2009-10-01 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / gas / config / tc-i386.c
blob5c288ea9bd99267c1a21087b50274d735ddb80c2
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 LOCKREP_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define LOCKREP_PREFIX 4
68 #define REX_PREFIX 5 /* must come last. */
69 #define MAX_PREFIXES 6 /* max prefixes per opcode */
71 /* we define the syntax here (modulo base,index,scale syntax) */
72 #define REGISTER_PREFIX '%'
73 #define IMMEDIATE_PREFIX '$'
74 #define ABSOLUTE_PREFIX '*'
76 /* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78 #define WORD_MNEM_SUFFIX 'w'
79 #define BYTE_MNEM_SUFFIX 'b'
80 #define SHORT_MNEM_SUFFIX 's'
81 #define LONG_MNEM_SUFFIX 'l'
82 #define QWORD_MNEM_SUFFIX 'q'
83 #define XMMWORD_MNEM_SUFFIX 'x'
84 #define YMMWORD_MNEM_SUFFIX 'y'
85 /* Intel Syntax. Use a non-ascii letter since since it never appears
86 in instructions. */
87 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
89 #define END_OF_INSN '\0'
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
96 END.
98 typedef struct
100 const insn_template *start;
101 const insn_template *end;
103 templates;
105 /* 386 operand encoding bytes: see 386 book for details of this. */
106 typedef struct
108 unsigned int regmem; /* codes register or memory operand */
109 unsigned int reg; /* codes register operand (or extended opcode) */
110 unsigned int mode; /* how to interpret regmem & reg */
112 modrm_byte;
114 /* x86-64 extension prefix. */
115 typedef int rex_byte;
117 /* 386 opcode byte to code indirect addressing. */
118 typedef struct
120 unsigned base;
121 unsigned index;
122 unsigned scale;
124 sib_byte;
126 /* x86 arch names, types and features */
127 typedef struct
129 const char *name; /* arch name */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
133 arch_entry;
135 static void set_code_flag (int);
136 static void set_16bit_gcc_code_flag (int);
137 static void set_intel_syntax (int);
138 static void set_intel_mnemonic (int);
139 static void set_allow_index_reg (int);
140 static void set_sse_check (int);
141 static void set_cpu_arch (int);
142 #ifdef TE_PE
143 static void pe_directive_secrel (int);
144 #endif
145 static void signed_cons (int);
146 static char *output_invalid (int c);
147 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
148 const char *);
149 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
150 const char *);
151 static int i386_att_operand (char *);
152 static int i386_intel_operand (char *, int);
153 static int i386_intel_simplify (expressionS *);
154 static int i386_intel_parse_name (const char *, expressionS *);
155 static const reg_entry *parse_register (char *, char **);
156 static char *parse_insn (char *, char *);
157 static char *parse_operands (char *, const char *);
158 static void swap_operands (void);
159 static void swap_2_operands (int, int);
160 static void optimize_imm (void);
161 static void optimize_disp (void);
162 static const insn_template *match_template (void);
163 static int check_string (void);
164 static int process_suffix (void);
165 static int check_byte_reg (void);
166 static int check_long_reg (void);
167 static int check_qword_reg (void);
168 static int check_word_reg (void);
169 static int finalize_imm (void);
170 static int process_operands (void);
171 static const seg_entry *build_modrm_byte (void);
172 static void output_insn (void);
173 static void output_imm (fragS *, offsetT);
174 static void output_disp (fragS *, offsetT);
175 #ifndef I386COFF
176 static void s_bss (int);
177 #endif
178 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
179 static void handle_large_common (int small ATTRIBUTE_UNUSED);
180 #endif
182 static const char *default_arch = DEFAULT_ARCH;
184 /* VEX prefix. */
185 typedef struct
187 /* VEX prefix is either 2 byte or 3 byte. */
188 unsigned char bytes[3];
189 unsigned int length;
190 /* Destination or source register specifier. */
191 const reg_entry *register_specifier;
192 } vex_prefix;
194 /* 'md_assemble ()' gathers together information and puts it into a
195 i386_insn. */
197 union i386_op
199 expressionS *disps;
200 expressionS *imms;
201 const reg_entry *regs;
204 struct _i386_insn
206 /* TM holds the template for the insn were currently assembling. */
207 insn_template tm;
209 /* SUFFIX holds the instruction size suffix for byte, word, dword
210 or qword, if given. */
211 char suffix;
213 /* OPERANDS gives the number of given operands. */
214 unsigned int operands;
216 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
217 of given register, displacement, memory operands and immediate
218 operands. */
219 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
221 /* TYPES [i] is the type (see above #defines) which tells us how to
222 use OP[i] for the corresponding operand. */
223 i386_operand_type types[MAX_OPERANDS];
225 /* Displacement expression, immediate expression, or register for each
226 operand. */
227 union i386_op op[MAX_OPERANDS];
229 /* Flags for operands. */
230 unsigned int flags[MAX_OPERANDS];
231 #define Operand_PCrel 1
233 /* Relocation type for operand */
234 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
236 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
237 the base index byte below. */
238 const reg_entry *base_reg;
239 const reg_entry *index_reg;
240 unsigned int log2_scale_factor;
242 /* SEG gives the seg_entries of this insn. They are zero unless
243 explicit segment overrides are given. */
244 const seg_entry *seg[2];
246 /* PREFIX holds all the given prefix opcodes (usually null).
247 PREFIXES is the number of prefix opcodes. */
248 unsigned int prefixes;
249 unsigned char prefix[MAX_PREFIXES];
251 /* RM and SIB are the modrm byte and the sib byte where the
252 addressing modes of this insn are encoded. */
253 modrm_byte rm;
254 rex_byte rex;
255 sib_byte sib;
256 vex_prefix vex;
258 /* Swap operand in encoding. */
259 unsigned int swap_operand : 1;
262 typedef struct _i386_insn i386_insn;
264 /* List of chars besides those in app.c:symbol_chars that can start an
265 operand. Used to prevent the scrubber eating vital white-space. */
266 const char extra_symbol_chars[] = "*%-(["
267 #ifdef LEX_AT
269 #endif
270 #ifdef LEX_QM
272 #endif
275 #if (defined (TE_I386AIX) \
276 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
277 && !defined (TE_GNU) \
278 && !defined (TE_LINUX) \
279 && !defined (TE_NETWARE) \
280 && !defined (TE_FreeBSD) \
281 && !defined (TE_NetBSD)))
282 /* This array holds the chars that always start a comment. If the
283 pre-processor is disabled, these aren't very useful. The option
284 --divide will remove '/' from this list. */
285 const char *i386_comment_chars = "#/";
286 #define SVR4_COMMENT_CHARS 1
287 #define PREFIX_SEPARATOR '\\'
289 #else
290 const char *i386_comment_chars = "#";
291 #define PREFIX_SEPARATOR '/'
292 #endif
294 /* This array holds the chars that only start a comment at the beginning of
295 a line. If the line seems to have the form '# 123 filename'
296 .line and .file directives will appear in the pre-processed output.
297 Note that input_file.c hand checks for '#' at the beginning of the
298 first line of the input file. This is because the compiler outputs
299 #NO_APP at the beginning of its output.
300 Also note that comments started like this one will always work if
301 '/' isn't otherwise defined. */
302 const char line_comment_chars[] = "#/";
304 const char line_separator_chars[] = ";";
306 /* Chars that can be used to separate mant from exp in floating point
307 nums. */
308 const char EXP_CHARS[] = "eE";
310 /* Chars that mean this number is a floating point constant
311 As in 0f12.456
312 or 0d1.2345e12. */
313 const char FLT_CHARS[] = "fFdDxX";
315 /* Tables for lexical analysis. */
316 static char mnemonic_chars[256];
317 static char register_chars[256];
318 static char operand_chars[256];
319 static char identifier_chars[256];
320 static char digit_chars[256];
322 /* Lexical macros. */
323 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
324 #define is_operand_char(x) (operand_chars[(unsigned char) x])
325 #define is_register_char(x) (register_chars[(unsigned char) x])
326 #define is_space_char(x) ((x) == ' ')
327 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
328 #define is_digit_char(x) (digit_chars[(unsigned char) x])
330 /* All non-digit non-letter characters that may occur in an operand. */
331 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
333 /* md_assemble() always leaves the strings it's passed unaltered. To
334 effect this we maintain a stack of saved characters that we've smashed
335 with '\0's (indicating end of strings for various sub-fields of the
336 assembler instruction). */
337 static char save_stack[32];
338 static char *save_stack_p;
339 #define END_STRING_AND_SAVE(s) \
340 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
341 #define RESTORE_END_STRING(s) \
342 do { *(s) = *--save_stack_p; } while (0)
344 /* The instruction we're assembling. */
345 static i386_insn i;
347 /* Possible templates for current insn. */
348 static const templates *current_templates;
350 /* Per instruction expressionS buffers: max displacements & immediates. */
351 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
352 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
354 /* Current operand we are working on. */
355 static int this_operand = -1;
357 /* We support four different modes. FLAG_CODE variable is used to distinguish
358 these. */
360 enum flag_code {
361 CODE_32BIT,
362 CODE_16BIT,
363 CODE_64BIT };
365 static enum flag_code flag_code;
366 static unsigned int object_64bit;
367 static int use_rela_relocations = 0;
369 /* The names used to print error messages. */
370 static const char *flag_code_names[] =
372 "32",
373 "16",
374 "64"
377 /* 1 for intel syntax,
378 0 if att syntax. */
379 static int intel_syntax = 0;
381 /* 1 for intel mnemonic,
382 0 if att mnemonic. */
383 static int intel_mnemonic = !SYSV386_COMPAT;
385 /* 1 if support old (<= 2.8.1) versions of gcc. */
386 static int old_gcc = OLDGCC_COMPAT;
388 /* 1 if pseudo registers are permitted. */
389 static int allow_pseudo_reg = 0;
391 /* 1 if register prefix % not required. */
392 static int allow_naked_reg = 0;
394 /* 1 if pseudo index register, eiz/riz, is allowed . */
395 static int allow_index_reg = 0;
397 static enum
399 sse_check_none = 0,
400 sse_check_warning,
401 sse_check_error
403 sse_check;
405 /* Register prefix used for error message. */
406 static const char *register_prefix = "%";
408 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
409 leave, push, and pop instructions so that gcc has the same stack
410 frame as in 32 bit mode. */
411 static char stackop_size = '\0';
413 /* Non-zero to optimize code alignment. */
414 int optimize_align_code = 1;
416 /* Non-zero to quieten some warnings. */
417 static int quiet_warnings = 0;
419 /* CPU name. */
420 static const char *cpu_arch_name = NULL;
421 static char *cpu_sub_arch_name = NULL;
423 /* CPU feature flags. */
424 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
426 /* If we have selected a cpu we are generating instructions for. */
427 static int cpu_arch_tune_set = 0;
429 /* Cpu we are generating instructions for. */
430 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
432 /* CPU feature flags of cpu we are generating instructions for. */
433 static i386_cpu_flags cpu_arch_tune_flags;
435 /* CPU instruction set architecture used. */
436 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
438 /* CPU feature flags of instruction set architecture used. */
439 i386_cpu_flags cpu_arch_isa_flags;
441 /* If set, conditional jumps are not automatically promoted to handle
442 larger than a byte offset. */
443 static unsigned int no_cond_jump_promotion = 0;
445 /* Encode SSE instructions with VEX prefix. */
446 static unsigned int sse2avx;
448 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
449 static symbolS *GOT_symbol;
451 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
452 unsigned int x86_dwarf2_return_column;
454 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
455 int x86_cie_data_alignment;
457 /* Interface to relax_segment.
458 There are 3 major relax states for 386 jump insns because the
459 different types of jumps add different sizes to frags when we're
460 figuring out what sort of jump to choose to reach a given label. */
462 /* Types. */
463 #define UNCOND_JUMP 0
464 #define COND_JUMP 1
465 #define COND_JUMP86 2
467 /* Sizes. */
468 #define CODE16 1
469 #define SMALL 0
470 #define SMALL16 (SMALL | CODE16)
471 #define BIG 2
472 #define BIG16 (BIG | CODE16)
474 #ifndef INLINE
475 #ifdef __GNUC__
476 #define INLINE __inline__
477 #else
478 #define INLINE
479 #endif
480 #endif
482 #define ENCODE_RELAX_STATE(type, size) \
483 ((relax_substateT) (((type) << 2) | (size)))
484 #define TYPE_FROM_RELAX_STATE(s) \
485 ((s) >> 2)
486 #define DISP_SIZE_FROM_RELAX_STATE(s) \
487 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
489 /* This table is used by relax_frag to promote short jumps to long
490 ones where necessary. SMALL (short) jumps may be promoted to BIG
491 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
492 don't allow a short jump in a 32 bit code segment to be promoted to
493 a 16 bit offset jump because it's slower (requires data size
494 prefix), and doesn't work, unless the destination is in the bottom
495 64k of the code segment (The top 16 bits of eip are zeroed). */
497 const relax_typeS md_relax_table[] =
499 /* The fields are:
500 1) most positive reach of this state,
501 2) most negative reach of this state,
502 3) how many bytes this mode will have in the variable part of the frag
503 4) which index into the table to try if we can't fit into this one. */
505 /* UNCOND_JUMP states. */
506 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
507 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
508 /* dword jmp adds 4 bytes to frag:
509 0 extra opcode bytes, 4 displacement bytes. */
510 {0, 0, 4, 0},
511 /* word jmp adds 2 byte2 to frag:
512 0 extra opcode bytes, 2 displacement bytes. */
513 {0, 0, 2, 0},
515 /* COND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
518 /* dword conditionals adds 5 bytes to frag:
519 1 extra opcode byte, 4 displacement bytes. */
520 {0, 0, 5, 0},
521 /* word conditionals add 3 bytes to frag:
522 1 extra opcode byte, 2 displacement bytes. */
523 {0, 0, 3, 0},
525 /* COND_JUMP86 states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 4 bytes to frag:
532 1 displacement byte and a 3 byte long branch insn. */
533 {0, 0, 4, 0}
536 static const arch_entry cpu_arch[] =
538 { "generic32", PROCESSOR_GENERIC32,
539 CPU_GENERIC32_FLAGS },
540 { "generic64", PROCESSOR_GENERIC64,
541 CPU_GENERIC64_FLAGS },
542 { "i8086", PROCESSOR_UNKNOWN,
543 CPU_NONE_FLAGS },
544 { "i186", PROCESSOR_UNKNOWN,
545 CPU_I186_FLAGS },
546 { "i286", PROCESSOR_UNKNOWN,
547 CPU_I286_FLAGS },
548 { "i386", PROCESSOR_I386,
549 CPU_I386_FLAGS },
550 { "i486", PROCESSOR_I486,
551 CPU_I486_FLAGS },
552 { "i586", PROCESSOR_PENTIUM,
553 CPU_I586_FLAGS },
554 { "i686", PROCESSOR_PENTIUMPRO,
555 CPU_I686_FLAGS },
556 { "pentium", PROCESSOR_PENTIUM,
557 CPU_I586_FLAGS },
558 { "pentiumpro", PROCESSOR_PENTIUMPRO,
559 CPU_I686_FLAGS },
560 { "pentiumii", PROCESSOR_PENTIUMPRO,
561 CPU_P2_FLAGS },
562 { "pentiumiii",PROCESSOR_PENTIUMPRO,
563 CPU_P3_FLAGS },
564 { "pentium4", PROCESSOR_PENTIUM4,
565 CPU_P4_FLAGS },
566 { "prescott", PROCESSOR_NOCONA,
567 CPU_CORE_FLAGS },
568 { "nocona", PROCESSOR_NOCONA,
569 CPU_NOCONA_FLAGS },
570 { "yonah", PROCESSOR_CORE,
571 CPU_CORE_FLAGS },
572 { "core", PROCESSOR_CORE,
573 CPU_CORE_FLAGS },
574 { "merom", PROCESSOR_CORE2,
575 CPU_CORE2_FLAGS },
576 { "core2", PROCESSOR_CORE2,
577 CPU_CORE2_FLAGS },
578 { "corei7", PROCESSOR_COREI7,
579 CPU_COREI7_FLAGS },
580 { "l1om", PROCESSOR_L1OM,
581 CPU_L1OM_FLAGS },
582 { "k6", PROCESSOR_K6,
583 CPU_K6_FLAGS },
584 { "k6_2", PROCESSOR_K6,
585 CPU_K6_2_FLAGS },
586 { "athlon", PROCESSOR_ATHLON,
587 CPU_ATHLON_FLAGS },
588 { "sledgehammer", PROCESSOR_K8,
589 CPU_K8_FLAGS },
590 { "opteron", PROCESSOR_K8,
591 CPU_K8_FLAGS },
592 { "k8", PROCESSOR_K8,
593 CPU_K8_FLAGS },
594 { "amdfam10", PROCESSOR_AMDFAM10,
595 CPU_AMDFAM10_FLAGS },
596 { ".8087", PROCESSOR_UNKNOWN,
597 CPU_8087_FLAGS },
598 { ".287", PROCESSOR_UNKNOWN,
599 CPU_287_FLAGS },
600 { ".387", PROCESSOR_UNKNOWN,
601 CPU_387_FLAGS },
602 { ".no87", PROCESSOR_UNKNOWN,
603 CPU_ANY87_FLAGS },
604 { ".mmx", PROCESSOR_UNKNOWN,
605 CPU_MMX_FLAGS },
606 { ".nommx", PROCESSOR_UNKNOWN,
607 CPU_3DNOWA_FLAGS },
608 { ".sse", PROCESSOR_UNKNOWN,
609 CPU_SSE_FLAGS },
610 { ".sse2", PROCESSOR_UNKNOWN,
611 CPU_SSE2_FLAGS },
612 { ".sse3", PROCESSOR_UNKNOWN,
613 CPU_SSE3_FLAGS },
614 { ".ssse3", PROCESSOR_UNKNOWN,
615 CPU_SSSE3_FLAGS },
616 { ".sse4.1", PROCESSOR_UNKNOWN,
617 CPU_SSE4_1_FLAGS },
618 { ".sse4.2", PROCESSOR_UNKNOWN,
619 CPU_SSE4_2_FLAGS },
620 { ".sse4", PROCESSOR_UNKNOWN,
621 CPU_SSE4_2_FLAGS },
622 { ".nosse", PROCESSOR_UNKNOWN,
623 CPU_ANY_SSE_FLAGS },
624 { ".avx", PROCESSOR_UNKNOWN,
625 CPU_AVX_FLAGS },
626 { ".noavx", PROCESSOR_UNKNOWN,
627 CPU_ANY_AVX_FLAGS },
628 { ".vmx", PROCESSOR_UNKNOWN,
629 CPU_VMX_FLAGS },
630 { ".smx", PROCESSOR_UNKNOWN,
631 CPU_SMX_FLAGS },
632 { ".xsave", PROCESSOR_UNKNOWN,
633 CPU_XSAVE_FLAGS },
634 { ".aes", PROCESSOR_UNKNOWN,
635 CPU_AES_FLAGS },
636 { ".pclmul", PROCESSOR_UNKNOWN,
637 CPU_PCLMUL_FLAGS },
638 { ".clmul", PROCESSOR_UNKNOWN,
639 CPU_PCLMUL_FLAGS },
640 { ".fma", PROCESSOR_UNKNOWN,
641 CPU_FMA_FLAGS },
642 { ".fma4", PROCESSOR_UNKNOWN,
643 CPU_FMA4_FLAGS },
644 { ".movbe", PROCESSOR_UNKNOWN,
645 CPU_MOVBE_FLAGS },
646 { ".ept", PROCESSOR_UNKNOWN,
647 CPU_EPT_FLAGS },
648 { ".clflush", PROCESSOR_UNKNOWN,
649 CPU_CLFLUSH_FLAGS },
650 { ".syscall", PROCESSOR_UNKNOWN,
651 CPU_SYSCALL_FLAGS },
652 { ".rdtscp", PROCESSOR_UNKNOWN,
653 CPU_RDTSCP_FLAGS },
654 { ".3dnow", PROCESSOR_UNKNOWN,
655 CPU_3DNOW_FLAGS },
656 { ".3dnowa", PROCESSOR_UNKNOWN,
657 CPU_3DNOWA_FLAGS },
658 { ".padlock", PROCESSOR_UNKNOWN,
659 CPU_PADLOCK_FLAGS },
660 { ".pacifica", PROCESSOR_UNKNOWN,
661 CPU_SVME_FLAGS },
662 { ".svme", PROCESSOR_UNKNOWN,
663 CPU_SVME_FLAGS },
664 { ".sse4a", PROCESSOR_UNKNOWN,
665 CPU_SSE4A_FLAGS },
666 { ".abm", PROCESSOR_UNKNOWN,
667 CPU_ABM_FLAGS },
670 #ifdef I386COFF
671 /* Like s_lcomm_internal in gas/read.c but the alignment string
672 is allowed to be optional. */
674 static symbolS *
675 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
677 addressT align = 0;
679 SKIP_WHITESPACE ();
681 if (needs_align
682 && *input_line_pointer == ',')
684 align = parse_align (needs_align - 1);
686 if (align == (addressT) -1)
687 return NULL;
689 else
691 if (size >= 8)
692 align = 3;
693 else if (size >= 4)
694 align = 2;
695 else if (size >= 2)
696 align = 1;
697 else
698 align = 0;
701 bss_alloc (symbolP, size, align);
702 return symbolP;
705 static void
706 pe_lcomm (int needs_align)
708 s_comm_internal (needs_align * 2, pe_lcomm_internal);
710 #endif
712 const pseudo_typeS md_pseudo_table[] =
714 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
715 {"align", s_align_bytes, 0},
716 #else
717 {"align", s_align_ptwo, 0},
718 #endif
719 {"arch", set_cpu_arch, 0},
720 #ifndef I386COFF
721 {"bss", s_bss, 0},
722 #else
723 {"lcomm", pe_lcomm, 1},
724 #endif
725 {"ffloat", float_cons, 'f'},
726 {"dfloat", float_cons, 'd'},
727 {"tfloat", float_cons, 'x'},
728 {"value", cons, 2},
729 {"slong", signed_cons, 4},
730 {"noopt", s_ignore, 0},
731 {"optim", s_ignore, 0},
732 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
733 {"code16", set_code_flag, CODE_16BIT},
734 {"code32", set_code_flag, CODE_32BIT},
735 {"code64", set_code_flag, CODE_64BIT},
736 {"intel_syntax", set_intel_syntax, 1},
737 {"att_syntax", set_intel_syntax, 0},
738 {"intel_mnemonic", set_intel_mnemonic, 1},
739 {"att_mnemonic", set_intel_mnemonic, 0},
740 {"allow_index_reg", set_allow_index_reg, 1},
741 {"disallow_index_reg", set_allow_index_reg, 0},
742 {"sse_check", set_sse_check, 0},
743 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
744 {"largecomm", handle_large_common, 0},
745 #else
746 {"file", (void (*) (int)) dwarf2_directive_file, 0},
747 {"loc", dwarf2_directive_loc, 0},
748 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
749 #endif
750 #ifdef TE_PE
751 {"secrel32", pe_directive_secrel, 0},
752 #endif
753 {0, 0, 0}
756 /* For interface with expression (). */
757 extern char *input_line_pointer;
759 /* Hash table for instruction mnemonic lookup. */
760 static struct hash_control *op_hash;
762 /* Hash table for register lookup. */
763 static struct hash_control *reg_hash;
765 void
766 i386_align_code (fragS *fragP, int count)
768 /* Various efficient no-op patterns for aligning code labels.
769 Note: Don't try to assemble the instructions in the comments.
770 0L and 0w are not legal. */
771 static const char f32_1[] =
772 {0x90}; /* nop */
773 static const char f32_2[] =
774 {0x66,0x90}; /* xchg %ax,%ax */
775 static const char f32_3[] =
776 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
777 static const char f32_4[] =
778 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
779 static const char f32_5[] =
780 {0x90, /* nop */
781 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
782 static const char f32_6[] =
783 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
784 static const char f32_7[] =
785 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
786 static const char f32_8[] =
787 {0x90, /* nop */
788 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
789 static const char f32_9[] =
790 {0x89,0xf6, /* movl %esi,%esi */
791 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
792 static const char f32_10[] =
793 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
794 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
795 static const char f32_11[] =
796 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
797 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
798 static const char f32_12[] =
799 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
800 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
801 static const char f32_13[] =
802 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
803 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
804 static const char f32_14[] =
805 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
806 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
807 static const char f16_3[] =
808 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
809 static const char f16_4[] =
810 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
811 static const char f16_5[] =
812 {0x90, /* nop */
813 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
814 static const char f16_6[] =
815 {0x89,0xf6, /* mov %si,%si */
816 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
817 static const char f16_7[] =
818 {0x8d,0x74,0x00, /* lea 0(%si),%si */
819 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
820 static const char f16_8[] =
821 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
822 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
823 static const char jump_31[] =
824 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
825 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
826 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
827 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
828 static const char *const f32_patt[] = {
829 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
830 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
832 static const char *const f16_patt[] = {
833 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
835 /* nopl (%[re]ax) */
836 static const char alt_3[] =
837 {0x0f,0x1f,0x00};
838 /* nopl 0(%[re]ax) */
839 static const char alt_4[] =
840 {0x0f,0x1f,0x40,0x00};
841 /* nopl 0(%[re]ax,%[re]ax,1) */
842 static const char alt_5[] =
843 {0x0f,0x1f,0x44,0x00,0x00};
844 /* nopw 0(%[re]ax,%[re]ax,1) */
845 static const char alt_6[] =
846 {0x66,0x0f,0x1f,0x44,0x00,0x00};
847 /* nopl 0L(%[re]ax) */
848 static const char alt_7[] =
849 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
850 /* nopl 0L(%[re]ax,%[re]ax,1) */
851 static const char alt_8[] =
852 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
853 /* nopw 0L(%[re]ax,%[re]ax,1) */
854 static const char alt_9[] =
855 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
856 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
857 static const char alt_10[] =
858 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
859 /* data16
860 nopw %cs:0L(%[re]ax,%[re]ax,1) */
861 static const char alt_long_11[] =
862 {0x66,
863 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
864 /* data16
865 data16
866 nopw %cs:0L(%[re]ax,%[re]ax,1) */
867 static const char alt_long_12[] =
868 {0x66,
869 0x66,
870 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
871 /* data16
872 data16
873 data16
874 nopw %cs:0L(%[re]ax,%[re]ax,1) */
875 static const char alt_long_13[] =
876 {0x66,
877 0x66,
878 0x66,
879 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
880 /* data16
881 data16
882 data16
883 data16
884 nopw %cs:0L(%[re]ax,%[re]ax,1) */
885 static const char alt_long_14[] =
886 {0x66,
887 0x66,
888 0x66,
889 0x66,
890 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
891 /* data16
892 data16
893 data16
894 data16
895 data16
896 nopw %cs:0L(%[re]ax,%[re]ax,1) */
897 static const char alt_long_15[] =
898 {0x66,
899 0x66,
900 0x66,
901 0x66,
902 0x66,
903 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
904 /* nopl 0(%[re]ax,%[re]ax,1)
905 nopw 0(%[re]ax,%[re]ax,1) */
906 static const char alt_short_11[] =
907 {0x0f,0x1f,0x44,0x00,0x00,
908 0x66,0x0f,0x1f,0x44,0x00,0x00};
909 /* nopw 0(%[re]ax,%[re]ax,1)
910 nopw 0(%[re]ax,%[re]ax,1) */
911 static const char alt_short_12[] =
912 {0x66,0x0f,0x1f,0x44,0x00,0x00,
913 0x66,0x0f,0x1f,0x44,0x00,0x00};
914 /* nopw 0(%[re]ax,%[re]ax,1)
915 nopl 0L(%[re]ax) */
916 static const char alt_short_13[] =
917 {0x66,0x0f,0x1f,0x44,0x00,0x00,
918 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
919 /* nopl 0L(%[re]ax)
920 nopl 0L(%[re]ax) */
921 static const char alt_short_14[] =
922 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
923 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
924 /* nopl 0L(%[re]ax)
925 nopl 0L(%[re]ax,%[re]ax,1) */
926 static const char alt_short_15[] =
927 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
928 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
929 static const char *const alt_short_patt[] = {
930 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
931 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
932 alt_short_14, alt_short_15
934 static const char *const alt_long_patt[] = {
935 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
936 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
937 alt_long_14, alt_long_15
940 /* Only align for at least a positive non-zero boundary. */
941 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
942 return;
944 /* We need to decide which NOP sequence to use for 32bit and
945 64bit. When -mtune= is used:
947 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
948 PROCESSOR_GENERIC32, f32_patt will be used.
949 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
950 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
951 PROCESSOR_GENERIC64, alt_long_patt will be used.
952 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
953 PROCESSOR_AMDFAM10, alt_short_patt will be used.
955 When -mtune= isn't used, alt_long_patt will be used if
956 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
957 be used.
959 When -march= or .arch is used, we can't use anything beyond
960 cpu_arch_isa_flags. */
962 if (flag_code == CODE_16BIT)
964 if (count > 8)
966 memcpy (fragP->fr_literal + fragP->fr_fix,
967 jump_31, count);
968 /* Adjust jump offset. */
969 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
971 else
972 memcpy (fragP->fr_literal + fragP->fr_fix,
973 f16_patt[count - 1], count);
975 else
977 const char *const *patt = NULL;
979 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
981 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
982 switch (cpu_arch_tune)
984 case PROCESSOR_UNKNOWN:
985 /* We use cpu_arch_isa_flags to check if we SHOULD
986 optimize for Cpu686. */
987 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
988 patt = alt_long_patt;
989 else
990 patt = f32_patt;
991 break;
992 case PROCESSOR_PENTIUMPRO:
993 case PROCESSOR_PENTIUM4:
994 case PROCESSOR_NOCONA:
995 case PROCESSOR_CORE:
996 case PROCESSOR_CORE2:
997 case PROCESSOR_COREI7:
998 case PROCESSOR_L1OM:
999 case PROCESSOR_GENERIC64:
1000 patt = alt_long_patt;
1001 break;
1002 case PROCESSOR_K6:
1003 case PROCESSOR_ATHLON:
1004 case PROCESSOR_K8:
1005 case PROCESSOR_AMDFAM10:
1006 patt = alt_short_patt;
1007 break;
1008 case PROCESSOR_I386:
1009 case PROCESSOR_I486:
1010 case PROCESSOR_PENTIUM:
1011 case PROCESSOR_GENERIC32:
1012 patt = f32_patt;
1013 break;
1016 else
1018 switch (fragP->tc_frag_data.tune)
1020 case PROCESSOR_UNKNOWN:
1021 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1022 PROCESSOR_UNKNOWN. */
1023 abort ();
1024 break;
1026 case PROCESSOR_I386:
1027 case PROCESSOR_I486:
1028 case PROCESSOR_PENTIUM:
1029 case PROCESSOR_K6:
1030 case PROCESSOR_ATHLON:
1031 case PROCESSOR_K8:
1032 case PROCESSOR_AMDFAM10:
1033 case PROCESSOR_GENERIC32:
1034 /* We use cpu_arch_isa_flags to check if we CAN optimize
1035 for Cpu686. */
1036 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1037 patt = alt_short_patt;
1038 else
1039 patt = f32_patt;
1040 break;
1041 case PROCESSOR_PENTIUMPRO:
1042 case PROCESSOR_PENTIUM4:
1043 case PROCESSOR_NOCONA:
1044 case PROCESSOR_CORE:
1045 case PROCESSOR_CORE2:
1046 case PROCESSOR_COREI7:
1047 case PROCESSOR_L1OM:
1048 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1049 patt = alt_long_patt;
1050 else
1051 patt = f32_patt;
1052 break;
1053 case PROCESSOR_GENERIC64:
1054 patt = alt_long_patt;
1055 break;
1059 if (patt == f32_patt)
1061 /* If the padding is less than 15 bytes, we use the normal
1062 ones. Otherwise, we use a jump instruction and adjust
1063 its offset. */
1064 int limit;
1066 /* For 64bit, the limit is 3 bytes. */
1067 if (flag_code == CODE_64BIT
1068 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1069 limit = 3;
1070 else
1071 limit = 15;
1072 if (count < limit)
1073 memcpy (fragP->fr_literal + fragP->fr_fix,
1074 patt[count - 1], count);
1075 else
1077 memcpy (fragP->fr_literal + fragP->fr_fix,
1078 jump_31, count);
1079 /* Adjust jump offset. */
1080 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1083 else
1085 /* Maximum length of an instruction is 15 byte. If the
1086 padding is greater than 15 bytes and we don't use jump,
1087 we have to break it into smaller pieces. */
1088 int padding = count;
1089 while (padding > 15)
1091 padding -= 15;
1092 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1093 patt [14], 15);
1096 if (padding)
1097 memcpy (fragP->fr_literal + fragP->fr_fix,
1098 patt [padding - 1], padding);
1101 fragP->fr_var = count;
1104 static INLINE int
1105 operand_type_all_zero (const union i386_operand_type *x)
1107 switch (ARRAY_SIZE(x->array))
1109 case 3:
1110 if (x->array[2])
1111 return 0;
1112 case 2:
1113 if (x->array[1])
1114 return 0;
1115 case 1:
1116 return !x->array[0];
1117 default:
1118 abort ();
1122 static INLINE void
1123 operand_type_set (union i386_operand_type *x, unsigned int v)
1125 switch (ARRAY_SIZE(x->array))
1127 case 3:
1128 x->array[2] = v;
1129 case 2:
1130 x->array[1] = v;
1131 case 1:
1132 x->array[0] = v;
1133 break;
1134 default:
1135 abort ();
1139 static INLINE int
1140 operand_type_equal (const union i386_operand_type *x,
1141 const union i386_operand_type *y)
1143 switch (ARRAY_SIZE(x->array))
1145 case 3:
1146 if (x->array[2] != y->array[2])
1147 return 0;
1148 case 2:
1149 if (x->array[1] != y->array[1])
1150 return 0;
1151 case 1:
1152 return x->array[0] == y->array[0];
1153 break;
1154 default:
1155 abort ();
1159 static INLINE int
1160 cpu_flags_all_zero (const union i386_cpu_flags *x)
1162 switch (ARRAY_SIZE(x->array))
1164 case 3:
1165 if (x->array[2])
1166 return 0;
1167 case 2:
1168 if (x->array[1])
1169 return 0;
1170 case 1:
1171 return !x->array[0];
1172 default:
1173 abort ();
1177 static INLINE void
1178 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1180 switch (ARRAY_SIZE(x->array))
1182 case 3:
1183 x->array[2] = v;
1184 case 2:
1185 x->array[1] = v;
1186 case 1:
1187 x->array[0] = v;
1188 break;
1189 default:
1190 abort ();
1194 static INLINE int
1195 cpu_flags_equal (const union i386_cpu_flags *x,
1196 const union i386_cpu_flags *y)
1198 switch (ARRAY_SIZE(x->array))
1200 case 3:
1201 if (x->array[2] != y->array[2])
1202 return 0;
1203 case 2:
1204 if (x->array[1] != y->array[1])
1205 return 0;
1206 case 1:
1207 return x->array[0] == y->array[0];
1208 break;
1209 default:
1210 abort ();
1214 static INLINE int
1215 cpu_flags_check_cpu64 (i386_cpu_flags f)
1217 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1218 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1221 static INLINE i386_cpu_flags
1222 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1224 switch (ARRAY_SIZE (x.array))
1226 case 3:
1227 x.array [2] &= y.array [2];
1228 case 2:
1229 x.array [1] &= y.array [1];
1230 case 1:
1231 x.array [0] &= y.array [0];
1232 break;
1233 default:
1234 abort ();
1236 return x;
1239 static INLINE i386_cpu_flags
1240 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1242 switch (ARRAY_SIZE (x.array))
1244 case 3:
1245 x.array [2] |= y.array [2];
1246 case 2:
1247 x.array [1] |= y.array [1];
1248 case 1:
1249 x.array [0] |= y.array [0];
1250 break;
1251 default:
1252 abort ();
1254 return x;
1257 static INLINE i386_cpu_flags
1258 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1260 switch (ARRAY_SIZE (x.array))
1262 case 3:
1263 x.array [2] &= ~y.array [2];
1264 case 2:
1265 x.array [1] &= ~y.array [1];
1266 case 1:
1267 x.array [0] &= ~y.array [0];
1268 break;
1269 default:
1270 abort ();
1272 return x;
1275 #define CPU_FLAGS_ARCH_MATCH 0x1
1276 #define CPU_FLAGS_64BIT_MATCH 0x2
1277 #define CPU_FLAGS_AES_MATCH 0x4
1278 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1279 #define CPU_FLAGS_AVX_MATCH 0x10
1281 #define CPU_FLAGS_32BIT_MATCH \
1282 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1283 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1284 #define CPU_FLAGS_PERFECT_MATCH \
1285 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1287 /* Return CPU flags match bits. */
1289 static int
1290 cpu_flags_match (const insn_template *t)
1292 i386_cpu_flags x = t->cpu_flags;
1293 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1295 x.bitfield.cpu64 = 0;
1296 x.bitfield.cpuno64 = 0;
1298 if (cpu_flags_all_zero (&x))
1300 /* This instruction is available on all archs. */
1301 match |= CPU_FLAGS_32BIT_MATCH;
1303 else
1305 /* This instruction is available only on some archs. */
1306 i386_cpu_flags cpu = cpu_arch_flags;
1308 cpu.bitfield.cpu64 = 0;
1309 cpu.bitfield.cpuno64 = 0;
1310 cpu = cpu_flags_and (x, cpu);
1311 if (!cpu_flags_all_zero (&cpu))
1313 if (x.bitfield.cpuavx)
1315 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1316 if (cpu.bitfield.cpuavx)
1318 /* Check SSE2AVX. */
1319 if (!t->opcode_modifier.sse2avx|| sse2avx)
1321 match |= (CPU_FLAGS_ARCH_MATCH
1322 | CPU_FLAGS_AVX_MATCH);
1323 /* Check AES. */
1324 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1325 match |= CPU_FLAGS_AES_MATCH;
1326 /* Check PCLMUL. */
1327 if (!x.bitfield.cpupclmul
1328 || cpu.bitfield.cpupclmul)
1329 match |= CPU_FLAGS_PCLMUL_MATCH;
1332 else
1333 match |= CPU_FLAGS_ARCH_MATCH;
1335 else
1336 match |= CPU_FLAGS_32BIT_MATCH;
1339 return match;
1342 static INLINE i386_operand_type
1343 operand_type_and (i386_operand_type x, i386_operand_type y)
1345 switch (ARRAY_SIZE (x.array))
1347 case 3:
1348 x.array [2] &= y.array [2];
1349 case 2:
1350 x.array [1] &= y.array [1];
1351 case 1:
1352 x.array [0] &= y.array [0];
1353 break;
1354 default:
1355 abort ();
1357 return x;
1360 static INLINE i386_operand_type
1361 operand_type_or (i386_operand_type x, i386_operand_type y)
1363 switch (ARRAY_SIZE (x.array))
1365 case 3:
1366 x.array [2] |= y.array [2];
1367 case 2:
1368 x.array [1] |= y.array [1];
1369 case 1:
1370 x.array [0] |= y.array [0];
1371 break;
1372 default:
1373 abort ();
1375 return x;
1378 static INLINE i386_operand_type
1379 operand_type_xor (i386_operand_type x, i386_operand_type y)
1381 switch (ARRAY_SIZE (x.array))
1383 case 3:
1384 x.array [2] ^= y.array [2];
1385 case 2:
1386 x.array [1] ^= y.array [1];
1387 case 1:
1388 x.array [0] ^= y.array [0];
1389 break;
1390 default:
1391 abort ();
1393 return x;
1396 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1397 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1398 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1399 static const i386_operand_type inoutportreg
1400 = OPERAND_TYPE_INOUTPORTREG;
1401 static const i386_operand_type reg16_inoutportreg
1402 = OPERAND_TYPE_REG16_INOUTPORTREG;
1403 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1404 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1405 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1406 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1407 static const i386_operand_type anydisp
1408 = OPERAND_TYPE_ANYDISP;
1409 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1410 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1411 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1412 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1413 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1414 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1415 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1416 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1417 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1418 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1419 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1421 enum operand_type
1423 reg,
1424 imm,
1425 disp,
1426 anymem
1429 static INLINE int
1430 operand_type_check (i386_operand_type t, enum operand_type c)
1432 switch (c)
1434 case reg:
1435 return (t.bitfield.reg8
1436 || t.bitfield.reg16
1437 || t.bitfield.reg32
1438 || t.bitfield.reg64);
1440 case imm:
1441 return (t.bitfield.imm8
1442 || t.bitfield.imm8s
1443 || t.bitfield.imm16
1444 || t.bitfield.imm32
1445 || t.bitfield.imm32s
1446 || t.bitfield.imm64);
1448 case disp:
1449 return (t.bitfield.disp8
1450 || t.bitfield.disp16
1451 || t.bitfield.disp32
1452 || t.bitfield.disp32s
1453 || t.bitfield.disp64);
1455 case anymem:
1456 return (t.bitfield.disp8
1457 || t.bitfield.disp16
1458 || t.bitfield.disp32
1459 || t.bitfield.disp32s
1460 || t.bitfield.disp64
1461 || t.bitfield.baseindex);
1463 default:
1464 abort ();
1467 return 0;
1470 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1471 operand J for instruction template T. */
1473 static INLINE int
1474 match_reg_size (const insn_template *t, unsigned int j)
1476 return !((i.types[j].bitfield.byte
1477 && !t->operand_types[j].bitfield.byte)
1478 || (i.types[j].bitfield.word
1479 && !t->operand_types[j].bitfield.word)
1480 || (i.types[j].bitfield.dword
1481 && !t->operand_types[j].bitfield.dword)
1482 || (i.types[j].bitfield.qword
1483 && !t->operand_types[j].bitfield.qword));
1486 /* Return 1 if there is no conflict in any size on operand J for
1487 instruction template T. */
1489 static INLINE int
1490 match_mem_size (const insn_template *t, unsigned int j)
1492 return (match_reg_size (t, j)
1493 && !((i.types[j].bitfield.unspecified
1494 && !t->operand_types[j].bitfield.unspecified)
1495 || (i.types[j].bitfield.fword
1496 && !t->operand_types[j].bitfield.fword)
1497 || (i.types[j].bitfield.tbyte
1498 && !t->operand_types[j].bitfield.tbyte)
1499 || (i.types[j].bitfield.xmmword
1500 && !t->operand_types[j].bitfield.xmmword)
1501 || (i.types[j].bitfield.ymmword
1502 && !t->operand_types[j].bitfield.ymmword)));
1505 /* Return 1 if there is no size conflict on any operands for
1506 instruction template T. */
1508 static INLINE int
1509 operand_size_match (const insn_template *t)
1511 unsigned int j;
1512 int match = 1;
1514 /* Don't check jump instructions. */
1515 if (t->opcode_modifier.jump
1516 || t->opcode_modifier.jumpbyte
1517 || t->opcode_modifier.jumpdword
1518 || t->opcode_modifier.jumpintersegment)
1519 return match;
1521 /* Check memory and accumulator operand size. */
1522 for (j = 0; j < i.operands; j++)
1524 if (t->operand_types[j].bitfield.anysize)
1525 continue;
1527 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1529 match = 0;
1530 break;
1533 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1535 match = 0;
1536 break;
1540 if (match
1541 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1542 return match;
1544 /* Check reverse. */
1545 gas_assert (i.operands == 2);
1547 match = 1;
1548 for (j = 0; j < 2; j++)
1550 if (t->operand_types[j].bitfield.acc
1551 && !match_reg_size (t, j ? 0 : 1))
1553 match = 0;
1554 break;
1557 if (i.types[j].bitfield.mem
1558 && !match_mem_size (t, j ? 0 : 1))
1560 match = 0;
1561 break;
1565 return match;
1568 static INLINE int
1569 operand_type_match (i386_operand_type overlap,
1570 i386_operand_type given)
1572 i386_operand_type temp = overlap;
1574 temp.bitfield.jumpabsolute = 0;
1575 temp.bitfield.unspecified = 0;
1576 temp.bitfield.byte = 0;
1577 temp.bitfield.word = 0;
1578 temp.bitfield.dword = 0;
1579 temp.bitfield.fword = 0;
1580 temp.bitfield.qword = 0;
1581 temp.bitfield.tbyte = 0;
1582 temp.bitfield.xmmword = 0;
1583 temp.bitfield.ymmword = 0;
1584 if (operand_type_all_zero (&temp))
1585 return 0;
1587 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1588 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1591 /* If given types g0 and g1 are registers they must be of the same type
1592 unless the expected operand type register overlap is null.
1593 Note that Acc in a template matches every size of reg. */
1595 static INLINE int
1596 operand_type_register_match (i386_operand_type m0,
1597 i386_operand_type g0,
1598 i386_operand_type t0,
1599 i386_operand_type m1,
1600 i386_operand_type g1,
1601 i386_operand_type t1)
1603 if (!operand_type_check (g0, reg))
1604 return 1;
1606 if (!operand_type_check (g1, reg))
1607 return 1;
1609 if (g0.bitfield.reg8 == g1.bitfield.reg8
1610 && g0.bitfield.reg16 == g1.bitfield.reg16
1611 && g0.bitfield.reg32 == g1.bitfield.reg32
1612 && g0.bitfield.reg64 == g1.bitfield.reg64)
1613 return 1;
1615 if (m0.bitfield.acc)
1617 t0.bitfield.reg8 = 1;
1618 t0.bitfield.reg16 = 1;
1619 t0.bitfield.reg32 = 1;
1620 t0.bitfield.reg64 = 1;
1623 if (m1.bitfield.acc)
1625 t1.bitfield.reg8 = 1;
1626 t1.bitfield.reg16 = 1;
1627 t1.bitfield.reg32 = 1;
1628 t1.bitfield.reg64 = 1;
1631 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1632 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1633 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1634 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1637 static INLINE unsigned int
1638 mode_from_disp_size (i386_operand_type t)
1640 if (t.bitfield.disp8)
1641 return 1;
1642 else if (t.bitfield.disp16
1643 || t.bitfield.disp32
1644 || t.bitfield.disp32s)
1645 return 2;
1646 else
1647 return 0;
1650 static INLINE int
1651 fits_in_signed_byte (offsetT num)
1653 return (num >= -128) && (num <= 127);
1656 static INLINE int
1657 fits_in_unsigned_byte (offsetT num)
1659 return (num & 0xff) == num;
1662 static INLINE int
1663 fits_in_unsigned_word (offsetT num)
1665 return (num & 0xffff) == num;
1668 static INLINE int
1669 fits_in_signed_word (offsetT num)
1671 return (-32768 <= num) && (num <= 32767);
1674 static INLINE int
1675 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1677 #ifndef BFD64
1678 return 1;
1679 #else
1680 return (!(((offsetT) -1 << 31) & num)
1681 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1682 #endif
1683 } /* fits_in_signed_long() */
1685 static INLINE int
1686 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1688 #ifndef BFD64
1689 return 1;
1690 #else
1691 return (num & (((offsetT) 2 << 31) - 1)) == num;
1692 #endif
1693 } /* fits_in_unsigned_long() */
1695 static i386_operand_type
1696 smallest_imm_type (offsetT num)
1698 i386_operand_type t;
1700 operand_type_set (&t, 0);
1701 t.bitfield.imm64 = 1;
1703 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1705 /* This code is disabled on the 486 because all the Imm1 forms
1706 in the opcode table are slower on the i486. They're the
1707 versions with the implicitly specified single-position
1708 displacement, which has another syntax if you really want to
1709 use that form. */
1710 t.bitfield.imm1 = 1;
1711 t.bitfield.imm8 = 1;
1712 t.bitfield.imm8s = 1;
1713 t.bitfield.imm16 = 1;
1714 t.bitfield.imm32 = 1;
1715 t.bitfield.imm32s = 1;
1717 else if (fits_in_signed_byte (num))
1719 t.bitfield.imm8 = 1;
1720 t.bitfield.imm8s = 1;
1721 t.bitfield.imm16 = 1;
1722 t.bitfield.imm32 = 1;
1723 t.bitfield.imm32s = 1;
1725 else if (fits_in_unsigned_byte (num))
1727 t.bitfield.imm8 = 1;
1728 t.bitfield.imm16 = 1;
1729 t.bitfield.imm32 = 1;
1730 t.bitfield.imm32s = 1;
1732 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1734 t.bitfield.imm16 = 1;
1735 t.bitfield.imm32 = 1;
1736 t.bitfield.imm32s = 1;
1738 else if (fits_in_signed_long (num))
1740 t.bitfield.imm32 = 1;
1741 t.bitfield.imm32s = 1;
1743 else if (fits_in_unsigned_long (num))
1744 t.bitfield.imm32 = 1;
1746 return t;
1749 static offsetT
1750 offset_in_range (offsetT val, int size)
1752 addressT mask;
1754 switch (size)
1756 case 1: mask = ((addressT) 1 << 8) - 1; break;
1757 case 2: mask = ((addressT) 1 << 16) - 1; break;
1758 case 4: mask = ((addressT) 2 << 31) - 1; break;
1759 #ifdef BFD64
1760 case 8: mask = ((addressT) 2 << 63) - 1; break;
1761 #endif
1762 default: abort ();
1765 #ifdef BFD64
1766 /* If BFD64, sign extend val for 32bit address mode. */
1767 if (flag_code != CODE_64BIT
1768 || i.prefix[ADDR_PREFIX])
1769 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1770 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1771 #endif
1773 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1775 char buf1[40], buf2[40];
1777 sprint_value (buf1, val);
1778 sprint_value (buf2, val & mask);
1779 as_warn (_("%s shortened to %s"), buf1, buf2);
1781 return val & mask;
1784 /* Returns 0 if attempting to add a prefix where one from the same
1785 class already exists, 1 if non rep/repne added, 2 if rep/repne
1786 added. */
1787 static int
1788 add_prefix (unsigned int prefix)
1790 int ret = 1;
1791 unsigned int q;
1793 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1794 && flag_code == CODE_64BIT)
1796 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1797 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1798 && (prefix & (REX_R | REX_X | REX_B))))
1799 ret = 0;
1800 q = REX_PREFIX;
1802 else
1804 switch (prefix)
1806 default:
1807 abort ();
1809 case CS_PREFIX_OPCODE:
1810 case DS_PREFIX_OPCODE:
1811 case ES_PREFIX_OPCODE:
1812 case FS_PREFIX_OPCODE:
1813 case GS_PREFIX_OPCODE:
1814 case SS_PREFIX_OPCODE:
1815 q = SEG_PREFIX;
1816 break;
1818 case REPNE_PREFIX_OPCODE:
1819 case REPE_PREFIX_OPCODE:
1820 ret = 2;
1821 /* fall thru */
1822 case LOCK_PREFIX_OPCODE:
1823 q = LOCKREP_PREFIX;
1824 break;
1826 case FWAIT_OPCODE:
1827 q = WAIT_PREFIX;
1828 break;
1830 case ADDR_PREFIX_OPCODE:
1831 q = ADDR_PREFIX;
1832 break;
1834 case DATA_PREFIX_OPCODE:
1835 q = DATA_PREFIX;
1836 break;
1838 if (i.prefix[q] != 0)
1839 ret = 0;
1842 if (ret)
1844 if (!i.prefix[q])
1845 ++i.prefixes;
1846 i.prefix[q] |= prefix;
1848 else
1849 as_bad (_("same type of prefix used twice"));
1851 return ret;
1854 static void
1855 set_code_flag (int value)
1857 flag_code = (enum flag_code) value;
1858 if (flag_code == CODE_64BIT)
1860 cpu_arch_flags.bitfield.cpu64 = 1;
1861 cpu_arch_flags.bitfield.cpuno64 = 0;
1863 else
1865 cpu_arch_flags.bitfield.cpu64 = 0;
1866 cpu_arch_flags.bitfield.cpuno64 = 1;
1868 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1870 as_bad (_("64bit mode not supported on this CPU."));
1872 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1874 as_bad (_("32bit mode not supported on this CPU."));
1876 stackop_size = '\0';
1879 static void
1880 set_16bit_gcc_code_flag (int new_code_flag)
1882 flag_code = (enum flag_code) new_code_flag;
1883 if (flag_code != CODE_16BIT)
1884 abort ();
1885 cpu_arch_flags.bitfield.cpu64 = 0;
1886 cpu_arch_flags.bitfield.cpuno64 = 1;
1887 stackop_size = LONG_MNEM_SUFFIX;
1890 static void
1891 set_intel_syntax (int syntax_flag)
1893 /* Find out if register prefixing is specified. */
1894 int ask_naked_reg = 0;
1896 SKIP_WHITESPACE ();
1897 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1899 char *string = input_line_pointer;
1900 int e = get_symbol_end ();
1902 if (strcmp (string, "prefix") == 0)
1903 ask_naked_reg = 1;
1904 else if (strcmp (string, "noprefix") == 0)
1905 ask_naked_reg = -1;
1906 else
1907 as_bad (_("bad argument to syntax directive."));
1908 *input_line_pointer = e;
1910 demand_empty_rest_of_line ();
1912 intel_syntax = syntax_flag;
1914 if (ask_naked_reg == 0)
1915 allow_naked_reg = (intel_syntax
1916 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1917 else
1918 allow_naked_reg = (ask_naked_reg < 0);
1920 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1922 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1923 identifier_chars['$'] = intel_syntax ? '$' : 0;
1924 register_prefix = allow_naked_reg ? "" : "%";
1927 static void
1928 set_intel_mnemonic (int mnemonic_flag)
1930 intel_mnemonic = mnemonic_flag;
1933 static void
1934 set_allow_index_reg (int flag)
1936 allow_index_reg = flag;
1939 static void
1940 set_sse_check (int dummy ATTRIBUTE_UNUSED)
1942 SKIP_WHITESPACE ();
1944 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1946 char *string = input_line_pointer;
1947 int e = get_symbol_end ();
1949 if (strcmp (string, "none") == 0)
1950 sse_check = sse_check_none;
1951 else if (strcmp (string, "warning") == 0)
1952 sse_check = sse_check_warning;
1953 else if (strcmp (string, "error") == 0)
1954 sse_check = sse_check_error;
1955 else
1956 as_bad (_("bad argument to sse_check directive."));
1957 *input_line_pointer = e;
1959 else
1960 as_bad (_("missing argument for sse_check directive"));
1962 demand_empty_rest_of_line ();
1965 static void
1966 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1967 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
1969 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1970 static const char *arch;
1972 /* Intel LIOM is only supported on ELF. */
1973 if (!IS_ELF)
1974 return;
1976 if (!arch)
1978 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
1979 use default_arch. */
1980 arch = cpu_arch_name;
1981 if (!arch)
1982 arch = default_arch;
1985 /* If we are targeting Intel L1OM, we must enable it. */
1986 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1987 || new_flag.bitfield.cpul1om)
1988 return;
1990 as_bad (_("`%s' is not supported on `%s'"), name, arch);
1991 #endif
1994 static void
1995 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1997 SKIP_WHITESPACE ();
1999 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2001 char *string = input_line_pointer;
2002 int e = get_symbol_end ();
2003 unsigned int i;
2004 i386_cpu_flags flags;
2006 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
2008 if (strcmp (string, cpu_arch[i].name) == 0)
2010 check_cpu_arch_compatible (string, cpu_arch[i].flags);
2012 if (*string != '.')
2014 cpu_arch_name = cpu_arch[i].name;
2015 cpu_sub_arch_name = NULL;
2016 cpu_arch_flags = cpu_arch[i].flags;
2017 if (flag_code == CODE_64BIT)
2019 cpu_arch_flags.bitfield.cpu64 = 1;
2020 cpu_arch_flags.bitfield.cpuno64 = 0;
2022 else
2024 cpu_arch_flags.bitfield.cpu64 = 0;
2025 cpu_arch_flags.bitfield.cpuno64 = 1;
2027 cpu_arch_isa = cpu_arch[i].type;
2028 cpu_arch_isa_flags = cpu_arch[i].flags;
2029 if (!cpu_arch_tune_set)
2031 cpu_arch_tune = cpu_arch_isa;
2032 cpu_arch_tune_flags = cpu_arch_isa_flags;
2034 break;
2037 if (strncmp (string + 1, "no", 2))
2038 flags = cpu_flags_or (cpu_arch_flags,
2039 cpu_arch[i].flags);
2040 else
2041 flags = cpu_flags_and_not (cpu_arch_flags,
2042 cpu_arch[i].flags);
2043 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2045 if (cpu_sub_arch_name)
2047 char *name = cpu_sub_arch_name;
2048 cpu_sub_arch_name = concat (name,
2049 cpu_arch[i].name,
2050 (const char *) NULL);
2051 free (name);
2053 else
2054 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
2055 cpu_arch_flags = flags;
2057 *input_line_pointer = e;
2058 demand_empty_rest_of_line ();
2059 return;
2062 if (i >= ARRAY_SIZE (cpu_arch))
2063 as_bad (_("no such architecture: `%s'"), string);
2065 *input_line_pointer = e;
2067 else
2068 as_bad (_("missing cpu architecture"));
2070 no_cond_jump_promotion = 0;
2071 if (*input_line_pointer == ','
2072 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2074 char *string = ++input_line_pointer;
2075 int e = get_symbol_end ();
2077 if (strcmp (string, "nojumps") == 0)
2078 no_cond_jump_promotion = 1;
2079 else if (strcmp (string, "jumps") == 0)
2081 else
2082 as_bad (_("no such architecture modifier: `%s'"), string);
2084 *input_line_pointer = e;
2087 demand_empty_rest_of_line ();
2090 enum bfd_architecture
2091 i386_arch (void)
2093 if (cpu_arch_isa == PROCESSOR_L1OM)
2095 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2096 || flag_code != CODE_64BIT)
2097 as_fatal (_("Intel L1OM is 64bit ELF only"));
2098 return bfd_arch_l1om;
2100 else
2101 return bfd_arch_i386;
2104 unsigned long
2105 i386_mach ()
2107 if (!strcmp (default_arch, "x86_64"))
2109 if (cpu_arch_isa == PROCESSOR_L1OM)
2111 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2112 as_fatal (_("Intel L1OM is 64bit ELF only"));
2113 return bfd_mach_l1om;
2115 else
2116 return bfd_mach_x86_64;
2118 else if (!strcmp (default_arch, "i386"))
2119 return bfd_mach_i386_i386;
2120 else
2121 as_fatal (_("Unknown architecture"));
2124 void
2125 md_begin ()
2127 const char *hash_err;
2129 /* Initialize op_hash hash table. */
2130 op_hash = hash_new ();
2133 const insn_template *optab;
2134 templates *core_optab;
2136 /* Setup for loop. */
2137 optab = i386_optab;
2138 core_optab = (templates *) xmalloc (sizeof (templates));
2139 core_optab->start = optab;
2141 while (1)
2143 ++optab;
2144 if (optab->name == NULL
2145 || strcmp (optab->name, (optab - 1)->name) != 0)
2147 /* different name --> ship out current template list;
2148 add to hash table; & begin anew. */
2149 core_optab->end = optab;
2150 hash_err = hash_insert (op_hash,
2151 (optab - 1)->name,
2152 (void *) core_optab);
2153 if (hash_err)
2155 as_fatal (_("Internal Error: Can't hash %s: %s"),
2156 (optab - 1)->name,
2157 hash_err);
2159 if (optab->name == NULL)
2160 break;
2161 core_optab = (templates *) xmalloc (sizeof (templates));
2162 core_optab->start = optab;
2167 /* Initialize reg_hash hash table. */
2168 reg_hash = hash_new ();
2170 const reg_entry *regtab;
2171 unsigned int regtab_size = i386_regtab_size;
2173 for (regtab = i386_regtab; regtab_size--; regtab++)
2175 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2176 if (hash_err)
2177 as_fatal (_("Internal Error: Can't hash %s: %s"),
2178 regtab->reg_name,
2179 hash_err);
2183 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2185 int c;
2186 char *p;
2188 for (c = 0; c < 256; c++)
2190 if (ISDIGIT (c))
2192 digit_chars[c] = c;
2193 mnemonic_chars[c] = c;
2194 register_chars[c] = c;
2195 operand_chars[c] = c;
2197 else if (ISLOWER (c))
2199 mnemonic_chars[c] = c;
2200 register_chars[c] = c;
2201 operand_chars[c] = c;
2203 else if (ISUPPER (c))
2205 mnemonic_chars[c] = TOLOWER (c);
2206 register_chars[c] = mnemonic_chars[c];
2207 operand_chars[c] = c;
2210 if (ISALPHA (c) || ISDIGIT (c))
2211 identifier_chars[c] = c;
2212 else if (c >= 128)
2214 identifier_chars[c] = c;
2215 operand_chars[c] = c;
2219 #ifdef LEX_AT
2220 identifier_chars['@'] = '@';
2221 #endif
2222 #ifdef LEX_QM
2223 identifier_chars['?'] = '?';
2224 operand_chars['?'] = '?';
2225 #endif
2226 digit_chars['-'] = '-';
2227 mnemonic_chars['_'] = '_';
2228 mnemonic_chars['-'] = '-';
2229 mnemonic_chars['.'] = '.';
2230 identifier_chars['_'] = '_';
2231 identifier_chars['.'] = '.';
2233 for (p = operand_special_chars; *p != '\0'; p++)
2234 operand_chars[(unsigned char) *p] = *p;
2237 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2238 if (IS_ELF)
2240 record_alignment (text_section, 2);
2241 record_alignment (data_section, 2);
2242 record_alignment (bss_section, 2);
2244 #endif
2246 if (flag_code == CODE_64BIT)
2248 x86_dwarf2_return_column = 16;
2249 x86_cie_data_alignment = -8;
2251 else
2253 x86_dwarf2_return_column = 8;
2254 x86_cie_data_alignment = -4;
2258 void
2259 i386_print_statistics (FILE *file)
2261 hash_print_statistics (file, "i386 opcode", op_hash);
2262 hash_print_statistics (file, "i386 register", reg_hash);
2265 #ifdef DEBUG386
2267 /* Debugging routines for md_assemble. */
2268 static void pte (insn_template *);
2269 static void pt (i386_operand_type);
2270 static void pe (expressionS *);
2271 static void ps (symbolS *);
2273 static void
2274 pi (char *line, i386_insn *x)
2276 unsigned int i;
2278 fprintf (stdout, "%s: template ", line);
2279 pte (&x->tm);
2280 fprintf (stdout, " address: base %s index %s scale %x\n",
2281 x->base_reg ? x->base_reg->reg_name : "none",
2282 x->index_reg ? x->index_reg->reg_name : "none",
2283 x->log2_scale_factor);
2284 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2285 x->rm.mode, x->rm.reg, x->rm.regmem);
2286 fprintf (stdout, " sib: base %x index %x scale %x\n",
2287 x->sib.base, x->sib.index, x->sib.scale);
2288 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2289 (x->rex & REX_W) != 0,
2290 (x->rex & REX_R) != 0,
2291 (x->rex & REX_X) != 0,
2292 (x->rex & REX_B) != 0);
2293 for (i = 0; i < x->operands; i++)
2295 fprintf (stdout, " #%d: ", i + 1);
2296 pt (x->types[i]);
2297 fprintf (stdout, "\n");
2298 if (x->types[i].bitfield.reg8
2299 || x->types[i].bitfield.reg16
2300 || x->types[i].bitfield.reg32
2301 || x->types[i].bitfield.reg64
2302 || x->types[i].bitfield.regmmx
2303 || x->types[i].bitfield.regxmm
2304 || x->types[i].bitfield.regymm
2305 || x->types[i].bitfield.sreg2
2306 || x->types[i].bitfield.sreg3
2307 || x->types[i].bitfield.control
2308 || x->types[i].bitfield.debug
2309 || x->types[i].bitfield.test)
2310 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2311 if (operand_type_check (x->types[i], imm))
2312 pe (x->op[i].imms);
2313 if (operand_type_check (x->types[i], disp))
2314 pe (x->op[i].disps);
2318 static void
2319 pte (insn_template *t)
2321 unsigned int i;
2322 fprintf (stdout, " %d operands ", t->operands);
2323 fprintf (stdout, "opcode %x ", t->base_opcode);
2324 if (t->extension_opcode != None)
2325 fprintf (stdout, "ext %x ", t->extension_opcode);
2326 if (t->opcode_modifier.d)
2327 fprintf (stdout, "D");
2328 if (t->opcode_modifier.w)
2329 fprintf (stdout, "W");
2330 fprintf (stdout, "\n");
2331 for (i = 0; i < t->operands; i++)
2333 fprintf (stdout, " #%d type ", i + 1);
2334 pt (t->operand_types[i]);
2335 fprintf (stdout, "\n");
2339 static void
2340 pe (expressionS *e)
2342 fprintf (stdout, " operation %d\n", e->X_op);
2343 fprintf (stdout, " add_number %ld (%lx)\n",
2344 (long) e->X_add_number, (long) e->X_add_number);
2345 if (e->X_add_symbol)
2347 fprintf (stdout, " add_symbol ");
2348 ps (e->X_add_symbol);
2349 fprintf (stdout, "\n");
2351 if (e->X_op_symbol)
2353 fprintf (stdout, " op_symbol ");
2354 ps (e->X_op_symbol);
2355 fprintf (stdout, "\n");
2359 static void
2360 ps (symbolS *s)
2362 fprintf (stdout, "%s type %s%s",
2363 S_GET_NAME (s),
2364 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2365 segment_name (S_GET_SEGMENT (s)));
2368 static struct type_name
2370 i386_operand_type mask;
2371 const char *name;
2373 const type_names[] =
2375 { OPERAND_TYPE_REG8, "r8" },
2376 { OPERAND_TYPE_REG16, "r16" },
2377 { OPERAND_TYPE_REG32, "r32" },
2378 { OPERAND_TYPE_REG64, "r64" },
2379 { OPERAND_TYPE_IMM8, "i8" },
2380 { OPERAND_TYPE_IMM8, "i8s" },
2381 { OPERAND_TYPE_IMM16, "i16" },
2382 { OPERAND_TYPE_IMM32, "i32" },
2383 { OPERAND_TYPE_IMM32S, "i32s" },
2384 { OPERAND_TYPE_IMM64, "i64" },
2385 { OPERAND_TYPE_IMM1, "i1" },
2386 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2387 { OPERAND_TYPE_DISP8, "d8" },
2388 { OPERAND_TYPE_DISP16, "d16" },
2389 { OPERAND_TYPE_DISP32, "d32" },
2390 { OPERAND_TYPE_DISP32S, "d32s" },
2391 { OPERAND_TYPE_DISP64, "d64" },
2392 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2393 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2394 { OPERAND_TYPE_CONTROL, "control reg" },
2395 { OPERAND_TYPE_TEST, "test reg" },
2396 { OPERAND_TYPE_DEBUG, "debug reg" },
2397 { OPERAND_TYPE_FLOATREG, "FReg" },
2398 { OPERAND_TYPE_FLOATACC, "FAcc" },
2399 { OPERAND_TYPE_SREG2, "SReg2" },
2400 { OPERAND_TYPE_SREG3, "SReg3" },
2401 { OPERAND_TYPE_ACC, "Acc" },
2402 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2403 { OPERAND_TYPE_REGMMX, "rMMX" },
2404 { OPERAND_TYPE_REGXMM, "rXMM" },
2405 { OPERAND_TYPE_REGYMM, "rYMM" },
2406 { OPERAND_TYPE_ESSEG, "es" },
2409 static void
2410 pt (i386_operand_type t)
2412 unsigned int j;
2413 i386_operand_type a;
2415 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2417 a = operand_type_and (t, type_names[j].mask);
2418 if (!operand_type_all_zero (&a))
2419 fprintf (stdout, "%s, ", type_names[j].name);
2421 fflush (stdout);
2424 #endif /* DEBUG386 */
2426 static bfd_reloc_code_real_type
2427 reloc (unsigned int size,
2428 int pcrel,
2429 int sign,
2430 bfd_reloc_code_real_type other)
2432 if (other != NO_RELOC)
2434 reloc_howto_type *reloc;
2436 if (size == 8)
2437 switch (other)
2439 case BFD_RELOC_X86_64_GOT32:
2440 return BFD_RELOC_X86_64_GOT64;
2441 break;
2442 case BFD_RELOC_X86_64_PLTOFF64:
2443 return BFD_RELOC_X86_64_PLTOFF64;
2444 break;
2445 case BFD_RELOC_X86_64_GOTPC32:
2446 other = BFD_RELOC_X86_64_GOTPC64;
2447 break;
2448 case BFD_RELOC_X86_64_GOTPCREL:
2449 other = BFD_RELOC_X86_64_GOTPCREL64;
2450 break;
2451 case BFD_RELOC_X86_64_TPOFF32:
2452 other = BFD_RELOC_X86_64_TPOFF64;
2453 break;
2454 case BFD_RELOC_X86_64_DTPOFF32:
2455 other = BFD_RELOC_X86_64_DTPOFF64;
2456 break;
2457 default:
2458 break;
2461 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2462 if (size == 4 && flag_code != CODE_64BIT)
2463 sign = -1;
2465 reloc = bfd_reloc_type_lookup (stdoutput, other);
2466 if (!reloc)
2467 as_bad (_("unknown relocation (%u)"), other);
2468 else if (size != bfd_get_reloc_size (reloc))
2469 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2470 bfd_get_reloc_size (reloc),
2471 size);
2472 else if (pcrel && !reloc->pc_relative)
2473 as_bad (_("non-pc-relative relocation for pc-relative field"));
2474 else if ((reloc->complain_on_overflow == complain_overflow_signed
2475 && !sign)
2476 || (reloc->complain_on_overflow == complain_overflow_unsigned
2477 && sign > 0))
2478 as_bad (_("relocated field and relocation type differ in signedness"));
2479 else
2480 return other;
2481 return NO_RELOC;
2484 if (pcrel)
2486 if (!sign)
2487 as_bad (_("there are no unsigned pc-relative relocations"));
2488 switch (size)
2490 case 1: return BFD_RELOC_8_PCREL;
2491 case 2: return BFD_RELOC_16_PCREL;
2492 case 4: return BFD_RELOC_32_PCREL;
2493 case 8: return BFD_RELOC_64_PCREL;
2495 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2497 else
2499 if (sign > 0)
2500 switch (size)
2502 case 4: return BFD_RELOC_X86_64_32S;
2504 else
2505 switch (size)
2507 case 1: return BFD_RELOC_8;
2508 case 2: return BFD_RELOC_16;
2509 case 4: return BFD_RELOC_32;
2510 case 8: return BFD_RELOC_64;
2512 as_bad (_("cannot do %s %u byte relocation"),
2513 sign > 0 ? "signed" : "unsigned", size);
2516 return NO_RELOC;
2519 /* Here we decide which fixups can be adjusted to make them relative to
2520 the beginning of the section instead of the symbol. Basically we need
2521 to make sure that the dynamic relocations are done correctly, so in
2522 some cases we force the original symbol to be used. */
2525 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2527 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2528 if (!IS_ELF)
2529 return 1;
2531 /* Don't adjust pc-relative references to merge sections in 64-bit
2532 mode. */
2533 if (use_rela_relocations
2534 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2535 && fixP->fx_pcrel)
2536 return 0;
2538 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2539 and changed later by validate_fix. */
2540 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2541 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2542 return 0;
2544 /* adjust_reloc_syms doesn't know about the GOT. */
2545 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2546 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2547 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2548 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2549 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2550 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2551 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2552 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2553 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2554 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2555 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2556 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2557 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2558 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2559 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2560 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2561 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2562 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2563 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2564 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2565 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2566 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2567 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2568 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2569 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2570 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2571 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2572 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2573 return 0;
2574 #endif
2575 return 1;
2578 static int
2579 intel_float_operand (const char *mnemonic)
2581 /* Note that the value returned is meaningful only for opcodes with (memory)
2582 operands, hence the code here is free to improperly handle opcodes that
2583 have no operands (for better performance and smaller code). */
2585 if (mnemonic[0] != 'f')
2586 return 0; /* non-math */
2588 switch (mnemonic[1])
2590 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2591 the fs segment override prefix not currently handled because no
2592 call path can make opcodes without operands get here */
2593 case 'i':
2594 return 2 /* integer op */;
2595 case 'l':
2596 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2597 return 3; /* fldcw/fldenv */
2598 break;
2599 case 'n':
2600 if (mnemonic[2] != 'o' /* fnop */)
2601 return 3; /* non-waiting control op */
2602 break;
2603 case 'r':
2604 if (mnemonic[2] == 's')
2605 return 3; /* frstor/frstpm */
2606 break;
2607 case 's':
2608 if (mnemonic[2] == 'a')
2609 return 3; /* fsave */
2610 if (mnemonic[2] == 't')
2612 switch (mnemonic[3])
2614 case 'c': /* fstcw */
2615 case 'd': /* fstdw */
2616 case 'e': /* fstenv */
2617 case 's': /* fsts[gw] */
2618 return 3;
2621 break;
2622 case 'x':
2623 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2624 return 0; /* fxsave/fxrstor are not really math ops */
2625 break;
2628 return 1;
2631 /* Build the VEX prefix. */
2633 static void
2634 build_vex_prefix (const insn_template *t)
2636 unsigned int register_specifier;
2637 unsigned int implied_prefix;
2638 unsigned int vector_length;
2640 /* Check register specifier. */
2641 if (i.vex.register_specifier)
2643 register_specifier = i.vex.register_specifier->reg_num;
2644 if ((i.vex.register_specifier->reg_flags & RegRex))
2645 register_specifier += 8;
2646 register_specifier = ~register_specifier & 0xf;
2648 else
2649 register_specifier = 0xf;
2651 /* Use 2-byte VEX prefix by swappping destination and source
2652 operand. */
2653 if (!i.swap_operand
2654 && i.operands == i.reg_operands
2655 && i.tm.opcode_modifier.vex0f
2656 && i.tm.opcode_modifier.s
2657 && i.rex == REX_B)
2659 unsigned int xchg = i.operands - 1;
2660 union i386_op temp_op;
2661 i386_operand_type temp_type;
2663 temp_type = i.types[xchg];
2664 i.types[xchg] = i.types[0];
2665 i.types[0] = temp_type;
2666 temp_op = i.op[xchg];
2667 i.op[xchg] = i.op[0];
2668 i.op[0] = temp_op;
2670 gas_assert (i.rm.mode == 3);
2672 i.rex = REX_R;
2673 xchg = i.rm.regmem;
2674 i.rm.regmem = i.rm.reg;
2675 i.rm.reg = xchg;
2677 /* Use the next insn. */
2678 i.tm = t[1];
2681 vector_length = i.tm.opcode_modifier.vex == 2 ? 1 : 0;
2683 switch ((i.tm.base_opcode >> 8) & 0xff)
2685 case 0:
2686 implied_prefix = 0;
2687 break;
2688 case DATA_PREFIX_OPCODE:
2689 implied_prefix = 1;
2690 break;
2691 case REPE_PREFIX_OPCODE:
2692 implied_prefix = 2;
2693 break;
2694 case REPNE_PREFIX_OPCODE:
2695 implied_prefix = 3;
2696 break;
2697 default:
2698 abort ();
2701 /* Use 2-byte VEX prefix if possible. */
2702 if (i.tm.opcode_modifier.vex0f
2703 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2705 /* 2-byte VEX prefix. */
2706 unsigned int r;
2708 i.vex.length = 2;
2709 i.vex.bytes[0] = 0xc5;
2711 /* Check the REX.R bit. */
2712 r = (i.rex & REX_R) ? 0 : 1;
2713 i.vex.bytes[1] = (r << 7
2714 | register_specifier << 3
2715 | vector_length << 2
2716 | implied_prefix);
2718 else
2720 /* 3-byte VEX prefix. */
2721 unsigned int m, w;
2723 if (i.tm.opcode_modifier.vex0f)
2724 m = 0x1;
2725 else if (i.tm.opcode_modifier.vex0f38)
2726 m = 0x2;
2727 else if (i.tm.opcode_modifier.vex0f3a)
2728 m = 0x3;
2729 else
2730 abort ();
2732 i.vex.length = 3;
2733 i.vex.bytes[0] = 0xc4;
2735 /* The high 3 bits of the second VEX byte are 1's compliment
2736 of RXB bits from REX. */
2737 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2739 /* Check the REX.W bit. */
2740 w = (i.rex & REX_W) ? 1 : 0;
2741 if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
2743 if (w)
2744 abort ();
2746 if (i.tm.opcode_modifier.vexw1)
2747 w = 1;
2750 i.vex.bytes[2] = (w << 7
2751 | register_specifier << 3
2752 | vector_length << 2
2753 | implied_prefix);
2757 static void
2758 process_immext (void)
2760 expressionS *exp;
2762 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2764 /* SSE3 Instructions have the fixed operands with an opcode
2765 suffix which is coded in the same place as an 8-bit immediate
2766 field would be. Here we check those operands and remove them
2767 afterwards. */
2768 unsigned int x;
2770 for (x = 0; x < i.operands; x++)
2771 if (i.op[x].regs->reg_num != x)
2772 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2773 register_prefix, i.op[x].regs->reg_name, x + 1,
2774 i.tm.name);
2776 i.operands = 0;
2779 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2780 which is coded in the same place as an 8-bit immediate field
2781 would be. Here we fake an 8-bit immediate operand from the
2782 opcode suffix stored in tm.extension_opcode.
2784 AVX instructions also use this encoding, for some of
2785 3 argument instructions. */
2787 gas_assert (i.imm_operands == 0
2788 && (i.operands <= 2
2789 || (i.tm.opcode_modifier.vex
2790 && i.operands <= 4)));
2792 exp = &im_expressions[i.imm_operands++];
2793 i.op[i.operands].imms = exp;
2794 i.types[i.operands] = imm8;
2795 i.operands++;
2796 exp->X_op = O_constant;
2797 exp->X_add_number = i.tm.extension_opcode;
2798 i.tm.extension_opcode = None;
2801 /* This is the guts of the machine-dependent assembler. LINE points to a
2802 machine dependent instruction. This function is supposed to emit
2803 the frags/bytes it assembles to. */
2805 void
2806 md_assemble (char *line)
2808 unsigned int j;
2809 char mnemonic[MAX_MNEM_SIZE];
2810 const insn_template *t;
2812 /* Initialize globals. */
2813 memset (&i, '\0', sizeof (i));
2814 for (j = 0; j < MAX_OPERANDS; j++)
2815 i.reloc[j] = NO_RELOC;
2816 memset (disp_expressions, '\0', sizeof (disp_expressions));
2817 memset (im_expressions, '\0', sizeof (im_expressions));
2818 save_stack_p = save_stack;
2820 /* First parse an instruction mnemonic & call i386_operand for the operands.
2821 We assume that the scrubber has arranged it so that line[0] is the valid
2822 start of a (possibly prefixed) mnemonic. */
2824 line = parse_insn (line, mnemonic);
2825 if (line == NULL)
2826 return;
2828 line = parse_operands (line, mnemonic);
2829 this_operand = -1;
2830 if (line == NULL)
2831 return;
2833 /* Now we've parsed the mnemonic into a set of templates, and have the
2834 operands at hand. */
2836 /* All intel opcodes have reversed operands except for "bound" and
2837 "enter". We also don't reverse intersegment "jmp" and "call"
2838 instructions with 2 immediate operands so that the immediate segment
2839 precedes the offset, as it does when in AT&T mode. */
2840 if (intel_syntax
2841 && i.operands > 1
2842 && (strcmp (mnemonic, "bound") != 0)
2843 && (strcmp (mnemonic, "invlpga") != 0)
2844 && !(operand_type_check (i.types[0], imm)
2845 && operand_type_check (i.types[1], imm)))
2846 swap_operands ();
2848 /* The order of the immediates should be reversed
2849 for 2 immediates extrq and insertq instructions */
2850 if (i.imm_operands == 2
2851 && (strcmp (mnemonic, "extrq") == 0
2852 || strcmp (mnemonic, "insertq") == 0))
2853 swap_2_operands (0, 1);
2855 if (i.imm_operands)
2856 optimize_imm ();
2858 /* Don't optimize displacement for movabs since it only takes 64bit
2859 displacement. */
2860 if (i.disp_operands
2861 && (flag_code != CODE_64BIT
2862 || strcmp (mnemonic, "movabs") != 0))
2863 optimize_disp ();
2865 /* Next, we find a template that matches the given insn,
2866 making sure the overlap of the given operands types is consistent
2867 with the template operand types. */
2869 if (!(t = match_template ()))
2870 return;
2872 if (sse_check != sse_check_none
2873 && !i.tm.opcode_modifier.noavx
2874 && (i.tm.cpu_flags.bitfield.cpusse
2875 || i.tm.cpu_flags.bitfield.cpusse2
2876 || i.tm.cpu_flags.bitfield.cpusse3
2877 || i.tm.cpu_flags.bitfield.cpussse3
2878 || i.tm.cpu_flags.bitfield.cpusse4_1
2879 || i.tm.cpu_flags.bitfield.cpusse4_2))
2881 (sse_check == sse_check_warning
2882 ? as_warn
2883 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2886 /* Zap movzx and movsx suffix. The suffix has been set from
2887 "word ptr" or "byte ptr" on the source operand in Intel syntax
2888 or extracted from mnemonic in AT&T syntax. But we'll use
2889 the destination register to choose the suffix for encoding. */
2890 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2892 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2893 there is no suffix, the default will be byte extension. */
2894 if (i.reg_operands != 2
2895 && !i.suffix
2896 && intel_syntax)
2897 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2899 i.suffix = 0;
2902 if (i.tm.opcode_modifier.fwait)
2903 if (!add_prefix (FWAIT_OPCODE))
2904 return;
2906 /* Check string instruction segment overrides. */
2907 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2909 if (!check_string ())
2910 return;
2911 i.disp_operands = 0;
2914 if (!process_suffix ())
2915 return;
2917 /* Update operand types. */
2918 for (j = 0; j < i.operands; j++)
2919 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
2921 /* Make still unresolved immediate matches conform to size of immediate
2922 given in i.suffix. */
2923 if (!finalize_imm ())
2924 return;
2926 if (i.types[0].bitfield.imm1)
2927 i.imm_operands = 0; /* kludge for shift insns. */
2929 /* We only need to check those implicit registers for instructions
2930 with 3 operands or less. */
2931 if (i.operands <= 3)
2932 for (j = 0; j < i.operands; j++)
2933 if (i.types[j].bitfield.inoutportreg
2934 || i.types[j].bitfield.shiftcount
2935 || i.types[j].bitfield.acc
2936 || i.types[j].bitfield.floatacc)
2937 i.reg_operands--;
2939 /* ImmExt should be processed after SSE2AVX. */
2940 if (!i.tm.opcode_modifier.sse2avx
2941 && i.tm.opcode_modifier.immext)
2942 process_immext ();
2944 /* For insns with operands there are more diddles to do to the opcode. */
2945 if (i.operands)
2947 if (!process_operands ())
2948 return;
2950 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2952 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2953 as_warn (_("translating to `%sp'"), i.tm.name);
2956 if (i.tm.opcode_modifier.vex)
2957 build_vex_prefix (t);
2959 /* Handle conversion of 'int $3' --> special int3 insn. */
2960 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2962 i.tm.base_opcode = INT3_OPCODE;
2963 i.imm_operands = 0;
2966 if ((i.tm.opcode_modifier.jump
2967 || i.tm.opcode_modifier.jumpbyte
2968 || i.tm.opcode_modifier.jumpdword)
2969 && i.op[0].disps->X_op == O_constant)
2971 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2972 the absolute address given by the constant. Since ix86 jumps and
2973 calls are pc relative, we need to generate a reloc. */
2974 i.op[0].disps->X_add_symbol = &abs_symbol;
2975 i.op[0].disps->X_op = O_symbol;
2978 if (i.tm.opcode_modifier.rex64)
2979 i.rex |= REX_W;
2981 /* For 8 bit registers we need an empty rex prefix. Also if the
2982 instruction already has a prefix, we need to convert old
2983 registers to new ones. */
2985 if ((i.types[0].bitfield.reg8
2986 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2987 || (i.types[1].bitfield.reg8
2988 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2989 || ((i.types[0].bitfield.reg8
2990 || i.types[1].bitfield.reg8)
2991 && i.rex != 0))
2993 int x;
2995 i.rex |= REX_OPCODE;
2996 for (x = 0; x < 2; x++)
2998 /* Look for 8 bit operand that uses old registers. */
2999 if (i.types[x].bitfield.reg8
3000 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3002 /* In case it is "hi" register, give up. */
3003 if (i.op[x].regs->reg_num > 3)
3004 as_bad (_("can't encode register '%s%s' in an "
3005 "instruction requiring REX prefix."),
3006 register_prefix, i.op[x].regs->reg_name);
3008 /* Otherwise it is equivalent to the extended register.
3009 Since the encoding doesn't change this is merely
3010 cosmetic cleanup for debug output. */
3012 i.op[x].regs = i.op[x].regs + 8;
3017 if (i.rex != 0)
3018 add_prefix (REX_OPCODE | i.rex);
3020 /* We are ready to output the insn. */
3021 output_insn ();
3024 static char *
3025 parse_insn (char *line, char *mnemonic)
3027 char *l = line;
3028 char *token_start = l;
3029 char *mnem_p;
3030 int supported;
3031 const insn_template *t;
3032 char *dot_p = NULL;
3034 /* Non-zero if we found a prefix only acceptable with string insns. */
3035 const char *expecting_string_instruction = NULL;
3037 while (1)
3039 mnem_p = mnemonic;
3040 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3042 if (*mnem_p == '.')
3043 dot_p = mnem_p;
3044 mnem_p++;
3045 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3047 as_bad (_("no such instruction: `%s'"), token_start);
3048 return NULL;
3050 l++;
3052 if (!is_space_char (*l)
3053 && *l != END_OF_INSN
3054 && (intel_syntax
3055 || (*l != PREFIX_SEPARATOR
3056 && *l != ',')))
3058 as_bad (_("invalid character %s in mnemonic"),
3059 output_invalid (*l));
3060 return NULL;
3062 if (token_start == l)
3064 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3065 as_bad (_("expecting prefix; got nothing"));
3066 else
3067 as_bad (_("expecting mnemonic; got nothing"));
3068 return NULL;
3071 /* Look up instruction (or prefix) via hash table. */
3072 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3074 if (*l != END_OF_INSN
3075 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3076 && current_templates
3077 && current_templates->start->opcode_modifier.isprefix)
3079 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3081 as_bad ((flag_code != CODE_64BIT
3082 ? _("`%s' is only supported in 64-bit mode")
3083 : _("`%s' is not supported in 64-bit mode")),
3084 current_templates->start->name);
3085 return NULL;
3087 /* If we are in 16-bit mode, do not allow addr16 or data16.
3088 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3089 if ((current_templates->start->opcode_modifier.size16
3090 || current_templates->start->opcode_modifier.size32)
3091 && flag_code != CODE_64BIT
3092 && (current_templates->start->opcode_modifier.size32
3093 ^ (flag_code == CODE_16BIT)))
3095 as_bad (_("redundant %s prefix"),
3096 current_templates->start->name);
3097 return NULL;
3099 /* Add prefix, checking for repeated prefixes. */
3100 switch (add_prefix (current_templates->start->base_opcode))
3102 case 0:
3103 return NULL;
3104 case 2:
3105 expecting_string_instruction = current_templates->start->name;
3106 break;
3108 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3109 token_start = ++l;
3111 else
3112 break;
3115 if (!current_templates)
3117 /* Check if we should swap operand in encoding. */
3118 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3119 i.swap_operand = 1;
3120 else
3121 goto check_suffix;
3122 mnem_p = dot_p;
3123 *dot_p = '\0';
3124 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3127 if (!current_templates)
3129 check_suffix:
3130 /* See if we can get a match by trimming off a suffix. */
3131 switch (mnem_p[-1])
3133 case WORD_MNEM_SUFFIX:
3134 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3135 i.suffix = SHORT_MNEM_SUFFIX;
3136 else
3137 case BYTE_MNEM_SUFFIX:
3138 case QWORD_MNEM_SUFFIX:
3139 i.suffix = mnem_p[-1];
3140 mnem_p[-1] = '\0';
3141 current_templates = (const templates *) hash_find (op_hash,
3142 mnemonic);
3143 break;
3144 case SHORT_MNEM_SUFFIX:
3145 case LONG_MNEM_SUFFIX:
3146 if (!intel_syntax)
3148 i.suffix = mnem_p[-1];
3149 mnem_p[-1] = '\0';
3150 current_templates = (const templates *) hash_find (op_hash,
3151 mnemonic);
3153 break;
3155 /* Intel Syntax. */
3156 case 'd':
3157 if (intel_syntax)
3159 if (intel_float_operand (mnemonic) == 1)
3160 i.suffix = SHORT_MNEM_SUFFIX;
3161 else
3162 i.suffix = LONG_MNEM_SUFFIX;
3163 mnem_p[-1] = '\0';
3164 current_templates = (const templates *) hash_find (op_hash,
3165 mnemonic);
3167 break;
3169 if (!current_templates)
3171 as_bad (_("no such instruction: `%s'"), token_start);
3172 return NULL;
3176 if (current_templates->start->opcode_modifier.jump
3177 || current_templates->start->opcode_modifier.jumpbyte)
3179 /* Check for a branch hint. We allow ",pt" and ",pn" for
3180 predict taken and predict not taken respectively.
3181 I'm not sure that branch hints actually do anything on loop
3182 and jcxz insns (JumpByte) for current Pentium4 chips. They
3183 may work in the future and it doesn't hurt to accept them
3184 now. */
3185 if (l[0] == ',' && l[1] == 'p')
3187 if (l[2] == 't')
3189 if (!add_prefix (DS_PREFIX_OPCODE))
3190 return NULL;
3191 l += 3;
3193 else if (l[2] == 'n')
3195 if (!add_prefix (CS_PREFIX_OPCODE))
3196 return NULL;
3197 l += 3;
3201 /* Any other comma loses. */
3202 if (*l == ',')
3204 as_bad (_("invalid character %s in mnemonic"),
3205 output_invalid (*l));
3206 return NULL;
3209 /* Check if instruction is supported on specified architecture. */
3210 supported = 0;
3211 for (t = current_templates->start; t < current_templates->end; ++t)
3213 supported |= cpu_flags_match (t);
3214 if (supported == CPU_FLAGS_PERFECT_MATCH)
3215 goto skip;
3218 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3220 as_bad (flag_code == CODE_64BIT
3221 ? _("`%s' is not supported in 64-bit mode")
3222 : _("`%s' is only supported in 64-bit mode"),
3223 current_templates->start->name);
3224 return NULL;
3226 if (supported != CPU_FLAGS_PERFECT_MATCH)
3228 as_bad (_("`%s' is not supported on `%s%s'"),
3229 current_templates->start->name,
3230 cpu_arch_name ? cpu_arch_name : default_arch,
3231 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3232 return NULL;
3235 skip:
3236 if (!cpu_arch_flags.bitfield.cpui386
3237 && (flag_code != CODE_16BIT))
3239 as_warn (_("use .code16 to ensure correct addressing mode"));
3242 /* Check for rep/repne without a string instruction. */
3243 if (expecting_string_instruction)
3245 static templates override;
3247 for (t = current_templates->start; t < current_templates->end; ++t)
3248 if (t->opcode_modifier.isstring)
3249 break;
3250 if (t >= current_templates->end)
3252 as_bad (_("expecting string instruction after `%s'"),
3253 expecting_string_instruction);
3254 return NULL;
3256 for (override.start = t; t < current_templates->end; ++t)
3257 if (!t->opcode_modifier.isstring)
3258 break;
3259 override.end = t;
3260 current_templates = &override;
3263 return l;
3266 static char *
3267 parse_operands (char *l, const char *mnemonic)
3269 char *token_start;
3271 /* 1 if operand is pending after ','. */
3272 unsigned int expecting_operand = 0;
3274 /* Non-zero if operand parens not balanced. */
3275 unsigned int paren_not_balanced;
3277 while (*l != END_OF_INSN)
3279 /* Skip optional white space before operand. */
3280 if (is_space_char (*l))
3281 ++l;
3282 if (!is_operand_char (*l) && *l != END_OF_INSN)
3284 as_bad (_("invalid character %s before operand %d"),
3285 output_invalid (*l),
3286 i.operands + 1);
3287 return NULL;
3289 token_start = l; /* after white space */
3290 paren_not_balanced = 0;
3291 while (paren_not_balanced || *l != ',')
3293 if (*l == END_OF_INSN)
3295 if (paren_not_balanced)
3297 if (!intel_syntax)
3298 as_bad (_("unbalanced parenthesis in operand %d."),
3299 i.operands + 1);
3300 else
3301 as_bad (_("unbalanced brackets in operand %d."),
3302 i.operands + 1);
3303 return NULL;
3305 else
3306 break; /* we are done */
3308 else if (!is_operand_char (*l) && !is_space_char (*l))
3310 as_bad (_("invalid character %s in operand %d"),
3311 output_invalid (*l),
3312 i.operands + 1);
3313 return NULL;
3315 if (!intel_syntax)
3317 if (*l == '(')
3318 ++paren_not_balanced;
3319 if (*l == ')')
3320 --paren_not_balanced;
3322 else
3324 if (*l == '[')
3325 ++paren_not_balanced;
3326 if (*l == ']')
3327 --paren_not_balanced;
3329 l++;
3331 if (l != token_start)
3332 { /* Yes, we've read in another operand. */
3333 unsigned int operand_ok;
3334 this_operand = i.operands++;
3335 i.types[this_operand].bitfield.unspecified = 1;
3336 if (i.operands > MAX_OPERANDS)
3338 as_bad (_("spurious operands; (%d operands/instruction max)"),
3339 MAX_OPERANDS);
3340 return NULL;
3342 /* Now parse operand adding info to 'i' as we go along. */
3343 END_STRING_AND_SAVE (l);
3345 if (intel_syntax)
3346 operand_ok =
3347 i386_intel_operand (token_start,
3348 intel_float_operand (mnemonic));
3349 else
3350 operand_ok = i386_att_operand (token_start);
3352 RESTORE_END_STRING (l);
3353 if (!operand_ok)
3354 return NULL;
3356 else
3358 if (expecting_operand)
3360 expecting_operand_after_comma:
3361 as_bad (_("expecting operand after ','; got nothing"));
3362 return NULL;
3364 if (*l == ',')
3366 as_bad (_("expecting operand before ','; got nothing"));
3367 return NULL;
3371 /* Now *l must be either ',' or END_OF_INSN. */
3372 if (*l == ',')
3374 if (*++l == END_OF_INSN)
3376 /* Just skip it, if it's \n complain. */
3377 goto expecting_operand_after_comma;
3379 expecting_operand = 1;
3382 return l;
3385 static void
3386 swap_2_operands (int xchg1, int xchg2)
3388 union i386_op temp_op;
3389 i386_operand_type temp_type;
3390 enum bfd_reloc_code_real temp_reloc;
3392 temp_type = i.types[xchg2];
3393 i.types[xchg2] = i.types[xchg1];
3394 i.types[xchg1] = temp_type;
3395 temp_op = i.op[xchg2];
3396 i.op[xchg2] = i.op[xchg1];
3397 i.op[xchg1] = temp_op;
3398 temp_reloc = i.reloc[xchg2];
3399 i.reloc[xchg2] = i.reloc[xchg1];
3400 i.reloc[xchg1] = temp_reloc;
3403 static void
3404 swap_operands (void)
3406 switch (i.operands)
3408 case 5:
3409 case 4:
3410 swap_2_operands (1, i.operands - 2);
3411 case 3:
3412 case 2:
3413 swap_2_operands (0, i.operands - 1);
3414 break;
3415 default:
3416 abort ();
3419 if (i.mem_operands == 2)
3421 const seg_entry *temp_seg;
3422 temp_seg = i.seg[0];
3423 i.seg[0] = i.seg[1];
3424 i.seg[1] = temp_seg;
3428 /* Try to ensure constant immediates are represented in the smallest
3429 opcode possible. */
3430 static void
3431 optimize_imm (void)
3433 char guess_suffix = 0;
3434 int op;
3436 if (i.suffix)
3437 guess_suffix = i.suffix;
3438 else if (i.reg_operands)
3440 /* Figure out a suffix from the last register operand specified.
3441 We can't do this properly yet, ie. excluding InOutPortReg,
3442 but the following works for instructions with immediates.
3443 In any case, we can't set i.suffix yet. */
3444 for (op = i.operands; --op >= 0;)
3445 if (i.types[op].bitfield.reg8)
3447 guess_suffix = BYTE_MNEM_SUFFIX;
3448 break;
3450 else if (i.types[op].bitfield.reg16)
3452 guess_suffix = WORD_MNEM_SUFFIX;
3453 break;
3455 else if (i.types[op].bitfield.reg32)
3457 guess_suffix = LONG_MNEM_SUFFIX;
3458 break;
3460 else if (i.types[op].bitfield.reg64)
3462 guess_suffix = QWORD_MNEM_SUFFIX;
3463 break;
3466 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3467 guess_suffix = WORD_MNEM_SUFFIX;
3469 for (op = i.operands; --op >= 0;)
3470 if (operand_type_check (i.types[op], imm))
3472 switch (i.op[op].imms->X_op)
3474 case O_constant:
3475 /* If a suffix is given, this operand may be shortened. */
3476 switch (guess_suffix)
3478 case LONG_MNEM_SUFFIX:
3479 i.types[op].bitfield.imm32 = 1;
3480 i.types[op].bitfield.imm64 = 1;
3481 break;
3482 case WORD_MNEM_SUFFIX:
3483 i.types[op].bitfield.imm16 = 1;
3484 i.types[op].bitfield.imm32 = 1;
3485 i.types[op].bitfield.imm32s = 1;
3486 i.types[op].bitfield.imm64 = 1;
3487 break;
3488 case BYTE_MNEM_SUFFIX:
3489 i.types[op].bitfield.imm8 = 1;
3490 i.types[op].bitfield.imm8s = 1;
3491 i.types[op].bitfield.imm16 = 1;
3492 i.types[op].bitfield.imm32 = 1;
3493 i.types[op].bitfield.imm32s = 1;
3494 i.types[op].bitfield.imm64 = 1;
3495 break;
3498 /* If this operand is at most 16 bits, convert it
3499 to a signed 16 bit number before trying to see
3500 whether it will fit in an even smaller size.
3501 This allows a 16-bit operand such as $0xffe0 to
3502 be recognised as within Imm8S range. */
3503 if ((i.types[op].bitfield.imm16)
3504 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3506 i.op[op].imms->X_add_number =
3507 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3509 if ((i.types[op].bitfield.imm32)
3510 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3511 == 0))
3513 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3514 ^ ((offsetT) 1 << 31))
3515 - ((offsetT) 1 << 31));
3517 i.types[op]
3518 = operand_type_or (i.types[op],
3519 smallest_imm_type (i.op[op].imms->X_add_number));
3521 /* We must avoid matching of Imm32 templates when 64bit
3522 only immediate is available. */
3523 if (guess_suffix == QWORD_MNEM_SUFFIX)
3524 i.types[op].bitfield.imm32 = 0;
3525 break;
3527 case O_absent:
3528 case O_register:
3529 abort ();
3531 /* Symbols and expressions. */
3532 default:
3533 /* Convert symbolic operand to proper sizes for matching, but don't
3534 prevent matching a set of insns that only supports sizes other
3535 than those matching the insn suffix. */
3537 i386_operand_type mask, allowed;
3538 const insn_template *t;
3540 operand_type_set (&mask, 0);
3541 operand_type_set (&allowed, 0);
3543 for (t = current_templates->start;
3544 t < current_templates->end;
3545 ++t)
3546 allowed = operand_type_or (allowed,
3547 t->operand_types[op]);
3548 switch (guess_suffix)
3550 case QWORD_MNEM_SUFFIX:
3551 mask.bitfield.imm64 = 1;
3552 mask.bitfield.imm32s = 1;
3553 break;
3554 case LONG_MNEM_SUFFIX:
3555 mask.bitfield.imm32 = 1;
3556 break;
3557 case WORD_MNEM_SUFFIX:
3558 mask.bitfield.imm16 = 1;
3559 break;
3560 case BYTE_MNEM_SUFFIX:
3561 mask.bitfield.imm8 = 1;
3562 break;
3563 default:
3564 break;
3566 allowed = operand_type_and (mask, allowed);
3567 if (!operand_type_all_zero (&allowed))
3568 i.types[op] = operand_type_and (i.types[op], mask);
3570 break;
3575 /* Try to use the smallest displacement type too. */
3576 static void
3577 optimize_disp (void)
3579 int op;
3581 for (op = i.operands; --op >= 0;)
3582 if (operand_type_check (i.types[op], disp))
3584 if (i.op[op].disps->X_op == O_constant)
3586 offsetT disp = i.op[op].disps->X_add_number;
3588 if (i.types[op].bitfield.disp16
3589 && (disp & ~(offsetT) 0xffff) == 0)
3591 /* If this operand is at most 16 bits, convert
3592 to a signed 16 bit number and don't use 64bit
3593 displacement. */
3594 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
3595 i.types[op].bitfield.disp64 = 0;
3597 if (i.types[op].bitfield.disp32
3598 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3600 /* If this operand is at most 32 bits, convert
3601 to a signed 32 bit number and don't use 64bit
3602 displacement. */
3603 disp &= (((offsetT) 2 << 31) - 1);
3604 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3605 i.types[op].bitfield.disp64 = 0;
3607 if (!disp && i.types[op].bitfield.baseindex)
3609 i.types[op].bitfield.disp8 = 0;
3610 i.types[op].bitfield.disp16 = 0;
3611 i.types[op].bitfield.disp32 = 0;
3612 i.types[op].bitfield.disp32s = 0;
3613 i.types[op].bitfield.disp64 = 0;
3614 i.op[op].disps = 0;
3615 i.disp_operands--;
3617 else if (flag_code == CODE_64BIT)
3619 if (fits_in_signed_long (disp))
3621 i.types[op].bitfield.disp64 = 0;
3622 i.types[op].bitfield.disp32s = 1;
3624 if (i.prefix[ADDR_PREFIX]
3625 && fits_in_unsigned_long (disp))
3626 i.types[op].bitfield.disp32 = 1;
3628 if ((i.types[op].bitfield.disp32
3629 || i.types[op].bitfield.disp32s
3630 || i.types[op].bitfield.disp16)
3631 && fits_in_signed_byte (disp))
3632 i.types[op].bitfield.disp8 = 1;
3634 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3635 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3637 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3638 i.op[op].disps, 0, i.reloc[op]);
3639 i.types[op].bitfield.disp8 = 0;
3640 i.types[op].bitfield.disp16 = 0;
3641 i.types[op].bitfield.disp32 = 0;
3642 i.types[op].bitfield.disp32s = 0;
3643 i.types[op].bitfield.disp64 = 0;
3645 else
3646 /* We only support 64bit displacement on constants. */
3647 i.types[op].bitfield.disp64 = 0;
3651 static const insn_template *
3652 match_template (void)
3654 /* Points to template once we've found it. */
3655 const insn_template *t;
3656 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3657 i386_operand_type overlap4;
3658 unsigned int found_reverse_match;
3659 i386_opcode_modifier suffix_check;
3660 i386_operand_type operand_types [MAX_OPERANDS];
3661 int addr_prefix_disp;
3662 unsigned int j;
3663 unsigned int found_cpu_match;
3664 unsigned int check_register;
3666 #if MAX_OPERANDS != 5
3667 # error "MAX_OPERANDS must be 5."
3668 #endif
3670 found_reverse_match = 0;
3671 addr_prefix_disp = -1;
3673 memset (&suffix_check, 0, sizeof (suffix_check));
3674 if (i.suffix == BYTE_MNEM_SUFFIX)
3675 suffix_check.no_bsuf = 1;
3676 else if (i.suffix == WORD_MNEM_SUFFIX)
3677 suffix_check.no_wsuf = 1;
3678 else if (i.suffix == SHORT_MNEM_SUFFIX)
3679 suffix_check.no_ssuf = 1;
3680 else if (i.suffix == LONG_MNEM_SUFFIX)
3681 suffix_check.no_lsuf = 1;
3682 else if (i.suffix == QWORD_MNEM_SUFFIX)
3683 suffix_check.no_qsuf = 1;
3684 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3685 suffix_check.no_ldsuf = 1;
3687 for (t = current_templates->start; t < current_templates->end; t++)
3689 addr_prefix_disp = -1;
3691 /* Must have right number of operands. */
3692 if (i.operands != t->operands)
3693 continue;
3695 /* Check processor support. */
3696 found_cpu_match = (cpu_flags_match (t)
3697 == CPU_FLAGS_PERFECT_MATCH);
3698 if (!found_cpu_match)
3699 continue;
3701 /* Check old gcc support. */
3702 if (!old_gcc && t->opcode_modifier.oldgcc)
3703 continue;
3705 /* Check AT&T mnemonic. */
3706 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3707 continue;
3709 /* Check AT&T syntax Intel syntax. */
3710 if ((intel_syntax && t->opcode_modifier.attsyntax)
3711 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3712 continue;
3714 /* Check the suffix, except for some instructions in intel mode. */
3715 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3716 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3717 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3718 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3719 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3720 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3721 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3722 continue;
3724 if (!operand_size_match (t))
3725 continue;
3727 for (j = 0; j < MAX_OPERANDS; j++)
3728 operand_types[j] = t->operand_types[j];
3730 /* In general, don't allow 64-bit operands in 32-bit mode. */
3731 if (i.suffix == QWORD_MNEM_SUFFIX
3732 && flag_code != CODE_64BIT
3733 && (intel_syntax
3734 ? (!t->opcode_modifier.ignoresize
3735 && !intel_float_operand (t->name))
3736 : intel_float_operand (t->name) != 2)
3737 && ((!operand_types[0].bitfield.regmmx
3738 && !operand_types[0].bitfield.regxmm
3739 && !operand_types[0].bitfield.regymm)
3740 || (!operand_types[t->operands > 1].bitfield.regmmx
3741 && !!operand_types[t->operands > 1].bitfield.regxmm
3742 && !!operand_types[t->operands > 1].bitfield.regymm))
3743 && (t->base_opcode != 0x0fc7
3744 || t->extension_opcode != 1 /* cmpxchg8b */))
3745 continue;
3747 /* In general, don't allow 32-bit operands on pre-386. */
3748 else if (i.suffix == LONG_MNEM_SUFFIX
3749 && !cpu_arch_flags.bitfield.cpui386
3750 && (intel_syntax
3751 ? (!t->opcode_modifier.ignoresize
3752 && !intel_float_operand (t->name))
3753 : intel_float_operand (t->name) != 2)
3754 && ((!operand_types[0].bitfield.regmmx
3755 && !operand_types[0].bitfield.regxmm)
3756 || (!operand_types[t->operands > 1].bitfield.regmmx
3757 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3758 continue;
3760 /* Do not verify operands when there are none. */
3761 else
3763 if (!t->operands)
3764 /* We've found a match; break out of loop. */
3765 break;
3768 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3769 into Disp32/Disp16/Disp32 operand. */
3770 if (i.prefix[ADDR_PREFIX] != 0)
3772 /* There should be only one Disp operand. */
3773 switch (flag_code)
3775 case CODE_16BIT:
3776 for (j = 0; j < MAX_OPERANDS; j++)
3778 if (operand_types[j].bitfield.disp16)
3780 addr_prefix_disp = j;
3781 operand_types[j].bitfield.disp32 = 1;
3782 operand_types[j].bitfield.disp16 = 0;
3783 break;
3786 break;
3787 case CODE_32BIT:
3788 for (j = 0; j < MAX_OPERANDS; j++)
3790 if (operand_types[j].bitfield.disp32)
3792 addr_prefix_disp = j;
3793 operand_types[j].bitfield.disp32 = 0;
3794 operand_types[j].bitfield.disp16 = 1;
3795 break;
3798 break;
3799 case CODE_64BIT:
3800 for (j = 0; j < MAX_OPERANDS; j++)
3802 if (operand_types[j].bitfield.disp64)
3804 addr_prefix_disp = j;
3805 operand_types[j].bitfield.disp64 = 0;
3806 operand_types[j].bitfield.disp32 = 1;
3807 break;
3810 break;
3814 /* We check register size only if size of operands can be
3815 encoded the canonical way. */
3816 check_register = t->opcode_modifier.w;
3817 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3818 switch (t->operands)
3820 case 1:
3821 if (!operand_type_match (overlap0, i.types[0]))
3822 continue;
3823 break;
3824 case 2:
3825 /* xchg %eax, %eax is a special case. It is an aliase for nop
3826 only in 32bit mode and we can use opcode 0x90. In 64bit
3827 mode, we can't use 0x90 for xchg %eax, %eax since it should
3828 zero-extend %eax to %rax. */
3829 if (flag_code == CODE_64BIT
3830 && t->base_opcode == 0x90
3831 && operand_type_equal (&i.types [0], &acc32)
3832 && operand_type_equal (&i.types [1], &acc32))
3833 continue;
3834 if (i.swap_operand)
3836 /* If we swap operand in encoding, we either match
3837 the next one or reverse direction of operands. */
3838 if (t->opcode_modifier.s)
3839 continue;
3840 else if (t->opcode_modifier.d)
3841 goto check_reverse;
3844 case 3:
3845 /* If we swap operand in encoding, we match the next one. */
3846 if (i.swap_operand && t->opcode_modifier.s)
3847 continue;
3848 case 4:
3849 case 5:
3850 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3851 if (!operand_type_match (overlap0, i.types[0])
3852 || !operand_type_match (overlap1, i.types[1])
3853 || (check_register
3854 && !operand_type_register_match (overlap0, i.types[0],
3855 operand_types[0],
3856 overlap1, i.types[1],
3857 operand_types[1])))
3859 /* Check if other direction is valid ... */
3860 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3861 continue;
3863 check_reverse:
3864 /* Try reversing direction of operands. */
3865 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3866 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3867 if (!operand_type_match (overlap0, i.types[0])
3868 || !operand_type_match (overlap1, i.types[1])
3869 || (check_register
3870 && !operand_type_register_match (overlap0,
3871 i.types[0],
3872 operand_types[1],
3873 overlap1,
3874 i.types[1],
3875 operand_types[0])))
3877 /* Does not match either direction. */
3878 continue;
3880 /* found_reverse_match holds which of D or FloatDR
3881 we've found. */
3882 if (t->opcode_modifier.d)
3883 found_reverse_match = Opcode_D;
3884 else if (t->opcode_modifier.floatd)
3885 found_reverse_match = Opcode_FloatD;
3886 else
3887 found_reverse_match = 0;
3888 if (t->opcode_modifier.floatr)
3889 found_reverse_match |= Opcode_FloatR;
3891 else
3893 /* Found a forward 2 operand match here. */
3894 switch (t->operands)
3896 case 5:
3897 overlap4 = operand_type_and (i.types[4],
3898 operand_types[4]);
3899 case 4:
3900 overlap3 = operand_type_and (i.types[3],
3901 operand_types[3]);
3902 case 3:
3903 overlap2 = operand_type_and (i.types[2],
3904 operand_types[2]);
3905 break;
3908 switch (t->operands)
3910 case 5:
3911 if (!operand_type_match (overlap4, i.types[4])
3912 || !operand_type_register_match (overlap3,
3913 i.types[3],
3914 operand_types[3],
3915 overlap4,
3916 i.types[4],
3917 operand_types[4]))
3918 continue;
3919 case 4:
3920 if (!operand_type_match (overlap3, i.types[3])
3921 || (check_register
3922 && !operand_type_register_match (overlap2,
3923 i.types[2],
3924 operand_types[2],
3925 overlap3,
3926 i.types[3],
3927 operand_types[3])))
3928 continue;
3929 case 3:
3930 /* Here we make use of the fact that there are no
3931 reverse match 3 operand instructions, and all 3
3932 operand instructions only need to be checked for
3933 register consistency between operands 2 and 3. */
3934 if (!operand_type_match (overlap2, i.types[2])
3935 || (check_register
3936 && !operand_type_register_match (overlap1,
3937 i.types[1],
3938 operand_types[1],
3939 overlap2,
3940 i.types[2],
3941 operand_types[2])))
3942 continue;
3943 break;
3946 /* Found either forward/reverse 2, 3 or 4 operand match here:
3947 slip through to break. */
3949 if (!found_cpu_match)
3951 found_reverse_match = 0;
3952 continue;
3955 /* We've found a match; break out of loop. */
3956 break;
3959 if (t == current_templates->end)
3961 /* We found no match. */
3962 if (intel_syntax)
3963 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3964 current_templates->start->name);
3965 else
3966 as_bad (_("suffix or operands invalid for `%s'"),
3967 current_templates->start->name);
3968 return NULL;
3971 if (!quiet_warnings)
3973 if (!intel_syntax
3974 && (i.types[0].bitfield.jumpabsolute
3975 != operand_types[0].bitfield.jumpabsolute))
3977 as_warn (_("indirect %s without `*'"), t->name);
3980 if (t->opcode_modifier.isprefix
3981 && t->opcode_modifier.ignoresize)
3983 /* Warn them that a data or address size prefix doesn't
3984 affect assembly of the next line of code. */
3985 as_warn (_("stand-alone `%s' prefix"), t->name);
3989 /* Copy the template we found. */
3990 i.tm = *t;
3992 if (addr_prefix_disp != -1)
3993 i.tm.operand_types[addr_prefix_disp]
3994 = operand_types[addr_prefix_disp];
3996 if (found_reverse_match)
3998 /* If we found a reverse match we must alter the opcode
3999 direction bit. found_reverse_match holds bits to change
4000 (different for int & float insns). */
4002 i.tm.base_opcode ^= found_reverse_match;
4004 i.tm.operand_types[0] = operand_types[1];
4005 i.tm.operand_types[1] = operand_types[0];
4008 return t;
4011 static int
4012 check_string (void)
4014 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4015 if (i.tm.operand_types[mem_op].bitfield.esseg)
4017 if (i.seg[0] != NULL && i.seg[0] != &es)
4019 as_bad (_("`%s' operand %d must use `%ses' segment"),
4020 i.tm.name,
4021 mem_op + 1,
4022 register_prefix);
4023 return 0;
4025 /* There's only ever one segment override allowed per instruction.
4026 This instruction possibly has a legal segment override on the
4027 second operand, so copy the segment to where non-string
4028 instructions store it, allowing common code. */
4029 i.seg[0] = i.seg[1];
4031 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4033 if (i.seg[1] != NULL && i.seg[1] != &es)
4035 as_bad (_("`%s' operand %d must use `%ses' segment"),
4036 i.tm.name,
4037 mem_op + 2,
4038 register_prefix);
4039 return 0;
4042 return 1;
4045 static int
4046 process_suffix (void)
4048 /* If matched instruction specifies an explicit instruction mnemonic
4049 suffix, use it. */
4050 if (i.tm.opcode_modifier.size16)
4051 i.suffix = WORD_MNEM_SUFFIX;
4052 else if (i.tm.opcode_modifier.size32)
4053 i.suffix = LONG_MNEM_SUFFIX;
4054 else if (i.tm.opcode_modifier.size64)
4055 i.suffix = QWORD_MNEM_SUFFIX;
4056 else if (i.reg_operands)
4058 /* If there's no instruction mnemonic suffix we try to invent one
4059 based on register operands. */
4060 if (!i.suffix)
4062 /* We take i.suffix from the last register operand specified,
4063 Destination register type is more significant than source
4064 register type. crc32 in SSE4.2 prefers source register
4065 type. */
4066 if (i.tm.base_opcode == 0xf20f38f1)
4068 if (i.types[0].bitfield.reg16)
4069 i.suffix = WORD_MNEM_SUFFIX;
4070 else if (i.types[0].bitfield.reg32)
4071 i.suffix = LONG_MNEM_SUFFIX;
4072 else if (i.types[0].bitfield.reg64)
4073 i.suffix = QWORD_MNEM_SUFFIX;
4075 else if (i.tm.base_opcode == 0xf20f38f0)
4077 if (i.types[0].bitfield.reg8)
4078 i.suffix = BYTE_MNEM_SUFFIX;
4081 if (!i.suffix)
4083 int op;
4085 if (i.tm.base_opcode == 0xf20f38f1
4086 || i.tm.base_opcode == 0xf20f38f0)
4088 /* We have to know the operand size for crc32. */
4089 as_bad (_("ambiguous memory operand size for `%s`"),
4090 i.tm.name);
4091 return 0;
4094 for (op = i.operands; --op >= 0;)
4095 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4097 if (i.types[op].bitfield.reg8)
4099 i.suffix = BYTE_MNEM_SUFFIX;
4100 break;
4102 else if (i.types[op].bitfield.reg16)
4104 i.suffix = WORD_MNEM_SUFFIX;
4105 break;
4107 else if (i.types[op].bitfield.reg32)
4109 i.suffix = LONG_MNEM_SUFFIX;
4110 break;
4112 else if (i.types[op].bitfield.reg64)
4114 i.suffix = QWORD_MNEM_SUFFIX;
4115 break;
4120 else if (i.suffix == BYTE_MNEM_SUFFIX)
4122 if (!check_byte_reg ())
4123 return 0;
4125 else if (i.suffix == LONG_MNEM_SUFFIX)
4127 if (!check_long_reg ())
4128 return 0;
4130 else if (i.suffix == QWORD_MNEM_SUFFIX)
4132 if (intel_syntax
4133 && i.tm.opcode_modifier.ignoresize
4134 && i.tm.opcode_modifier.no_qsuf)
4135 i.suffix = 0;
4136 else if (!check_qword_reg ())
4137 return 0;
4139 else if (i.suffix == WORD_MNEM_SUFFIX)
4141 if (!check_word_reg ())
4142 return 0;
4144 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4145 || i.suffix == YMMWORD_MNEM_SUFFIX)
4147 /* Skip if the instruction has x/y suffix. match_template
4148 should check if it is a valid suffix. */
4150 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4151 /* Do nothing if the instruction is going to ignore the prefix. */
4153 else
4154 abort ();
4156 else if (i.tm.opcode_modifier.defaultsize
4157 && !i.suffix
4158 /* exclude fldenv/frstor/fsave/fstenv */
4159 && i.tm.opcode_modifier.no_ssuf)
4161 i.suffix = stackop_size;
4163 else if (intel_syntax
4164 && !i.suffix
4165 && (i.tm.operand_types[0].bitfield.jumpabsolute
4166 || i.tm.opcode_modifier.jumpbyte
4167 || i.tm.opcode_modifier.jumpintersegment
4168 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4169 && i.tm.extension_opcode <= 3)))
4171 switch (flag_code)
4173 case CODE_64BIT:
4174 if (!i.tm.opcode_modifier.no_qsuf)
4176 i.suffix = QWORD_MNEM_SUFFIX;
4177 break;
4179 case CODE_32BIT:
4180 if (!i.tm.opcode_modifier.no_lsuf)
4181 i.suffix = LONG_MNEM_SUFFIX;
4182 break;
4183 case CODE_16BIT:
4184 if (!i.tm.opcode_modifier.no_wsuf)
4185 i.suffix = WORD_MNEM_SUFFIX;
4186 break;
4190 if (!i.suffix)
4192 if (!intel_syntax)
4194 if (i.tm.opcode_modifier.w)
4196 as_bad (_("no instruction mnemonic suffix given and "
4197 "no register operands; can't size instruction"));
4198 return 0;
4201 else
4203 unsigned int suffixes;
4205 suffixes = !i.tm.opcode_modifier.no_bsuf;
4206 if (!i.tm.opcode_modifier.no_wsuf)
4207 suffixes |= 1 << 1;
4208 if (!i.tm.opcode_modifier.no_lsuf)
4209 suffixes |= 1 << 2;
4210 if (!i.tm.opcode_modifier.no_ldsuf)
4211 suffixes |= 1 << 3;
4212 if (!i.tm.opcode_modifier.no_ssuf)
4213 suffixes |= 1 << 4;
4214 if (!i.tm.opcode_modifier.no_qsuf)
4215 suffixes |= 1 << 5;
4217 /* There are more than suffix matches. */
4218 if (i.tm.opcode_modifier.w
4219 || ((suffixes & (suffixes - 1))
4220 && !i.tm.opcode_modifier.defaultsize
4221 && !i.tm.opcode_modifier.ignoresize))
4223 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4224 return 0;
4229 /* Change the opcode based on the operand size given by i.suffix;
4230 We don't need to change things for byte insns. */
4232 if (i.suffix
4233 && i.suffix != BYTE_MNEM_SUFFIX
4234 && i.suffix != XMMWORD_MNEM_SUFFIX
4235 && i.suffix != YMMWORD_MNEM_SUFFIX)
4237 /* It's not a byte, select word/dword operation. */
4238 if (i.tm.opcode_modifier.w)
4240 if (i.tm.opcode_modifier.shortform)
4241 i.tm.base_opcode |= 8;
4242 else
4243 i.tm.base_opcode |= 1;
4246 /* Now select between word & dword operations via the operand
4247 size prefix, except for instructions that will ignore this
4248 prefix anyway. */
4249 if (i.tm.opcode_modifier.addrprefixop0)
4251 /* The address size override prefix changes the size of the
4252 first operand. */
4253 if ((flag_code == CODE_32BIT
4254 && i.op->regs[0].reg_type.bitfield.reg16)
4255 || (flag_code != CODE_32BIT
4256 && i.op->regs[0].reg_type.bitfield.reg32))
4257 if (!add_prefix (ADDR_PREFIX_OPCODE))
4258 return 0;
4260 else if (i.suffix != QWORD_MNEM_SUFFIX
4261 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4262 && !i.tm.opcode_modifier.ignoresize
4263 && !i.tm.opcode_modifier.floatmf
4264 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4265 || (flag_code == CODE_64BIT
4266 && i.tm.opcode_modifier.jumpbyte)))
4268 unsigned int prefix = DATA_PREFIX_OPCODE;
4270 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4271 prefix = ADDR_PREFIX_OPCODE;
4273 if (!add_prefix (prefix))
4274 return 0;
4277 /* Set mode64 for an operand. */
4278 if (i.suffix == QWORD_MNEM_SUFFIX
4279 && flag_code == CODE_64BIT
4280 && !i.tm.opcode_modifier.norex64)
4282 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4283 need rex64. cmpxchg8b is also a special case. */
4284 if (! (i.operands == 2
4285 && i.tm.base_opcode == 0x90
4286 && i.tm.extension_opcode == None
4287 && operand_type_equal (&i.types [0], &acc64)
4288 && operand_type_equal (&i.types [1], &acc64))
4289 && ! (i.operands == 1
4290 && i.tm.base_opcode == 0xfc7
4291 && i.tm.extension_opcode == 1
4292 && !operand_type_check (i.types [0], reg)
4293 && operand_type_check (i.types [0], anymem)))
4294 i.rex |= REX_W;
4297 /* Size floating point instruction. */
4298 if (i.suffix == LONG_MNEM_SUFFIX)
4299 if (i.tm.opcode_modifier.floatmf)
4300 i.tm.base_opcode ^= 4;
4303 return 1;
4306 static int
4307 check_byte_reg (void)
4309 int op;
4311 for (op = i.operands; --op >= 0;)
4313 /* If this is an eight bit register, it's OK. If it's the 16 or
4314 32 bit version of an eight bit register, we will just use the
4315 low portion, and that's OK too. */
4316 if (i.types[op].bitfield.reg8)
4317 continue;
4319 /* Don't generate this warning if not needed. */
4320 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
4321 continue;
4323 /* crc32 doesn't generate this warning. */
4324 if (i.tm.base_opcode == 0xf20f38f0)
4325 continue;
4327 if ((i.types[op].bitfield.reg16
4328 || i.types[op].bitfield.reg32
4329 || i.types[op].bitfield.reg64)
4330 && i.op[op].regs->reg_num < 4)
4332 /* Prohibit these changes in the 64bit mode, since the
4333 lowering is more complicated. */
4334 if (flag_code == CODE_64BIT
4335 && !i.tm.operand_types[op].bitfield.inoutportreg)
4337 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4338 register_prefix, i.op[op].regs->reg_name,
4339 i.suffix);
4340 return 0;
4342 #if REGISTER_WARNINGS
4343 if (!quiet_warnings
4344 && !i.tm.operand_types[op].bitfield.inoutportreg)
4345 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4346 register_prefix,
4347 (i.op[op].regs + (i.types[op].bitfield.reg16
4348 ? REGNAM_AL - REGNAM_AX
4349 : REGNAM_AL - REGNAM_EAX))->reg_name,
4350 register_prefix,
4351 i.op[op].regs->reg_name,
4352 i.suffix);
4353 #endif
4354 continue;
4356 /* Any other register is bad. */
4357 if (i.types[op].bitfield.reg16
4358 || i.types[op].bitfield.reg32
4359 || i.types[op].bitfield.reg64
4360 || i.types[op].bitfield.regmmx
4361 || i.types[op].bitfield.regxmm
4362 || i.types[op].bitfield.regymm
4363 || i.types[op].bitfield.sreg2
4364 || i.types[op].bitfield.sreg3
4365 || i.types[op].bitfield.control
4366 || i.types[op].bitfield.debug
4367 || i.types[op].bitfield.test
4368 || i.types[op].bitfield.floatreg
4369 || i.types[op].bitfield.floatacc)
4371 as_bad (_("`%s%s' not allowed with `%s%c'"),
4372 register_prefix,
4373 i.op[op].regs->reg_name,
4374 i.tm.name,
4375 i.suffix);
4376 return 0;
4379 return 1;
4382 static int
4383 check_long_reg (void)
4385 int op;
4387 for (op = i.operands; --op >= 0;)
4388 /* Reject eight bit registers, except where the template requires
4389 them. (eg. movzb) */
4390 if (i.types[op].bitfield.reg8
4391 && (i.tm.operand_types[op].bitfield.reg16
4392 || i.tm.operand_types[op].bitfield.reg32
4393 || i.tm.operand_types[op].bitfield.acc))
4395 as_bad (_("`%s%s' not allowed with `%s%c'"),
4396 register_prefix,
4397 i.op[op].regs->reg_name,
4398 i.tm.name,
4399 i.suffix);
4400 return 0;
4402 /* Warn if the e prefix on a general reg is missing. */
4403 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4404 && i.types[op].bitfield.reg16
4405 && (i.tm.operand_types[op].bitfield.reg32
4406 || i.tm.operand_types[op].bitfield.acc))
4408 /* Prohibit these changes in the 64bit mode, since the
4409 lowering is more complicated. */
4410 if (flag_code == CODE_64BIT)
4412 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4413 register_prefix, i.op[op].regs->reg_name,
4414 i.suffix);
4415 return 0;
4417 #if REGISTER_WARNINGS
4418 else
4419 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4420 register_prefix,
4421 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4422 register_prefix,
4423 i.op[op].regs->reg_name,
4424 i.suffix);
4425 #endif
4427 /* Warn if the r prefix on a general reg is missing. */
4428 else if (i.types[op].bitfield.reg64
4429 && (i.tm.operand_types[op].bitfield.reg32
4430 || i.tm.operand_types[op].bitfield.acc))
4432 if (intel_syntax
4433 && i.tm.opcode_modifier.toqword
4434 && !i.types[0].bitfield.regxmm)
4436 /* Convert to QWORD. We want REX byte. */
4437 i.suffix = QWORD_MNEM_SUFFIX;
4439 else
4441 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4442 register_prefix, i.op[op].regs->reg_name,
4443 i.suffix);
4444 return 0;
4447 return 1;
4450 static int
4451 check_qword_reg (void)
4453 int op;
4455 for (op = i.operands; --op >= 0; )
4456 /* Reject eight bit registers, except where the template requires
4457 them. (eg. movzb) */
4458 if (i.types[op].bitfield.reg8
4459 && (i.tm.operand_types[op].bitfield.reg16
4460 || i.tm.operand_types[op].bitfield.reg32
4461 || i.tm.operand_types[op].bitfield.acc))
4463 as_bad (_("`%s%s' not allowed with `%s%c'"),
4464 register_prefix,
4465 i.op[op].regs->reg_name,
4466 i.tm.name,
4467 i.suffix);
4468 return 0;
4470 /* Warn if the e prefix on a general reg is missing. */
4471 else if ((i.types[op].bitfield.reg16
4472 || i.types[op].bitfield.reg32)
4473 && (i.tm.operand_types[op].bitfield.reg32
4474 || i.tm.operand_types[op].bitfield.acc))
4476 /* Prohibit these changes in the 64bit mode, since the
4477 lowering is more complicated. */
4478 if (intel_syntax
4479 && i.tm.opcode_modifier.todword
4480 && !i.types[0].bitfield.regxmm)
4482 /* Convert to DWORD. We don't want REX byte. */
4483 i.suffix = LONG_MNEM_SUFFIX;
4485 else
4487 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4488 register_prefix, i.op[op].regs->reg_name,
4489 i.suffix);
4490 return 0;
4493 return 1;
4496 static int
4497 check_word_reg (void)
4499 int op;
4500 for (op = i.operands; --op >= 0;)
4501 /* Reject eight bit registers, except where the template requires
4502 them. (eg. movzb) */
4503 if (i.types[op].bitfield.reg8
4504 && (i.tm.operand_types[op].bitfield.reg16
4505 || i.tm.operand_types[op].bitfield.reg32
4506 || i.tm.operand_types[op].bitfield.acc))
4508 as_bad (_("`%s%s' not allowed with `%s%c'"),
4509 register_prefix,
4510 i.op[op].regs->reg_name,
4511 i.tm.name,
4512 i.suffix);
4513 return 0;
4515 /* Warn if the e prefix on a general reg is present. */
4516 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4517 && i.types[op].bitfield.reg32
4518 && (i.tm.operand_types[op].bitfield.reg16
4519 || i.tm.operand_types[op].bitfield.acc))
4521 /* Prohibit these changes in the 64bit mode, since the
4522 lowering is more complicated. */
4523 if (flag_code == CODE_64BIT)
4525 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4526 register_prefix, i.op[op].regs->reg_name,
4527 i.suffix);
4528 return 0;
4530 else
4531 #if REGISTER_WARNINGS
4532 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4533 register_prefix,
4534 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4535 register_prefix,
4536 i.op[op].regs->reg_name,
4537 i.suffix);
4538 #endif
4540 return 1;
4543 static int
4544 update_imm (unsigned int j)
4546 i386_operand_type overlap = i.types[j];
4547 if ((overlap.bitfield.imm8
4548 || overlap.bitfield.imm8s
4549 || overlap.bitfield.imm16
4550 || overlap.bitfield.imm32
4551 || overlap.bitfield.imm32s
4552 || overlap.bitfield.imm64)
4553 && !operand_type_equal (&overlap, &imm8)
4554 && !operand_type_equal (&overlap, &imm8s)
4555 && !operand_type_equal (&overlap, &imm16)
4556 && !operand_type_equal (&overlap, &imm32)
4557 && !operand_type_equal (&overlap, &imm32s)
4558 && !operand_type_equal (&overlap, &imm64))
4560 if (i.suffix)
4562 i386_operand_type temp;
4564 operand_type_set (&temp, 0);
4565 if (i.suffix == BYTE_MNEM_SUFFIX)
4567 temp.bitfield.imm8 = overlap.bitfield.imm8;
4568 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4570 else if (i.suffix == WORD_MNEM_SUFFIX)
4571 temp.bitfield.imm16 = overlap.bitfield.imm16;
4572 else if (i.suffix == QWORD_MNEM_SUFFIX)
4574 temp.bitfield.imm64 = overlap.bitfield.imm64;
4575 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4577 else
4578 temp.bitfield.imm32 = overlap.bitfield.imm32;
4579 overlap = temp;
4581 else if (operand_type_equal (&overlap, &imm16_32_32s)
4582 || operand_type_equal (&overlap, &imm16_32)
4583 || operand_type_equal (&overlap, &imm16_32s))
4585 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4586 overlap = imm16;
4587 else
4588 overlap = imm32s;
4590 if (!operand_type_equal (&overlap, &imm8)
4591 && !operand_type_equal (&overlap, &imm8s)
4592 && !operand_type_equal (&overlap, &imm16)
4593 && !operand_type_equal (&overlap, &imm32)
4594 && !operand_type_equal (&overlap, &imm32s)
4595 && !operand_type_equal (&overlap, &imm64))
4597 as_bad (_("no instruction mnemonic suffix given; "
4598 "can't determine immediate size"));
4599 return 0;
4602 i.types[j] = overlap;
4604 return 1;
4607 static int
4608 finalize_imm (void)
4610 unsigned int j, n;
4612 /* Update the first 2 immediate operands. */
4613 n = i.operands > 2 ? 2 : i.operands;
4614 if (n)
4616 for (j = 0; j < n; j++)
4617 if (update_imm (j) == 0)
4618 return 0;
4620 /* The 3rd operand can't be immediate operand. */
4621 gas_assert (operand_type_check (i.types[2], imm) == 0);
4624 return 1;
4627 static int
4628 bad_implicit_operand (int xmm)
4630 const char *reg = xmm ? "xmm0" : "ymm0";
4631 if (intel_syntax)
4632 as_bad (_("the last operand of `%s' must be `%s%s'"),
4633 i.tm.name, register_prefix, reg);
4634 else
4635 as_bad (_("the first operand of `%s' must be `%s%s'"),
4636 i.tm.name, register_prefix, reg);
4637 return 0;
4640 static int
4641 process_operands (void)
4643 /* Default segment register this instruction will use for memory
4644 accesses. 0 means unknown. This is only for optimizing out
4645 unnecessary segment overrides. */
4646 const seg_entry *default_seg = 0;
4648 if (i.tm.opcode_modifier.sse2avx
4649 && (i.tm.opcode_modifier.vexnds
4650 || i.tm.opcode_modifier.vexndd))
4652 unsigned int dup = i.operands;
4653 unsigned int dest = dup - 1;
4654 unsigned int j;
4656 /* The destination must be an xmm register. */
4657 gas_assert (i.reg_operands
4658 && MAX_OPERANDS > dup
4659 && operand_type_equal (&i.types[dest], &regxmm));
4661 if (i.tm.opcode_modifier.firstxmm0)
4663 /* The first operand is implicit and must be xmm0. */
4664 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4665 if (i.op[0].regs->reg_num != 0)
4666 return bad_implicit_operand (1);
4668 if (i.tm.opcode_modifier.vex3sources)
4670 /* Keep xmm0 for instructions with VEX prefix and 3
4671 sources. */
4672 goto duplicate;
4674 else
4676 /* We remove the first xmm0 and keep the number of
4677 operands unchanged, which in fact duplicates the
4678 destination. */
4679 for (j = 1; j < i.operands; j++)
4681 i.op[j - 1] = i.op[j];
4682 i.types[j - 1] = i.types[j];
4683 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4687 else if (i.tm.opcode_modifier.implicit1stxmm0)
4689 gas_assert ((MAX_OPERANDS - 1) > dup
4690 && i.tm.opcode_modifier.vex3sources);
4692 /* Add the implicit xmm0 for instructions with VEX prefix
4693 and 3 sources. */
4694 for (j = i.operands; j > 0; j--)
4696 i.op[j] = i.op[j - 1];
4697 i.types[j] = i.types[j - 1];
4698 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4700 i.op[0].regs
4701 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4702 i.types[0] = regxmm;
4703 i.tm.operand_types[0] = regxmm;
4705 i.operands += 2;
4706 i.reg_operands += 2;
4707 i.tm.operands += 2;
4709 dup++;
4710 dest++;
4711 i.op[dup] = i.op[dest];
4712 i.types[dup] = i.types[dest];
4713 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4715 else
4717 duplicate:
4718 i.operands++;
4719 i.reg_operands++;
4720 i.tm.operands++;
4722 i.op[dup] = i.op[dest];
4723 i.types[dup] = i.types[dest];
4724 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4727 if (i.tm.opcode_modifier.immext)
4728 process_immext ();
4730 else if (i.tm.opcode_modifier.firstxmm0)
4732 unsigned int j;
4734 /* The first operand is implicit and must be xmm0/ymm0. */
4735 gas_assert (i.reg_operands
4736 && (operand_type_equal (&i.types[0], &regxmm)
4737 || operand_type_equal (&i.types[0], &regymm)));
4738 if (i.op[0].regs->reg_num != 0)
4739 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4741 for (j = 1; j < i.operands; j++)
4743 i.op[j - 1] = i.op[j];
4744 i.types[j - 1] = i.types[j];
4746 /* We need to adjust fields in i.tm since they are used by
4747 build_modrm_byte. */
4748 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4751 i.operands--;
4752 i.reg_operands--;
4753 i.tm.operands--;
4755 else if (i.tm.opcode_modifier.regkludge)
4757 /* The imul $imm, %reg instruction is converted into
4758 imul $imm, %reg, %reg, and the clr %reg instruction
4759 is converted into xor %reg, %reg. */
4761 unsigned int first_reg_op;
4763 if (operand_type_check (i.types[0], reg))
4764 first_reg_op = 0;
4765 else
4766 first_reg_op = 1;
4767 /* Pretend we saw the extra register operand. */
4768 gas_assert (i.reg_operands == 1
4769 && i.op[first_reg_op + 1].regs == 0);
4770 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4771 i.types[first_reg_op + 1] = i.types[first_reg_op];
4772 i.operands++;
4773 i.reg_operands++;
4776 if (i.tm.opcode_modifier.shortform)
4778 if (i.types[0].bitfield.sreg2
4779 || i.types[0].bitfield.sreg3)
4781 if (i.tm.base_opcode == POP_SEG_SHORT
4782 && i.op[0].regs->reg_num == 1)
4784 as_bad (_("you can't `pop %scs'"), register_prefix);
4785 return 0;
4787 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4788 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4789 i.rex |= REX_B;
4791 else
4793 /* The register or float register operand is in operand
4794 0 or 1. */
4795 unsigned int op;
4797 if (i.types[0].bitfield.floatreg
4798 || operand_type_check (i.types[0], reg))
4799 op = 0;
4800 else
4801 op = 1;
4802 /* Register goes in low 3 bits of opcode. */
4803 i.tm.base_opcode |= i.op[op].regs->reg_num;
4804 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4805 i.rex |= REX_B;
4806 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4808 /* Warn about some common errors, but press on regardless.
4809 The first case can be generated by gcc (<= 2.8.1). */
4810 if (i.operands == 2)
4812 /* Reversed arguments on faddp, fsubp, etc. */
4813 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4814 register_prefix, i.op[!intel_syntax].regs->reg_name,
4815 register_prefix, i.op[intel_syntax].regs->reg_name);
4817 else
4819 /* Extraneous `l' suffix on fp insn. */
4820 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4821 register_prefix, i.op[0].regs->reg_name);
4826 else if (i.tm.opcode_modifier.modrm)
4828 /* The opcode is completed (modulo i.tm.extension_opcode which
4829 must be put into the modrm byte). Now, we make the modrm and
4830 index base bytes based on all the info we've collected. */
4832 default_seg = build_modrm_byte ();
4834 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4836 default_seg = &ds;
4838 else if (i.tm.opcode_modifier.isstring)
4840 /* For the string instructions that allow a segment override
4841 on one of their operands, the default segment is ds. */
4842 default_seg = &ds;
4845 if (i.tm.base_opcode == 0x8d /* lea */
4846 && i.seg[0]
4847 && !quiet_warnings)
4848 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4850 /* If a segment was explicitly specified, and the specified segment
4851 is not the default, use an opcode prefix to select it. If we
4852 never figured out what the default segment is, then default_seg
4853 will be zero at this point, and the specified segment prefix will
4854 always be used. */
4855 if ((i.seg[0]) && (i.seg[0] != default_seg))
4857 if (!add_prefix (i.seg[0]->seg_prefix))
4858 return 0;
4860 return 1;
4863 static const seg_entry *
4864 build_modrm_byte (void)
4866 const seg_entry *default_seg = 0;
4867 unsigned int source, dest;
4868 int vex_3_sources;
4870 /* The first operand of instructions with VEX prefix and 3 sources
4871 must be VEX_Imm4. */
4872 vex_3_sources = i.tm.opcode_modifier.vex3sources;
4873 if (vex_3_sources)
4875 unsigned int nds, reg;
4877 if (i.tm.opcode_modifier.veximmext
4878 && i.tm.opcode_modifier.immext)
4880 dest = i.operands - 2;
4881 gas_assert (dest == 3);
4883 else
4884 dest = i.operands - 1;
4885 nds = dest - 1;
4887 /* This instruction must have 4 register operands
4888 or 3 register operands plus 1 memory operand.
4889 It must have VexNDS and VexImmExt. */
4890 gas_assert ((i.reg_operands == 4
4891 || (i.reg_operands == 3 && i.mem_operands == 1))
4892 && i.tm.opcode_modifier.vexnds
4893 && i.tm.opcode_modifier.veximmext
4894 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
4895 || operand_type_equal (&i.tm.operand_types[dest], &regymm)));
4897 /* Generate an 8bit immediate operand to encode the register
4898 operand. */
4899 expressionS *exp = &im_expressions[i.imm_operands++];
4900 i.op[i.operands].imms = exp;
4901 i.types[i.operands] = imm8;
4902 i.operands++;
4903 /* If VexW1 is set, the first operand is the source and
4904 the second operand is encoded in the immediate operand. */
4905 if (i.tm.opcode_modifier.vexw1)
4907 source = 0;
4908 reg = 1;
4910 else
4912 source = 1;
4913 reg = 0;
4915 /* FMA4 swaps REG and NDS. */
4916 if (i.tm.cpu_flags.bitfield.cpufma4)
4918 unsigned int tmp;
4919 tmp = reg;
4920 reg = nds;
4921 nds = tmp;
4923 gas_assert ((operand_type_equal (&i.tm.operand_types[reg], &regxmm)
4924 || operand_type_equal (&i.tm.operand_types[reg],
4925 &regymm))
4926 && (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
4927 || operand_type_equal (&i.tm.operand_types[nds],
4928 &regymm)));
4929 exp->X_op = O_constant;
4930 exp->X_add_number
4931 = ((i.op[reg].regs->reg_num
4932 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
4933 i.vex.register_specifier = i.op[nds].regs;
4935 else
4936 source = dest = 0;
4938 /* i.reg_operands MUST be the number of real register operands;
4939 implicit registers do not count. If there are 3 register
4940 operands, it must be a instruction with VexNDS. For a
4941 instruction with VexNDD, the destination register is encoded
4942 in VEX prefix. If there are 4 register operands, it must be
4943 a instruction with VEX prefix and 3 sources. */
4944 if (i.mem_operands == 0
4945 && ((i.reg_operands == 2
4946 && !i.tm.opcode_modifier.vexndd)
4947 || (i.reg_operands == 3
4948 && i.tm.opcode_modifier.vexnds)
4949 || (i.reg_operands == 4 && vex_3_sources)))
4951 switch (i.operands)
4953 case 2:
4954 source = 0;
4955 break;
4956 case 3:
4957 /* When there are 3 operands, one of them may be immediate,
4958 which may be the first or the last operand. Otherwise,
4959 the first operand must be shift count register (cl) or it
4960 is an instruction with VexNDS. */
4961 gas_assert (i.imm_operands == 1
4962 || (i.imm_operands == 0
4963 && (i.tm.opcode_modifier.vexnds
4964 || i.types[0].bitfield.shiftcount)));
4965 if (operand_type_check (i.types[0], imm)
4966 || i.types[0].bitfield.shiftcount)
4967 source = 1;
4968 else
4969 source = 0;
4970 break;
4971 case 4:
4972 /* When there are 4 operands, the first two must be 8bit
4973 immediate operands. The source operand will be the 3rd
4974 one.
4976 For instructions with VexNDS, if the first operand
4977 an imm8, the source operand is the 2nd one. If the last
4978 operand is imm8, the source operand is the first one. */
4979 gas_assert ((i.imm_operands == 2
4980 && i.types[0].bitfield.imm8
4981 && i.types[1].bitfield.imm8)
4982 || (i.tm.opcode_modifier.vexnds
4983 && i.imm_operands == 1
4984 && (i.types[0].bitfield.imm8
4985 || i.types[i.operands - 1].bitfield.imm8)));
4986 if (i.tm.opcode_modifier.vexnds)
4988 if (i.types[0].bitfield.imm8)
4989 source = 1;
4990 else
4991 source = 0;
4993 else
4994 source = 2;
4995 break;
4996 case 5:
4997 break;
4998 default:
4999 abort ();
5002 if (!vex_3_sources)
5004 dest = source + 1;
5006 if (i.tm.opcode_modifier.vexnds)
5008 /* For instructions with VexNDS, the register-only
5009 source operand must be XMM or YMM register. It is
5010 encoded in VEX prefix. We need to clear RegMem bit
5011 before calling operand_type_equal. */
5012 i386_operand_type op = i.tm.operand_types[dest];
5013 op.bitfield.regmem = 0;
5014 if ((dest + 1) >= i.operands
5015 || (!operand_type_equal (&op, &regxmm)
5016 && !operand_type_equal (&op, &regymm)))
5017 abort ();
5018 i.vex.register_specifier = i.op[dest].regs;
5019 dest++;
5023 i.rm.mode = 3;
5024 /* One of the register operands will be encoded in the i.tm.reg
5025 field, the other in the combined i.tm.mode and i.tm.regmem
5026 fields. If no form of this instruction supports a memory
5027 destination operand, then we assume the source operand may
5028 sometimes be a memory operand and so we need to store the
5029 destination in the i.rm.reg field. */
5030 if (!i.tm.operand_types[dest].bitfield.regmem
5031 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5033 i.rm.reg = i.op[dest].regs->reg_num;
5034 i.rm.regmem = i.op[source].regs->reg_num;
5035 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5036 i.rex |= REX_R;
5037 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5038 i.rex |= REX_B;
5040 else
5042 i.rm.reg = i.op[source].regs->reg_num;
5043 i.rm.regmem = i.op[dest].regs->reg_num;
5044 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5045 i.rex |= REX_B;
5046 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5047 i.rex |= REX_R;
5049 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5051 if (!i.types[0].bitfield.control
5052 && !i.types[1].bitfield.control)
5053 abort ();
5054 i.rex &= ~(REX_R | REX_B);
5055 add_prefix (LOCK_PREFIX_OPCODE);
5058 else
5059 { /* If it's not 2 reg operands... */
5060 unsigned int mem;
5062 if (i.mem_operands)
5064 unsigned int fake_zero_displacement = 0;
5065 unsigned int op;
5067 for (op = 0; op < i.operands; op++)
5068 if (operand_type_check (i.types[op], anymem))
5069 break;
5070 gas_assert (op < i.operands);
5072 default_seg = &ds;
5074 if (i.base_reg == 0)
5076 i.rm.mode = 0;
5077 if (!i.disp_operands)
5078 fake_zero_displacement = 1;
5079 if (i.index_reg == 0)
5081 /* Operand is just <disp> */
5082 if (flag_code == CODE_64BIT)
5084 /* 64bit mode overwrites the 32bit absolute
5085 addressing by RIP relative addressing and
5086 absolute addressing is encoded by one of the
5087 redundant SIB forms. */
5088 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5089 i.sib.base = NO_BASE_REGISTER;
5090 i.sib.index = NO_INDEX_REGISTER;
5091 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5092 ? disp32s : disp32);
5094 else if ((flag_code == CODE_16BIT)
5095 ^ (i.prefix[ADDR_PREFIX] != 0))
5097 i.rm.regmem = NO_BASE_REGISTER_16;
5098 i.types[op] = disp16;
5100 else
5102 i.rm.regmem = NO_BASE_REGISTER;
5103 i.types[op] = disp32;
5106 else /* !i.base_reg && i.index_reg */
5108 if (i.index_reg->reg_num == RegEiz
5109 || i.index_reg->reg_num == RegRiz)
5110 i.sib.index = NO_INDEX_REGISTER;
5111 else
5112 i.sib.index = i.index_reg->reg_num;
5113 i.sib.base = NO_BASE_REGISTER;
5114 i.sib.scale = i.log2_scale_factor;
5115 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5116 i.types[op].bitfield.disp8 = 0;
5117 i.types[op].bitfield.disp16 = 0;
5118 i.types[op].bitfield.disp64 = 0;
5119 if (flag_code != CODE_64BIT)
5121 /* Must be 32 bit */
5122 i.types[op].bitfield.disp32 = 1;
5123 i.types[op].bitfield.disp32s = 0;
5125 else
5127 i.types[op].bitfield.disp32 = 0;
5128 i.types[op].bitfield.disp32s = 1;
5130 if ((i.index_reg->reg_flags & RegRex) != 0)
5131 i.rex |= REX_X;
5134 /* RIP addressing for 64bit mode. */
5135 else if (i.base_reg->reg_num == RegRip ||
5136 i.base_reg->reg_num == RegEip)
5138 i.rm.regmem = NO_BASE_REGISTER;
5139 i.types[op].bitfield.disp8 = 0;
5140 i.types[op].bitfield.disp16 = 0;
5141 i.types[op].bitfield.disp32 = 0;
5142 i.types[op].bitfield.disp32s = 1;
5143 i.types[op].bitfield.disp64 = 0;
5144 i.flags[op] |= Operand_PCrel;
5145 if (! i.disp_operands)
5146 fake_zero_displacement = 1;
5148 else if (i.base_reg->reg_type.bitfield.reg16)
5150 switch (i.base_reg->reg_num)
5152 case 3: /* (%bx) */
5153 if (i.index_reg == 0)
5154 i.rm.regmem = 7;
5155 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5156 i.rm.regmem = i.index_reg->reg_num - 6;
5157 break;
5158 case 5: /* (%bp) */
5159 default_seg = &ss;
5160 if (i.index_reg == 0)
5162 i.rm.regmem = 6;
5163 if (operand_type_check (i.types[op], disp) == 0)
5165 /* fake (%bp) into 0(%bp) */
5166 i.types[op].bitfield.disp8 = 1;
5167 fake_zero_displacement = 1;
5170 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5171 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5172 break;
5173 default: /* (%si) -> 4 or (%di) -> 5 */
5174 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5176 i.rm.mode = mode_from_disp_size (i.types[op]);
5178 else /* i.base_reg and 32/64 bit mode */
5180 if (flag_code == CODE_64BIT
5181 && operand_type_check (i.types[op], disp))
5183 i386_operand_type temp;
5184 operand_type_set (&temp, 0);
5185 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5186 i.types[op] = temp;
5187 if (i.prefix[ADDR_PREFIX] == 0)
5188 i.types[op].bitfield.disp32s = 1;
5189 else
5190 i.types[op].bitfield.disp32 = 1;
5193 i.rm.regmem = i.base_reg->reg_num;
5194 if ((i.base_reg->reg_flags & RegRex) != 0)
5195 i.rex |= REX_B;
5196 i.sib.base = i.base_reg->reg_num;
5197 /* x86-64 ignores REX prefix bit here to avoid decoder
5198 complications. */
5199 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5201 default_seg = &ss;
5202 if (i.disp_operands == 0)
5204 fake_zero_displacement = 1;
5205 i.types[op].bitfield.disp8 = 1;
5208 else if (i.base_reg->reg_num == ESP_REG_NUM)
5210 default_seg = &ss;
5212 i.sib.scale = i.log2_scale_factor;
5213 if (i.index_reg == 0)
5215 /* <disp>(%esp) becomes two byte modrm with no index
5216 register. We've already stored the code for esp
5217 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5218 Any base register besides %esp will not use the
5219 extra modrm byte. */
5220 i.sib.index = NO_INDEX_REGISTER;
5222 else
5224 if (i.index_reg->reg_num == RegEiz
5225 || i.index_reg->reg_num == RegRiz)
5226 i.sib.index = NO_INDEX_REGISTER;
5227 else
5228 i.sib.index = i.index_reg->reg_num;
5229 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5230 if ((i.index_reg->reg_flags & RegRex) != 0)
5231 i.rex |= REX_X;
5234 if (i.disp_operands
5235 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5236 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5237 i.rm.mode = 0;
5238 else
5239 i.rm.mode = mode_from_disp_size (i.types[op]);
5242 if (fake_zero_displacement)
5244 /* Fakes a zero displacement assuming that i.types[op]
5245 holds the correct displacement size. */
5246 expressionS *exp;
5248 gas_assert (i.op[op].disps == 0);
5249 exp = &disp_expressions[i.disp_operands++];
5250 i.op[op].disps = exp;
5251 exp->X_op = O_constant;
5252 exp->X_add_number = 0;
5253 exp->X_add_symbol = (symbolS *) 0;
5254 exp->X_op_symbol = (symbolS *) 0;
5257 mem = op;
5259 else
5260 mem = ~0;
5262 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5263 (if any) based on i.tm.extension_opcode. Again, we must be
5264 careful to make sure that segment/control/debug/test/MMX
5265 registers are coded into the i.rm.reg field. */
5266 if (i.reg_operands)
5268 unsigned int op;
5269 unsigned int vex_reg = ~0;
5271 for (op = 0; op < i.operands; op++)
5272 if (i.types[op].bitfield.reg8
5273 || i.types[op].bitfield.reg16
5274 || i.types[op].bitfield.reg32
5275 || i.types[op].bitfield.reg64
5276 || i.types[op].bitfield.regmmx
5277 || i.types[op].bitfield.regxmm
5278 || i.types[op].bitfield.regymm
5279 || i.types[op].bitfield.sreg2
5280 || i.types[op].bitfield.sreg3
5281 || i.types[op].bitfield.control
5282 || i.types[op].bitfield.debug
5283 || i.types[op].bitfield.test)
5284 break;
5286 if (vex_3_sources)
5287 op = dest;
5288 else if (i.tm.opcode_modifier.vexnds)
5290 /* For instructions with VexNDS, the register-only
5291 source operand is encoded in VEX prefix. */
5292 gas_assert (mem != (unsigned int) ~0);
5294 if (op > mem)
5296 vex_reg = op++;
5297 gas_assert (op < i.operands);
5299 else
5301 vex_reg = op + 1;
5302 gas_assert (vex_reg < i.operands);
5305 else if (i.tm.opcode_modifier.vexndd)
5307 /* For instructions with VexNDD, there should be
5308 no memory operand and the register destination
5309 is encoded in VEX prefix. */
5310 gas_assert (i.mem_operands == 0
5311 && (op + 2) == i.operands);
5312 vex_reg = op + 1;
5314 else
5315 gas_assert (op < i.operands);
5317 if (vex_reg != (unsigned int) ~0)
5319 gas_assert (i.reg_operands == 2);
5321 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5322 &regxmm)
5323 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5324 &regymm))
5325 abort ();
5326 i.vex.register_specifier = i.op[vex_reg].regs;
5329 /* If there is an extension opcode to put here, the
5330 register number must be put into the regmem field. */
5331 if (i.tm.extension_opcode != None)
5333 i.rm.regmem = i.op[op].regs->reg_num;
5334 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5335 i.rex |= REX_B;
5337 else
5339 i.rm.reg = i.op[op].regs->reg_num;
5340 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5341 i.rex |= REX_R;
5344 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5345 must set it to 3 to indicate this is a register operand
5346 in the regmem field. */
5347 if (!i.mem_operands)
5348 i.rm.mode = 3;
5351 /* Fill in i.rm.reg field with extension opcode (if any). */
5352 if (i.tm.extension_opcode != None)
5353 i.rm.reg = i.tm.extension_opcode;
5355 return default_seg;
5358 static void
5359 output_branch (void)
5361 char *p;
5362 int code16;
5363 int prefix;
5364 relax_substateT subtype;
5365 symbolS *sym;
5366 offsetT off;
5368 code16 = 0;
5369 if (flag_code == CODE_16BIT)
5370 code16 = CODE16;
5372 prefix = 0;
5373 if (i.prefix[DATA_PREFIX] != 0)
5375 prefix = 1;
5376 i.prefixes -= 1;
5377 code16 ^= CODE16;
5379 /* Pentium4 branch hints. */
5380 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5381 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5383 prefix++;
5384 i.prefixes--;
5386 if (i.prefix[REX_PREFIX] != 0)
5388 prefix++;
5389 i.prefixes--;
5392 if (i.prefixes != 0 && !intel_syntax)
5393 as_warn (_("skipping prefixes on this instruction"));
5395 /* It's always a symbol; End frag & setup for relax.
5396 Make sure there is enough room in this frag for the largest
5397 instruction we may generate in md_convert_frag. This is 2
5398 bytes for the opcode and room for the prefix and largest
5399 displacement. */
5400 frag_grow (prefix + 2 + 4);
5401 /* Prefix and 1 opcode byte go in fr_fix. */
5402 p = frag_more (prefix + 1);
5403 if (i.prefix[DATA_PREFIX] != 0)
5404 *p++ = DATA_PREFIX_OPCODE;
5405 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5406 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5407 *p++ = i.prefix[SEG_PREFIX];
5408 if (i.prefix[REX_PREFIX] != 0)
5409 *p++ = i.prefix[REX_PREFIX];
5410 *p = i.tm.base_opcode;
5412 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5413 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5414 else if (cpu_arch_flags.bitfield.cpui386)
5415 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5416 else
5417 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5418 subtype |= code16;
5420 sym = i.op[0].disps->X_add_symbol;
5421 off = i.op[0].disps->X_add_number;
5423 if (i.op[0].disps->X_op != O_constant
5424 && i.op[0].disps->X_op != O_symbol)
5426 /* Handle complex expressions. */
5427 sym = make_expr_symbol (i.op[0].disps);
5428 off = 0;
5431 /* 1 possible extra opcode + 4 byte displacement go in var part.
5432 Pass reloc in fr_var. */
5433 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5436 static void
5437 output_jump (void)
5439 char *p;
5440 int size;
5441 fixS *fixP;
5443 if (i.tm.opcode_modifier.jumpbyte)
5445 /* This is a loop or jecxz type instruction. */
5446 size = 1;
5447 if (i.prefix[ADDR_PREFIX] != 0)
5449 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5450 i.prefixes -= 1;
5452 /* Pentium4 branch hints. */
5453 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5454 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5456 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5457 i.prefixes--;
5460 else
5462 int code16;
5464 code16 = 0;
5465 if (flag_code == CODE_16BIT)
5466 code16 = CODE16;
5468 if (i.prefix[DATA_PREFIX] != 0)
5470 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5471 i.prefixes -= 1;
5472 code16 ^= CODE16;
5475 size = 4;
5476 if (code16)
5477 size = 2;
5480 if (i.prefix[REX_PREFIX] != 0)
5482 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5483 i.prefixes -= 1;
5486 if (i.prefixes != 0 && !intel_syntax)
5487 as_warn (_("skipping prefixes on this instruction"));
5489 p = frag_more (1 + size);
5490 *p++ = i.tm.base_opcode;
5492 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5493 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5495 /* All jumps handled here are signed, but don't use a signed limit
5496 check for 32 and 16 bit jumps as we want to allow wrap around at
5497 4G and 64k respectively. */
5498 if (size == 1)
5499 fixP->fx_signed = 1;
5502 static void
5503 output_interseg_jump (void)
5505 char *p;
5506 int size;
5507 int prefix;
5508 int code16;
5510 code16 = 0;
5511 if (flag_code == CODE_16BIT)
5512 code16 = CODE16;
5514 prefix = 0;
5515 if (i.prefix[DATA_PREFIX] != 0)
5517 prefix = 1;
5518 i.prefixes -= 1;
5519 code16 ^= CODE16;
5521 if (i.prefix[REX_PREFIX] != 0)
5523 prefix++;
5524 i.prefixes -= 1;
5527 size = 4;
5528 if (code16)
5529 size = 2;
5531 if (i.prefixes != 0 && !intel_syntax)
5532 as_warn (_("skipping prefixes on this instruction"));
5534 /* 1 opcode; 2 segment; offset */
5535 p = frag_more (prefix + 1 + 2 + size);
5537 if (i.prefix[DATA_PREFIX] != 0)
5538 *p++ = DATA_PREFIX_OPCODE;
5540 if (i.prefix[REX_PREFIX] != 0)
5541 *p++ = i.prefix[REX_PREFIX];
5543 *p++ = i.tm.base_opcode;
5544 if (i.op[1].imms->X_op == O_constant)
5546 offsetT n = i.op[1].imms->X_add_number;
5548 if (size == 2
5549 && !fits_in_unsigned_word (n)
5550 && !fits_in_signed_word (n))
5552 as_bad (_("16-bit jump out of range"));
5553 return;
5555 md_number_to_chars (p, n, size);
5557 else
5558 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5559 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5560 if (i.op[0].imms->X_op != O_constant)
5561 as_bad (_("can't handle non absolute segment in `%s'"),
5562 i.tm.name);
5563 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5566 static void
5567 output_insn (void)
5569 fragS *insn_start_frag;
5570 offsetT insn_start_off;
5572 /* Tie dwarf2 debug info to the address at the start of the insn.
5573 We can't do this after the insn has been output as the current
5574 frag may have been closed off. eg. by frag_var. */
5575 dwarf2_emit_insn (0);
5577 insn_start_frag = frag_now;
5578 insn_start_off = frag_now_fix ();
5580 /* Output jumps. */
5581 if (i.tm.opcode_modifier.jump)
5582 output_branch ();
5583 else if (i.tm.opcode_modifier.jumpbyte
5584 || i.tm.opcode_modifier.jumpdword)
5585 output_jump ();
5586 else if (i.tm.opcode_modifier.jumpintersegment)
5587 output_interseg_jump ();
5588 else
5590 /* Output normal instructions here. */
5591 char *p;
5592 unsigned char *q;
5593 unsigned int j;
5594 unsigned int prefix;
5596 /* Since the VEX prefix contains the implicit prefix, we don't
5597 need the explicit prefix. */
5598 if (!i.tm.opcode_modifier.vex)
5600 switch (i.tm.opcode_length)
5602 case 3:
5603 if (i.tm.base_opcode & 0xff000000)
5605 prefix = (i.tm.base_opcode >> 24) & 0xff;
5606 goto check_prefix;
5608 break;
5609 case 2:
5610 if ((i.tm.base_opcode & 0xff0000) != 0)
5612 prefix = (i.tm.base_opcode >> 16) & 0xff;
5613 if (i.tm.cpu_flags.bitfield.cpupadlock)
5615 check_prefix:
5616 if (prefix != REPE_PREFIX_OPCODE
5617 || (i.prefix[LOCKREP_PREFIX]
5618 != REPE_PREFIX_OPCODE))
5619 add_prefix (prefix);
5621 else
5622 add_prefix (prefix);
5624 break;
5625 case 1:
5626 break;
5627 default:
5628 abort ();
5631 /* The prefix bytes. */
5632 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5633 if (*q)
5634 FRAG_APPEND_1_CHAR (*q);
5637 if (i.tm.opcode_modifier.vex)
5639 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5640 if (*q)
5641 switch (j)
5643 case REX_PREFIX:
5644 /* REX byte is encoded in VEX prefix. */
5645 break;
5646 case SEG_PREFIX:
5647 case ADDR_PREFIX:
5648 FRAG_APPEND_1_CHAR (*q);
5649 break;
5650 default:
5651 /* There should be no other prefixes for instructions
5652 with VEX prefix. */
5653 abort ();
5656 /* Now the VEX prefix. */
5657 p = frag_more (i.vex.length);
5658 for (j = 0; j < i.vex.length; j++)
5659 p[j] = i.vex.bytes[j];
5662 /* Now the opcode; be careful about word order here! */
5663 if (i.tm.opcode_length == 1)
5665 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5667 else
5669 switch (i.tm.opcode_length)
5671 case 3:
5672 p = frag_more (3);
5673 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5674 break;
5675 case 2:
5676 p = frag_more (2);
5677 break;
5678 default:
5679 abort ();
5680 break;
5683 /* Put out high byte first: can't use md_number_to_chars! */
5684 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5685 *p = i.tm.base_opcode & 0xff;
5688 /* Now the modrm byte and sib byte (if present). */
5689 if (i.tm.opcode_modifier.modrm)
5691 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5692 | i.rm.reg << 3
5693 | i.rm.mode << 6));
5694 /* If i.rm.regmem == ESP (4)
5695 && i.rm.mode != (Register mode)
5696 && not 16 bit
5697 ==> need second modrm byte. */
5698 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5699 && i.rm.mode != 3
5700 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5701 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5702 | i.sib.index << 3
5703 | i.sib.scale << 6));
5706 if (i.disp_operands)
5707 output_disp (insn_start_frag, insn_start_off);
5709 if (i.imm_operands)
5710 output_imm (insn_start_frag, insn_start_off);
5713 #ifdef DEBUG386
5714 if (flag_debug)
5716 pi ("" /*line*/, &i);
5718 #endif /* DEBUG386 */
5721 /* Return the size of the displacement operand N. */
5723 static int
5724 disp_size (unsigned int n)
5726 int size = 4;
5727 if (i.types[n].bitfield.disp64)
5728 size = 8;
5729 else if (i.types[n].bitfield.disp8)
5730 size = 1;
5731 else if (i.types[n].bitfield.disp16)
5732 size = 2;
5733 return size;
5736 /* Return the size of the immediate operand N. */
5738 static int
5739 imm_size (unsigned int n)
5741 int size = 4;
5742 if (i.types[n].bitfield.imm64)
5743 size = 8;
5744 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5745 size = 1;
5746 else if (i.types[n].bitfield.imm16)
5747 size = 2;
5748 return size;
5751 static void
5752 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5754 char *p;
5755 unsigned int n;
5757 for (n = 0; n < i.operands; n++)
5759 if (operand_type_check (i.types[n], disp))
5761 if (i.op[n].disps->X_op == O_constant)
5763 int size = disp_size (n);
5764 offsetT val;
5766 val = offset_in_range (i.op[n].disps->X_add_number,
5767 size);
5768 p = frag_more (size);
5769 md_number_to_chars (p, val, size);
5771 else
5773 enum bfd_reloc_code_real reloc_type;
5774 int size = disp_size (n);
5775 int sign = i.types[n].bitfield.disp32s;
5776 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5778 /* We can't have 8 bit displacement here. */
5779 gas_assert (!i.types[n].bitfield.disp8);
5781 /* The PC relative address is computed relative
5782 to the instruction boundary, so in case immediate
5783 fields follows, we need to adjust the value. */
5784 if (pcrel && i.imm_operands)
5786 unsigned int n1;
5787 int sz = 0;
5789 for (n1 = 0; n1 < i.operands; n1++)
5790 if (operand_type_check (i.types[n1], imm))
5792 /* Only one immediate is allowed for PC
5793 relative address. */
5794 gas_assert (sz == 0);
5795 sz = imm_size (n1);
5796 i.op[n].disps->X_add_number -= sz;
5798 /* We should find the immediate. */
5799 gas_assert (sz != 0);
5802 p = frag_more (size);
5803 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5804 if (GOT_symbol
5805 && GOT_symbol == i.op[n].disps->X_add_symbol
5806 && (((reloc_type == BFD_RELOC_32
5807 || reloc_type == BFD_RELOC_X86_64_32S
5808 || (reloc_type == BFD_RELOC_64
5809 && object_64bit))
5810 && (i.op[n].disps->X_op == O_symbol
5811 || (i.op[n].disps->X_op == O_add
5812 && ((symbol_get_value_expression
5813 (i.op[n].disps->X_op_symbol)->X_op)
5814 == O_subtract))))
5815 || reloc_type == BFD_RELOC_32_PCREL))
5817 offsetT add;
5819 if (insn_start_frag == frag_now)
5820 add = (p - frag_now->fr_literal) - insn_start_off;
5821 else
5823 fragS *fr;
5825 add = insn_start_frag->fr_fix - insn_start_off;
5826 for (fr = insn_start_frag->fr_next;
5827 fr && fr != frag_now; fr = fr->fr_next)
5828 add += fr->fr_fix;
5829 add += p - frag_now->fr_literal;
5832 if (!object_64bit)
5834 reloc_type = BFD_RELOC_386_GOTPC;
5835 i.op[n].imms->X_add_number += add;
5837 else if (reloc_type == BFD_RELOC_64)
5838 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5839 else
5840 /* Don't do the adjustment for x86-64, as there
5841 the pcrel addressing is relative to the _next_
5842 insn, and that is taken care of in other code. */
5843 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5845 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5846 i.op[n].disps, pcrel, reloc_type);
5852 static void
5853 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5855 char *p;
5856 unsigned int n;
5858 for (n = 0; n < i.operands; n++)
5860 if (operand_type_check (i.types[n], imm))
5862 if (i.op[n].imms->X_op == O_constant)
5864 int size = imm_size (n);
5865 offsetT val;
5867 val = offset_in_range (i.op[n].imms->X_add_number,
5868 size);
5869 p = frag_more (size);
5870 md_number_to_chars (p, val, size);
5872 else
5874 /* Not absolute_section.
5875 Need a 32-bit fixup (don't support 8bit
5876 non-absolute imms). Try to support other
5877 sizes ... */
5878 enum bfd_reloc_code_real reloc_type;
5879 int size = imm_size (n);
5880 int sign;
5882 if (i.types[n].bitfield.imm32s
5883 && (i.suffix == QWORD_MNEM_SUFFIX
5884 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5885 sign = 1;
5886 else
5887 sign = 0;
5889 p = frag_more (size);
5890 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5892 /* This is tough to explain. We end up with this one if we
5893 * have operands that look like
5894 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5895 * obtain the absolute address of the GOT, and it is strongly
5896 * preferable from a performance point of view to avoid using
5897 * a runtime relocation for this. The actual sequence of
5898 * instructions often look something like:
5900 * call .L66
5901 * .L66:
5902 * popl %ebx
5903 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5905 * The call and pop essentially return the absolute address
5906 * of the label .L66 and store it in %ebx. The linker itself
5907 * will ultimately change the first operand of the addl so
5908 * that %ebx points to the GOT, but to keep things simple, the
5909 * .o file must have this operand set so that it generates not
5910 * the absolute address of .L66, but the absolute address of
5911 * itself. This allows the linker itself simply treat a GOTPC
5912 * relocation as asking for a pcrel offset to the GOT to be
5913 * added in, and the addend of the relocation is stored in the
5914 * operand field for the instruction itself.
5916 * Our job here is to fix the operand so that it would add
5917 * the correct offset so that %ebx would point to itself. The
5918 * thing that is tricky is that .-.L66 will point to the
5919 * beginning of the instruction, so we need to further modify
5920 * the operand so that it will point to itself. There are
5921 * other cases where you have something like:
5923 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5925 * and here no correction would be required. Internally in
5926 * the assembler we treat operands of this form as not being
5927 * pcrel since the '.' is explicitly mentioned, and I wonder
5928 * whether it would simplify matters to do it this way. Who
5929 * knows. In earlier versions of the PIC patches, the
5930 * pcrel_adjust field was used to store the correction, but
5931 * since the expression is not pcrel, I felt it would be
5932 * confusing to do it this way. */
5934 if ((reloc_type == BFD_RELOC_32
5935 || reloc_type == BFD_RELOC_X86_64_32S
5936 || reloc_type == BFD_RELOC_64)
5937 && GOT_symbol
5938 && GOT_symbol == i.op[n].imms->X_add_symbol
5939 && (i.op[n].imms->X_op == O_symbol
5940 || (i.op[n].imms->X_op == O_add
5941 && ((symbol_get_value_expression
5942 (i.op[n].imms->X_op_symbol)->X_op)
5943 == O_subtract))))
5945 offsetT add;
5947 if (insn_start_frag == frag_now)
5948 add = (p - frag_now->fr_literal) - insn_start_off;
5949 else
5951 fragS *fr;
5953 add = insn_start_frag->fr_fix - insn_start_off;
5954 for (fr = insn_start_frag->fr_next;
5955 fr && fr != frag_now; fr = fr->fr_next)
5956 add += fr->fr_fix;
5957 add += p - frag_now->fr_literal;
5960 if (!object_64bit)
5961 reloc_type = BFD_RELOC_386_GOTPC;
5962 else if (size == 4)
5963 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5964 else if (size == 8)
5965 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5966 i.op[n].imms->X_add_number += add;
5968 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5969 i.op[n].imms, 0, reloc_type);
5975 /* x86_cons_fix_new is called via the expression parsing code when a
5976 reloc is needed. We use this hook to get the correct .got reloc. */
5977 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5978 static int cons_sign = -1;
5980 void
5981 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5982 expressionS *exp)
5984 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5986 got_reloc = NO_RELOC;
5988 #ifdef TE_PE
5989 if (exp->X_op == O_secrel)
5991 exp->X_op = O_symbol;
5992 r = BFD_RELOC_32_SECREL;
5994 #endif
5996 fix_new_exp (frag, off, len, exp, 0, r);
5999 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6000 # define lex_got(reloc, adjust, types) NULL
6001 #else
6002 /* Parse operands of the form
6003 <symbol>@GOTOFF+<nnn>
6004 and similar .plt or .got references.
6006 If we find one, set up the correct relocation in RELOC and copy the
6007 input string, minus the `@GOTOFF' into a malloc'd buffer for
6008 parsing by the calling routine. Return this buffer, and if ADJUST
6009 is non-null set it to the length of the string we removed from the
6010 input line. Otherwise return NULL. */
6011 static char *
6012 lex_got (enum bfd_reloc_code_real *reloc,
6013 int *adjust,
6014 i386_operand_type *types)
6016 /* Some of the relocations depend on the size of what field is to
6017 be relocated. But in our callers i386_immediate and i386_displacement
6018 we don't yet know the operand size (this will be set by insn
6019 matching). Hence we record the word32 relocation here,
6020 and adjust the reloc according to the real size in reloc(). */
6021 static const struct {
6022 const char *str;
6023 const enum bfd_reloc_code_real rel[2];
6024 const i386_operand_type types64;
6025 } gotrel[] = {
6026 { "PLTOFF", { _dummy_first_bfd_reloc_code_real,
6027 BFD_RELOC_X86_64_PLTOFF64 },
6028 OPERAND_TYPE_IMM64 },
6029 { "PLT", { BFD_RELOC_386_PLT32,
6030 BFD_RELOC_X86_64_PLT32 },
6031 OPERAND_TYPE_IMM32_32S_DISP32 },
6032 { "GOTPLT", { _dummy_first_bfd_reloc_code_real,
6033 BFD_RELOC_X86_64_GOTPLT64 },
6034 OPERAND_TYPE_IMM64_DISP64 },
6035 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
6036 BFD_RELOC_X86_64_GOTOFF64 },
6037 OPERAND_TYPE_IMM64_DISP64 },
6038 { "GOTPCREL", { _dummy_first_bfd_reloc_code_real,
6039 BFD_RELOC_X86_64_GOTPCREL },
6040 OPERAND_TYPE_IMM32_32S_DISP32 },
6041 { "TLSGD", { BFD_RELOC_386_TLS_GD,
6042 BFD_RELOC_X86_64_TLSGD },
6043 OPERAND_TYPE_IMM32_32S_DISP32 },
6044 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
6045 _dummy_first_bfd_reloc_code_real },
6046 OPERAND_TYPE_NONE },
6047 { "TLSLD", { _dummy_first_bfd_reloc_code_real,
6048 BFD_RELOC_X86_64_TLSLD },
6049 OPERAND_TYPE_IMM32_32S_DISP32 },
6050 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
6051 BFD_RELOC_X86_64_GOTTPOFF },
6052 OPERAND_TYPE_IMM32_32S_DISP32 },
6053 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
6054 BFD_RELOC_X86_64_TPOFF32 },
6055 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6056 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
6057 _dummy_first_bfd_reloc_code_real },
6058 OPERAND_TYPE_NONE },
6059 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
6060 BFD_RELOC_X86_64_DTPOFF32 },
6062 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6063 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
6064 _dummy_first_bfd_reloc_code_real },
6065 OPERAND_TYPE_NONE },
6066 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
6067 _dummy_first_bfd_reloc_code_real },
6068 OPERAND_TYPE_NONE },
6069 { "GOT", { BFD_RELOC_386_GOT32,
6070 BFD_RELOC_X86_64_GOT32 },
6071 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6072 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
6073 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6074 OPERAND_TYPE_IMM32_32S_DISP32 },
6075 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
6076 BFD_RELOC_X86_64_TLSDESC_CALL },
6077 OPERAND_TYPE_IMM32_32S_DISP32 },
6079 char *cp;
6080 unsigned int j;
6082 if (!IS_ELF)
6083 return NULL;
6085 for (cp = input_line_pointer; *cp != '@'; cp++)
6086 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6087 return NULL;
6089 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6091 int len;
6093 len = strlen (gotrel[j].str);
6094 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6096 if (gotrel[j].rel[object_64bit] != 0)
6098 int first, second;
6099 char *tmpbuf, *past_reloc;
6101 *reloc = gotrel[j].rel[object_64bit];
6102 if (adjust)
6103 *adjust = len;
6105 if (types)
6107 if (flag_code != CODE_64BIT)
6109 types->bitfield.imm32 = 1;
6110 types->bitfield.disp32 = 1;
6112 else
6113 *types = gotrel[j].types64;
6116 if (GOT_symbol == NULL)
6117 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6119 /* The length of the first part of our input line. */
6120 first = cp - input_line_pointer;
6122 /* The second part goes from after the reloc token until
6123 (and including) an end_of_line char or comma. */
6124 past_reloc = cp + 1 + len;
6125 cp = past_reloc;
6126 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6127 ++cp;
6128 second = cp + 1 - past_reloc;
6130 /* Allocate and copy string. The trailing NUL shouldn't
6131 be necessary, but be safe. */
6132 tmpbuf = (char *) xmalloc (first + second + 2);
6133 memcpy (tmpbuf, input_line_pointer, first);
6134 if (second != 0 && *past_reloc != ' ')
6135 /* Replace the relocation token with ' ', so that
6136 errors like foo@GOTOFF1 will be detected. */
6137 tmpbuf[first++] = ' ';
6138 memcpy (tmpbuf + first, past_reloc, second);
6139 tmpbuf[first + second] = '\0';
6140 return tmpbuf;
6143 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6144 gotrel[j].str, 1 << (5 + object_64bit));
6145 return NULL;
6149 /* Might be a symbol version string. Don't as_bad here. */
6150 return NULL;
6153 void
6154 x86_cons (expressionS *exp, int size)
6156 intel_syntax = -intel_syntax;
6158 if (size == 4 || (object_64bit && size == 8))
6160 /* Handle @GOTOFF and the like in an expression. */
6161 char *save;
6162 char *gotfree_input_line;
6163 int adjust;
6165 save = input_line_pointer;
6166 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6167 if (gotfree_input_line)
6168 input_line_pointer = gotfree_input_line;
6170 expression (exp);
6172 if (gotfree_input_line)
6174 /* expression () has merrily parsed up to the end of line,
6175 or a comma - in the wrong buffer. Transfer how far
6176 input_line_pointer has moved to the right buffer. */
6177 input_line_pointer = (save
6178 + (input_line_pointer - gotfree_input_line)
6179 + adjust);
6180 free (gotfree_input_line);
6181 if (exp->X_op == O_constant
6182 || exp->X_op == O_absent
6183 || exp->X_op == O_illegal
6184 || exp->X_op == O_register
6185 || exp->X_op == O_big)
6187 char c = *input_line_pointer;
6188 *input_line_pointer = 0;
6189 as_bad (_("missing or invalid expression `%s'"), save);
6190 *input_line_pointer = c;
6194 else
6195 expression (exp);
6197 intel_syntax = -intel_syntax;
6199 if (intel_syntax)
6200 i386_intel_simplify (exp);
6202 #endif
6204 static void
6205 signed_cons (int size)
6207 if (flag_code == CODE_64BIT)
6208 cons_sign = 1;
6209 cons (size);
6210 cons_sign = -1;
6213 #ifdef TE_PE
6214 static void
6215 pe_directive_secrel (dummy)
6216 int dummy ATTRIBUTE_UNUSED;
6218 expressionS exp;
6222 expression (&exp);
6223 if (exp.X_op == O_symbol)
6224 exp.X_op = O_secrel;
6226 emit_expr (&exp, 4);
6228 while (*input_line_pointer++ == ',');
6230 input_line_pointer--;
6231 demand_empty_rest_of_line ();
6233 #endif
6235 static int
6236 i386_immediate (char *imm_start)
6238 char *save_input_line_pointer;
6239 char *gotfree_input_line;
6240 segT exp_seg = 0;
6241 expressionS *exp;
6242 i386_operand_type types;
6244 operand_type_set (&types, ~0);
6246 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6248 as_bad (_("at most %d immediate operands are allowed"),
6249 MAX_IMMEDIATE_OPERANDS);
6250 return 0;
6253 exp = &im_expressions[i.imm_operands++];
6254 i.op[this_operand].imms = exp;
6256 if (is_space_char (*imm_start))
6257 ++imm_start;
6259 save_input_line_pointer = input_line_pointer;
6260 input_line_pointer = imm_start;
6262 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6263 if (gotfree_input_line)
6264 input_line_pointer = gotfree_input_line;
6266 exp_seg = expression (exp);
6268 SKIP_WHITESPACE ();
6269 if (*input_line_pointer)
6270 as_bad (_("junk `%s' after expression"), input_line_pointer);
6272 input_line_pointer = save_input_line_pointer;
6273 if (gotfree_input_line)
6275 free (gotfree_input_line);
6277 if (exp->X_op == O_constant || exp->X_op == O_register)
6278 exp->X_op = O_illegal;
6281 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6284 static int
6285 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6286 i386_operand_type types, const char *imm_start)
6288 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6290 as_bad (_("missing or invalid immediate expression `%s'"),
6291 imm_start);
6292 return 0;
6294 else if (exp->X_op == O_constant)
6296 /* Size it properly later. */
6297 i.types[this_operand].bitfield.imm64 = 1;
6298 /* If BFD64, sign extend val. */
6299 if (!use_rela_relocations
6300 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6301 exp->X_add_number
6302 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6304 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6305 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6306 && exp_seg != absolute_section
6307 && exp_seg != text_section
6308 && exp_seg != data_section
6309 && exp_seg != bss_section
6310 && exp_seg != undefined_section
6311 && !bfd_is_com_section (exp_seg))
6313 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6314 return 0;
6316 #endif
6317 else if (!intel_syntax && exp->X_op == O_register)
6319 as_bad (_("illegal immediate register operand %s"), imm_start);
6320 return 0;
6322 else
6324 /* This is an address. The size of the address will be
6325 determined later, depending on destination register,
6326 suffix, or the default for the section. */
6327 i.types[this_operand].bitfield.imm8 = 1;
6328 i.types[this_operand].bitfield.imm16 = 1;
6329 i.types[this_operand].bitfield.imm32 = 1;
6330 i.types[this_operand].bitfield.imm32s = 1;
6331 i.types[this_operand].bitfield.imm64 = 1;
6332 i.types[this_operand] = operand_type_and (i.types[this_operand],
6333 types);
6336 return 1;
6339 static char *
6340 i386_scale (char *scale)
6342 offsetT val;
6343 char *save = input_line_pointer;
6345 input_line_pointer = scale;
6346 val = get_absolute_expression ();
6348 switch (val)
6350 case 1:
6351 i.log2_scale_factor = 0;
6352 break;
6353 case 2:
6354 i.log2_scale_factor = 1;
6355 break;
6356 case 4:
6357 i.log2_scale_factor = 2;
6358 break;
6359 case 8:
6360 i.log2_scale_factor = 3;
6361 break;
6362 default:
6364 char sep = *input_line_pointer;
6366 *input_line_pointer = '\0';
6367 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6368 scale);
6369 *input_line_pointer = sep;
6370 input_line_pointer = save;
6371 return NULL;
6374 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6376 as_warn (_("scale factor of %d without an index register"),
6377 1 << i.log2_scale_factor);
6378 i.log2_scale_factor = 0;
6380 scale = input_line_pointer;
6381 input_line_pointer = save;
6382 return scale;
6385 static int
6386 i386_displacement (char *disp_start, char *disp_end)
6388 expressionS *exp;
6389 segT exp_seg = 0;
6390 char *save_input_line_pointer;
6391 char *gotfree_input_line;
6392 int override;
6393 i386_operand_type bigdisp, types = anydisp;
6394 int ret;
6396 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6398 as_bad (_("at most %d displacement operands are allowed"),
6399 MAX_MEMORY_OPERANDS);
6400 return 0;
6403 operand_type_set (&bigdisp, 0);
6404 if ((i.types[this_operand].bitfield.jumpabsolute)
6405 || (!current_templates->start->opcode_modifier.jump
6406 && !current_templates->start->opcode_modifier.jumpdword))
6408 bigdisp.bitfield.disp32 = 1;
6409 override = (i.prefix[ADDR_PREFIX] != 0);
6410 if (flag_code == CODE_64BIT)
6412 if (!override)
6414 bigdisp.bitfield.disp32s = 1;
6415 bigdisp.bitfield.disp64 = 1;
6418 else if ((flag_code == CODE_16BIT) ^ override)
6420 bigdisp.bitfield.disp32 = 0;
6421 bigdisp.bitfield.disp16 = 1;
6424 else
6426 /* For PC-relative branches, the width of the displacement
6427 is dependent upon data size, not address size. */
6428 override = (i.prefix[DATA_PREFIX] != 0);
6429 if (flag_code == CODE_64BIT)
6431 if (override || i.suffix == WORD_MNEM_SUFFIX)
6432 bigdisp.bitfield.disp16 = 1;
6433 else
6435 bigdisp.bitfield.disp32 = 1;
6436 bigdisp.bitfield.disp32s = 1;
6439 else
6441 if (!override)
6442 override = (i.suffix == (flag_code != CODE_16BIT
6443 ? WORD_MNEM_SUFFIX
6444 : LONG_MNEM_SUFFIX));
6445 bigdisp.bitfield.disp32 = 1;
6446 if ((flag_code == CODE_16BIT) ^ override)
6448 bigdisp.bitfield.disp32 = 0;
6449 bigdisp.bitfield.disp16 = 1;
6453 i.types[this_operand] = operand_type_or (i.types[this_operand],
6454 bigdisp);
6456 exp = &disp_expressions[i.disp_operands];
6457 i.op[this_operand].disps = exp;
6458 i.disp_operands++;
6459 save_input_line_pointer = input_line_pointer;
6460 input_line_pointer = disp_start;
6461 END_STRING_AND_SAVE (disp_end);
6463 #ifndef GCC_ASM_O_HACK
6464 #define GCC_ASM_O_HACK 0
6465 #endif
6466 #if GCC_ASM_O_HACK
6467 END_STRING_AND_SAVE (disp_end + 1);
6468 if (i.types[this_operand].bitfield.baseIndex
6469 && displacement_string_end[-1] == '+')
6471 /* This hack is to avoid a warning when using the "o"
6472 constraint within gcc asm statements.
6473 For instance:
6475 #define _set_tssldt_desc(n,addr,limit,type) \
6476 __asm__ __volatile__ ( \
6477 "movw %w2,%0\n\t" \
6478 "movw %w1,2+%0\n\t" \
6479 "rorl $16,%1\n\t" \
6480 "movb %b1,4+%0\n\t" \
6481 "movb %4,5+%0\n\t" \
6482 "movb $0,6+%0\n\t" \
6483 "movb %h1,7+%0\n\t" \
6484 "rorl $16,%1" \
6485 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6487 This works great except that the output assembler ends
6488 up looking a bit weird if it turns out that there is
6489 no offset. You end up producing code that looks like:
6491 #APP
6492 movw $235,(%eax)
6493 movw %dx,2+(%eax)
6494 rorl $16,%edx
6495 movb %dl,4+(%eax)
6496 movb $137,5+(%eax)
6497 movb $0,6+(%eax)
6498 movb %dh,7+(%eax)
6499 rorl $16,%edx
6500 #NO_APP
6502 So here we provide the missing zero. */
6504 *displacement_string_end = '0';
6506 #endif
6507 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6508 if (gotfree_input_line)
6509 input_line_pointer = gotfree_input_line;
6511 exp_seg = expression (exp);
6513 SKIP_WHITESPACE ();
6514 if (*input_line_pointer)
6515 as_bad (_("junk `%s' after expression"), input_line_pointer);
6516 #if GCC_ASM_O_HACK
6517 RESTORE_END_STRING (disp_end + 1);
6518 #endif
6519 input_line_pointer = save_input_line_pointer;
6520 if (gotfree_input_line)
6522 free (gotfree_input_line);
6524 if (exp->X_op == O_constant || exp->X_op == O_register)
6525 exp->X_op = O_illegal;
6528 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6530 RESTORE_END_STRING (disp_end);
6532 return ret;
6535 static int
6536 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6537 i386_operand_type types, const char *disp_start)
6539 i386_operand_type bigdisp;
6540 int ret = 1;
6542 /* We do this to make sure that the section symbol is in
6543 the symbol table. We will ultimately change the relocation
6544 to be relative to the beginning of the section. */
6545 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6546 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6547 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6549 if (exp->X_op != O_symbol)
6550 goto inv_disp;
6552 if (S_IS_LOCAL (exp->X_add_symbol)
6553 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6554 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6555 exp->X_op = O_subtract;
6556 exp->X_op_symbol = GOT_symbol;
6557 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6558 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6559 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6560 i.reloc[this_operand] = BFD_RELOC_64;
6561 else
6562 i.reloc[this_operand] = BFD_RELOC_32;
6565 else if (exp->X_op == O_absent
6566 || exp->X_op == O_illegal
6567 || exp->X_op == O_big)
6569 inv_disp:
6570 as_bad (_("missing or invalid displacement expression `%s'"),
6571 disp_start);
6572 ret = 0;
6575 else if (flag_code == CODE_64BIT
6576 && !i.prefix[ADDR_PREFIX]
6577 && exp->X_op == O_constant)
6579 /* Since displacement is signed extended to 64bit, don't allow
6580 disp32 and turn off disp32s if they are out of range. */
6581 i.types[this_operand].bitfield.disp32 = 0;
6582 if (!fits_in_signed_long (exp->X_add_number))
6584 i.types[this_operand].bitfield.disp32s = 0;
6585 if (i.types[this_operand].bitfield.baseindex)
6587 as_bad (_("0x%lx out range of signed 32bit displacement"),
6588 (long) exp->X_add_number);
6589 ret = 0;
6594 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6595 else if (exp->X_op != O_constant
6596 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6597 && exp_seg != absolute_section
6598 && exp_seg != text_section
6599 && exp_seg != data_section
6600 && exp_seg != bss_section
6601 && exp_seg != undefined_section
6602 && !bfd_is_com_section (exp_seg))
6604 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6605 ret = 0;
6607 #endif
6609 /* Check if this is a displacement only operand. */
6610 bigdisp = i.types[this_operand];
6611 bigdisp.bitfield.disp8 = 0;
6612 bigdisp.bitfield.disp16 = 0;
6613 bigdisp.bitfield.disp32 = 0;
6614 bigdisp.bitfield.disp32s = 0;
6615 bigdisp.bitfield.disp64 = 0;
6616 if (operand_type_all_zero (&bigdisp))
6617 i.types[this_operand] = operand_type_and (i.types[this_operand],
6618 types);
6620 return ret;
6623 /* Make sure the memory operand we've been dealt is valid.
6624 Return 1 on success, 0 on a failure. */
6626 static int
6627 i386_index_check (const char *operand_string)
6629 int ok;
6630 const char *kind = "base/index";
6631 #if INFER_ADDR_PREFIX
6632 int fudged = 0;
6634 tryprefix:
6635 #endif
6636 ok = 1;
6637 if (current_templates->start->opcode_modifier.isstring
6638 && !current_templates->start->opcode_modifier.immext
6639 && (current_templates->end[-1].opcode_modifier.isstring
6640 || i.mem_operands))
6642 /* Memory operands of string insns are special in that they only allow
6643 a single register (rDI, rSI, or rBX) as their memory address. */
6644 unsigned int expected;
6646 kind = "string address";
6648 if (current_templates->start->opcode_modifier.w)
6650 i386_operand_type type = current_templates->end[-1].operand_types[0];
6652 if (!type.bitfield.baseindex
6653 || ((!i.mem_operands != !intel_syntax)
6654 && current_templates->end[-1].operand_types[1]
6655 .bitfield.baseindex))
6656 type = current_templates->end[-1].operand_types[1];
6657 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6659 else
6660 expected = 3 /* rBX */;
6662 if (!i.base_reg || i.index_reg
6663 || operand_type_check (i.types[this_operand], disp))
6664 ok = -1;
6665 else if (!(flag_code == CODE_64BIT
6666 ? i.prefix[ADDR_PREFIX]
6667 ? i.base_reg->reg_type.bitfield.reg32
6668 : i.base_reg->reg_type.bitfield.reg64
6669 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6670 ? i.base_reg->reg_type.bitfield.reg32
6671 : i.base_reg->reg_type.bitfield.reg16))
6672 ok = 0;
6673 else if (i.base_reg->reg_num != expected)
6674 ok = -1;
6676 if (ok < 0)
6678 unsigned int j;
6680 for (j = 0; j < i386_regtab_size; ++j)
6681 if ((flag_code == CODE_64BIT
6682 ? i.prefix[ADDR_PREFIX]
6683 ? i386_regtab[j].reg_type.bitfield.reg32
6684 : i386_regtab[j].reg_type.bitfield.reg64
6685 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6686 ? i386_regtab[j].reg_type.bitfield.reg32
6687 : i386_regtab[j].reg_type.bitfield.reg16)
6688 && i386_regtab[j].reg_num == expected)
6689 break;
6690 gas_assert (j < i386_regtab_size);
6691 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6692 operand_string,
6693 intel_syntax ? '[' : '(',
6694 register_prefix,
6695 i386_regtab[j].reg_name,
6696 intel_syntax ? ']' : ')');
6697 ok = 1;
6700 else if (flag_code == CODE_64BIT)
6702 if ((i.base_reg
6703 && ((i.prefix[ADDR_PREFIX] == 0
6704 && !i.base_reg->reg_type.bitfield.reg64)
6705 || (i.prefix[ADDR_PREFIX]
6706 && !i.base_reg->reg_type.bitfield.reg32))
6707 && (i.index_reg
6708 || i.base_reg->reg_num !=
6709 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6710 || (i.index_reg
6711 && (!i.index_reg->reg_type.bitfield.baseindex
6712 || (i.prefix[ADDR_PREFIX] == 0
6713 && i.index_reg->reg_num != RegRiz
6714 && !i.index_reg->reg_type.bitfield.reg64
6716 || (i.prefix[ADDR_PREFIX]
6717 && i.index_reg->reg_num != RegEiz
6718 && !i.index_reg->reg_type.bitfield.reg32))))
6719 ok = 0;
6721 else
6723 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6725 /* 16bit checks. */
6726 if ((i.base_reg
6727 && (!i.base_reg->reg_type.bitfield.reg16
6728 || !i.base_reg->reg_type.bitfield.baseindex))
6729 || (i.index_reg
6730 && (!i.index_reg->reg_type.bitfield.reg16
6731 || !i.index_reg->reg_type.bitfield.baseindex
6732 || !(i.base_reg
6733 && i.base_reg->reg_num < 6
6734 && i.index_reg->reg_num >= 6
6735 && i.log2_scale_factor == 0))))
6736 ok = 0;
6738 else
6740 /* 32bit checks. */
6741 if ((i.base_reg
6742 && !i.base_reg->reg_type.bitfield.reg32)
6743 || (i.index_reg
6744 && ((!i.index_reg->reg_type.bitfield.reg32
6745 && i.index_reg->reg_num != RegEiz)
6746 || !i.index_reg->reg_type.bitfield.baseindex)))
6747 ok = 0;
6750 if (!ok)
6752 #if INFER_ADDR_PREFIX
6753 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
6755 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6756 i.prefixes += 1;
6757 /* Change the size of any displacement too. At most one of
6758 Disp16 or Disp32 is set.
6759 FIXME. There doesn't seem to be any real need for separate
6760 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6761 Removing them would probably clean up the code quite a lot. */
6762 if (flag_code != CODE_64BIT
6763 && (i.types[this_operand].bitfield.disp16
6764 || i.types[this_operand].bitfield.disp32))
6765 i.types[this_operand]
6766 = operand_type_xor (i.types[this_operand], disp16_32);
6767 fudged = 1;
6768 goto tryprefix;
6770 if (fudged)
6771 as_bad (_("`%s' is not a valid %s expression"),
6772 operand_string,
6773 kind);
6774 else
6775 #endif
6776 as_bad (_("`%s' is not a valid %s-bit %s expression"),
6777 operand_string,
6778 flag_code_names[i.prefix[ADDR_PREFIX]
6779 ? flag_code == CODE_32BIT
6780 ? CODE_16BIT
6781 : CODE_32BIT
6782 : flag_code],
6783 kind);
6785 return ok;
6788 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
6789 on error. */
6791 static int
6792 i386_att_operand (char *operand_string)
6794 const reg_entry *r;
6795 char *end_op;
6796 char *op_string = operand_string;
6798 if (is_space_char (*op_string))
6799 ++op_string;
6801 /* We check for an absolute prefix (differentiating,
6802 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6803 if (*op_string == ABSOLUTE_PREFIX)
6805 ++op_string;
6806 if (is_space_char (*op_string))
6807 ++op_string;
6808 i.types[this_operand].bitfield.jumpabsolute = 1;
6811 /* Check if operand is a register. */
6812 if ((r = parse_register (op_string, &end_op)) != NULL)
6814 i386_operand_type temp;
6816 /* Check for a segment override by searching for ':' after a
6817 segment register. */
6818 op_string = end_op;
6819 if (is_space_char (*op_string))
6820 ++op_string;
6821 if (*op_string == ':'
6822 && (r->reg_type.bitfield.sreg2
6823 || r->reg_type.bitfield.sreg3))
6825 switch (r->reg_num)
6827 case 0:
6828 i.seg[i.mem_operands] = &es;
6829 break;
6830 case 1:
6831 i.seg[i.mem_operands] = &cs;
6832 break;
6833 case 2:
6834 i.seg[i.mem_operands] = &ss;
6835 break;
6836 case 3:
6837 i.seg[i.mem_operands] = &ds;
6838 break;
6839 case 4:
6840 i.seg[i.mem_operands] = &fs;
6841 break;
6842 case 5:
6843 i.seg[i.mem_operands] = &gs;
6844 break;
6847 /* Skip the ':' and whitespace. */
6848 ++op_string;
6849 if (is_space_char (*op_string))
6850 ++op_string;
6852 if (!is_digit_char (*op_string)
6853 && !is_identifier_char (*op_string)
6854 && *op_string != '('
6855 && *op_string != ABSOLUTE_PREFIX)
6857 as_bad (_("bad memory operand `%s'"), op_string);
6858 return 0;
6860 /* Handle case of %es:*foo. */
6861 if (*op_string == ABSOLUTE_PREFIX)
6863 ++op_string;
6864 if (is_space_char (*op_string))
6865 ++op_string;
6866 i.types[this_operand].bitfield.jumpabsolute = 1;
6868 goto do_memory_reference;
6870 if (*op_string)
6872 as_bad (_("junk `%s' after register"), op_string);
6873 return 0;
6875 temp = r->reg_type;
6876 temp.bitfield.baseindex = 0;
6877 i.types[this_operand] = operand_type_or (i.types[this_operand],
6878 temp);
6879 i.types[this_operand].bitfield.unspecified = 0;
6880 i.op[this_operand].regs = r;
6881 i.reg_operands++;
6883 else if (*op_string == REGISTER_PREFIX)
6885 as_bad (_("bad register name `%s'"), op_string);
6886 return 0;
6888 else if (*op_string == IMMEDIATE_PREFIX)
6890 ++op_string;
6891 if (i.types[this_operand].bitfield.jumpabsolute)
6893 as_bad (_("immediate operand illegal with absolute jump"));
6894 return 0;
6896 if (!i386_immediate (op_string))
6897 return 0;
6899 else if (is_digit_char (*op_string)
6900 || is_identifier_char (*op_string)
6901 || *op_string == '(')
6903 /* This is a memory reference of some sort. */
6904 char *base_string;
6906 /* Start and end of displacement string expression (if found). */
6907 char *displacement_string_start;
6908 char *displacement_string_end;
6910 do_memory_reference:
6911 if ((i.mem_operands == 1
6912 && !current_templates->start->opcode_modifier.isstring)
6913 || i.mem_operands == 2)
6915 as_bad (_("too many memory references for `%s'"),
6916 current_templates->start->name);
6917 return 0;
6920 /* Check for base index form. We detect the base index form by
6921 looking for an ')' at the end of the operand, searching
6922 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6923 after the '('. */
6924 base_string = op_string + strlen (op_string);
6926 --base_string;
6927 if (is_space_char (*base_string))
6928 --base_string;
6930 /* If we only have a displacement, set-up for it to be parsed later. */
6931 displacement_string_start = op_string;
6932 displacement_string_end = base_string + 1;
6934 if (*base_string == ')')
6936 char *temp_string;
6937 unsigned int parens_balanced = 1;
6938 /* We've already checked that the number of left & right ()'s are
6939 equal, so this loop will not be infinite. */
6942 base_string--;
6943 if (*base_string == ')')
6944 parens_balanced++;
6945 if (*base_string == '(')
6946 parens_balanced--;
6948 while (parens_balanced);
6950 temp_string = base_string;
6952 /* Skip past '(' and whitespace. */
6953 ++base_string;
6954 if (is_space_char (*base_string))
6955 ++base_string;
6957 if (*base_string == ','
6958 || ((i.base_reg = parse_register (base_string, &end_op))
6959 != NULL))
6961 displacement_string_end = temp_string;
6963 i.types[this_operand].bitfield.baseindex = 1;
6965 if (i.base_reg)
6967 base_string = end_op;
6968 if (is_space_char (*base_string))
6969 ++base_string;
6972 /* There may be an index reg or scale factor here. */
6973 if (*base_string == ',')
6975 ++base_string;
6976 if (is_space_char (*base_string))
6977 ++base_string;
6979 if ((i.index_reg = parse_register (base_string, &end_op))
6980 != NULL)
6982 base_string = end_op;
6983 if (is_space_char (*base_string))
6984 ++base_string;
6985 if (*base_string == ',')
6987 ++base_string;
6988 if (is_space_char (*base_string))
6989 ++base_string;
6991 else if (*base_string != ')')
6993 as_bad (_("expecting `,' or `)' "
6994 "after index register in `%s'"),
6995 operand_string);
6996 return 0;
6999 else if (*base_string == REGISTER_PREFIX)
7001 as_bad (_("bad register name `%s'"), base_string);
7002 return 0;
7005 /* Check for scale factor. */
7006 if (*base_string != ')')
7008 char *end_scale = i386_scale (base_string);
7010 if (!end_scale)
7011 return 0;
7013 base_string = end_scale;
7014 if (is_space_char (*base_string))
7015 ++base_string;
7016 if (*base_string != ')')
7018 as_bad (_("expecting `)' "
7019 "after scale factor in `%s'"),
7020 operand_string);
7021 return 0;
7024 else if (!i.index_reg)
7026 as_bad (_("expecting index register or scale factor "
7027 "after `,'; got '%c'"),
7028 *base_string);
7029 return 0;
7032 else if (*base_string != ')')
7034 as_bad (_("expecting `,' or `)' "
7035 "after base register in `%s'"),
7036 operand_string);
7037 return 0;
7040 else if (*base_string == REGISTER_PREFIX)
7042 as_bad (_("bad register name `%s'"), base_string);
7043 return 0;
7047 /* If there's an expression beginning the operand, parse it,
7048 assuming displacement_string_start and
7049 displacement_string_end are meaningful. */
7050 if (displacement_string_start != displacement_string_end)
7052 if (!i386_displacement (displacement_string_start,
7053 displacement_string_end))
7054 return 0;
7057 /* Special case for (%dx) while doing input/output op. */
7058 if (i.base_reg
7059 && operand_type_equal (&i.base_reg->reg_type,
7060 &reg16_inoutportreg)
7061 && i.index_reg == 0
7062 && i.log2_scale_factor == 0
7063 && i.seg[i.mem_operands] == 0
7064 && !operand_type_check (i.types[this_operand], disp))
7066 i.types[this_operand] = inoutportreg;
7067 return 1;
7070 if (i386_index_check (operand_string) == 0)
7071 return 0;
7072 i.types[this_operand].bitfield.mem = 1;
7073 i.mem_operands++;
7075 else
7077 /* It's not a memory operand; argh! */
7078 as_bad (_("invalid char %s beginning operand %d `%s'"),
7079 output_invalid (*op_string),
7080 this_operand + 1,
7081 op_string);
7082 return 0;
7084 return 1; /* Normal return. */
7087 /* md_estimate_size_before_relax()
7089 Called just before relax() for rs_machine_dependent frags. The x86
7090 assembler uses these frags to handle variable size jump
7091 instructions.
7093 Any symbol that is now undefined will not become defined.
7094 Return the correct fr_subtype in the frag.
7095 Return the initial "guess for variable size of frag" to caller.
7096 The guess is actually the growth beyond the fixed part. Whatever
7097 we do to grow the fixed or variable part contributes to our
7098 returned value. */
7101 md_estimate_size_before_relax (fragP, segment)
7102 fragS *fragP;
7103 segT segment;
7105 /* We've already got fragP->fr_subtype right; all we have to do is
7106 check for un-relaxable symbols. On an ELF system, we can't relax
7107 an externally visible symbol, because it may be overridden by a
7108 shared library. */
7109 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7110 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7111 || (IS_ELF
7112 && (S_IS_EXTERNAL (fragP->fr_symbol)
7113 || S_IS_WEAK (fragP->fr_symbol)
7114 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7115 & BSF_GNU_INDIRECT_FUNCTION))))
7116 #endif
7117 #if defined (OBJ_COFF) && defined (TE_PE)
7118 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7119 && S_IS_WEAK (fragP->fr_symbol))
7120 #endif
7123 /* Symbol is undefined in this segment, or we need to keep a
7124 reloc so that weak symbols can be overridden. */
7125 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7126 enum bfd_reloc_code_real reloc_type;
7127 unsigned char *opcode;
7128 int old_fr_fix;
7130 if (fragP->fr_var != NO_RELOC)
7131 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
7132 else if (size == 2)
7133 reloc_type = BFD_RELOC_16_PCREL;
7134 else
7135 reloc_type = BFD_RELOC_32_PCREL;
7137 old_fr_fix = fragP->fr_fix;
7138 opcode = (unsigned char *) fragP->fr_opcode;
7140 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7142 case UNCOND_JUMP:
7143 /* Make jmp (0xeb) a (d)word displacement jump. */
7144 opcode[0] = 0xe9;
7145 fragP->fr_fix += size;
7146 fix_new (fragP, old_fr_fix, size,
7147 fragP->fr_symbol,
7148 fragP->fr_offset, 1,
7149 reloc_type);
7150 break;
7152 case COND_JUMP86:
7153 if (size == 2
7154 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7156 /* Negate the condition, and branch past an
7157 unconditional jump. */
7158 opcode[0] ^= 1;
7159 opcode[1] = 3;
7160 /* Insert an unconditional jump. */
7161 opcode[2] = 0xe9;
7162 /* We added two extra opcode bytes, and have a two byte
7163 offset. */
7164 fragP->fr_fix += 2 + 2;
7165 fix_new (fragP, old_fr_fix + 2, 2,
7166 fragP->fr_symbol,
7167 fragP->fr_offset, 1,
7168 reloc_type);
7169 break;
7171 /* Fall through. */
7173 case COND_JUMP:
7174 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7176 fixS *fixP;
7178 fragP->fr_fix += 1;
7179 fixP = fix_new (fragP, old_fr_fix, 1,
7180 fragP->fr_symbol,
7181 fragP->fr_offset, 1,
7182 BFD_RELOC_8_PCREL);
7183 fixP->fx_signed = 1;
7184 break;
7187 /* This changes the byte-displacement jump 0x7N
7188 to the (d)word-displacement jump 0x0f,0x8N. */
7189 opcode[1] = opcode[0] + 0x10;
7190 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7191 /* We've added an opcode byte. */
7192 fragP->fr_fix += 1 + size;
7193 fix_new (fragP, old_fr_fix + 1, size,
7194 fragP->fr_symbol,
7195 fragP->fr_offset, 1,
7196 reloc_type);
7197 break;
7199 default:
7200 BAD_CASE (fragP->fr_subtype);
7201 break;
7203 frag_wane (fragP);
7204 return fragP->fr_fix - old_fr_fix;
7207 /* Guess size depending on current relax state. Initially the relax
7208 state will correspond to a short jump and we return 1, because
7209 the variable part of the frag (the branch offset) is one byte
7210 long. However, we can relax a section more than once and in that
7211 case we must either set fr_subtype back to the unrelaxed state,
7212 or return the value for the appropriate branch. */
7213 return md_relax_table[fragP->fr_subtype].rlx_length;
7216 /* Called after relax() is finished.
7218 In: Address of frag.
7219 fr_type == rs_machine_dependent.
7220 fr_subtype is what the address relaxed to.
7222 Out: Any fixSs and constants are set up.
7223 Caller will turn frag into a ".space 0". */
7225 void
7226 md_convert_frag (abfd, sec, fragP)
7227 bfd *abfd ATTRIBUTE_UNUSED;
7228 segT sec ATTRIBUTE_UNUSED;
7229 fragS *fragP;
7231 unsigned char *opcode;
7232 unsigned char *where_to_put_displacement = NULL;
7233 offsetT target_address;
7234 offsetT opcode_address;
7235 unsigned int extension = 0;
7236 offsetT displacement_from_opcode_start;
7238 opcode = (unsigned char *) fragP->fr_opcode;
7240 /* Address we want to reach in file space. */
7241 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7243 /* Address opcode resides at in file space. */
7244 opcode_address = fragP->fr_address + fragP->fr_fix;
7246 /* Displacement from opcode start to fill into instruction. */
7247 displacement_from_opcode_start = target_address - opcode_address;
7249 if ((fragP->fr_subtype & BIG) == 0)
7251 /* Don't have to change opcode. */
7252 extension = 1; /* 1 opcode + 1 displacement */
7253 where_to_put_displacement = &opcode[1];
7255 else
7257 if (no_cond_jump_promotion
7258 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7259 as_warn_where (fragP->fr_file, fragP->fr_line,
7260 _("long jump required"));
7262 switch (fragP->fr_subtype)
7264 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7265 extension = 4; /* 1 opcode + 4 displacement */
7266 opcode[0] = 0xe9;
7267 where_to_put_displacement = &opcode[1];
7268 break;
7270 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7271 extension = 2; /* 1 opcode + 2 displacement */
7272 opcode[0] = 0xe9;
7273 where_to_put_displacement = &opcode[1];
7274 break;
7276 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7277 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7278 extension = 5; /* 2 opcode + 4 displacement */
7279 opcode[1] = opcode[0] + 0x10;
7280 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7281 where_to_put_displacement = &opcode[2];
7282 break;
7284 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7285 extension = 3; /* 2 opcode + 2 displacement */
7286 opcode[1] = opcode[0] + 0x10;
7287 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7288 where_to_put_displacement = &opcode[2];
7289 break;
7291 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7292 extension = 4;
7293 opcode[0] ^= 1;
7294 opcode[1] = 3;
7295 opcode[2] = 0xe9;
7296 where_to_put_displacement = &opcode[3];
7297 break;
7299 default:
7300 BAD_CASE (fragP->fr_subtype);
7301 break;
7305 /* If size if less then four we are sure that the operand fits,
7306 but if it's 4, then it could be that the displacement is larger
7307 then -/+ 2GB. */
7308 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7309 && object_64bit
7310 && ((addressT) (displacement_from_opcode_start - extension
7311 + ((addressT) 1 << 31))
7312 > (((addressT) 2 << 31) - 1)))
7314 as_bad_where (fragP->fr_file, fragP->fr_line,
7315 _("jump target out of range"));
7316 /* Make us emit 0. */
7317 displacement_from_opcode_start = extension;
7319 /* Now put displacement after opcode. */
7320 md_number_to_chars ((char *) where_to_put_displacement,
7321 (valueT) (displacement_from_opcode_start - extension),
7322 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7323 fragP->fr_fix += extension;
7326 /* Apply a fixup (fixS) to segment data, once it has been determined
7327 by our caller that we have all the info we need to fix it up.
7329 On the 386, immediates, displacements, and data pointers are all in
7330 the same (little-endian) format, so we don't need to care about which
7331 we are handling. */
7333 void
7334 md_apply_fix (fixP, valP, seg)
7335 /* The fix we're to put in. */
7336 fixS *fixP;
7337 /* Pointer to the value of the bits. */
7338 valueT *valP;
7339 /* Segment fix is from. */
7340 segT seg ATTRIBUTE_UNUSED;
7342 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7343 valueT value = *valP;
7345 #if !defined (TE_Mach)
7346 if (fixP->fx_pcrel)
7348 switch (fixP->fx_r_type)
7350 default:
7351 break;
7353 case BFD_RELOC_64:
7354 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7355 break;
7356 case BFD_RELOC_32:
7357 case BFD_RELOC_X86_64_32S:
7358 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7359 break;
7360 case BFD_RELOC_16:
7361 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7362 break;
7363 case BFD_RELOC_8:
7364 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7365 break;
7369 if (fixP->fx_addsy != NULL
7370 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7371 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7372 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7373 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7374 && !use_rela_relocations)
7376 /* This is a hack. There should be a better way to handle this.
7377 This covers for the fact that bfd_install_relocation will
7378 subtract the current location (for partial_inplace, PC relative
7379 relocations); see more below. */
7380 #ifndef OBJ_AOUT
7381 if (IS_ELF
7382 #ifdef TE_PE
7383 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7384 #endif
7386 value += fixP->fx_where + fixP->fx_frag->fr_address;
7387 #endif
7388 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7389 if (IS_ELF)
7391 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7393 if ((sym_seg == seg
7394 || (symbol_section_p (fixP->fx_addsy)
7395 && sym_seg != absolute_section))
7396 && !generic_force_reloc (fixP))
7398 /* Yes, we add the values in twice. This is because
7399 bfd_install_relocation subtracts them out again. I think
7400 bfd_install_relocation is broken, but I don't dare change
7401 it. FIXME. */
7402 value += fixP->fx_where + fixP->fx_frag->fr_address;
7405 #endif
7406 #if defined (OBJ_COFF) && defined (TE_PE)
7407 /* For some reason, the PE format does not store a
7408 section address offset for a PC relative symbol. */
7409 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7410 || S_IS_WEAK (fixP->fx_addsy))
7411 value += md_pcrel_from (fixP);
7412 #endif
7414 #if defined (OBJ_COFF) && defined (TE_PE)
7415 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7417 value -= S_GET_VALUE (fixP->fx_addsy);
7419 #endif
7421 /* Fix a few things - the dynamic linker expects certain values here,
7422 and we must not disappoint it. */
7423 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7424 if (IS_ELF && fixP->fx_addsy)
7425 switch (fixP->fx_r_type)
7427 case BFD_RELOC_386_PLT32:
7428 case BFD_RELOC_X86_64_PLT32:
7429 /* Make the jump instruction point to the address of the operand. At
7430 runtime we merely add the offset to the actual PLT entry. */
7431 value = -4;
7432 break;
7434 case BFD_RELOC_386_TLS_GD:
7435 case BFD_RELOC_386_TLS_LDM:
7436 case BFD_RELOC_386_TLS_IE_32:
7437 case BFD_RELOC_386_TLS_IE:
7438 case BFD_RELOC_386_TLS_GOTIE:
7439 case BFD_RELOC_386_TLS_GOTDESC:
7440 case BFD_RELOC_X86_64_TLSGD:
7441 case BFD_RELOC_X86_64_TLSLD:
7442 case BFD_RELOC_X86_64_GOTTPOFF:
7443 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7444 value = 0; /* Fully resolved at runtime. No addend. */
7445 /* Fallthrough */
7446 case BFD_RELOC_386_TLS_LE:
7447 case BFD_RELOC_386_TLS_LDO_32:
7448 case BFD_RELOC_386_TLS_LE_32:
7449 case BFD_RELOC_X86_64_DTPOFF32:
7450 case BFD_RELOC_X86_64_DTPOFF64:
7451 case BFD_RELOC_X86_64_TPOFF32:
7452 case BFD_RELOC_X86_64_TPOFF64:
7453 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7454 break;
7456 case BFD_RELOC_386_TLS_DESC_CALL:
7457 case BFD_RELOC_X86_64_TLSDESC_CALL:
7458 value = 0; /* Fully resolved at runtime. No addend. */
7459 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7460 fixP->fx_done = 0;
7461 return;
7463 case BFD_RELOC_386_GOT32:
7464 case BFD_RELOC_X86_64_GOT32:
7465 value = 0; /* Fully resolved at runtime. No addend. */
7466 break;
7468 case BFD_RELOC_VTABLE_INHERIT:
7469 case BFD_RELOC_VTABLE_ENTRY:
7470 fixP->fx_done = 0;
7471 return;
7473 default:
7474 break;
7476 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7477 *valP = value;
7478 #endif /* !defined (TE_Mach) */
7480 /* Are we finished with this relocation now? */
7481 if (fixP->fx_addsy == NULL)
7482 fixP->fx_done = 1;
7483 #if defined (OBJ_COFF) && defined (TE_PE)
7484 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7486 fixP->fx_done = 0;
7487 /* Remember value for tc_gen_reloc. */
7488 fixP->fx_addnumber = value;
7489 /* Clear out the frag for now. */
7490 value = 0;
7492 #endif
7493 else if (use_rela_relocations)
7495 fixP->fx_no_overflow = 1;
7496 /* Remember value for tc_gen_reloc. */
7497 fixP->fx_addnumber = value;
7498 value = 0;
7501 md_number_to_chars (p, value, fixP->fx_size);
7504 char *
7505 md_atof (int type, char *litP, int *sizeP)
7507 /* This outputs the LITTLENUMs in REVERSE order;
7508 in accord with the bigendian 386. */
7509 return ieee_md_atof (type, litP, sizeP, FALSE);
7512 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7514 static char *
7515 output_invalid (int c)
7517 if (ISPRINT (c))
7518 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7519 "'%c'", c);
7520 else
7521 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7522 "(0x%x)", (unsigned char) c);
7523 return output_invalid_buf;
7526 /* REG_STRING starts *before* REGISTER_PREFIX. */
7528 static const reg_entry *
7529 parse_real_register (char *reg_string, char **end_op)
7531 char *s = reg_string;
7532 char *p;
7533 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7534 const reg_entry *r;
7536 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7537 if (*s == REGISTER_PREFIX)
7538 ++s;
7540 if (is_space_char (*s))
7541 ++s;
7543 p = reg_name_given;
7544 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7546 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7547 return (const reg_entry *) NULL;
7548 s++;
7551 /* For naked regs, make sure that we are not dealing with an identifier.
7552 This prevents confusing an identifier like `eax_var' with register
7553 `eax'. */
7554 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7555 return (const reg_entry *) NULL;
7557 *end_op = s;
7559 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7561 /* Handle floating point regs, allowing spaces in the (i) part. */
7562 if (r == i386_regtab /* %st is first entry of table */)
7564 if (is_space_char (*s))
7565 ++s;
7566 if (*s == '(')
7568 ++s;
7569 if (is_space_char (*s))
7570 ++s;
7571 if (*s >= '0' && *s <= '7')
7573 int fpr = *s - '0';
7574 ++s;
7575 if (is_space_char (*s))
7576 ++s;
7577 if (*s == ')')
7579 *end_op = s + 1;
7580 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
7581 know (r);
7582 return r + fpr;
7585 /* We have "%st(" then garbage. */
7586 return (const reg_entry *) NULL;
7590 if (r == NULL || allow_pseudo_reg)
7591 return r;
7593 if (operand_type_all_zero (&r->reg_type))
7594 return (const reg_entry *) NULL;
7596 if ((r->reg_type.bitfield.reg32
7597 || r->reg_type.bitfield.sreg3
7598 || r->reg_type.bitfield.control
7599 || r->reg_type.bitfield.debug
7600 || r->reg_type.bitfield.test)
7601 && !cpu_arch_flags.bitfield.cpui386)
7602 return (const reg_entry *) NULL;
7604 if (r->reg_type.bitfield.floatreg
7605 && !cpu_arch_flags.bitfield.cpu8087
7606 && !cpu_arch_flags.bitfield.cpu287
7607 && !cpu_arch_flags.bitfield.cpu387)
7608 return (const reg_entry *) NULL;
7610 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7611 return (const reg_entry *) NULL;
7613 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7614 return (const reg_entry *) NULL;
7616 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7617 return (const reg_entry *) NULL;
7619 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7620 if (!allow_index_reg
7621 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7622 return (const reg_entry *) NULL;
7624 if (((r->reg_flags & (RegRex64 | RegRex))
7625 || r->reg_type.bitfield.reg64)
7626 && (!cpu_arch_flags.bitfield.cpulm
7627 || !operand_type_equal (&r->reg_type, &control))
7628 && flag_code != CODE_64BIT)
7629 return (const reg_entry *) NULL;
7631 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7632 return (const reg_entry *) NULL;
7634 return r;
7637 /* REG_STRING starts *before* REGISTER_PREFIX. */
7639 static const reg_entry *
7640 parse_register (char *reg_string, char **end_op)
7642 const reg_entry *r;
7644 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7645 r = parse_real_register (reg_string, end_op);
7646 else
7647 r = NULL;
7648 if (!r)
7650 char *save = input_line_pointer;
7651 char c;
7652 symbolS *symbolP;
7654 input_line_pointer = reg_string;
7655 c = get_symbol_end ();
7656 symbolP = symbol_find (reg_string);
7657 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7659 const expressionS *e = symbol_get_value_expression (symbolP);
7661 know (e->X_op == O_register);
7662 know (e->X_add_number >= 0
7663 && (valueT) e->X_add_number < i386_regtab_size);
7664 r = i386_regtab + e->X_add_number;
7665 *end_op = input_line_pointer;
7667 *input_line_pointer = c;
7668 input_line_pointer = save;
7670 return r;
7674 i386_parse_name (char *name, expressionS *e, char *nextcharP)
7676 const reg_entry *r;
7677 char *end = input_line_pointer;
7679 *end = *nextcharP;
7680 r = parse_register (name, &input_line_pointer);
7681 if (r && end <= input_line_pointer)
7683 *nextcharP = *input_line_pointer;
7684 *input_line_pointer = 0;
7685 e->X_op = O_register;
7686 e->X_add_number = r - i386_regtab;
7687 return 1;
7689 input_line_pointer = end;
7690 *end = 0;
7691 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7694 void
7695 md_operand (expressionS *e)
7697 char *end;
7698 const reg_entry *r;
7700 switch (*input_line_pointer)
7702 case REGISTER_PREFIX:
7703 r = parse_real_register (input_line_pointer, &end);
7704 if (r)
7706 e->X_op = O_register;
7707 e->X_add_number = r - i386_regtab;
7708 input_line_pointer = end;
7710 break;
7712 case '[':
7713 gas_assert (intel_syntax);
7714 end = input_line_pointer++;
7715 expression (e);
7716 if (*input_line_pointer == ']')
7718 ++input_line_pointer;
7719 e->X_op_symbol = make_expr_symbol (e);
7720 e->X_add_symbol = NULL;
7721 e->X_add_number = 0;
7722 e->X_op = O_index;
7724 else
7726 e->X_op = O_absent;
7727 input_line_pointer = end;
7729 break;
7734 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7735 const char *md_shortopts = "kVQ:sqn";
7736 #else
7737 const char *md_shortopts = "qn";
7738 #endif
7740 #define OPTION_32 (OPTION_MD_BASE + 0)
7741 #define OPTION_64 (OPTION_MD_BASE + 1)
7742 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7743 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7744 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7745 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7746 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7747 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7748 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7749 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7750 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7751 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7753 struct option md_longopts[] =
7755 {"32", no_argument, NULL, OPTION_32},
7756 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7757 || defined (TE_PE) || defined (TE_PEP))
7758 {"64", no_argument, NULL, OPTION_64},
7759 #endif
7760 {"divide", no_argument, NULL, OPTION_DIVIDE},
7761 {"march", required_argument, NULL, OPTION_MARCH},
7762 {"mtune", required_argument, NULL, OPTION_MTUNE},
7763 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7764 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7765 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7766 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7767 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7768 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
7769 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7770 {NULL, no_argument, NULL, 0}
7772 size_t md_longopts_size = sizeof (md_longopts);
7775 md_parse_option (int c, char *arg)
7777 unsigned int i;
7778 char *arch, *next;
7780 switch (c)
7782 case 'n':
7783 optimize_align_code = 0;
7784 break;
7786 case 'q':
7787 quiet_warnings = 1;
7788 break;
7790 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7791 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7792 should be emitted or not. FIXME: Not implemented. */
7793 case 'Q':
7794 break;
7796 /* -V: SVR4 argument to print version ID. */
7797 case 'V':
7798 print_version_id ();
7799 break;
7801 /* -k: Ignore for FreeBSD compatibility. */
7802 case 'k':
7803 break;
7805 case 's':
7806 /* -s: On i386 Solaris, this tells the native assembler to use
7807 .stab instead of .stab.excl. We always use .stab anyhow. */
7808 break;
7809 #endif
7810 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7811 || defined (TE_PE) || defined (TE_PEP))
7812 case OPTION_64:
7814 const char **list, **l;
7816 list = bfd_target_list ();
7817 for (l = list; *l != NULL; l++)
7818 if (CONST_STRNEQ (*l, "elf64-x86-64")
7819 || strcmp (*l, "coff-x86-64") == 0
7820 || strcmp (*l, "pe-x86-64") == 0
7821 || strcmp (*l, "pei-x86-64") == 0)
7823 default_arch = "x86_64";
7824 break;
7826 if (*l == NULL)
7827 as_fatal (_("No compiled in support for x86_64"));
7828 free (list);
7830 break;
7831 #endif
7833 case OPTION_32:
7834 default_arch = "i386";
7835 break;
7837 case OPTION_DIVIDE:
7838 #ifdef SVR4_COMMENT_CHARS
7840 char *n, *t;
7841 const char *s;
7843 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7844 t = n;
7845 for (s = i386_comment_chars; *s != '\0'; s++)
7846 if (*s != '/')
7847 *t++ = *s;
7848 *t = '\0';
7849 i386_comment_chars = n;
7851 #endif
7852 break;
7854 case OPTION_MARCH:
7855 arch = xstrdup (arg);
7858 if (*arch == '.')
7859 as_fatal (_("Invalid -march= option: `%s'"), arg);
7860 next = strchr (arch, '+');
7861 if (next)
7862 *next++ = '\0';
7863 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7865 if (strcmp (arch, cpu_arch [i].name) == 0)
7867 /* Processor. */
7868 cpu_arch_name = cpu_arch[i].name;
7869 cpu_sub_arch_name = NULL;
7870 cpu_arch_flags = cpu_arch[i].flags;
7871 cpu_arch_isa = cpu_arch[i].type;
7872 cpu_arch_isa_flags = cpu_arch[i].flags;
7873 if (!cpu_arch_tune_set)
7875 cpu_arch_tune = cpu_arch_isa;
7876 cpu_arch_tune_flags = cpu_arch_isa_flags;
7878 break;
7880 else if (*cpu_arch [i].name == '.'
7881 && strcmp (arch, cpu_arch [i].name + 1) == 0)
7883 /* ISA entension. */
7884 i386_cpu_flags flags;
7886 if (strncmp (arch, "no", 2))
7887 flags = cpu_flags_or (cpu_arch_flags,
7888 cpu_arch[i].flags);
7889 else
7890 flags = cpu_flags_and_not (cpu_arch_flags,
7891 cpu_arch[i].flags);
7892 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
7894 if (cpu_sub_arch_name)
7896 char *name = cpu_sub_arch_name;
7897 cpu_sub_arch_name = concat (name,
7898 cpu_arch[i].name,
7899 (const char *) NULL);
7900 free (name);
7902 else
7903 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
7904 cpu_arch_flags = flags;
7906 break;
7910 if (i >= ARRAY_SIZE (cpu_arch))
7911 as_fatal (_("Invalid -march= option: `%s'"), arg);
7913 arch = next;
7915 while (next != NULL );
7916 break;
7918 case OPTION_MTUNE:
7919 if (*arg == '.')
7920 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7921 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7923 if (strcmp (arg, cpu_arch [i].name) == 0)
7925 cpu_arch_tune_set = 1;
7926 cpu_arch_tune = cpu_arch [i].type;
7927 cpu_arch_tune_flags = cpu_arch[i].flags;
7928 break;
7931 if (i >= ARRAY_SIZE (cpu_arch))
7932 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7933 break;
7935 case OPTION_MMNEMONIC:
7936 if (strcasecmp (arg, "att") == 0)
7937 intel_mnemonic = 0;
7938 else if (strcasecmp (arg, "intel") == 0)
7939 intel_mnemonic = 1;
7940 else
7941 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7942 break;
7944 case OPTION_MSYNTAX:
7945 if (strcasecmp (arg, "att") == 0)
7946 intel_syntax = 0;
7947 else if (strcasecmp (arg, "intel") == 0)
7948 intel_syntax = 1;
7949 else
7950 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7951 break;
7953 case OPTION_MINDEX_REG:
7954 allow_index_reg = 1;
7955 break;
7957 case OPTION_MNAKED_REG:
7958 allow_naked_reg = 1;
7959 break;
7961 case OPTION_MOLD_GCC:
7962 old_gcc = 1;
7963 break;
7965 case OPTION_MSSE2AVX:
7966 sse2avx = 1;
7967 break;
7969 case OPTION_MSSE_CHECK:
7970 if (strcasecmp (arg, "error") == 0)
7971 sse_check = sse_check_error;
7972 else if (strcasecmp (arg, "warning") == 0)
7973 sse_check = sse_check_warning;
7974 else if (strcasecmp (arg, "none") == 0)
7975 sse_check = sse_check_none;
7976 else
7977 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
7978 break;
7980 default:
7981 return 0;
7983 return 1;
7986 void
7987 md_show_usage (stream)
7988 FILE *stream;
7990 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7991 fprintf (stream, _("\
7992 -Q ignored\n\
7993 -V print assembler version number\n\
7994 -k ignored\n"));
7995 #endif
7996 fprintf (stream, _("\
7997 -n Do not optimize code alignment\n\
7998 -q quieten some warnings\n"));
7999 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8000 fprintf (stream, _("\
8001 -s ignored\n"));
8002 #endif
8003 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8004 || defined (TE_PE) || defined (TE_PEP))
8005 fprintf (stream, _("\
8006 --32/--64 generate 32bit/64bit code\n"));
8007 #endif
8008 #ifdef SVR4_COMMENT_CHARS
8009 fprintf (stream, _("\
8010 --divide do not treat `/' as a comment character\n"));
8011 #else
8012 fprintf (stream, _("\
8013 --divide ignored\n"));
8014 #endif
8015 fprintf (stream, _("\
8016 -march=CPU[,+EXTENSION...]\n\
8017 generate code for CPU and EXTENSION, CPU is one of:\n\
8018 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8019 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8020 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
8021 amdfam10, generic32, generic64\n\
8022 EXTENSION is combination of:\n\
8023 8087, 287, 387, no87, mmx, nommx, sse, sse2, sse3,\n\
8024 ssse3, sse4.1, sse4.2, sse4, nosse, avx, noavx,\n\
8025 vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
8026 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
8027 svme, abm, padlock, fma4\n"));
8028 fprintf (stream, _("\
8029 -mtune=CPU optimize for CPU, CPU is one of:\n\
8030 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8031 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8032 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
8033 amdfam10, generic32, generic64\n"));
8034 fprintf (stream, _("\
8035 -msse2avx encode SSE instructions with VEX prefix\n"));
8036 fprintf (stream, _("\
8037 -msse-check=[none|error|warning]\n\
8038 check SSE instructions\n"));
8039 fprintf (stream, _("\
8040 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8041 fprintf (stream, _("\
8042 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8043 fprintf (stream, _("\
8044 -mindex-reg support pseudo index registers\n"));
8045 fprintf (stream, _("\
8046 -mnaked-reg don't require `%%' prefix for registers\n"));
8047 fprintf (stream, _("\
8048 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8051 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8052 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8053 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8055 /* Pick the target format to use. */
8057 const char *
8058 i386_target_format (void)
8060 if (!strcmp (default_arch, "x86_64"))
8062 set_code_flag (CODE_64BIT);
8063 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8065 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8066 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8067 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8068 cpu_arch_isa_flags.bitfield.cpui486 = 1;
8069 cpu_arch_isa_flags.bitfield.cpui586 = 1;
8070 cpu_arch_isa_flags.bitfield.cpui686 = 1;
8071 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
8072 cpu_arch_isa_flags.bitfield.cpummx= 1;
8073 cpu_arch_isa_flags.bitfield.cpusse = 1;
8074 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
8075 cpu_arch_isa_flags.bitfield.cpulm = 1;
8077 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8079 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8080 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8081 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8082 cpu_arch_tune_flags.bitfield.cpui486 = 1;
8083 cpu_arch_tune_flags.bitfield.cpui586 = 1;
8084 cpu_arch_tune_flags.bitfield.cpui686 = 1;
8085 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
8086 cpu_arch_tune_flags.bitfield.cpummx= 1;
8087 cpu_arch_tune_flags.bitfield.cpusse = 1;
8088 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
8091 else if (!strcmp (default_arch, "i386"))
8093 set_code_flag (CODE_32BIT);
8094 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8096 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8097 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8098 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8100 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8102 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8103 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8104 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8107 else
8108 as_fatal (_("Unknown architecture"));
8109 switch (OUTPUT_FLAVOR)
8111 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
8112 case bfd_target_aout_flavour:
8113 return AOUT_TARGET_FORMAT;
8114 #endif
8115 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
8116 # if defined (TE_PE) || defined (TE_PEP)
8117 case bfd_target_coff_flavour:
8118 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8119 # elif defined (TE_GO32)
8120 case bfd_target_coff_flavour:
8121 return "coff-go32";
8122 # else
8123 case bfd_target_coff_flavour:
8124 return "coff-i386";
8125 # endif
8126 #endif
8127 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8128 case bfd_target_elf_flavour:
8130 if (flag_code == CODE_64BIT)
8132 object_64bit = 1;
8133 use_rela_relocations = 1;
8135 if (cpu_arch_isa == PROCESSOR_L1OM)
8137 if (flag_code != CODE_64BIT)
8138 as_fatal (_("Intel L1OM is 64bit only"));
8139 return ELF_TARGET_L1OM_FORMAT;
8141 else
8142 return (flag_code == CODE_64BIT
8143 ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT);
8145 #endif
8146 #if defined (OBJ_MACH_O)
8147 case bfd_target_mach_o_flavour:
8148 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
8149 #endif
8150 default:
8151 abort ();
8152 return NULL;
8156 #endif /* OBJ_MAYBE_ more than one */
8158 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8159 void
8160 i386_elf_emit_arch_note (void)
8162 if (IS_ELF && cpu_arch_name != NULL)
8164 char *p;
8165 asection *seg = now_seg;
8166 subsegT subseg = now_subseg;
8167 Elf_Internal_Note i_note;
8168 Elf_External_Note e_note;
8169 asection *note_secp;
8170 int len;
8172 /* Create the .note section. */
8173 note_secp = subseg_new (".note", 0);
8174 bfd_set_section_flags (stdoutput,
8175 note_secp,
8176 SEC_HAS_CONTENTS | SEC_READONLY);
8178 /* Process the arch string. */
8179 len = strlen (cpu_arch_name);
8181 i_note.namesz = len + 1;
8182 i_note.descsz = 0;
8183 i_note.type = NT_ARCH;
8184 p = frag_more (sizeof (e_note.namesz));
8185 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8186 p = frag_more (sizeof (e_note.descsz));
8187 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8188 p = frag_more (sizeof (e_note.type));
8189 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8190 p = frag_more (len + 1);
8191 strcpy (p, cpu_arch_name);
8193 frag_align (2, 0, 0);
8195 subseg_set (seg, subseg);
8198 #endif
8200 symbolS *
8201 md_undefined_symbol (name)
8202 char *name;
8204 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8205 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8206 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8207 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8209 if (!GOT_symbol)
8211 if (symbol_find (name))
8212 as_bad (_("GOT already in symbol table"));
8213 GOT_symbol = symbol_new (name, undefined_section,
8214 (valueT) 0, &zero_address_frag);
8216 return GOT_symbol;
8218 return 0;
8221 /* Round up a section size to the appropriate boundary. */
8223 valueT
8224 md_section_align (segment, size)
8225 segT segment ATTRIBUTE_UNUSED;
8226 valueT size;
8228 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8229 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8231 /* For a.out, force the section size to be aligned. If we don't do
8232 this, BFD will align it for us, but it will not write out the
8233 final bytes of the section. This may be a bug in BFD, but it is
8234 easier to fix it here since that is how the other a.out targets
8235 work. */
8236 int align;
8238 align = bfd_get_section_alignment (stdoutput, segment);
8239 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8241 #endif
8243 return size;
8246 /* On the i386, PC-relative offsets are relative to the start of the
8247 next instruction. That is, the address of the offset, plus its
8248 size, since the offset is always the last part of the insn. */
8250 long
8251 md_pcrel_from (fixS *fixP)
8253 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8256 #ifndef I386COFF
8258 static void
8259 s_bss (int ignore ATTRIBUTE_UNUSED)
8261 int temp;
8263 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8264 if (IS_ELF)
8265 obj_elf_section_change_hook ();
8266 #endif
8267 temp = get_absolute_expression ();
8268 subseg_set (bss_section, (subsegT) temp);
8269 demand_empty_rest_of_line ();
8272 #endif
8274 void
8275 i386_validate_fix (fixS *fixp)
8277 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8279 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8281 if (!object_64bit)
8282 abort ();
8283 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8285 else
8287 if (!object_64bit)
8288 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8289 else
8290 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8292 fixp->fx_subsy = 0;
8296 arelent *
8297 tc_gen_reloc (section, fixp)
8298 asection *section ATTRIBUTE_UNUSED;
8299 fixS *fixp;
8301 arelent *rel;
8302 bfd_reloc_code_real_type code;
8304 switch (fixp->fx_r_type)
8306 case BFD_RELOC_X86_64_PLT32:
8307 case BFD_RELOC_X86_64_GOT32:
8308 case BFD_RELOC_X86_64_GOTPCREL:
8309 case BFD_RELOC_386_PLT32:
8310 case BFD_RELOC_386_GOT32:
8311 case BFD_RELOC_386_GOTOFF:
8312 case BFD_RELOC_386_GOTPC:
8313 case BFD_RELOC_386_TLS_GD:
8314 case BFD_RELOC_386_TLS_LDM:
8315 case BFD_RELOC_386_TLS_LDO_32:
8316 case BFD_RELOC_386_TLS_IE_32:
8317 case BFD_RELOC_386_TLS_IE:
8318 case BFD_RELOC_386_TLS_GOTIE:
8319 case BFD_RELOC_386_TLS_LE_32:
8320 case BFD_RELOC_386_TLS_LE:
8321 case BFD_RELOC_386_TLS_GOTDESC:
8322 case BFD_RELOC_386_TLS_DESC_CALL:
8323 case BFD_RELOC_X86_64_TLSGD:
8324 case BFD_RELOC_X86_64_TLSLD:
8325 case BFD_RELOC_X86_64_DTPOFF32:
8326 case BFD_RELOC_X86_64_DTPOFF64:
8327 case BFD_RELOC_X86_64_GOTTPOFF:
8328 case BFD_RELOC_X86_64_TPOFF32:
8329 case BFD_RELOC_X86_64_TPOFF64:
8330 case BFD_RELOC_X86_64_GOTOFF64:
8331 case BFD_RELOC_X86_64_GOTPC32:
8332 case BFD_RELOC_X86_64_GOT64:
8333 case BFD_RELOC_X86_64_GOTPCREL64:
8334 case BFD_RELOC_X86_64_GOTPC64:
8335 case BFD_RELOC_X86_64_GOTPLT64:
8336 case BFD_RELOC_X86_64_PLTOFF64:
8337 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8338 case BFD_RELOC_X86_64_TLSDESC_CALL:
8339 case BFD_RELOC_RVA:
8340 case BFD_RELOC_VTABLE_ENTRY:
8341 case BFD_RELOC_VTABLE_INHERIT:
8342 #ifdef TE_PE
8343 case BFD_RELOC_32_SECREL:
8344 #endif
8345 code = fixp->fx_r_type;
8346 break;
8347 case BFD_RELOC_X86_64_32S:
8348 if (!fixp->fx_pcrel)
8350 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8351 code = fixp->fx_r_type;
8352 break;
8354 default:
8355 if (fixp->fx_pcrel)
8357 switch (fixp->fx_size)
8359 default:
8360 as_bad_where (fixp->fx_file, fixp->fx_line,
8361 _("can not do %d byte pc-relative relocation"),
8362 fixp->fx_size);
8363 code = BFD_RELOC_32_PCREL;
8364 break;
8365 case 1: code = BFD_RELOC_8_PCREL; break;
8366 case 2: code = BFD_RELOC_16_PCREL; break;
8367 case 4: code = BFD_RELOC_32_PCREL; break;
8368 #ifdef BFD64
8369 case 8: code = BFD_RELOC_64_PCREL; break;
8370 #endif
8373 else
8375 switch (fixp->fx_size)
8377 default:
8378 as_bad_where (fixp->fx_file, fixp->fx_line,
8379 _("can not do %d byte relocation"),
8380 fixp->fx_size);
8381 code = BFD_RELOC_32;
8382 break;
8383 case 1: code = BFD_RELOC_8; break;
8384 case 2: code = BFD_RELOC_16; break;
8385 case 4: code = BFD_RELOC_32; break;
8386 #ifdef BFD64
8387 case 8: code = BFD_RELOC_64; break;
8388 #endif
8391 break;
8394 if ((code == BFD_RELOC_32
8395 || code == BFD_RELOC_32_PCREL
8396 || code == BFD_RELOC_X86_64_32S)
8397 && GOT_symbol
8398 && fixp->fx_addsy == GOT_symbol)
8400 if (!object_64bit)
8401 code = BFD_RELOC_386_GOTPC;
8402 else
8403 code = BFD_RELOC_X86_64_GOTPC32;
8405 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8406 && GOT_symbol
8407 && fixp->fx_addsy == GOT_symbol)
8409 code = BFD_RELOC_X86_64_GOTPC64;
8412 rel = (arelent *) xmalloc (sizeof (arelent));
8413 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8414 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8416 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8418 if (!use_rela_relocations)
8420 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8421 vtable entry to be used in the relocation's section offset. */
8422 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8423 rel->address = fixp->fx_offset;
8424 #if defined (OBJ_COFF) && defined (TE_PE)
8425 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8426 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8427 else
8428 #endif
8429 rel->addend = 0;
8431 /* Use the rela in 64bit mode. */
8432 else
8434 if (!fixp->fx_pcrel)
8435 rel->addend = fixp->fx_offset;
8436 else
8437 switch (code)
8439 case BFD_RELOC_X86_64_PLT32:
8440 case BFD_RELOC_X86_64_GOT32:
8441 case BFD_RELOC_X86_64_GOTPCREL:
8442 case BFD_RELOC_X86_64_TLSGD:
8443 case BFD_RELOC_X86_64_TLSLD:
8444 case BFD_RELOC_X86_64_GOTTPOFF:
8445 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8446 case BFD_RELOC_X86_64_TLSDESC_CALL:
8447 rel->addend = fixp->fx_offset - fixp->fx_size;
8448 break;
8449 default:
8450 rel->addend = (section->vma
8451 - fixp->fx_size
8452 + fixp->fx_addnumber
8453 + md_pcrel_from (fixp));
8454 break;
8458 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8459 if (rel->howto == NULL)
8461 as_bad_where (fixp->fx_file, fixp->fx_line,
8462 _("cannot represent relocation type %s"),
8463 bfd_get_reloc_code_name (code));
8464 /* Set howto to a garbage value so that we can keep going. */
8465 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8466 gas_assert (rel->howto != NULL);
8469 return rel;
8472 #include "tc-i386-intel.c"
8474 void
8475 tc_x86_parse_to_dw2regnum (expressionS *exp)
8477 int saved_naked_reg;
8478 char saved_register_dot;
8480 saved_naked_reg = allow_naked_reg;
8481 allow_naked_reg = 1;
8482 saved_register_dot = register_chars['.'];
8483 register_chars['.'] = '.';
8484 allow_pseudo_reg = 1;
8485 expression_and_evaluate (exp);
8486 allow_pseudo_reg = 0;
8487 register_chars['.'] = saved_register_dot;
8488 allow_naked_reg = saved_naked_reg;
8490 if (exp->X_op == O_register && exp->X_add_number >= 0)
8492 if ((addressT) exp->X_add_number < i386_regtab_size)
8494 exp->X_op = O_constant;
8495 exp->X_add_number = i386_regtab[exp->X_add_number]
8496 .dw2_regnum[flag_code >> 1];
8498 else
8499 exp->X_op = O_illegal;
8503 void
8504 tc_x86_frame_initial_instructions (void)
8506 static unsigned int sp_regno[2];
8508 if (!sp_regno[flag_code >> 1])
8510 char *saved_input = input_line_pointer;
8511 char sp[][4] = {"esp", "rsp"};
8512 expressionS exp;
8514 input_line_pointer = sp[flag_code >> 1];
8515 tc_x86_parse_to_dw2regnum (&exp);
8516 gas_assert (exp.X_op == O_constant);
8517 sp_regno[flag_code >> 1] = exp.X_add_number;
8518 input_line_pointer = saved_input;
8521 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8522 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8526 i386_elf_section_type (const char *str, size_t len)
8528 if (flag_code == CODE_64BIT
8529 && len == sizeof ("unwind") - 1
8530 && strncmp (str, "unwind", 6) == 0)
8531 return SHT_X86_64_UNWIND;
8533 return -1;
8536 #ifdef TE_SOLARIS
8537 void
8538 i386_solaris_fix_up_eh_frame (segT sec)
8540 if (flag_code == CODE_64BIT)
8541 elf_section_type (sec) = SHT_X86_64_UNWIND;
8543 #endif
8545 #ifdef TE_PE
8546 void
8547 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8549 expressionS expr;
8551 expr.X_op = O_secrel;
8552 expr.X_add_symbol = symbol;
8553 expr.X_add_number = 0;
8554 emit_expr (&expr, size);
8556 #endif
8558 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8559 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8561 bfd_vma
8562 x86_64_section_letter (int letter, char **ptr_msg)
8564 if (flag_code == CODE_64BIT)
8566 if (letter == 'l')
8567 return SHF_X86_64_LARGE;
8569 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8571 else
8572 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8573 return -1;
8576 bfd_vma
8577 x86_64_section_word (char *str, size_t len)
8579 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8580 return SHF_X86_64_LARGE;
8582 return -1;
8585 static void
8586 handle_large_common (int small ATTRIBUTE_UNUSED)
8588 if (flag_code != CODE_64BIT)
8590 s_comm_internal (0, elf_common_parse);
8591 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8593 else
8595 static segT lbss_section;
8596 asection *saved_com_section_ptr = elf_com_section_ptr;
8597 asection *saved_bss_section = bss_section;
8599 if (lbss_section == NULL)
8601 flagword applicable;
8602 segT seg = now_seg;
8603 subsegT subseg = now_subseg;
8605 /* The .lbss section is for local .largecomm symbols. */
8606 lbss_section = subseg_new (".lbss", 0);
8607 applicable = bfd_applicable_section_flags (stdoutput);
8608 bfd_set_section_flags (stdoutput, lbss_section,
8609 applicable & SEC_ALLOC);
8610 seg_info (lbss_section)->bss = 1;
8612 subseg_set (seg, subseg);
8615 elf_com_section_ptr = &_bfd_elf_large_com_section;
8616 bss_section = lbss_section;
8618 s_comm_internal (0, elf_common_parse);
8620 elf_com_section_ptr = saved_com_section_ptr;
8621 bss_section = saved_bss_section;
8624 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */