_operands == 4 && vex_3_sources)))
4946 switch (i.operands)
4948 case 2:
4949 source = 0;
4950 break;
4951 case 3:
4952 /* When there are 3 operands, one of them may be immediate,
4953 which may be the first or the last operand. Otherwise,
4954 the first operand must be shift count register (cl) or it
4955 is an instruction with VexNDS. */
4956 gas_assert (i.imm_operands == 1
4957 || (i.imm_operands == 0
4958 && (i.tm.opcode_modifier.vexnds
4959 || i.types[0].bitfield.shiftcount)));
4960 if (operand_type_check (i.types[0], imm)
4961 || i.types[0].bitfield.shiftcount)
4962 source = 1;
4963 else
4964 source = 0;
4965 break;
4966 case 4:
4967 /* When there are 4 operands, the first two must be 8bit
4968 immediate operands. The source operand will be the 3rd
4969 one.
4971 For instructions with VexNDS, if the first operand
4972 an imm8, the source operand is the 2nd one. If the last
4973 operand is imm8, the source operand is the first one. */
4974 gas_assert ((i.imm_operands == 2
4975 && i.types[0].bitfield.imm8
4976 && i.types[1].bitfield.imm8)
4977 || (i.tm.opcode_modifier.vexnds
4978 && i.imm_operands == 1
4979 && (i.types[0].bitfield.imm8
4980 || i.types[i.operands - 1].bitfield.imm8)));
4981 if (i.tm.opcode_modifier.vexnds)
4983 if (i.types[0].bitfield.imm8)
4984 source = 1;
4985 else
4986 source = 0;
4988 else
4989 source = 2;
4990 break;
4991 case 5:
4992 break;
4993 default:
4994 abort ();
4997 if (!vex_3_sources)
4999 dest = source + 1;
5001 if (i.tm.opcode_modifier.vexnds)
5003 /* For instructions with VexNDS, the register-only
5004 source operand must be XMM or YMM register. It is
5005 encoded in VEX prefix. We need to clear RegMem bit
5006 before calling operand_type_equal. */
5007 i386_operand_type op = i.tm.operand_types[dest];
5008 op.bitfield.regmem = 0;
5009 if ((dest + 1) >= i.operands
5010 || (!operand_type_equal (&op, &regxmm)
5011 && !operand_type_equal (&op, &regymm)))
5012 abort ();
5013 i.vex.register_specifier = i.op[dest].regs;
5014 dest++;
5018 i.rm.mode = 3;
5019 /* One of the register operands will be encoded in the i.tm.reg
5020 field, the other in the combined i.tm.mode and i.tm.regmem
5021 fields. If no form of this instruction supports a memory
5022 destination operand, then we assume the source operand may
5023 sometimes be a memory operand and so we need to store the
5024 destination in the i.rm.reg field. */
5025 if (!i.tm.operand_types[dest].bitfield.regmem
5026 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5028 i.rm.reg = i.op[dest].regs->reg_num;
5029 i.rm.regmem = i.op[source].regs->reg_num;
5030 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5031 i.rex |= REX_R;
5032 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5033 i.rex |= REX_B;
5035 else
5037 i.rm.reg = i.op[source].regs->reg_num;
5038 i.rm.regmem = i.op[dest].regs->reg_num;
5039 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5040 i.rex |= REX_B;
5041 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5042 i.rex |= REX_R;
5044 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5046 if (!i.types[0].bitfield.control
5047 && !i.types[1].bitfield.control)
5048 abort ();
5049 i.rex &= ~(REX_R | REX_B);
5050 add_prefix (LOCK_PREFIX_OPCODE);
5053 else
5054 { /* If it's not 2 reg operands... */
5055 unsigned int mem;
5057 if (i.mem_operands)
5059 unsigned int fake_zero_displacement = 0;
5060 unsigned int op;
5062 for (op = 0; op < i.operands; op++)
5063 if (operand_type_check (i.types[op], anymem))
5064 break;
5065 gas_assert (op < i.operands);
5067 default_seg = &ds;
5069 if (i.base_reg == 0)
5071 i.rm.mode = 0;
5072 if (!i.disp_operands)
5073 fake_zero_displacement = 1;
5074 if (i.index_reg == 0)
5076 /* Operand is just <disp> */
5077 if (flag_code == CODE_64BIT)
5079 /* 64bit mode overwrites the 32bit absolute
5080 addressing by RIP relative addressing and
5081 absolute addressing is encoded by one of the
5082 redundant SIB forms. */
5083 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5084 i.sib.base = NO_BASE_REGISTER;
5085 i.sib.index = NO_INDEX_REGISTER;
5086 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5087 ? disp32s : disp32);
5089 else if ((flag_code == CODE_16BIT)
5090 ^ (i.prefix[ADDR_PREFIX] != 0))
5092 i.rm.regmem = NO_BASE_REGISTER_16;
5093 i.types[op] = disp16;
5095 else
5097 i.rm.regmem = NO_BASE_REGISTER;
5098 i.types[op] = disp32;
5101 else /* !i.base_reg && i.index_reg */
5103 if (i.index_reg->reg_num == RegEiz
5104 || i.index_reg->reg_num == RegRiz)
5105 i.sib.index = NO_INDEX_REGISTER;
5106 else
5107 i.sib.index = i.index_reg->reg_num;
5108 i.sib.base = NO_BASE_REGISTER;
5109 i.sib.scale = i.log2_scale_factor;
5110 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5111 i.types[op].bitfield.disp8 = 0;
5112 i.types[op].bitfield.disp16 = 0;
5113 i.types[op].bitfield.disp64 = 0;
5114 if (flag_code != CODE_64BIT)
5116 /* Must be 32 bit */
5117 i.types[op].bitfield.disp32 = 1;
5118 i.types[op].bitfield.disp32s = 0;
5120 else
5122 i.types[op].bitfield.disp32 = 0;
5123 i.types[op].bitfield.disp32s = 1;
5125 if ((i.index_reg->reg_flags & RegRex) != 0)
5126 i.rex |= REX_X;
5129 /* RIP addressing for 64bit mode. */
5130 else if (i.base_reg->reg_num == RegRip ||
5131 i.base_reg->reg_num == RegEip)
5133 i.rm.regmem = NO_BASE_REGISTER;
5134 i.types[op].bitfield.disp8 = 0;
5135 i.types[op].bitfield.disp16 = 0;
5136 i.types[op].bitfield.disp32 = 0;
5137 i.types[op].bitfield.disp32s = 1;
5138 i.types[op].bitfield.disp64 = 0;
5139 i.flags[op] |= Operand_PCrel;
5140 if (! i.disp_operands)
5141 fake_zero_displacement = 1;
5143 else if (i.base_reg->reg_type.bitfield.reg16)
5145 switch (i.base_reg->reg_num)
5147 case 3: /* (%bx) */
5148 if (i.index_reg == 0)
5149 i.rm.regmem = 7;
5150 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5151 i.rm.regmem = i.index_reg->reg_num - 6;
5152 break;
5153 case 5: /* (%bp) */
5154 default_seg = &ss;
5155 if (i.index_reg == 0)
5157 i.rm.regmem = 6;
5158 if (operand_type_check (i.types[op], disp) == 0)
5160 /* fake (%bp) into 0(%bp) */
5161 i.types[op].bitfield.disp8 = 1;
5162 fake_zero_displacement = 1;
5165 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5166 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5167 break;
5168 default: /* (%si) -> 4 or (%di) -> 5 */
5169 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5171 i.rm.mode = mode_from_disp_size (i.types[op]);
5173 else /* i.base_reg and 32/64 bit mode */
5175 if (flag_code == CODE_64BIT
5176 && operand_type_check (i.types[op], disp))
5178 i386_operand_type temp;
5179 operand_type_set (&temp, 0);
5180 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5181 i.types[op] = temp;
5182 if (i.prefix[ADDR_PREFIX] == 0)
5183 i.types[op].bitfield.disp32s = 1;
5184 else
5185 i.types[op].bitfield.disp32 = 1;
5188 i.rm.regmem = i.base_reg->reg_num;
5189 if ((i.base_reg->reg_flags & RegRex) != 0)
5190 i.rex |= REX_B;
5191 i.sib.base = i.base_reg->reg_num;
5192 /* x86-64 ignores REX prefix bit here to avoid decoder
5193 complications. */
5194 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5196 default_seg = &ss;
5197 if (i.disp_operands == 0)
5199 fake_zero_displacement = 1;
5200 i.types[op].bitfield.disp8 = 1;
5203 else if (i.base_reg->reg_num == ESP_REG_NUM)
5205 default_seg = &ss;
5207 i.sib.scale = i.log2_scale_factor;
5208 if (i.index_reg == 0)
5210 /* <disp>(%esp) becomes two byte modrm with no index
5211 register. We've already stored the code for esp
5212 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5213 Any base register besides %esp will not use the
5214 extra modrm byte. */
5215 i.sib.index = NO_INDEX_REGISTER;
5217 else
5219 if (i.index_reg->reg_num == RegEiz
5220 || i.index_reg->reg_num == RegRiz)
5221 i.sib.index = NO_INDEX_REGISTER;
5222 else
5223 i.sib.index = i.index_reg->reg_num;
5224 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5225 if ((i.index_reg->reg_flags & RegRex) != 0)
5226 i.rex |= REX_X;
5229 if (i.disp_operands
5230 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5231 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5232 i.rm.mode = 0;
5233 else
5234 i.rm.mode = mode_from_disp_size (i.types[op]);
5237 if (fake_zero_displacement)
5239 /* Fakes a zero displacement assuming that i.types[op]
5240 holds the correct displacement size. */
5241 expressionS *exp;
5243 gas_assert (i.op[op].disps == 0);
5244 exp = &disp_expressions[i.disp_operands++];
5245 i.op[op].disps = exp;
5246 exp->X_op = O_constant;
5247 exp->X_add_number = 0;
5248 exp->X_add_symbol = (symbolS *) 0;
5249 exp->X_op_symbol = (symbolS *) 0;
5252 mem = op;
5254 else
5255 mem = ~0;
5257 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5258 (if any) based on i.tm.extension_opcode. Again, we must be
5259 careful to make sure that segment/control/debug/test/MMX
5260 registers are coded into the i.rm.reg field. */
5261 if (i.reg_operands)
5263 unsigned int op;
5264 unsigned int vex_reg = ~0;
5266 for (op = 0; op < i.operands; op++)
5267 if (i.types[op].bitfield.reg8
5268 || i.types[op].bitfield.reg16
5269 || i.types[op].bitfield.reg32
5270 || i.types[op].bitfield.reg64
5271 || i.types[op].bitfield.regmmx
5272 || i.types[op].bitfield.regxmm
5273 || i.types[op].bitfield.regymm
5274 || i.types[op].bitfield.sreg2
5275 || i.types[op].bitfield.sreg3
5276 || i.types[op].bitfield.control
5277 || i.types[op].bitfield.debug
5278 || i.types[op].bitfield.test)
5279 break;
5281 if (vex_3_sources)
5282 op = dest;
5283 else if (i.tm.opcode_modifier.vexnds)
5285 /* For instructions with VexNDS, the register-only
5286 source operand is encoded in VEX prefix. */
5287 gas_assert (mem != (unsigned int) ~0);
5289 if (op > mem)
5291 vex_reg = op++;
5292 gas_assert (op < i.operands);
5294 else
5296 vex_reg = op + 1;
5297 gas_assert (vex_reg < i.operands);
5300 else if (i.tm.opcode_modifier.vexndd)
5302 /* For instructions with VexNDD, there should be
5303 no memory operand and the register destination
5304 is encoded in VEX prefix. */
5305 gas_assert (i.mem_operands == 0
5306 && (op + 2) == i.operands);
5307 vex_reg = op + 1;
5309 else
5310 gas_assert (op < i.operands);
5312 if (vex_reg != (unsigned int) ~0)
5314 gas_assert (i.reg_operands == 2);
5316 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5317 & regxmm)
5318 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5319 &regymm))
5320 abort ();
5321 i.vex.register_specifier = i.op[vex_reg].regs;
5324 /* If there is an extension opcode to put here, the
5325 register number must be put into the regmem field. */
5326 if (i.tm.extension_opcode != None)
5328 i.rm.regmem = i.op[op].regs->reg_num;
5329 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5330 i.rex |= REX_B;
5332 else
5334 i.rm.reg = i.op[op].regs->reg_num;
5335 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5336 i.rex |= REX_R;
5339 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5340 must set it to 3 to indicate this is a register operand
5341 in the regmem field. */
5342 if (!i.mem_operands)
5343 i.rm.mode = 3;
5346 /* Fill in i.rm.reg field with extension opcode (if any). */
5347 if (i.tm.extension_opcode != None)
5348 i.rm.reg = i.tm.extension_opcode;
5350 return default_seg;
5353 static void
5354 output_branch (void)
5356 char *p;
5357 int code16;
5358 int prefix;
5359 relax_substateT subtype;
5360 symbolS *sym;
5361 offsetT off;
5363 code16 = 0;
5364 if (flag_code == CODE_16BIT)
5365 code16 = CODE16;
5367 prefix = 0;
5368 if (i.prefix[DATA_PREFIX] != 0)
5370 prefix = 1;
5371 i.prefixes -= 1;
5372 code16 ^= CODE16;
5374 /* Pentium4 branch hints. */
5375 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5376 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5378 prefix++;
5379 i.prefixes--;
5381 if (i.prefix[REX_PREFIX] != 0)
5383 prefix++;
5384 i.prefixes--;
5387 if (i.prefixes != 0 && !intel_syntax)
5388 as_warn (_("skipping prefixes on this instruction"));
5390 /* It's always a symbol; End frag & setup for relax.
5391 Make sure there is enough room in this frag for the largest
5392 instruction we may generate in md_convert_frag. This is 2
5393 bytes for the opcode and room for the prefix and largest
5394 displacement. */
5395 frag_grow (prefix + 2 + 4);
5396 /* Prefix and 1 opcode byte go in fr_fix. */
5397 p = frag_more (prefix + 1);
5398 if (i.prefix[DATA_PREFIX] != 0)
5399 *p++ = DATA_PREFIX_OPCODE;
5400 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5401 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5402 *p++ = i.prefix[SEG_PREFIX];
5403 if (i.prefix[REX_PREFIX] != 0)
5404 *p++ = i.prefix[REX_PREFIX];
5405 *p = i.tm.base_opcode;
5407 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5408 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5409 else if (cpu_arch_flags.bitfield.cpui386)
5410 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5411 else
5412 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5413 subtype |= code16;
5415 sym = i.op[0].disps->X_add_symbol;
5416 off = i.op[0].disps->X_add_number;
5418 if (i.op[0].disps->X_op != O_constant
5419 && i.op[0].disps->X_op != O_symbol)
5421 /* Handle complex expressions. */
5422 sym = make_expr_symbol (i.op[0].disps);
5423 off = 0;
5426 /* 1 possible extra opcode + 4 byte displacement go in var part.
5427 Pass reloc in fr_var. */
5428 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5431 static void
5432 output_jump (void)
5434 char *p;
5435 int size;
5436 fixS *fixP;
5438 if (i.tm.opcode_modifier.jumpbyte)
5440 /* This is a loop or jecxz type instruction. */
5441 size = 1;
5442 if (i.prefix[ADDR_PREFIX] != 0)
5444 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5445 i.prefixes -= 1;
5447 /* Pentium4 branch hints. */
5448 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5449 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5451 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5452 i.prefixes--;
5455 else
5457 int code16;
5459 code16 = 0;
5460 if (flag_code == CODE_16BIT)
5461 code16 = CODE16;
5463 if (i.prefix[DATA_PREFIX] != 0)
5465 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5466 i.prefixes -= 1;
5467 code16 ^= CODE16;
5470 size = 4;
5471 if (code16)
5472 size = 2;
5475 if (i.prefix[REX_PREFIX] != 0)
5477 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5478 i.prefixes -= 1;
5481 if (i.prefixes != 0 && !intel_syntax)
5482 as_warn (_("skipping prefixes on this instruction"));
5484 p = frag_more (1 + size);
5485 *p++ = i.tm.base_opcode;
5487 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5488 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5490 /* All jumps handled here are signed, but don't use a signed limit
5491 check for 32 and 16 bit jumps as we want to allow wrap around at
5492 4G and 64k respectively. */
5493 if (size == 1)
5494 fixP->fx_signed = 1;
5497 static void
5498 output_interseg_jump (void)
5500 char *p;
5501 int size;
5502 int prefix;
5503 int code16;
5505 code16 = 0;
5506 if (flag_code == CODE_16BIT)
5507 code16 = CODE16;
5509 prefix = 0;
5510 if (i.prefix[DATA_PREFIX] != 0)
5512 prefix = 1;
5513 i.prefixes -= 1;
5514 code16 ^= CODE16;
5516 if (i.prefix[REX_PREFIX] != 0)
5518 prefix++;
5519 i.prefixes -= 1;
5522 size = 4;
5523 if (code16)
5524 size = 2;
5526 if (i.prefixes != 0 && !intel_syntax)
5527 as_warn (_("skipping prefixes on this instruction"));
5529 /* 1 opcode; 2 segment; offset */
5530 p = frag_more (prefix + 1 + 2 + size);
5532 if (i.prefix[DATA_PREFIX] != 0)
5533 *p++ = DATA_PREFIX_OPCODE;
5535 if (i.prefix[REX_PREFIX] != 0)
5536 *p++ = i.prefix[REX_PREFIX];
5538 *p++ = i.tm.base_opcode;
5539 if (i.op[1].imms->X_op == O_constant)
5541 offsetT n = i.op[1].imms->X_add_number;
5543 if (size == 2
5544 && !fits_in_unsigned_word (n)
5545 && !fits_in_signed_word (n))
5547 as_bad (_("16-bit jump out of range"));
5548 return;
5550 md_number_to_chars (p, n, size);
5552 else
5553 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5554 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5555 if (i.op[0].imms->X_op != O_constant)
5556 as_bad (_("can't handle non absolute segment in `%s'"),
5557 i.tm.name);
5558 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5561 static void
5562 output_insn (void)
5564 fragS *insn_start_frag;
5565 offsetT insn_start_off;
5567 /* Tie dwarf2 debug info to the address at the start of the insn.
5568 We can't do this after the insn has been output as the current
5569 frag may have been closed off. eg. by frag_var. */
5570 dwarf2_emit_insn (0);
5572 insn_start_frag = frag_now;
5573 insn_start_off = frag_now_fix ();
5575 /* Output jumps. */
5576 if (i.tm.opcode_modifier.jump)
5577 output_branch ();
5578 else if (i.tm.opcode_modifier.jumpbyte
5579 || i.tm.opcode_modifier.jumpdword)
5580 output_jump ();
5581 else if (i.tm.opcode_modifier.jumpintersegment)
5582 output_interseg_jump ();
5583 else
5585 /* Output normal instructions here. */
5586 char *p;
5587 unsigned char *q;
5588 unsigned int j;
5589 unsigned int prefix;
5591 /* Since the VEX prefix contains the implicit prefix, we don't
5592 need the explicit prefix. */
5593 if (!i.tm.opcode_modifier.vex)
5595 switch (i.tm.opcode_length)
5597 case 3:
5598 if (i.tm.base_opcode & 0xff000000)
5600 prefix = (i.tm.base_opcode >> 24) & 0xff;
5601 goto check_prefix;
5603 break;
5604 case 2:
5605 if ((i.tm.base_opcode & 0xff0000) != 0)
5607 prefix = (i.tm.base_opcode >> 16) & 0xff;
5608 if (i.tm.cpu_flags.bitfield.cpupadlock)
5610 check_prefix:
5611 if (prefix != REPE_PREFIX_OPCODE
5612 || (i.prefix[LOCKREP_PREFIX]
5613 != REPE_PREFIX_OPCODE))
5614 add_prefix (prefix);
5616 else
5617 add_prefix (prefix);
5619 break;
5620 case 1:
5621 break;
5622 default:
5623 abort ();
5626 /* The prefix bytes. */
5627 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5628 if (*q)
5629 FRAG_APPEND_1_CHAR (*q);
5632 if (i.tm.opcode_modifier.vex)
5634 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5635 if (*q)
5636 switch (j)
5638 case REX_PREFIX:
5639 /* REX byte is encoded in VEX prefix. */
5640 break;
5641 case SEG_PREFIX:
5642 case ADDR_PREFIX:
5643 FRAG_APPEND_1_CHAR (*q);
5644 break;
5645 default:
5646 /* There should be no other prefixes for instructions
5647 with VEX prefix. */
5648 abort ();
5651 /* Now the VEX prefix. */
5652 p = frag_more (i.vex.length);
5653 for (j = 0; j < i.vex.length; j++)
5654 p[j] = i.vex.bytes[j];
5657 /* Now the opcode; be careful about word order here! */
5658 if (i.tm.opcode_length == 1)
5660 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5662 else
5664 switch (i.tm.opcode_length)
5666 case 3:
5667 p = frag_more (3);
5668 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5669 break;
5670 case 2:
5671 p = frag_more (2);
5672 break;
5673 default:
5674 abort ();
5675 break;
5678 /* Put out high byte first: can't use md_number_to_chars! */
5679 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5680 *p = i.tm.base_opcode & 0xff;
5683 /* Now the modrm byte and sib byte (if present). */
5684 if (i.tm.opcode_modifier.modrm)
5686 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5687 | i.rm.reg << 3
5688 | i.rm.mode << 6));
5689 /* If i.rm.regmem == ESP (4)
5690 && i.rm.mode != (Register mode)
5691 && not 16 bit
5692 ==> need second modrm byte. */
5693 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5694 && i.rm.mode != 3
5695 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5696 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5697 | i.sib.index << 3
5698 | i.sib.scale << 6));
5701 if (i.disp_operands)
5702 output_disp (insn_start_frag, insn_start_off);
5704 if (i.imm_operands)
5705 output_imm (insn_start_frag, insn_start_off);
5708 #ifdef DEBUG386
5709 if (flag_debug)
5711 pi ("" /*line*/, &i);
5713 #endif /* DEBUG386 */
5716 /* Return the size of the displacement operand N. */
5718 static int
5719 disp_size (unsigned int n)
5721 int size = 4;
5722 if (i.types[n].bitfield.disp64)
5723 size = 8;
5724 else if (i.types[n].bitfield.disp8)
5725 size = 1;
5726 else if (i.types[n].bitfield.disp16)
5727 size = 2;
5728 return size;
5731 /* Return the size of the immediate operand N. */
5733 static int
5734 imm_size (unsigned int n)
5736 int size = 4;
5737 if (i.types[n].bitfield.imm64)
5738 size = 8;
5739 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5740 size = 1;
5741 else if (i.types[n].bitfield.imm16)
5742 size = 2;
5743 return size;
5746 static void
5747 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5749 char *p;
5750 unsigned int n;
5752 for (n = 0; n < i.operands; n++)
5754 if (operand_type_check (i.types[n], disp))
5756 if (i.op[n].disps->X_op == O_constant)
5758 int size = disp_size (n);
5759 offsetT val;
5761 val = offset_in_range (i.op[n].disps->X_add_number,
5762 size);
5763 p = frag_more (size);
5764 md_number_to_chars (p, val, size);
5766 else
5768 enum bfd_reloc_code_real reloc_type;
5769 int size = disp_size (n);
5770 int sign = i.types[n].bitfield.disp32s;
5771 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5773 /* We can't have 8 bit displacement here. */
5774 gas_assert (!i.types[n].bitfield.disp8);
5776 /* The PC relative address is computed relative
5777 to the instruction boundary, so in case immediate
5778 fields follows, we need to adjust the value. */
5779 if (pcrel && i.imm_operands)
5781 unsigned int n1;
5782 int sz = 0;
5784 for (n1 = 0; n1 < i.operands; n1++)
5785 if (operand_type_check (i.types[n1], imm))
5787 /* Only one immediate is allowed for PC
5788 relative address. */
5789 gas_assert (sz == 0);
5790 sz = imm_size (n1);
5791 i.op[n].disps->X_add_number -= sz;
5793 /* We should find the immediate. */
5794 gas_assert (sz != 0);
5797 p = frag_more (size);
5798 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5799 if (GOT_symbol
5800 && GOT_symbol == i.op[n].disps->X_add_symbol
5801 && (((reloc_type == BFD_RELOC_32
5802 || reloc_type == BFD_RELOC_X86_64_32S
5803 || (reloc_type == BFD_RELOC_64
5804 && object_64bit))
5805 && (i.op[n].disps->X_op == O_symbol
5806 || (i.op[n].disps->X_op == O_add
5807 && ((symbol_get_value_expression
5808 (i.op[n].disps->X_op_symbol)->X_op)
5809 == O_subtract))))
5810 || reloc_type == BFD_RELOC_32_PCREL))
5812 offsetT add;
5814 if (insn_start_frag == frag_now)
5815 add = (p - frag_now->fr_literal) - insn_start_off;
5816 else
5818 fragS *fr;
5820 add = insn_start_frag->fr_fix - insn_start_off;
5821 for (fr = insn_start_frag->fr_next;
5822 fr && fr != frag_now; fr = fr->fr_next)
5823 add += fr->fr_fix;
5824 add += p - frag_now->fr_literal;
5827 if (!object_64bit)
5829 reloc_type = BFD_RELOC_386_GOTPC;
5830 i.op[n].imms->X_add_number += add;
5832 else if (reloc_type == BFD_RELOC_64)
5833 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5834 else
5835 /* Don't do the adjustment for x86-64, as there
5836 the pcrel addressing is relative to the _next_
5837 insn, and that is taken care of in other code. */
5838 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5840 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5841 i.op[n].disps, pcrel, reloc_type);
5847 static void
5848 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5850 char *p;
5851 unsigned int n;
5853 for (n = 0; n < i.operands; n++)
5855 if (operand_type_check (i.types[n], imm))
5857 if (i.op[n].imms->X_op == O_constant)
5859 int size = imm_size (n);
5860 offsetT val;
5862 val = offset_in_range (i.op[n].imms->X_add_number,
5863 size);
5864 p = frag_more (size);
5865 md_number_to_chars (p, val, size);
5867 else
5869 /* Not absolute_section.
5870 Need a 32-bit fixup (don't support 8bit
5871 non-absolute imms). Try to support other
5872 sizes ... */
5873 enum bfd_reloc_code_real reloc_type;
5874 int size = imm_size (n);
5875 int sign;
5877 if (i.types[n].bitfield.imm32s
5878 && (i.suffix == QWORD_MNEM_SUFFIX
5879 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5880 sign = 1;
5881 else
5882 sign = 0;
5884 p = frag_more (size);
5885 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5887 /* This is tough to explain. We end up with this one if we
5888 * have operands that look like
5889 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5890 * obtain the absolute address of the GOT, and it is strongly
5891 * preferable from a performance point of view to avoid using
5892 * a runtime relocation for this. The actual sequence of
5893 * instructions often look something like:
5895 * call .L66
5896 * .L66:
5897 * popl %ebx
5898 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5900 * The call and pop essentially return the absolute address
5901 * of the label .L66 and store it in %ebx. The linker itself
5902 * will ultimately change the first operand of the addl so
5903 * that %ebx points to the GOT, but to keep things simple, the
5904 * .o file must have this operand set so that it generates not
5905 * the absolute address of .L66, but the absolute address of
5906 * itself. This allows the linker itself simply treat a GOTPC
5907 * relocation as asking for a pcrel offset to the GOT to be
5908 * added in, and the addend of the relocation is stored in the
5909 * operand field for the instruction itself.
5911 * Our job here is to fix the operand so that it would add
5912 * the correct offset so that %ebx would point to itself. The
5913 * thing that is tricky is that .-.L66 will point to the
5914 * beginning of the instruction, so we need to further modify
5915 * the operand so that it will point to itself. There are
5916 * other cases where you have something like:
5918 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5920 * and here no correction would be required. Internally in
5921 * the assembler we treat operands of this form as not being
5922 * pcrel since the '.' is explicitly mentioned, and I wonder
5923 * whether it would simplify matters to do it this way. Who
5924 * knows. In earlier versions of the PIC patches, the
5925 * pcrel_adjust field was used to store the correction, but
5926 * since the expression is not pcrel, I felt it would be
5927 * confusing to do it this way. */
5929 if ((reloc_type == BFD_RELOC_32
5930 || reloc_type == BFD_RELOC_X86_64_32S
5931 || reloc_type == BFD_RELOC_64)
5932 && GOT_symbol
5933 && GOT_symbol == i.op[n].imms->X_add_symbol
5934 && (i.op[n].imms->X_op == O_symbol
5935 || (i.op[n].imms->X_op == O_add
5936 && ((symbol_get_value_expression
5937 (i.op[n].imms->X_op_symbol)->X_op)
5938 == O_subtract))))
5940 offsetT add;
5942 if (insn_start_frag == frag_now)
5943 add = (p - frag_now->fr_literal) - insn_start_off;
5944 else
5946 fragS *fr;
5948 add = insn_start_frag->fr_fix - insn_start_off;
5949 for (fr = insn_start_frag->fr_next;
5950 fr && fr != frag_now; fr = fr->fr_next)
5951 add += fr->fr_fix;
5952 add += p - frag_now->fr_literal;
5955 if (!object_64bit)
5956 reloc_type = BFD_RELOC_386_GOTPC;
5957 else if (size == 4)
5958 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5959 else if (size == 8)
5960 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5961 i.op[n].imms->X_add_number += add;
5963 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5964 i.op[n].imms, 0, reloc_type);
5970 /* x86_cons_fix_new is called via the expression parsing code when a
5971 reloc is needed. We use this hook to get the correct .got reloc. */
5972 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5973 static int cons_sign = -1;
5975 void
5976 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5977 expressionS *exp)
5979 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5981 got_reloc = NO_RELOC;
5983 #ifdef TE_PE
5984 if (exp->X_op == O_secrel)
5986 exp->X_op = O_symbol;
5987 r = BFD_RELOC_32_SECREL;
5989 #endif
5991 fix_new_exp (frag, off, len, exp, 0, r);
5994 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5995 # define lex_got(reloc, adjust, types) NULL
5996 #else
5997 /* Parse operands of the form
5998 <symbol>@GOTOFF+<nnn>
5999 and similar .plt or .got references.
6001 If we find one, set up the correct relocation in RELOC and copy the
6002 input string, minus the `@GOTOFF' into a malloc'd buffer for
6003 parsing by the calling routine. Return this buffer, and if ADJUST
6004 is non-null set it to the length of the string we removed from the
6005 input line. Otherwise return NULL. */
6006 static char *
6007 lex_got (enum bfd_reloc_code_real *reloc,
6008 int *adjust,
6009 i386_operand_type *types)
6011 /* Some of the relocations depend on the size of what field is to
6012 be relocated. But in our callers i386_immediate and i386_displacement
6013 we don't yet know the operand size (this will be set by insn
6014 matching). Hence we record the word32 relocation here,
6015 and adjust the reloc according to the real size in reloc(). */
6016 static const struct {
6017 const char *str;
6018 const enum bfd_reloc_code_real rel[2];
6019 const i386_operand_type types64;
6020 } gotrel[] = {
6021 { "PLTOFF", { 0,
6022 BFD_RELOC_X86_64_PLTOFF64 },
6023 OPERAND_TYPE_IMM64 },
6024 { "PLT", { BFD_RELOC_386_PLT32,
6025 BFD_RELOC_X86_64_PLT32 },
6026 OPERAND_TYPE_IMM32_32S_DISP32 },
6027 { "GOTPLT", { 0,
6028 BFD_RELOC_X86_64_GOTPLT64 },
6029 OPERAND_TYPE_IMM64_DISP64 },
6030 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
6031 BFD_RELOC_X86_64_GOTOFF64 },
6032 OPERAND_TYPE_IMM64_DISP64 },
6033 { "GOTPCREL", { 0,
6034 BFD_RELOC_X86_64_GOTPCREL },
6035 OPERAND_TYPE_IMM32_32S_DISP32 },
6036 { "TLSGD", { BFD_RELOC_386_TLS_GD,
6037 BFD_RELOC_X86_64_TLSGD },
6038 OPERAND_TYPE_IMM32_32S_DISP32 },
6039 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
6040 0 },
6041 OPERAND_TYPE_NONE },
6042 { "TLSLD", { 0,
6043 BFD_RELOC_X86_64_TLSLD },
6044 OPERAND_TYPE_IMM32_32S_DISP32 },
6045 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
6046 BFD_RELOC_X86_64_GOTTPOFF },
6047 OPERAND_TYPE_IMM32_32S_DISP32 },
6048 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
6049 BFD_RELOC_X86_64_TPOFF32 },
6050 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6051 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
6052 0 },
6053 OPERAND_TYPE_NONE },
6054 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
6055 BFD_RELOC_X86_64_DTPOFF32 },
6057 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6058 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
6059 0 },
6060 OPERAND_TYPE_NONE },
6061 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
6062 0 },
6063 OPERAND_TYPE_NONE },
6064 { "GOT", { BFD_RELOC_386_GOT32,
6065 BFD_RELOC_X86_64_GOT32 },
6066 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6067 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
6068 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6069 OPERAND_TYPE_IMM32_32S_DISP32 },
6070 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
6071 BFD_RELOC_X86_64_TLSDESC_CALL },
6072 OPERAND_TYPE_IMM32_32S_DISP32 },
6074 char *cp;
6075 unsigned int j;
6077 if (!IS_ELF)
6078 return NULL;
6080 for (cp = input_line_pointer; *cp != '@'; cp++)
6081 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6082 return NULL;
6084 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6086 int len;
6088 len = strlen (gotrel[j].str);
6089 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6091 if (gotrel[j].rel[object_64bit] != 0)
6093 int first, second;
6094 char *tmpbuf, *past_reloc;
6096 *reloc = gotrel[j].rel[object_64bit];
6097 if (adjust)
6098 *adjust = len;
6100 if (types)
6102 if (flag_code != CODE_64BIT)
6104 types->bitfield.imm32 = 1;
6105 types->bitfield.disp32 = 1;
6107 else
6108 *types = gotrel[j].types64;
6111 if (GOT_symbol == NULL)
6112 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6114 /* The length of the first part of our input line. */
6115 first = cp - input_line_pointer;
6117 /* The second part goes from after the reloc token until
6118 (and including) an end_of_line char or comma. */
6119 past_reloc = cp + 1 + len;
6120 cp = past_reloc;
6121 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6122 ++cp;
6123 second = cp + 1 - past_reloc;
6125 /* Allocate and copy string. The trailing NUL shouldn't
6126 be necessary, but be safe. */
6127 tmpbuf = xmalloc (first + second + 2);
6128 memcpy (tmpbuf, input_line_pointer, first);
6129 if (second != 0 && *past_reloc != ' ')
6130 /* Replace the relocation token with ' ', so that
6131 errors like foo@GOTOFF1 will be detected. */
6132 tmpbuf[first++] = ' ';
6133 memcpy (tmpbuf + first, past_reloc, second);
6134 tmpbuf[first + second] = '\0';
6135 return tmpbuf;
6138 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6139 gotrel[j].str, 1 << (5 + object_64bit));
6140 return NULL;
6144 /* Might be a symbol version string. Don't as_bad here. */
6145 return NULL;
6148 void
6149 x86_cons (expressionS *exp, int size)
6151 intel_syntax = -intel_syntax;
6153 if (size == 4 || (object_64bit && size == 8))
6155 /* Handle @GOTOFF and the like in an expression. */
6156 char *save;
6157 char *gotfree_input_line;
6158 int adjust;
6160 save = input_line_pointer;
6161 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6162 if (gotfree_input_line)
6163 input_line_pointer = gotfree_input_line;
6165 expression (exp);
6167 if (gotfree_input_line)
6169 /* expression () has merrily parsed up to the end of line,
6170 or a comma - in the wrong buffer. Transfer how far
6171 input_line_pointer has moved to the right buffer. */
6172 input_line_pointer = (save
6173 + (input_line_pointer - gotfree_input_line)
6174 + adjust);
6175 free (gotfree_input_line);
6176 if (exp->X_op == O_constant
6177 || exp->X_op == O_absent
6178 || exp->X_op == O_illegal
6179 || exp->X_op == O_register
6180 || exp->X_op == O_big)
6182 char c = *input_line_pointer;
6183 *input_line_pointer = 0;
6184 as_bad (_("missing or invalid expression `%s'"), save);
6185 *input_line_pointer = c;
6189 else
6190 expression (exp);
6192 intel_syntax = -intel_syntax;
6194 if (intel_syntax)
6195 i386_intel_simplify (exp);
6197 #endif
6199 static void signed_cons (int size)
6201 if (flag_code == CODE_64BIT)
6202 cons_sign = 1;
6203 cons (size);
6204 cons_sign = -1;
6207 #ifdef TE_PE
6208 static void
6209 pe_directive_secrel (dummy)
6210 int dummy ATTRIBUTE_UNUSED;
6212 expressionS exp;
6216 expression (&exp);
6217 if (exp.X_op == O_symbol)
6218 exp.X_op = O_secrel;
6220 emit_expr (&exp, 4);
6222 while (*input_line_pointer++ == ',');
6224 input_line_pointer--;
6225 demand_empty_rest_of_line ();
6227 #endif
6229 static int
6230 i386_immediate (char *imm_start)
6232 char *save_input_line_pointer;
6233 char *gotfree_input_line;
6234 segT exp_seg = 0;
6235 expressionS *exp;
6236 i386_operand_type types;
6238 operand_type_set (&types, ~0);
6240 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6242 as_bad (_("at most %d immediate operands are allowed"),
6243 MAX_IMMEDIATE_OPERANDS);
6244 return 0;
6247 exp = &im_expressions[i.imm_operands++];
6248 i.op[this_operand].imms = exp;
6250 if (is_space_char (*imm_start))
6251 ++imm_start;
6253 save_input_line_pointer = input_line_pointer;
6254 input_line_pointer = imm_start;
6256 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6257 if (gotfree_input_line)
6258 input_line_pointer = gotfree_input_line;
6260 exp_seg = expression (exp);
6262 SKIP_WHITESPACE ();
6263 if (*input_line_pointer)
6264 as_bad (_("junk `%s' after expression"), input_line_pointer);
6266 input_line_pointer = save_input_line_pointer;
6267 if (gotfree_input_line)
6269 free (gotfree_input_line);
6271 if (exp->X_op == O_constant || exp->X_op == O_register)
6272 exp->X_op = O_illegal;
6275 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6278 static int
6279 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6280 i386_operand_type types, const char *imm_start)
6282 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6284 as_bad (_("missing or invalid immediate expression `%s'"),
6285 imm_start);
6286 return 0;
6288 else if (exp->X_op == O_constant)
6290 /* Size it properly later. */
6291 i.types[this_operand].bitfield.imm64 = 1;
6292 /* If BFD64, sign extend val. */
6293 if (!use_rela_relocations
6294 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6295 exp->X_add_number
6296 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6298 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6299 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6300 && exp_seg != absolute_section
6301 && exp_seg != text_section
6302 && exp_seg != data_section
6303 && exp_seg != bss_section
6304 && exp_seg != undefined_section
6305 && !bfd_is_com_section (exp_seg))
6307 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6308 return 0;
6310 #endif
6311 else if (!intel_syntax && exp->X_op == O_register)
6313 as_bad (_("illegal immediate register operand %s"), imm_start);
6314 return 0;
6316 else
6318 /* This is an address. The size of the address will be
6319 determined later, depending on destination register,
6320 suffix, or the default for the section. */
6321 i.types[this_operand].bitfield.imm8 = 1;
6322 i.types[this_operand].bitfield.imm16 = 1;
6323 i.types[this_operand].bitfield.imm32 = 1;
6324 i.types[this_operand].bitfield.imm32s = 1;
6325 i.types[this_operand].bitfield.imm64 = 1;
6326 i.types[this_operand] = operand_type_and (i.types[this_operand],
6327 types);
6330 return 1;
6333 static char *
6334 i386_scale (char *scale)
6336 offsetT val;
6337 char *save = input_line_pointer;
6339 input_line_pointer = scale;
6340 val = get_absolute_expression ();
6342 switch (val)
6344 case 1:
6345 i.log2_scale_factor = 0;
6346 break;
6347 case 2:
6348 i.log2_scale_factor = 1;
6349 break;
6350 case 4:
6351 i.log2_scale_factor = 2;
6352 break;
6353 case 8:
6354 i.log2_scale_factor = 3;
6355 break;
6356 default:
6358 char sep = *input_line_pointer;
6360 *input_line_pointer = '\0';
6361 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6362 scale);
6363 *input_line_pointer = sep;
6364 input_line_pointer = save;
6365 return NULL;
6368 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6370 as_warn (_("scale factor of %d without an index register"),
6371 1 << i.log2_scale_factor);
6372 i.log2_scale_factor = 0;
6374 scale = input_line_pointer;
6375 input_line_pointer = save;
6376 return scale;
6379 static int
6380 i386_displacement (char *disp_start, char *disp_end)
6382 expressionS *exp;
6383 segT exp_seg = 0;
6384 char *save_input_line_pointer;
6385 char *gotfree_input_line;
6386 int override;
6387 i386_operand_type bigdisp, types = anydisp;
6388 int ret;
6390 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6392 as_bad (_("at most %d displacement operands are allowed"),
6393 MAX_MEMORY_OPERANDS);
6394 return 0;
6397 operand_type_set (&bigdisp, 0);
6398 if ((i.types[this_operand].bitfield.jumpabsolute)
6399 || (!current_templates->start->opcode_modifier.jump
6400 && !current_templates->start->opcode_modifier.jumpdword))
6402 bigdisp.bitfield.disp32 = 1;
6403 override = (i.prefix[ADDR_PREFIX] != 0);
6404 if (flag_code == CODE_64BIT)
6406 if (!override)
6408 bigdisp.bitfield.disp32s = 1;
6409 bigdisp.bitfield.disp64 = 1;
6412 else if ((flag_code == CODE_16BIT) ^ override)
6414 bigdisp.bitfield.disp32 = 0;
6415 bigdisp.bitfield.disp16 = 1;
6418 else
6420 /* For PC-relative branches, the width of the displacement
6421 is dependent upon data size, not address size. */
6422 override = (i.prefix[DATA_PREFIX] != 0);
6423 if (flag_code == CODE_64BIT)
6425 if (override || i.suffix == WORD_MNEM_SUFFIX)
6426 bigdisp.bitfield.disp16 = 1;
6427 else
6429 bigdisp.bitfield.disp32 = 1;
6430 bigdisp.bitfield.disp32s = 1;
6433 else
6435 if (!override)
6436 override = (i.suffix == (flag_code != CODE_16BIT
6437 ? WORD_MNEM_SUFFIX
6438 : LONG_MNEM_SUFFIX));
6439 bigdisp.bitfield.disp32 = 1;
6440 if ((flag_code == CODE_16BIT) ^ override)
6442 bigdisp.bitfield.disp32 = 0;
6443 bigdisp.bitfield.disp16 = 1;
6447 i.types[this_operand] = operand_type_or (i.types[this_operand],
6448 bigdisp);
6450 exp = &disp_expressions[i.disp_operands];
6451 i.op[this_operand].disps = exp;
6452 i.disp_operands++;
6453 save_input_line_pointer = input_line_pointer;
6454 input_line_pointer = disp_start;
6455 END_STRING_AND_SAVE (disp_end);
6457 #ifndef GCC_ASM_O_HACK
6458 #define GCC_ASM_O_HACK 0
6459 #endif
6460 #if GCC_ASM_O_HACK
6461 END_STRING_AND_SAVE (disp_end + 1);
6462 if (i.types[this_operand].bitfield.baseIndex
6463 && displacement_string_end[-1] == '+')
6465 /* This hack is to avoid a warning when using the "o"
6466 constraint within gcc asm statements.
6467 For instance:
6469 #define _set_tssldt_desc(n,addr,limit,type) \
6470 __asm__ __volatile__ ( \
6471 "movw %w2,%0\n\t" \
6472 "movw %w1,2+%0\n\t" \
6473 "rorl $16,%1\n\t" \
6474 "movb %b1,4+%0\n\t" \
6475 "movb %4,5+%0\n\t" \
6476 "movb $0,6+%0\n\t" \
6477 "movb %h1,7+%0\n\t" \
6478 "rorl $16,%1" \
6479 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6481 This works great except that the output assembler ends
6482 up looking a bit weird if it turns out that there is
6483 no offset. You end up producing code that looks like:
6485 #APP
6486 movw $235,(%eax)
6487 movw %dx,2+(%eax)
6488 rorl $16,%edx
6489 movb %dl,4+(%eax)
6490 movb $137,5+(%eax)
6491 movb $0,6+(%eax)
6492 movb %dh,7+(%eax)
6493 rorl $16,%edx
6494 #NO_APP
6496 So here we provide the missing zero. */
6498 *displacement_string_end = '0';
6500 #endif
6501 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6502 if (gotfree_input_line)
6503 input_line_pointer = gotfree_input_line;
6505 exp_seg = expression (exp);
6507 SKIP_WHITESPACE ();
6508 if (*input_line_pointer)
6509 as_bad (_("junk `%s' after expression"), input_line_pointer);
6510 #if GCC_ASM_O_HACK
6511 RESTORE_END_STRING (disp_end + 1);
6512 #endif
6513 input_line_pointer = save_input_line_pointer;
6514 if (gotfree_input_line)
6516 free (gotfree_input_line);
6518 if (exp->X_op == O_constant || exp->X_op == O_register)
6519 exp->X_op = O_illegal;
6522 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6524 RESTORE_END_STRING (disp_end);
6526 return ret;
6529 static int
6530 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6531 i386_operand_type types, const char *disp_start)
6533 i386_operand_type bigdisp;
6534 int ret = 1;
6536 /* We do this to make sure that the section symbol is in
6537 the symbol table. We will ultimately change the relocation
6538 to be relative to the beginning of the section. */
6539 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6540 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6541 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6543 if (exp->X_op != O_symbol)
6544 goto inv_disp;
6546 if (S_IS_LOCAL (exp->X_add_symbol)
6547 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6548 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6549 exp->X_op = O_subtract;
6550 exp->X_op_symbol = GOT_symbol;
6551 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6552 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6553 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6554 i.reloc[this_operand] = BFD_RELOC_64;
6555 else
6556 i.reloc[this_operand] = BFD_RELOC_32;
6559 else if (exp->X_op == O_absent
6560 || exp->X_op == O_illegal
6561 || exp->X_op == O_big)
6563 inv_disp:
6564 as_bad (_("missing or invalid displacement expression `%s'"),
6565 disp_start);
6566 ret = 0;
6569 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6570 else if (exp->X_op != O_constant
6571 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6572 && exp_seg != absolute_section
6573 && exp_seg != text_section
6574 && exp_seg != data_section
6575 && exp_seg != bss_section
6576 && exp_seg != undefined_section
6577 && !bfd_is_com_section (exp_seg))
6579 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6580 ret = 0;
6582 #endif
6584 /* Check if this is a displacement only operand. */
6585 bigdisp = i.types[this_operand];
6586 bigdisp.bitfield.disp8 = 0;
6587 bigdisp.bitfield.disp16 = 0;
6588 bigdisp.bitfield.disp32 = 0;
6589 bigdisp.bitfield.disp32s = 0;
6590 bigdisp.bitfield.disp64 = 0;
6591 if (operand_type_all_zero (&bigdisp))
6592 i.types[this_operand] = operand_type_and (i.types[this_operand],
6593 types);
6595 return ret;
6598 /* Make sure the memory operand we've been dealt is valid.
6599 Return 1 on success, 0 on a failure. */
6601 static int
6602 i386_index_check (const char *operand_string)
6604 int ok;
6605 const char *kind = "base/index";
6606 #if INFER_ADDR_PREFIX
6607 int fudged = 0;
6609 tryprefix:
6610 #endif
6611 ok = 1;
6612 if (current_templates->start->opcode_modifier.isstring
6613 && !current_templates->start->opcode_modifier.immext
6614 && (current_templates->end[-1].opcode_modifier.isstring
6615 || i.mem_operands))
6617 /* Memory operands of string insns are special in that they only allow
6618 a single register (rDI, rSI, or rBX) as their memory address. */
6619 unsigned int expected;
6621 kind = "string address";
6623 if (current_templates->start->opcode_modifier.w)
6625 i386_operand_type type = current_templates->end[-1].operand_types[0];
6627 if (!type.bitfield.baseindex
6628 || ((!i.mem_operands != !intel_syntax)
6629 && current_templates->end[-1].operand_types[1]
6630 .bitfield.baseindex))
6631 type = current_templates->end[-1].operand_types[1];
6632 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6634 else
6635 expected = 3 /* rBX */;
6637 if (!i.base_reg || i.index_reg
6638 || operand_type_check (i.types[this_operand], disp))
6639 ok = -1;
6640 else if (!(flag_code == CODE_64BIT
6641 ? i.prefix[ADDR_PREFIX]
6642 ? i.base_reg->reg_type.bitfield.reg32
6643 : i.base_reg->reg_type.bitfield.reg64
6644 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6645 ? i.base_reg->reg_type.bitfield.reg32
6646 : i.base_reg->reg_type.bitfield.reg16))
6647 ok = 0;
6648 else if (i.base_reg->reg_num != expected)
6649 ok = -1;
6651 if (ok < 0)
6653 unsigned int j;
6655 for (j = 0; j < i386_regtab_size; ++j)
6656 if ((flag_code == CODE_64BIT
6657 ? i.prefix[ADDR_PREFIX]
6658 ? i386_regtab[j].reg_type.bitfield.reg32
6659 : i386_regtab[j].reg_type.bitfield.reg64
6660 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6661 ? i386_regtab[j].reg_type.bitfield.reg32
6662 : i386_regtab[j].reg_type.bitfield.reg16)
6663 && i386_regtab[j].reg_num == expected)
6664 break;
6665 gas_assert (j < i386_regtab_size);
6666 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6667 operand_string,
6668 intel_syntax ? '[' : '(',
6669 register_prefix,
6670 i386_regtab[j].reg_name,
6671 intel_syntax ? ']' : ')');
6672 ok = 1;
6675 else if (flag_code == CODE_64BIT)
6677 if ((i.base_reg
6678 && ((i.prefix[ADDR_PREFIX] == 0
6679 && !i.base_reg->reg_type.bitfield.reg64)
6680 || (i.prefix[ADDR_PREFIX]
6681 && !i.base_reg->reg_type.bitfield.reg32))
6682 && (i.index_reg
6683 || i.base_reg->reg_num !=
6684 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6685 || (i.index_reg
6686 && (!i.index_reg->reg_type.bitfield.baseindex
6687 || (i.prefix[ADDR_PREFIX] == 0
6688 && i.index_reg->reg_num != RegRiz
6689 && !i.index_reg->reg_type.bitfield.reg64
6691 || (i.prefix[ADDR_PREFIX]
6692 && i.index_reg->reg_num != RegEiz
6693 && !i.index_reg->reg_type.bitfield.reg32))))
6694 ok = 0;
6696 else
6698 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6700 /* 16bit checks. */
6701 if ((i.base_reg
6702 && (!i.base_reg->reg_type.bitfield.reg16
6703 || !i.base_reg->reg_type.bitfield.baseindex))
6704 || (i.index_reg
6705 && (!i.index_reg->reg_type.bitfield.reg16
6706 || !i.index_reg->reg_type.bitfield.baseindex
6707 || !(i.base_reg
6708 && i.base_reg->reg_num < 6
6709 && i.index_reg->reg_num >= 6
6710 && i.log2_scale_factor == 0))))
6711 ok = 0;
6713 else
6715 /* 32bit checks. */
6716 if ((i.base_reg
6717 && !i.base_reg->reg_type.bitfield.reg32)
6718 || (i.index_reg
6719 && ((!i.index_reg->reg_type.bitfield.reg32
6720 && i.index_reg->reg_num != RegEiz)
6721 || !i.index_reg->reg_type.bitfield.baseindex)))
6722 ok = 0;
6725 if (!ok)
6727 #if INFER_ADDR_PREFIX
6728 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
6730 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6731 i.prefixes += 1;
6732 /* Change the size of any displacement too. At most one of
6733 Disp16 or Disp32 is set.
6734 FIXME. There doesn't seem to be any real need for separate
6735 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6736 Removing them would probably clean up the code quite a lot. */
6737 if (flag_code != CODE_64BIT
6738 && (i.types[this_operand].bitfield.disp16
6739 || i.types[this_operand].bitfield.disp32))
6740 i.types[this_operand]
6741 = operand_type_xor (i.types[this_operand], disp16_32);
6742 fudged = 1;
6743 goto tryprefix;
6745 if (fudged)
6746 as_bad (_("`%s' is not a valid %s expression"),
6747 operand_string,
6748 kind);
6749 else
6750 #endif
6751 as_bad (_("`%s' is not a valid %s-bit %s expression"),
6752 operand_string,
6753 flag_code_names[i.prefix[ADDR_PREFIX]
6754 ? flag_code == CODE_32BIT
6755 ? CODE_16BIT
6756 : CODE_32BIT
6757 : flag_code],
6758 kind);
6760 return ok;
6763 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
6764 on error. */
6766 static int
6767 i386_att_operand (char *operand_string)
6769 const reg_entry *r;
6770 char *end_op;
6771 char *op_string = operand_string;
6773 if (is_space_char (*op_string))
6774 ++op_string;
6776 /* We check for an absolute prefix (differentiating,
6777 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6778 if (*op_string == ABSOLUTE_PREFIX)
6780 ++op_string;
6781 if (is_space_char (*op_string))
6782 ++op_string;
6783 i.types[this_operand].bitfield.jumpabsolute = 1;
6786 /* Check if operand is a register. */
6787 if ((r = parse_register (op_string, &end_op)) != NULL)
6789 i386_operand_type temp;
6791 /* Check for a segment override by searching for ':' after a
6792 segment register. */
6793 op_string = end_op;
6794 if (is_space_char (*op_string))
6795 ++op_string;
6796 if (*op_string == ':'
6797 && (r->reg_type.bitfield.sreg2
6798 || r->reg_type.bitfield.sreg3))
6800 switch (r->reg_num)
6802 case 0:
6803 i.seg[i.mem_operands] = &es;
6804 break;
6805 case 1:
6806 i.seg[i.mem_operands] = &cs;
6807 break;
6808 case 2:
6809 i.seg[i.mem_operands] = &ss;
6810 break;
6811 case 3:
6812 i.seg[i.mem_operands] = &ds;
6813 break;
6814 case 4:
6815 i.seg[i.mem_operands] = &fs;
6816 break;
6817 case 5:
6818 i.seg[i.mem_operands] = &gs;
6819 break;
6822 /* Skip the ':' and whitespace. */
6823 ++op_string;
6824 if (is_space_char (*op_string))
6825 ++op_string;
6827 if (!is_digit_char (*op_string)
6828 && !is_identifier_char (*op_string)
6829 && *op_string != '('
6830 && *op_string != ABSOLUTE_PREFIX)
6832 as_bad (_("bad memory operand `%s'"), op_string);
6833 return 0;
6835 /* Handle case of %es:*foo. */
6836 if (*op_string == ABSOLUTE_PREFIX)
6838 ++op_string;
6839 if (is_space_char (*op_string))
6840 ++op_string;
6841 i.types[this_operand].bitfield.jumpabsolute = 1;
6843 goto do_memory_reference;
6845 if (*op_string)
6847 as_bad (_("junk `%s' after register"), op_string);
6848 return 0;
6850 temp = r->reg_type;
6851 temp.bitfield.baseindex = 0;
6852 i.types[this_operand] = operand_type_or (i.types[this_operand],
6853 temp);
6854 i.types[this_operand].bitfield.unspecified = 0;
6855 i.op[this_operand].regs = r;
6856 i.reg_operands++;
6858 else if (*op_string == REGISTER_PREFIX)
6860 as_bad (_("bad register name `%s'"), op_string);
6861 return 0;
6863 else if (*op_string == IMMEDIATE_PREFIX)
6865 ++op_string;
6866 if (i.types[this_operand].bitfield.jumpabsolute)
6868 as_bad (_("immediate operand illegal with absolute jump"));
6869 return 0;
6871 if (!i386_immediate (op_string))
6872 return 0;
6874 else if (is_digit_char (*op_string)
6875 || is_identifier_char (*op_string)
6876 || *op_string == '(')
6878 /* This is a memory reference of some sort. */
6879 char *base_string;
6881 /* Start and end of displacement string expression (if found). */
6882 char *displacement_string_start;
6883 char *displacement_string_end;
6885 do_memory_reference:
6886 if ((i.mem_operands == 1
6887 && !current_templates->start->opcode_modifier.isstring)
6888 || i.mem_operands == 2)
6890 as_bad (_("too many memory references for `%s'"),
6891 current_templates->start->name);
6892 return 0;
6895 /* Check for base index form. We detect the base index form by
6896 looking for an ')' at the end of the operand, searching
6897 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6898 after the '('. */
6899 base_string = op_string + strlen (op_string);
6901 --base_string;
6902 if (is_space_char (*base_string))
6903 --base_string;
6905 /* If we only have a displacement, set-up for it to be parsed later. */
6906 displacement_string_start = op_string;
6907 displacement_string_end = base_string + 1;
6909 if (*base_string == ')')
6911 char *temp_string;
6912 unsigned int parens_balanced = 1;
6913 /* We've already checked that the number of left & right ()'s are
6914 equal, so this loop will not be infinite. */
6917 base_string--;
6918 if (*base_string == ')')
6919 parens_balanced++;
6920 if (*base_string == '(')
6921 parens_balanced--;
6923 while (parens_balanced);
6925 temp_string = base_string;
6927 /* Skip past '(' and whitespace. */
6928 ++base_string;
6929 if (is_space_char (*base_string))
6930 ++base_string;
6932 if (*base_string == ','
6933 || ((i.base_reg = parse_register (base_string, &end_op))
6934 != NULL))
6936 displacement_string_end = temp_string;
6938 i.types[this_operand].bitfield.baseindex = 1;
6940 if (i.base_reg)
6942 base_string = end_op;
6943 if (is_space_char (*base_string))
6944 ++base_string;
6947 /* There may be an index reg or scale factor here. */
6948 if (*base_string == ',')
6950 ++base_string;
6951 if (is_space_char (*base_string))
6952 ++base_string;
6954 if ((i.index_reg = parse_register (base_string, &end_op))
6955 != NULL)
6957 base_string = end_op;
6958 if (is_space_char (*base_string))
6959 ++base_string;
6960 if (*base_string == ',')
6962 ++base_string;
6963 if (is_space_char (*base_string))
6964 ++base_string;
6966 else if (*base_string != ')')
6968 as_bad (_("expecting `,' or `)' "
6969 "after index register in `%s'"),
6970 operand_string);
6971 return 0;
6974 else if (*base_string == REGISTER_PREFIX)
6976 as_bad (_("bad register name `%s'"), base_string);
6977 return 0;
6980 /* Check for scale factor. */
6981 if (*base_string != ')')
6983 char *end_scale = i386_scale (base_string);
6985 if (!end_scale)
6986 return 0;
6988 base_string = end_scale;
6989 if (is_space_char (*base_string))
6990 ++base_string;
6991 if (*base_string != ')')
6993 as_bad (_("expecting `)' "
6994 "after scale factor in `%s'"),
6995 operand_string);
6996 return 0;
6999 else if (!i.index_reg)
7001 as_bad (_("expecting index register or scale factor "
7002 "after `,'; got '%c'"),
7003 *base_string);
7004 return 0;
7007 else if (*base_string != ')')
7009 as_bad (_("expecting `,' or `)' "
7010 "after base register in `%s'"),
7011 operand_string);
7012 return 0;
7015 else if (*base_string == REGISTER_PREFIX)
7017 as_bad (_("bad register name `%s'"), base_string);
7018 return 0;
7022 /* If there's an expression beginning the operand, parse it,
7023 assuming displacement_string_start and
7024 displacement_string_end are meaningful. */
7025 if (displacement_string_start != displacement_string_end)
7027 if (!i386_displacement (displacement_string_start,
7028 displacement_string_end))
7029 return 0;
7032 /* Special case for (%dx) while doing input/output op. */
7033 if (i.base_reg
7034 && operand_type_equal (&i.base_reg->reg_type,
7035 &reg16_inoutportreg)
7036 && i.index_reg == 0
7037 && i.log2_scale_factor == 0
7038 && i.seg[i.mem_operands] == 0
7039 && !operand_type_check (i.types[this_operand], disp))
7041 i.types[this_operand] = inoutportreg;
7042 return 1;
7045 if (i386_index_check (operand_string) == 0)
7046 return 0;
7047 i.types[this_operand].bitfield.mem = 1;
7048 i.mem_operands++;
7050 else
7052 /* It's not a memory operand; argh! */
7053 as_bad (_("invalid char %s beginning operand %d `%s'"),
7054 output_invalid (*op_string),
7055 this_operand + 1,
7056 op_string);
7057 return 0;
7059 return 1; /* Normal return. */
7062 /* md_estimate_size_before_relax()
7064 Called just before relax() for rs_machine_dependent frags. The x86
7065 assembler uses these frags to handle variable size jump
7066 instructions.
7068 Any symbol that is now undefined will not become defined.
7069 Return the correct fr_subtype in the frag.
7070 Return the initial "guess for variable size of frag" to caller.
7071 The guess is actually the growth beyond the fixed part. Whatever
7072 we do to grow the fixed or variable part contributes to our
7073 returned value. */
7076 md_estimate_size_before_relax (fragP, segment)
7077 fragS *fragP;
7078 segT segment;
7080 /* We've already got fragP->fr_subtype right; all we have to do is
7081 check for un-relaxable symbols. On an ELF system, we can't relax
7082 an externally visible symbol, because it may be overridden by a
7083 shared library. */
7084 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7085 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7086 || (IS_ELF
7087 && (S_IS_EXTERNAL (fragP->fr_symbol)
7088 || S_IS_WEAK (fragP->fr_symbol)
7089 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7090 & BSF_GNU_INDIRECT_FUNCTION))))
7091 #endif
7092 #if defined (OBJ_COFF) && defined (TE_PE)
7093 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7094 && S_IS_WEAK (fragP->fr_symbol))
7095 #endif
7098 /* Symbol is undefined in this segment, or we need to keep a
7099 reloc so that weak symbols can be overridden. */
7100 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7101 enum bfd_reloc_code_real reloc_type;
7102 unsigned char *opcode;
7103 int old_fr_fix;
7105 if (fragP->fr_var != NO_RELOC)
7106 reloc_type = fragP->fr_var;
7107 else if (size == 2)
7108 reloc_type = BFD_RELOC_16_PCREL;
7109 else
7110 reloc_type = BFD_RELOC_32_PCREL;
7112 old_fr_fix = fragP->fr_fix;
7113 opcode = (unsigned char *) fragP->fr_opcode;
7115 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7117 case UNCOND_JUMP:
7118 /* Make jmp (0xeb) a (d)word displacement jump. */
7119 opcode[0] = 0xe9;
7120 fragP->fr_fix += size;
7121 fix_new (fragP, old_fr_fix, size,
7122 fragP->fr_symbol,
7123 fragP->fr_offset, 1,
7124 reloc_type);
7125 break;
7127 case COND_JUMP86:
7128 if (size == 2
7129 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7131 /* Negate the condition, and branch past an
7132 unconditional jump. */
7133 opcode[0] ^= 1;
7134 opcode[1] = 3;
7135 /* Insert an unconditional jump. */
7136 opcode[2] = 0xe9;
7137 /* We added two extra opcode bytes, and have a two byte
7138 offset. */
7139 fragP->fr_fix += 2 + 2;
7140 fix_new (fragP, old_fr_fix + 2, 2,
7141 fragP->fr_symbol,
7142 fragP->fr_offset, 1,
7143 reloc_type);
7144 break;
7146 /* Fall through. */
7148 case COND_JUMP:
7149 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7151 fixS *fixP;
7153 fragP->fr_fix += 1;
7154 fixP = fix_new (fragP, old_fr_fix, 1,
7155 fragP->fr_symbol,
7156 fragP->fr_offset, 1,
7157 BFD_RELOC_8_PCREL);
7158 fixP->fx_signed = 1;
7159 break;
7162 /* This changes the byte-displacement jump 0x7N
7163 to the (d)word-displacement jump 0x0f,0x8N. */
7164 opcode[1] = opcode[0] + 0x10;
7165 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7166 /* We've added an opcode byte. */
7167 fragP->fr_fix += 1 + size;
7168 fix_new (fragP, old_fr_fix + 1, size,
7169 fragP->fr_symbol,
7170 fragP->fr_offset, 1,
7171 reloc_type);
7172 break;
7174 default:
7175 BAD_CASE (fragP->fr_subtype);
7176 break;
7178 frag_wane (fragP);
7179 return fragP->fr_fix - old_fr_fix;
7182 /* Guess size depending on current relax state. Initially the relax
7183 state will correspond to a short jump and we return 1, because
7184 the variable part of the frag (the branch offset) is one byte
7185 long. However, we can relax a section more than once and in that
7186 case we must either set fr_subtype back to the unrelaxed state,
7187 or return the value for the appropriate branch. */
7188 return md_relax_table[fragP->fr_subtype].rlx_length;
7191 /* Called after relax() is finished.
7193 In: Address of frag.
7194 fr_type == rs_machine_dependent.
7195 fr_subtype is what the address relaxed to.
7197 Out: Any fixSs and constants are set up.
7198 Caller will turn frag into a ".space 0". */
7200 void
7201 md_convert_frag (abfd, sec, fragP)
7202 bfd *abfd ATTRIBUTE_UNUSED;
7203 segT sec ATTRIBUTE_UNUSED;
7204 fragS *fragP;
7206 unsigned char *opcode;
7207 unsigned char *where_to_put_displacement = NULL;
7208 offsetT target_address;
7209 offsetT opcode_address;
7210 unsigned int extension = 0;
7211 offsetT displacement_from_opcode_start;
7213 opcode = (unsigned char *) fragP->fr_opcode;
7215 /* Address we want to reach in file space. */
7216 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7218 /* Address opcode resides at in file space. */
7219 opcode_address = fragP->fr_address + fragP->fr_fix;
7221 /* Displacement from opcode start to fill into instruction. */
7222 displacement_from_opcode_start = target_address - opcode_address;
7224 if ((fragP->fr_subtype & BIG) == 0)
7226 /* Don't have to change opcode. */
7227 extension = 1; /* 1 opcode + 1 displacement */
7228 where_to_put_displacement = &opcode[1];
7230 else
7232 if (no_cond_jump_promotion
7233 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7234 as_warn_where (fragP->fr_file, fragP->fr_line,
7235 _("long jump required"));
7237 switch (fragP->fr_subtype)
7239 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7240 extension = 4; /* 1 opcode + 4 displacement */
7241 opcode[0] = 0xe9;
7242 where_to_put_displacement = &opcode[1];
7243 break;
7245 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7246 extension = 2; /* 1 opcode + 2 displacement */
7247 opcode[0] = 0xe9;
7248 where_to_put_displacement = &opcode[1];
7249 break;
7251 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7252 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7253 extension = 5; /* 2 opcode + 4 displacement */
7254 opcode[1] = opcode[0] + 0x10;
7255 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7256 where_to_put_displacement = &opcode[2];
7257 break;
7259 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7260 extension = 3; /* 2 opcode + 2 displacement */
7261 opcode[1] = opcode[0] + 0x10;
7262 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7263 where_to_put_displacement = &opcode[2];
7264 break;
7266 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7267 extension = 4;
7268 opcode[0] ^= 1;
7269 opcode[1] = 3;
7270 opcode[2] = 0xe9;
7271 where_to_put_displacement = &opcode[3];
7272 break;
7274 default:
7275 BAD_CASE (fragP->fr_subtype);
7276 break;
7280 /* If size if less then four we are sure that the operand fits,
7281 but if it's 4, then it could be that the displacement is larger
7282 then -/+ 2GB. */
7283 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7284 && object_64bit
7285 && ((addressT) (displacement_from_opcode_start - extension
7286 + ((addressT) 1 << 31))
7287 > (((addressT) 2 << 31) - 1)))
7289 as_bad_where (fragP->fr_file, fragP->fr_line,
7290 _("jump target out of range"));
7291 /* Make us emit 0. */
7292 displacement_from_opcode_start = extension;
7294 /* Now put displacement after opcode. */
7295 md_number_to_chars ((char *) where_to_put_displacement,
7296 (valueT) (displacement_from_opcode_start - extension),
7297 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7298 fragP->fr_fix += extension;
7301 /* Apply a fixup (fixS) to segment data, once it has been determined
7302 by our caller that we have all the info we need to fix it up.
7304 On the 386, immediates, displacements, and data pointers are all in
7305 the same (little-endian) format, so we don't need to care about which
7306 we are handling. */
7308 void
7309 md_apply_fix (fixP, valP, seg)
7310 /* The fix we're to put in. */
7311 fixS *fixP;
7312 /* Pointer to the value of the bits. */
7313 valueT *valP;
7314 /* Segment fix is from. */
7315 segT seg ATTRIBUTE_UNUSED;
7317 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7318 valueT value = *valP;
7320 #if !defined (TE_Mach)
7321 if (fixP->fx_pcrel)
7323 switch (fixP->fx_r_type)
7325 default:
7326 break;
7328 case BFD_RELOC_64:
7329 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7330 break;
7331 case BFD_RELOC_32:
7332 case BFD_RELOC_X86_64_32S:
7333 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7334 break;
7335 case BFD_RELOC_16:
7336 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7337 break;
7338 case BFD_RELOC_8:
7339 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7340 break;
7344 if (fixP->fx_addsy != NULL
7345 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7346 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7347 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7348 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7349 && !use_rela_relocations)
7351 /* This is a hack. There should be a better way to handle this.
7352 This covers for the fact that bfd_install_relocation will
7353 subtract the current location (for partial_inplace, PC relative
7354 relocations); see more below. */
7355 #ifndef OBJ_AOUT
7356 if (IS_ELF
7357 #ifdef TE_PE
7358 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7359 #endif
7361 value += fixP->fx_where + fixP->fx_frag->fr_address;
7362 #endif
7363 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7364 if (IS_ELF)
7366 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7368 if ((sym_seg == seg
7369 || (symbol_section_p (fixP->fx_addsy)
7370 && sym_seg != absolute_section))
7371 && !TC_FORCE_RELOCATION (fixP))
7373 /* Yes, we add the values in twice. This is because
7374 bfd_install_relocation subtracts them out again. I think
7375 bfd_install_relocation is broken, but I don't dare change
7376 it. FIXME. */
7377 value += fixP->fx_where + fixP->fx_frag->fr_address;
7380 #endif
7381 #if defined (OBJ_COFF) && defined (TE_PE)
7382 /* For some reason, the PE format does not store a
7383 section address offset for a PC relative symbol. */
7384 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7385 || S_IS_WEAK (fixP->fx_addsy))
7386 value += md_pcrel_from (fixP);
7387 #endif
7389 #if defined (OBJ_COFF) && defined (TE_PE)
7390 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7392 value -= S_GET_VALUE (fixP->fx_addsy);
7394 #endif
7396 /* Fix a few things - the dynamic linker expects certain values here,
7397 and we must not disappoint it. */
7398 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7399 if (IS_ELF && fixP->fx_addsy)
7400 switch (fixP->fx_r_type)
7402 case BFD_RELOC_386_PLT32:
7403 case BFD_RELOC_X86_64_PLT32:
7404 /* Make the jump instruction point to the address of the operand. At
7405 runtime we merely add the offset to the actual PLT entry. */
7406 value = -4;
7407 break;
7409 case BFD_RELOC_386_TLS_GD:
7410 case BFD_RELOC_386_TLS_LDM:
7411 case BFD_RELOC_386_TLS_IE_32:
7412 case BFD_RELOC_386_TLS_IE:
7413 case BFD_RELOC_386_TLS_GOTIE:
7414 case BFD_RELOC_386_TLS_GOTDESC:
7415 case BFD_RELOC_X86_64_TLSGD:
7416 case BFD_RELOC_X86_64_TLSLD:
7417 case BFD_RELOC_X86_64_GOTTPOFF:
7418 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7419 value = 0; /* Fully resolved at runtime. No addend. */
7420 /* Fallthrough */
7421 case BFD_RELOC_386_TLS_LE:
7422 case BFD_RELOC_386_TLS_LDO_32:
7423 case BFD_RELOC_386_TLS_LE_32:
7424 case BFD_RELOC_X86_64_DTPOFF32:
7425 case BFD_RELOC_X86_64_DTPOFF64:
7426 case BFD_RELOC_X86_64_TPOFF32:
7427 case BFD_RELOC_X86_64_TPOFF64:
7428 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7429 break;
7431 case BFD_RELOC_386_TLS_DESC_CALL:
7432 case BFD_RELOC_X86_64_TLSDESC_CALL:
7433 value = 0; /* Fully resolved at runtime. No addend. */
7434 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7435 fixP->fx_done = 0;
7436 return;
7438 case BFD_RELOC_386_GOT32:
7439 case BFD_RELOC_X86_64_GOT32:
7440 value = 0; /* Fully resolved at runtime. No addend. */
7441 break;
7443 case BFD_RELOC_VTABLE_INHERIT:
7444 case BFD_RELOC_VTABLE_ENTRY:
7445 fixP->fx_done = 0;
7446 return;
7448 default:
7449 break;
7451 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7452 *valP = value;
7453 #endif /* !defined (TE_Mach) */
7455 /* Are we finished with this relocation now? */
7456 if (fixP->fx_addsy == NULL)
7457 fixP->fx_done = 1;
7458 #if defined (OBJ_COFF) && defined (TE_PE)
7459 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7461 fixP->fx_done = 0;
7462 /* Remember value for tc_gen_reloc. */
7463 fixP->fx_addnumber = value;
7464 /* Clear out the frag for now. */
7465 value = 0;
7467 #endif
7468 else if (use_rela_relocations)
7470 fixP->fx_no_overflow = 1;
7471 /* Remember value for tc_gen_reloc. */
7472 fixP->fx_addnumber = value;
7473 value = 0;
7476 md_number_to_chars (p, value, fixP->fx_size);
7479 char *
7480 md_atof (int type, char *litP, int *sizeP)
7482 /* This outputs the LITTLENUMs in REVERSE order;
7483 in accord with the bigendian 386. */
7484 return ieee_md_atof (type, litP, sizeP, FALSE);
7487 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7489 static char *
7490 output_invalid (int c)
7492 if (ISPRINT (c))
7493 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7494 "'%c'", c);
7495 else
7496 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7497 "(0x%x)", (unsigned char) c);
7498 return output_invalid_buf;
7501 /* REG_STRING starts *before* REGISTER_PREFIX. */
7503 static const reg_entry *
7504 parse_real_register (char *reg_string, char **end_op)
7506 char *s = reg_string;
7507 char *p;
7508 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7509 const reg_entry *r;
7511 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7512 if (*s == REGISTER_PREFIX)
7513 ++s;
7515 if (is_space_char (*s))
7516 ++s;
7518 p = reg_name_given;
7519 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7521 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7522 return (const reg_entry *) NULL;
7523 s++;
7526 /* For naked regs, make sure that we are not dealing with an identifier.
7527 This prevents confusing an identifier like `eax_var' with register
7528 `eax'. */
7529 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7530 return (const reg_entry *) NULL;
7532 *end_op = s;
7534 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7536 /* Handle floating point regs, allowing spaces in the (i) part. */
7537 if (r == i386_regtab /* %st is first entry of table */)
7539 if (is_space_char (*s))
7540 ++s;
7541 if (*s == '(')
7543 ++s;
7544 if (is_space_char (*s))
7545 ++s;
7546 if (*s >= '0' && *s <= '7')
7548 int fpr = *s - '0';
7549 ++s;
7550 if (is_space_char (*s))
7551 ++s;
7552 if (*s == ')')
7554 *end_op = s + 1;
7555 r = hash_find (reg_hash, "st(0)");
7556 know (r);
7557 return r + fpr;
7560 /* We have "%st(" then garbage. */
7561 return (const reg_entry *) NULL;
7565 if (r == NULL || allow_pseudo_reg)
7566 return r;
7568 if (operand_type_all_zero (&r->reg_type))
7569 return (const reg_entry *) NULL;
7571 if ((r->reg_type.bitfield.reg32
7572 || r->reg_type.bitfield.sreg3
7573 || r->reg_type.bitfield.control
7574 || r->reg_type.bitfield.debug
7575 || r->reg_type.bitfield.test)
7576 && !cpu_arch_flags.bitfield.cpui386)
7577 return (const reg_entry *) NULL;
7579 if (r->reg_type.bitfield.floatreg
7580 && !cpu_arch_flags.bitfield.cpu8087
7581 && !cpu_arch_flags.bitfield.cpu287
7582 && !cpu_arch_flags.bitfield.cpu387)
7583 return (const reg_entry *) NULL;
7585 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7586 return (const reg_entry *) NULL;
7588 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7589 return (const reg_entry *) NULL;
7591 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7592 return (const reg_entry *) NULL;
7594 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7595 if (!allow_index_reg
7596 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7597 return (const reg_entry *) NULL;
7599 if (((r->reg_flags & (RegRex64 | RegRex))
7600 || r->reg_type.bitfield.reg64)
7601 && (!cpu_arch_flags.bitfield.cpulm
7602 || !operand_type_equal (&r->reg_type, &control))
7603 && flag_code != CODE_64BIT)
7604 return (const reg_entry *) NULL;
7606 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7607 return (const reg_entry *) NULL;
7609 return r;
7612 /* REG_STRING starts *before* REGISTER_PREFIX. */
7614 static const reg_entry *
7615 parse_register (char *reg_string, char **end_op)
7617 const reg_entry *r;
7619 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7620 r = parse_real_register (reg_string, end_op);
7621 else
7622 r = NULL;
7623 if (!r)
7625 char *save = input_line_pointer;
7626 char c;
7627 symbolS *symbolP;
7629 input_line_pointer = reg_string;
7630 c = get_symbol_end ();
7631 symbolP = symbol_find (reg_string);
7632 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7634 const expressionS *e = symbol_get_value_expression (symbolP);
7636 know (e->X_op == O_register);
7637 know (e->X_add_number >= 0
7638 && (valueT) e->X_add_number < i386_regtab_size);
7639 r = i386_regtab + e->X_add_number;
7640 *end_op = input_line_pointer;
7642 *input_line_pointer = c;
7643 input_line_pointer = save;
7645 return r;
7649 i386_parse_name (char *name, expressionS *e, char *nextcharP)
7651 const reg_entry *r;
7652 char *end = input_line_pointer;
7654 *end = *nextcharP;
7655 r = parse_register (name, &input_line_pointer);
7656 if (r && end <= input_line_pointer)
7658 *nextcharP = *input_line_pointer;
7659 *input_line_pointer = 0;
7660 e->X_op = O_register;
7661 e->X_add_number = r - i386_regtab;
7662 return 1;
7664 input_line_pointer = end;
7665 *end = 0;
7666 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7669 void
7670 md_operand (expressionS *e)
7672 char *end;
7673 const reg_entry *r;
7675 switch (*input_line_pointer)
7677 case REGISTER_PREFIX:
7678 r = parse_real_register (input_line_pointer, &end);
7679 if (r)
7681 e->X_op = O_register;
7682 e->X_add_number = r - i386_regtab;
7683 input_line_pointer = end;
7685 break;
7687 case '[':
7688 gas_assert (intel_syntax);
7689 end = input_line_pointer++;
7690 expression (e);
7691 if (*input_line_pointer == ']')
7693 ++input_line_pointer;
7694 e->X_op_symbol = make_expr_symbol (e);
7695 e->X_add_symbol = NULL;
7696 e->X_add_number = 0;
7697 e->X_op = O_index;
7699 else
7701 e->X_op = O_absent;
7702 input_line_pointer = end;
7704 break;
7709 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7710 const char *md_shortopts = "kVQ:sqn";
7711 #else
7712 const char *md_shortopts = "qn";
7713 #endif
7715 #define OPTION_32 (OPTION_MD_BASE + 0)
7716 #define OPTION_64 (OPTION_MD_BASE + 1)
7717 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7718 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7719 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7720 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7721 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7722 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7723 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7724 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7725 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7726 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7728 struct option md_longopts[] =
7730 {"32", no_argument, NULL, OPTION_32},
7731 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7732 || defined (TE_PE) || defined (TE_PEP))
7733 {"64", no_argument, NULL, OPTION_64},
7734 #endif
7735 {"divide", no_argument, NULL, OPTION_DIVIDE},
7736 {"march", required_argument, NULL, OPTION_MARCH},
7737 {"mtune", required_argument, NULL, OPTION_MTUNE},
7738 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7739 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7740 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7741 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7742 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7743 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
7744 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7745 {NULL, no_argument, NULL, 0}
7747 size_t md_longopts_size = sizeof (md_longopts);
7750 md_parse_option (int c, char *arg)
7752 unsigned int i;
7753 char *arch, *next;
7755 switch (c)
7757 case 'n':
7758 optimize_align_code = 0;
7759 break;
7761 case 'q':
7762 quiet_warnings = 1;
7763 break;
7765 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7766 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7767 should be emitted or not. FIXME: Not implemented. */
7768 case 'Q':
7769 break;
7771 /* -V: SVR4 argument to print version ID. */
7772 case 'V':
7773 print_version_id ();
7774 break;
7776 /* -k: Ignore for FreeBSD compatibility. */
7777 case 'k':
7778 break;
7780 case 's':
7781 /* -s: On i386 Solaris, this tells the native assembler to use
7782 .stab instead of .stab.excl. We always use .stab anyhow. */
7783 break;
7784 #endif
7785 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7786 || defined (TE_PE) || defined (TE_PEP))
7787 case OPTION_64:
7789 const char **list, **l;
7791 list = bfd_target_list ();
7792 for (l = list; *l != NULL; l++)
7793 if (CONST_STRNEQ (*l, "elf64-x86-64")
7794 || strcmp (*l, "coff-x86-64") == 0
7795 || strcmp (*l, "pe-x86-64") == 0
7796 || strcmp (*l, "pei-x86-64") == 0)
7798 default_arch = "x86_64";
7799 break;
7801 if (*l == NULL)
7802 as_fatal (_("No compiled in support for x86_64"));
7803 free (list);
7805 break;
7806 #endif
7808 case OPTION_32:
7809 default_arch = "i386";
7810 break;
7812 case OPTION_DIVIDE:
7813 #ifdef SVR4_COMMENT_CHARS
7815 char *n, *t;
7816 const char *s;
7818 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7819 t = n;
7820 for (s = i386_comment_chars; *s != '\0'; s++)
7821 if (*s != '/')
7822 *t++ = *s;
7823 *t = '\0';
7824 i386_comment_chars = n;
7826 #endif
7827 break;
7829 case OPTION_MARCH:
7830 arch = xstrdup (arg);
7833 if (*arch == '.')
7834 as_fatal (_("Invalid -march= option: `%s'"), arg);
7835 next = strchr (arch, '+');
7836 if (next)
7837 *next++ = '\0';
7838 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7840 if (strcmp (arch, cpu_arch [i].name) == 0)
7842 /* Processor. */
7843 cpu_arch_name = cpu_arch[i].name;
7844 cpu_sub_arch_name = NULL;
7845 cpu_arch_flags = cpu_arch[i].flags;
7846 cpu_arch_isa = cpu_arch[i].type;
7847 cpu_arch_isa_flags = cpu_arch[i].flags;
7848 if (!cpu_arch_tune_set)
7850 cpu_arch_tune = cpu_arch_isa;
7851 cpu_arch_tune_flags = cpu_arch_isa_flags;
7853 break;
7855 else if (*cpu_arch [i].name == '.'
7856 && strcmp (arch, cpu_arch [i].name + 1) == 0)
7858 /* ISA entension. */
7859 i386_cpu_flags flags;
7861 if (strncmp (arch, "no", 2))
7862 flags = cpu_flags_or (cpu_arch_flags,
7863 cpu_arch[i].flags);
7864 else
7865 flags = cpu_flags_and_not (cpu_arch_flags,
7866 cpu_arch[i].flags);
7867 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
7869 if (cpu_sub_arch_name)
7871 char *name = cpu_sub_arch_name;
7872 cpu_sub_arch_name = concat (name,
7873 cpu_arch[i].name,
7874 (const char *) NULL);
7875 free (name);
7877 else
7878 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
7879 cpu_arch_flags = flags;
7881 break;
7885 if (i >= ARRAY_SIZE (cpu_arch))
7886 as_fatal (_("Invalid -march= option: `%s'"), arg);
7888 arch = next;
7890 while (next != NULL );
7891 break;
7893 case OPTION_MTUNE:
7894 if (*arg == '.')
7895 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7896 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7898 if (strcmp (arg, cpu_arch [i].name) == 0)
7900 cpu_arch_tune_set = 1;
7901 cpu_arch_tune = cpu_arch [i].type;
7902 cpu_arch_tune_flags = cpu_arch[i].flags;
7903 break;
7906 if (i >= ARRAY_SIZE (cpu_arch))
7907 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7908 break;
7910 case OPTION_MMNEMONIC:
7911 if (strcasecmp (arg, "att") == 0)
7912 intel_mnemonic = 0;
7913 else if (strcasecmp (arg, "intel") == 0)
7914 intel_mnemonic = 1;
7915 else
7916 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7917 break;
7919 case OPTION_MSYNTAX:
7920 if (strcasecmp (arg, "att") == 0)
7921 intel_syntax = 0;
7922 else if (strcasecmp (arg, "intel") == 0)
7923 intel_syntax = 1;
7924 else
7925 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7926 break;
7928 case OPTION_MINDEX_REG:
7929 allow_index_reg = 1;
7930 break;
7932 case OPTION_MNAKED_REG:
7933 allow_naked_reg = 1;
7934 break;
7936 case OPTION_MOLD_GCC:
7937 old_gcc = 1;
7938 break;
7940 case OPTION_MSSE2AVX:
7941 sse2avx = 1;
7942 break;
7944 case OPTION_MSSE_CHECK:
7945 if (strcasecmp (arg, "error") == 0)
7946 sse_check = sse_check_error;
7947 else if (strcasecmp (arg, "warning") == 0)
7948 sse_check = sse_check_warning;
7949 else if (strcasecmp (arg, "none") == 0)
7950 sse_check = sse_check_none;
7951 else
7952 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
7953 break;
7955 default:
7956 return 0;
7958 return 1;
7961 void
7962 md_show_usage (stream)
7963 FILE *stream;
7965 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7966 fprintf (stream, _("\
7967 -Q ignored\n\
7968 -V print assembler version number\n\
7969 -k ignored\n"));
7970 #endif
7971 fprintf (stream, _("\
7972 -n Do not optimize code alignment\n\
7973 -q quieten some warnings\n"));
7974 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7975 fprintf (stream, _("\
7976 -s ignored\n"));
7977 #endif
7978 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7979 || defined (TE_PE) || defined (TE_PEP))
7980 fprintf (stream, _("\
7981 --32/--64 generate 32bit/64bit code\n"));
7982 #endif
7983 #ifdef SVR4_COMMENT_CHARS
7984 fprintf (stream, _("\
7985 --divide do not treat `/' as a comment character\n"));
7986 #else
7987 fprintf (stream, _("\
7988 --divide ignored\n"));
7989 #endif
7990 fprintf (stream, _("\
7991 -march=CPU[,+EXTENSION...]\n\
7992 generate code for CPU and EXTENSION, CPU is one of:\n\
7993 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7994 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
7995 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
7996 amdfam10, generic32, generic64\n\
7997 EXTENSION is combination of:\n\
7998 8087, 287, 387, no87, mmx, nommx, sse, sse2, sse3,\n\
7999 ssse3, sse4.1, sse4.2, sse4, nosse, avx, noavx,\n\
8000 vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
8001 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
8002 svme, abm, padlock, fma4\n"));
8003 fprintf (stream, _("\
8004 -mtune=CPU optimize for CPU, CPU is one of:\n\
8005 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8006 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8007 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
8008 amdfam10, generic32, generic64\n"));
8009 fprintf (stream, _("\
8010 -msse2avx encode SSE instructions with VEX prefix\n"));
8011 fprintf (stream, _("\
8012 -msse-check=[none|error|warning]\n\
8013 check SSE instructions\n"));
8014 fprintf (stream, _("\
8015 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8016 fprintf (stream, _("\
8017 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8018 fprintf (stream, _("\
8019 -mindex-reg support pseudo index registers\n"));
8020 fprintf (stream, _("\
8021 -mnaked-reg don't require `%%' prefix for registers\n"));
8022 fprintf (stream, _("\
8023 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8026 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8027 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8028 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8030 /* Pick the target format to use. */
8032 const char *
8033 i386_target_format (void)
8035 if (!strcmp (default_arch, "x86_64"))
8037 set_code_flag (CODE_64BIT);
8038 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8040 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8041 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8042 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8043 cpu_arch_isa_flags.bitfield.cpui486 = 1;
8044 cpu_arch_isa_flags.bitfield.cpui586 = 1;
8045 cpu_arch_isa_flags.bitfield.cpui686 = 1;
8046 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
8047 cpu_arch_isa_flags.bitfield.cpummx= 1;
8048 cpu_arch_isa_flags.bitfield.cpusse = 1;
8049 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
8050 cpu_arch_isa_flags.bitfield.cpulm = 1;
8052 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8054 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8055 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8056 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8057 cpu_arch_tune_flags.bitfield.cpui486 = 1;
8058 cpu_arch_tune_flags.bitfield.cpui586 = 1;
8059 cpu_arch_tune_flags.bitfield.cpui686 = 1;
8060 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
8061 cpu_arch_tune_flags.bitfield.cpummx= 1;
8062 cpu_arch_tune_flags.bitfield.cpusse = 1;
8063 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
8066 else if (!strcmp (default_arch, "i386"))
8068 set_code_flag (CODE_32BIT);
8069 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8071 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8072 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8073 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8075 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8077 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8078 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8079 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8082 else
8083 as_fatal (_("Unknown architecture"));
8084 switch (OUTPUT_FLAVOR)
8086 #if defined (TE_PE) || defined (TE_PEP)
8087 case bfd_target_coff_flavour:
8088 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8089 #endif
8090 #ifdef OBJ_MAYBE_AOUT
8091 case bfd_target_aout_flavour:
8092 return AOUT_TARGET_FORMAT;
8093 #endif
8094 #ifdef OBJ_MAYBE_COFF
8095 case bfd_target_coff_flavour:
8096 return "coff-i386";
8097 #endif
8098 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8099 case bfd_target_elf_flavour:
8101 if (flag_code == CODE_64BIT)
8103 object_64bit = 1;
8104 use_rela_relocations = 1;
8106 if (cpu_arch_isa_flags.bitfield.cpul1om)
8108 if (flag_code != CODE_64BIT)
8109 as_fatal (_("Intel L1OM is 64bit only"));
8110 return ELF_TARGET_L1OM_FORMAT;
8112 else
8113 return (flag_code == CODE_64BIT
8114 ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT);
8116 #endif
8117 #if defined (OBJ_MACH_O)
8118 case bfd_target_mach_o_flavour:
8119 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
8120 #endif
8121 default:
8122 abort ();
8123 return NULL;
8127 #endif /* OBJ_MAYBE_ more than one */
8129 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8130 void
8131 i386_elf_emit_arch_note (void)
8133 if (IS_ELF && cpu_arch_name != NULL)
8135 char *p;
8136 asection *seg = now_seg;
8137 subsegT subseg = now_subseg;
8138 Elf_Internal_Note i_note;
8139 Elf_External_Note e_note;
8140 asection *note_secp;
8141 int len;
8143 /* Create the .note section. */
8144 note_secp = subseg_new (".note", 0);
8145 bfd_set_section_flags (stdoutput,
8146 note_secp,
8147 SEC_HAS_CONTENTS | SEC_READONLY);
8149 /* Process the arch string. */
8150 len = strlen (cpu_arch_name);
8152 i_note.namesz = len + 1;
8153 i_note.descsz = 0;
8154 i_note.type = NT_ARCH;
8155 p = frag_more (sizeof (e_note.namesz));
8156 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8157 p = frag_more (sizeof (e_note.descsz));
8158 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8159 p = frag_more (sizeof (e_note.type));
8160 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8161 p = frag_more (len + 1);
8162 strcpy (p, cpu_arch_name);
8164 frag_align (2, 0, 0);
8166 subseg_set (seg, subseg);
8169 #endif
8171 symbolS *
8172 md_undefined_symbol (name)
8173 char *name;
8175 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8176 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8177 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8178 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8180 if (!GOT_symbol)
8182 if (symbol_find (name))
8183 as_bad (_("GOT already in symbol table"));
8184 GOT_symbol = symbol_new (name, undefined_section,
8185 (valueT) 0, &zero_address_frag);
8187 return GOT_symbol;
8189 return 0;
8192 /* Round up a section size to the appropriate boundary. */
8194 valueT
8195 md_section_align (segment, size)
8196 segT segment ATTRIBUTE_UNUSED;
8197 valueT size;
8199 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8200 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8202 /* For a.out, force the section size to be aligned. If we don't do
8203 this, BFD will align it for us, but it will not write out the
8204 final bytes of the section. This may be a bug in BFD, but it is
8205 easier to fix it here since that is how the other a.out targets
8206 work. */
8207 int align;
8209 align = bfd_get_section_alignment (stdoutput, segment);
8210 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8212 #endif
8214 return size;
8217 /* On the i386, PC-relative offsets are relative to the start of the
8218 next instruction. That is, the address of the offset, plus its
8219 size, since the offset is always the last part of the insn. */
8221 long
8222 md_pcrel_from (fixS *fixP)
8224 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8227 #ifndef I386COFF
8229 static void
8230 s_bss (int ignore ATTRIBUTE_UNUSED)
8232 int temp;
8234 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8235 if (IS_ELF)
8236 obj_elf_section_change_hook ();
8237 #endif
8238 temp = get_absolute_expression ();
8239 subseg_set (bss_section, (subsegT) temp);
8240 demand_empty_rest_of_line ();
8243 #endif
8245 void
8246 i386_validate_fix (fixS *fixp)
8248 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8250 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8252 if (!object_64bit)
8253 abort ();
8254 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8256 else
8258 if (!object_64bit)
8259 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8260 else
8261 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8263 fixp->fx_subsy = 0;
8267 arelent *
8268 tc_gen_reloc (section, fixp)
8269 asection *section ATTRIBUTE_UNUSED;
8270 fixS *fixp;
8272 arelent *rel;
8273 bfd_reloc_code_real_type code;
8275 switch (fixp->fx_r_type)
8277 case BFD_RELOC_X86_64_PLT32:
8278 case BFD_RELOC_X86_64_GOT32:
8279 case BFD_RELOC_X86_64_GOTPCREL:
8280 case BFD_RELOC_386_PLT32:
8281 case BFD_RELOC_386_GOT32:
8282 case BFD_RELOC_386_GOTOFF:
8283 case BFD_RELOC_386_GOTPC:
8284 case BFD_RELOC_386_TLS_GD:
8285 case BFD_RELOC_386_TLS_LDM:
8286 case BFD_RELOC_386_TLS_LDO_32:
8287 case BFD_RELOC_386_TLS_IE_32:
8288 case BFD_RELOC_386_TLS_IE:
8289 case BFD_RELOC_386_TLS_GOTIE:
8290 case BFD_RELOC_386_TLS_LE_32:
8291 case BFD_RELOC_386_TLS_LE:
8292 case BFD_RELOC_386_TLS_GOTDESC:
8293 case BFD_RELOC_386_TLS_DESC_CALL:
8294 case BFD_RELOC_X86_64_TLSGD:
8295 case BFD_RELOC_X86_64_TLSLD:
8296 case BFD_RELOC_X86_64_DTPOFF32:
8297 case BFD_RELOC_X86_64_DTPOFF64:
8298 case BFD_RELOC_X86_64_GOTTPOFF:
8299 case BFD_RELOC_X86_64_TPOFF32:
8300 case BFD_RELOC_X86_64_TPOFF64:
8301 case BFD_RELOC_X86_64_GOTOFF64:
8302 case BFD_RELOC_X86_64_GOTPC32:
8303 case BFD_RELOC_X86_64_GOT64:
8304 case BFD_RELOC_X86_64_GOTPCREL64:
8305 case BFD_RELOC_X86_64_GOTPC64:
8306 case BFD_RELOC_X86_64_GOTPLT64:
8307 case BFD_RELOC_X86_64_PLTOFF64:
8308 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8309 case BFD_RELOC_X86_64_TLSDESC_CALL:
8310 case BFD_RELOC_RVA:
8311 case BFD_RELOC_VTABLE_ENTRY:
8312 case BFD_RELOC_VTABLE_INHERIT:
8313 #ifdef TE_PE
8314 case BFD_RELOC_32_SECREL:
8315 #endif
8316 code = fixp->fx_r_type;
8317 break;
8318 case BFD_RELOC_X86_64_32S:
8319 if (!fixp->fx_pcrel)
8321 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8322 code = fixp->fx_r_type;
8323 break;
8325 default:
8326 if (fixp->fx_pcrel)
8328 switch (fixp->fx_size)
8330 default:
8331 as_bad_where (fixp->fx_file, fixp->fx_line,
8332 _("can not do %d byte pc-relative relocation"),
8333 fixp->fx_size);
8334 code = BFD_RELOC_32_PCREL;
8335 break;
8336 case 1: code = BFD_RELOC_8_PCREL; break;
8337 case 2: code = BFD_RELOC_16_PCREL; break;
8338 case 4: code = BFD_RELOC_32_PCREL; break;
8339 #ifdef BFD64
8340 case 8: code = BFD_RELOC_64_PCREL; break;
8341 #endif
8344 else
8346 switch (fixp->fx_size)
8348 default:
8349 as_bad_where (fixp->fx_file, fixp->fx_line,
8350 _("can not do %d byte relocation"),
8351 fixp->fx_size);
8352 code = BFD_RELOC_32;
8353 break;
8354 case 1: code = BFD_RELOC_8; break;
8355 case 2: code = BFD_RELOC_16; break;
8356 case 4: code = BFD_RELOC_32; break;
8357 #ifdef BFD64
8358 case 8: code = BFD_RELOC_64; break;
8359 #endif
8362 break;
8365 if ((code == BFD_RELOC_32
8366 || code == BFD_RELOC_32_PCREL
8367 || code == BFD_RELOC_X86_64_32S)
8368 && GOT_symbol
8369 && fixp->fx_addsy == GOT_symbol)
8371 if (!object_64bit)
8372 code = BFD_RELOC_386_GOTPC;
8373 else
8374 code = BFD_RELOC_X86_64_GOTPC32;
8376 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8377 && GOT_symbol
8378 && fixp->fx_addsy == GOT_symbol)
8380 code = BFD_RELOC_X86_64_GOTPC64;
8383 rel = (arelent *) xmalloc (sizeof (arelent));
8384 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8385 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8387 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8389 if (!use_rela_relocations)
8391 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8392 vtable entry to be used in the relocation's section offset. */
8393 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8394 rel->address = fixp->fx_offset;
8395 #if defined (OBJ_COFF) && defined (TE_PE)
8396 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8397 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8398 else
8399 #endif
8400 rel->addend = 0;
8402 /* Use the rela in 64bit mode. */
8403 else
8405 if (!fixp->fx_pcrel)
8406 rel->addend = fixp->fx_offset;
8407 else
8408 switch (code)
8410 case BFD_RELOC_X86_64_PLT32:
8411 case BFD_RELOC_X86_64_GOT32:
8412 case BFD_RELOC_X86_64_GOTPCREL:
8413 case BFD_RELOC_X86_64_TLSGD:
8414 case BFD_RELOC_X86_64_TLSLD:
8415 case BFD_RELOC_X86_64_GOTTPOFF:
8416 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8417 case BFD_RELOC_X86_64_TLSDESC_CALL:
8418 rel->addend = fixp->fx_offset - fixp->fx_size;
8419 break;
8420 default:
8421 rel->addend = (section->vma
8422 - fixp->fx_size
8423 + fixp->fx_addnumber
8424 + md_pcrel_from (fixp));
8425 break;
8429 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8430 if (rel->howto == NULL)
8432 as_bad_where (fixp->fx_file, fixp->fx_line,
8433 _("cannot represent relocation type %s"),
8434 bfd_get_reloc_code_name (code));
8435 /* Set howto to a garbage value so that we can keep going. */
8436 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8437 gas_assert (rel->howto != NULL);
8440 return rel;
8443 #include "tc-i386-intel.c"
8445 void
8446 tc_x86_parse_to_dw2regnum (expressionS *exp)
8448 int saved_naked_reg;
8449 char saved_register_dot;
8451 saved_naked_reg = allow_naked_reg;
8452 allow_naked_reg = 1;
8453 saved_register_dot = register_chars['.'];
8454 register_chars['.'] = '.';
8455 allow_pseudo_reg = 1;
8456 expression_and_evaluate (exp);
8457 allow_pseudo_reg = 0;
8458 register_chars['.'] = saved_register_dot;
8459 allow_naked_reg = saved_naked_reg;
8461 if (exp->X_op == O_register && exp->X_add_number >= 0)
8463 if ((addressT) exp->X_add_number < i386_regtab_size)
8465 exp->X_op = O_constant;
8466 exp->X_add_number = i386_regtab[exp->X_add_number]
8467 .dw2_regnum[flag_code >> 1];
8469 else
8470 exp->X_op = O_illegal;
8474 void
8475 tc_x86_frame_initial_instructions (void)
8477 static unsigned int sp_regno[2];
8479 if (!sp_regno[flag_code >> 1])
8481 char *saved_input = input_line_pointer;
8482 char sp[][4] = {"esp", "rsp"};
8483 expressionS exp;
8485 input_line_pointer = sp[flag_code >> 1];
8486 tc_x86_parse_to_dw2regnum (&exp);
8487 gas_assert (exp.X_op == O_constant);
8488 sp_regno[flag_code >> 1] = exp.X_add_number;
8489 input_line_pointer = saved_input;
8492 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8493 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8497 i386_elf_section_type (const char *str, size_t len)
8499 if (flag_code == CODE_64BIT
8500 && len == sizeof ("unwind") - 1
8501 && strncmp (str, "unwind", 6) == 0)
8502 return SHT_X86_64_UNWIND;
8504 return -1;
8507 #ifdef TE_SOLARIS
8508 void
8509 i386_solaris_fix_up_eh_frame (segT sec)
8511 if (flag_code == CODE_64BIT)
8512 elf_section_type (sec) = SHT_X86_64_UNWIND;
8514 #endif
8516 #ifdef TE_PE
8517 void
8518 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8520 expressionS expr;
8522 expr.X_op = O_secrel;
8523 expr.X_add_symbol = symbol;
8524 expr.X_add_number = 0;
8525 emit_expr (&expr, size);
8527 #endif
8529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8530 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8532 bfd_vma
8533 x86_64_section_letter (int letter, char **ptr_msg)
8535 if (flag_code == CODE_64BIT)
8537 if (letter == 'l')
8538 return SHF_X86_64_LARGE;
8540 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8542 else
8543 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8544 return -1;
8547 bfd_vma
8548 x86_64_section_word (char *str, size_t len)
8550 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8551 return SHF_X86_64_LARGE;
8553 return -1;
8556 static void
8557 handle_large_common (int small ATTRIBUTE_UNUSED)
8559 if (flag_code != CODE_64BIT)
8561 s_comm_internal (0, elf_common_parse);
8562 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8564 else
8566 static segT lbss_section;
8567 asection *saved_com_section_ptr = elf_com_section_ptr;
8568 asection *saved_bss_section = bss_section;
8570 if (lbss_section == NULL)
8572 flagword applicable;
8573 segT seg = now_seg;
8574 subsegT subseg = now_subseg;
8576 /* The .lbss section is for local .largecomm symbols. */
8577 lbss_section = subseg_new (".lbss", 0);
8578 applicable = bfd_applicable_section_flags (stdoutput);
8579 bfd_set_section_flags (stdoutput, lbss_section,
8580 applicable & SEC_ALLOC);
8581 seg_info (lbss_section)->bss = 1;
8583 subseg_set (seg, subseg);
8586 elf_com_section_ptr = &_bfd_elf_large_com_section;
8587 bss_section = lbss_section;
8589 s_comm_internal (0, elf_common_parse);
8591 elf_com_section_ptr = saved_com_section_ptr;
8592 bss_section = saved_bss_section;
8595 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */